中考数学二模试题分类汇编——二次函数综合及详细答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、二次函数真题与模拟题分类汇编(难题易错题)

1.(10分)(2015•佛山)如图,一小球从斜坡O点处抛出,球的抛出路线可以用二次函数y=﹣x2+4x刻画,斜坡可以用一次函数y=x刻画.

(1)请用配方法求二次函数图象的最高点P的坐标;

(2)小球的落点是A,求点A的坐标;

(3)连接抛物线的最高点P与点O、A得△POA,求△POA的面积;

(4)在OA上方的抛物线上存在一点M(M与P不重合),△MOA的面积等于△POA的面积.请直接写出点M的坐标.

【答案】(1)(2,4);(2)(,);(3);(4)(,).

【解析】

试题分析:(1)利用配方法抛物线的一般式化为顶点式,即可求出二次函数图象的最高点P的坐标;

(2)联立两解析式,可求出交点A的坐标;

(3)作PQ⊥x轴于点Q,AB⊥x轴于点B.根据S△POA=S△POQ+S△梯形PQBA﹣S△BOA,代入数值计算即可求解;

(4)过P作OA的平行线,交抛物线于点M,连结OM、AM,由于两平行线之间的距离相等,根据同底等高的两个三角形面积相等,可得△MOA的面积等于△POA的面积.设直

线PM的解析式为y=x+b,将P(2,4)代入,求出直线PM的解析式为y=x+3.再与抛

物线的解析式联立,得到方程组,解方程组即可求出点M的坐标.

试题解析:(1)由题意得,y=﹣x2+4x=﹣(x﹣2)2+4,

故二次函数图象的最高点P的坐标为(2,4);

(2)联立两解析式可得:,解得:,或.

故可得点A的坐标为(,);

(3)如图,作PQ⊥x轴于点Q,AB⊥x轴于点B.

S△POA=S△POQ+S△梯形PQBA﹣S△BOA

=×2×4+×(+4)×(﹣2)﹣××

=4+﹣

=;

(4)过P作OA的平行线,交抛物线于点M,连结OM、AM,则△MOA的面积等于△POA的面积.

设直线PM的解析式为y=x+b,

∵P的坐标为(2,4),

∴4=×2+b,解得b=3,

∴直线PM的解析式为y=x+3.

由,解得,,

∴点M的坐标为(,).

考点:二次函数的综合题

2.如图,已知顶点为(0,3)C -的抛物线2(0)y ax b a =+≠与x 轴交于A ,B 两点,直线y x m =+过顶点C 和点B .

(1)求m 的值;

(2)求函数2(0)y ax b a =+≠的解析式;

(3)抛物线上是否存在点M ,使得15MCB ∠=︒?若存在,求出点M 的坐标;若不存在,请说明理由.

【答案】(1)﹣3;(2)y 13

=

x 2﹣3;(3)M 的坐标为(3632). 【解析】

【分析】 (1)把C (0,﹣3)代入直线y =x +m 中解答即可;

(2)把y =0代入直线解析式得出点B 的坐标,再利用待定系数法确定函数关系式即可; (3)分M 在BC 上方和下方两种情况进行解答即可.

【详解】

(1)将C (0,﹣3)代入y =x +m ,可得:

m =﹣3;

(2)将y =0代入y =x ﹣3得:

x =3,

所以点B 的坐标为(3,0),

将(0,﹣3)、(3,0)代入y =ax 2+b 中,可得:

390b a b =-⎧⎨+=⎩

, 解得:133

a b ⎧=⎪⎨⎪=-⎩,

所以二次函数的解析式为:y 13

=

x 2﹣3; (3)存在,分以下两种情况:

①若M 在B 上方,设MC 交x 轴于点D ,

则∠ODC =45°+15°=60°,

∴OD =OC •tan30°3=

设DC 为y =kx ﹣33,0),可得:k 3= 联立两个方程可得:233133y x y x ⎧=-⎪⎨=-⎪⎩

, 解得:121203336x x y y ⎧=⎧=⎪⎨⎨=-=⎪⎩⎩

, 所以M 1(36);

②若M 在B 下方,设MC 交x 轴于点E ,

则∠OEC =45°-15°=30°,

∴OE =OC •tan60°=3

设EC 为y =kx ﹣3,代入(30)可得:k 3= 联立两个方程可得:2333133y x y x ⎧=-⎪⎪⎨⎪=-⎪⎩

, 解得:12120332

x x y y ⎧=⎧=⎪⎨⎨=-=-⎪⎩⎩, 所以M 23,﹣2).

综上所述M 的坐标为(3,63,﹣2).

【点睛】

此题是一道二次函数综合题,熟练掌握待定系数法求函数解析式等知识是解题关键.

3.如图:在平面直角坐标系中,直线l :y=13x ﹣43

与x 轴交于点A ,经过点A 的抛物线

y=ax 2﹣3x+c 的对称轴是

x=32

. (1)求抛物线的解析式; (2)平移直线l 经过原点O ,得到直线m ,点P 是直线m 上任意一点,PB ⊥x 轴于点B ,PC ⊥y 轴于点C ,若点E 在线段OB 上,点F 在线段OC 的延长线上,连接PE ,PF ,且PE=3PF .求证:PE ⊥PF ;

(3)若(2)中的点P 坐标为(6,2),点E 是x 轴上的点,点F 是y 轴上的点,当PE ⊥PF 时,抛物线上是否存在点Q ,使四边形PEQF 是矩形?如果存在,请求出点Q 的坐标,如果不存在,请说明理由.

【答案】(1)抛物线的解析式为y=x 2﹣3x ﹣4;(2)证明见解析;(3)点Q 的坐标为(﹣2,6)或(2,﹣6).

【解析】

【分析】

(1)先求得点A 的坐标,然后依据抛物线过点A ,对称轴是x=

32列出关于a 、c 的方程组求解即可;

(2)设P (3a ,a ),则PC=3a ,PB=a ,然后再证明∠FPC=∠EPB ,最后通过等量代换进行证明即可;

(3)设E (a ,0),然后用含a 的式子表示BE 的长,从而可得到CF 的长,于是可得到点F 的坐标,然后依据中点坐标公式可得到22x x x x Q P F E ++=,22

y y y y Q P F E ++=,从而可求得点Q 的坐标(用含a 的式子表示),最后,将点Q 的坐标代入抛物线的解析式求得a 的值即可.

【详解】

(1)当y=0时,14033x -=,解得x=4,即A (4,0),抛物线过点A ,对称轴是x=32,得161203322a c a -+=⎧⎪-⎨-=⎪⎩

相关文档
最新文档