电力牵引传动系统

电力牵引传动系统
电力牵引传动系统

目录

1. 概述 (1)

1.1 电力牵引的特点 (1)

2. 电力机车的传动方式 (2)

2.1 直-直流传动 (2)

2.2 交-直流传动 (3)

2.3 直-交流传动 (3)

2.4 交-直-交流传动 (4)

3. 我国机车电传动技术的发展与现状 (4)

3.1 交-直传动技术的发展 (4)

3.2 交流传动技术的发展 (5)

4. 动车组的牵引传动系统的现状 (6)

5. 电力牵引传动系统网侧原理图 (8)

1.概述

1.1电力牵引的特点

电力机车属非自带能源式机车,电力牵引具有一系列内燃牵引所不及的优越性,表现在以下几方面:

1、电力机车的功率大

内燃机车功率受到柴油机本身容量、尺寸和重量的限制,故机车功率不能过大。而电力机车不受上述条件的限制,机车功率(或单位重量功率)要大得多,目前轴功率已达1000kW(若交流牵引电动机可达1600kW)。一台电力机车的牵引能力相当于1.5台(或更多一些)内燃机车的牵引能力。由于电力机车功率大、起动快、允许速度高,所以能够多拉快跑,极大地提高了线路的通过能力和输送能力。

2、电力机车的效率高

由于电力牵引所需的电能是由发电厂(或电站)集中产生,因此燃料的利用率要比内燃牵引高得多。由火电厂供电的电力牵引的效率高达35%,由水电站供电的电力牵引则更高,可达60%以上。而内燃牵引的效率约为25%左右,而且柴油价格较贵,有燃烧排放污染。

3、电力机车的过载能力强

机车在起动列车或牵引列车通过限制坡道时,其过载能力具有很大的意义。由于电力机车的过载能力不会受到能源供给的限制,而牵引电动机的短时过载能力总是比较大。因此,电力机车所需的起动加速时间一般约为内燃机车的1/2,从而能够提高列车速度。

4、电力机车的运营费用较低

(1)功率大、起动快、运行速度高、过载能力强、可以多拉快跑;

(2)整备距离长、适合于长交路,提高了机车的利用率;

(3)检修周期长、日常维护保养工作量也小。

一般情况下,电力牵引的运营费用比内燃牵引要低15%左右。

此外,由于电力机车运行过程中不污染环境,对于大型铁路枢纽站及隧道长

而多的线路而言,其意义重大。

缺点:

(1)对通讯方面所带来的谐波干扰问题;

(2)相控调压所引起的功率因数较低的问题;

(3)离不开牵引变电所和接触网等沿线的供电设备,使其机动性较差,且线路电气化投资较大。

一般在客货运输特别繁忙的主要铁干线,线路坡道陡、隧道多又长的山区铁路干线,大运量的集中运煤专线,适宜采用电力牵引。

2.电力机车的传动方式

电力牵引传动系统基本原理如图2-1所示,电力机车通过受电弓与接触网相接触来获取电能,直接从接触网获取的电能是电压为25KV,频率50Hz的工频单相交流电,此电压等级和频率等还不能满足电力机车牵引传动的需要。电力机车上还安装有主变压器将高压电变换为中压电再传送给牵引传动调速系统(动车组牵引传动调速设备主要为牵引变流器),牵引传动调速系统通过改变电压大小(直流传动时)或者交流电频率(交流传动时)来改变牵引电机的转速。

图2-1

轨道交通车辆电力传动方式按接触网和牵引电动机所采用的电流制进行分类,分为:(1)直-直流传动;(2)交-直流传动;(3)直-交流传动;(4)交-直-交流传动。

2.1直-直流传动

由直流接触网供电,机车采用直流牵引电机。直流电经直流变换器(DC-DC)向直(脉)流牵引电机供电。

2.2交-直流传动

由交流接触网供电,机车采用直流牵引电机。交流电经整流器整流为直流电,向直(脉)流牵引电机供电。

2.3直-交流传动

由直流接触网供电,机车采用交流牵引电机。直流电经晶闸管或其他新型电力电子器件构成的逆变器将直流电转换为可调压、变频的三相交流电,再向交流牵引电机供电。

2.4交-直-交流传动

由交流接触网供电,车辆采用交流牵引电机。交流电经整流器整流为直流电(中间直流环节),再经逆变器将直流电转换为可调压、变频的三相交流电,向交流牵引电机供电。

3.我国机车电传动技术的发展与现状

3.1交-直传动技术的发展

1958年底,我国试制出第1台干线电力机车,即6Y1型电力机车。6Y1型电力机车是以前苏联H60型干线交直流传动电力机车为样板,按照中国铁路规范进行研制的。由于当时大功率电力电子器件尚未成熟,可用的整流器件是引燃管。6Y1型电力机车经铁科院环形铁道运行试验后,于1962年前后共试制了5

台样车投入宝凤线试运行。但是,由于一些重要设备(调压开关、牵引电机等)一直存在技术和质量问题,尤其是引燃管整流器难以达到实际运用要求,因此6Y1型电力机车未能投人批量生产。随着我国电力电子工业的发展,大功率整流二极管开始进入到工程实用阶段,为机车电传动技术的发展提供了必要条件。正是在这样的技术背景下,在6Y1型电力机车基础上,我国第1代有级调压、交-直传动电力机车——SSl型电力机车于1968年试制成功,1969年开始批量生产,到1988年止,共生产826台,使我国机车电传动技术进入到交-直传动时期。

可控型器件——晶闸管的出现,使机车电传动技术跨上了一个新台阶。SS3型电力机车正是作为我国机车电传动技术由二极管整流有级调压到相控无级调压的第2代交-直传动客货用电力机车。1978年底,由株洲电力机车厂和株洲电力机车研究所共同研制成功。SS3型电力机车主电路采用牵引变压器低压侧调压开关分级与晶闸管级间相控调压相结合的平滑调压调速技术,使机车获得良好的调速性能。

随着大功率晶闸管性能的提高,相控技术成熟应用到机车电传动领域,其代表车型为SS4型电力机车。SS4型机车是1985年开发的相控无级调压、交-直传动8轴重载货运电力机车,是我国相控机车的“代表作”,与后续开发的SS5、SS6、SS7、SS8及SS9型电力机车一起,构成我国晶闸管相控调压、交-直传动的系列产品。该型机车由2节完全相同的4轴电力机车通过内重联环节连接组成,每节车为一个完整系统,经过实际应用和吸收消化国外8K、6K、8G型等机车的先进技术,做过几次重大改进,使机车性能和质量得到显著提高,成为我国干线货运主型机车。

3.2交流传动技术的发展

为追踪世界新型“交-直-交”电力机车新技术,更为了满足社会经济发展的要求, 推动轨道交通装备技术进步, 我国研究、应用交流传动技术, 经历了技术探索( 理论认识与基础开发)、引进应用( X2000动车组)、合作研制(“蓝箭”动车组和NJ1内燃调车等)、自主开发几个阶段。上世纪70年代,我国开始研究交流电传动系统的基础技术;80年代完成了中等功率交流电传动系统的试验研究;90年代初研制了1Mw大功率变流系统并促进A C4000原型机车的研制与组装;90年代中期相继启动高性能交流传动控制技术、大功率GTO牵引变流器工程化、

中大功率IGBT牵引变流器、大功率异步牵引电机等一系列核心技术的攻关工程, 取得了丰硕成果, 并于本世纪初开始装车应用。

2001年9月我国自行研制成功200km/h“奥星”交流传动电力机车,同年10月时速200km/h的“蓝箭”号在广深线投入使用;2001年又研制成功采用交流传动技术的200km/h的“先锋”号及160km/h的“中原之星”动力分散型电动车组。从2006年开始,我国分别从日本、德国、法国等国引进先进技术,并消化吸收及国产化,成为“具有我国自主知识产权”的动车组产品系列-CRH 系列动车组,它们均属于强动力分散系动车组,这些均预示着机车性能的深刻变革,因而成为今后我国电力机车的发展方向。

铁路运输作为我国中长距离,大运量、安全、低耗、环保、快捷的运输形式已成为交通运输体系中的重要组成部分,在国民经济中占有非常重要的地位。尤其是铁路客运,运能不足的矛盾已经非常突出,铁路旅客运输现状己成为制约国民经济发展的瓶颈。我国引进国外动车组:CRHI,CRH2,CRH3和CRH5;为了我国高速铁路事业实现跨越式发展,按照“全面引进技术,联合设计生产,打造中国品牌”的原则引进国外先进、成一熟、经济、适用、可靠的设计、制造技术,为满足我国铁路客运专线和既有线提速旅客运输要求,实现我国铁路动车组制造业的现代化。

4.动车组的牵引传动系统的现状

牵引技术的现状可从以下五个方面来看:

(1)牵引传动制式。牵引传动制式分为直流传动制式和交流传动制式。目前我国干线铁路使用的电力机车仍以直流传动制式为主,交流传动机车虽然已经有了运用,但在电力牵引动力中所占的比重很小。由于交流传动机车性能的优越性,国外的主要机车生产商早已停止了直流传动机车的生产,基本上都是采用交流传动方式的牵引技术。我国铁路牵引的交流传动技术应用才刚刚开始,技术上远未达到成熟的程度。

(2)动力配置方式。按牵引动力配置方式可以分为动力集中方式和动力分散方式。动力集中方式就是传统的机车牵引方式,这是我国目前电力牵引的主要模式,也是我国铁路运用比较成熟的牵引模式。动力分散型动车组是日本首创的,动力分散方式是城市地铁牵引模式的进化和发展,是一种发展迅速的牵引模式。

欧洲国家近年来也纷纷采用动力分散型动车组的模式。目前我国也已经有了这种牵引模式的动车组,如“中原之星”动车组,“先锋”号动车组以及CRH系列动车组,但无论在技术上还是在运用管理上都只是刚刚起步。

(3)运行速度等级。我国已经有了120km/h及以下等级、160km/h等级、200km/h等级、250km/h等级以及300km/h的电力机车或动力分散型动车组。160km/h及其以下等级的机车在技术上已经比较成熟,也有了较为成熟的运用和管理经验;但对于250km/h及其以上等级机车的应用才刚刚开始,技术上也还不够成熟。

(4)车载牵引功率。车载功率可以从总功率和单轴功率两个方面来看:我国直流传动机车的车载总功率最大为6400kW(SS4型机车),单轴功率最大为900kW(SS8型机车);交流传动机车的车载总功率最大为7200kw(SSJ3型机车),单轴功率最大为1200kW(“中华之星”动车组)。作为单轴1200kW的交流传动机车来说,已经达到了较高的水平,只是在技术上还不够成熟。

(5)牵引控制系统。我国铁路机车已经普遍采用微机作为牵引控制系统,但在直流传动机车上仍有相当数量的模拟电子控制系统。动车组上已经开始使用列车和车厢的通信网络实现控制和信息交换,初步形成了分布式控制的雏形。但目前还没有我们自己的、成熟可靠的微机控制系统产品,控制网络的应用尚待完善。

以上诸方面的关系是相互交叉和相容的。根据上述分析,可以说我国铁路在牵引的技术方面已经基本达到或接近国际先进水平,只是在技术的成熟度和产品的可靠性方面需要进一步提高。总的来说目前在牵引系统方面,“中华之星”和“先锋”号动车组的技术含量相当高,已经试验运行了50多万km,有很多经验可以借鉴,而作为中国铁路第六次大提速上线运行的动车组——和谐号动车组的技术,可以作为我国牵引动力技术最高水平的代表。

交流传动电力机车具有如下优势

(1)良好的牵引性能:合理的利用系统的调压、调频特性,可以实现宽范围的平滑调速,另外调节调频特性能使机车和动车组启动时发出较大启动转矩。

(2)电网功率因数高、谐波干扰小:在交直交电力机车和动车组上,其电源侧变流器可以采用四象限脉冲整流器,它通过PWM控制方法,可以调节电网输入

电流的相位,使所取电流接近正弦波形,并能在广泛的负载范围内使机车和动车组的功率因数接近于1,这在减少对通信信号的谐波干扰方面和充分利用电网的传输功率方面都有很大的意义。另外,四象限脉冲整流器能很方便地实现牵引和再生之间的能量转换,取得显著的节能效果。

(3)牵引系统功率大、体积小、重量轻、运行可靠:由于异步牵引电动机转速可达4000 r /min,利用了直流电动机换向器所占的空间,所以交流电动机能够做到功率大、重量轻,与带换向器的直流(脉流)电动机相比,其单位质量功率(kW/棺)是直流电动机的3倍。在列车车体提供的空间范围内,异步电动机的功率可以达到1400^-2000 kW。另外,交流电动机没有换向器和电刷装置,机车和动车组主电路系统又可以省去许多带触点电器,故障率低易于维护,进一步提高了机车和动车组运行中的可靠性。

(4)良好的牵引特性:由于交流异步电动机有较硬的机械特性,有自然防空转的性能。三相交流异步电机对瞬时过压和过流不敏感,不存在换向器和火花问题,在启动时能在更长的时间内发出更大的转矩。特别是牵引电机控制采用矢量控制或直接转矩控制策略,可以实现大范围平滑调速,适合当代动车组高速牵引、机车重载牵引的要求。

5.电力牵引传动系统网侧原理图

网侧原理电路图

国内外电力牵引传动与控制技术的现状与发展

国内外电力牵引传动与控制技术的现状与发展 交通设备1003班叶文斌宋文强卢志文康杨 摘要: 始于上世纪70年代初的交流电传动技术已经从晶闸管技术发展到GTO技术。交流电传动技术的不断成熟,使其真正成为所有新机车动车的标准。在最近几年中实现了IGBT取代GTO晶闸管的重要技术转型。作为最新进步,该技术转型现在还涵盖了大功率应用范围。德国铁路公司新型的BR189 四电流制电力机车最早将该项革新技术应用于极限功率范围。我国电力牵引技术在不断引进和消化吸收国外先进技术的同时,自主创新,也取得了长足的进步。 关键词:电力牵引传动晶闸管 GTO技术 IGBT技术 IGCT技术直直传动交 直传动交直交传动 Abstract: Starting at beginning of the seventies of the last century the three-phase ac drive technology was developed from Thyristor Technology to GTO technology .With its high maturity three-phase ac drive technology has become the standard for practically all new vehicles .During the last years the replacement of GTO-Thyristors by IGBTs (insulated gate bipolar transistor) was carried out as another important technology change. Now as the last step this technology change also covers the high power applications. The new class 189 four-systems locomotive of German Rail (DB AG) forms the leading application for this innovation in the high power range. Electric traction technologies in China continue to introduce and absorb advanced foreign technology, independent innovation, have also made great progress. Key words:Electric traction drive thyristor GTO technology IGBT technology IGCT technology DC-DC drive technology AC-DC drive technology AC-DC-AC drive technology 引言 铁道牵引电传动技术是牵引动力设备的核心技术,其发展目标一直是致力于改善机车牵引和电制动性能,提高运用可靠性和能源的有效利用率,减少对环境的影响,降低运营成本,更好地满足铁路运输市场的需求。自上世纪50年代末,我国第1台干线电力机车问世至今,我国机车电传动技术随着电力电子和功率电力电子器件技术的发展和应用,经历了从第1代SS 1型电力机车的低压侧调压开关调幅式的有级调压调速技术,到第2代的SS3型电力机车调压开关分级与级间晶闸管相控平滑调压相结合的调压调速技术,再到第3代的SS4~SS9型电力机车的多段桥晶闸管相控无级平滑调压调速技术,直到全新一代的“和谐”型交流传动机车的跨越式发展历程。电传动技术与功率电力电子器件技术紧密相关。一代功率电力电子器件,产生一代牵引设备。只有在GTO、IGBT等全控型大功率电力电子器件及先进的控制技术出现后,才真正确立了现代交流传动技术的优势,使机车电传动技术发生了根本变革,由直流传动向交流传动转变。 国外技术发展 现代电力电子技术的迅猛发展,新型电力电子器件不断问世为交流传动奠定

交流传动与直流传动的比较

《电力牵引交流传动及其控制系统》报告——交流传动与直流传动优劣的比较

1.电力传动的发展 从十九世纪七十年代开始,人们就一直努力探索机车牵引动力系统的电传动技术。1879年的世界第一台电力机车和1881年的第一台城市电车都在尝试直流供电牵引方式。1891年西门子试验了三相交流直接供电、绕线式转子异步电动机牵引的机车, 1917年德国又试制了采用“劈相机”将单相交流供电进行旋转、变换为三相交流电的试验车。这些技术探索终因系统庞大、能量转换效率低、电能转换为机械能的转换能量小等因素,未能成为牵引动力的适用模式。 1955年,水银整流器机车问世,标志着牵引动力电传动技术实用化的开始。1957年,硅可控整流器( 即普通晶闸管) 的发明, 标志着电力牵引跨入了电力电子时代。大功率硅整流技术的出现,使电传动内燃机车和电力机车的传动型式从直-直传动(直流发电机或直流供电-直流电动机),很自然地被更优越的交-直传动(交流发电机或交流供电-硅整流-直流电动机)所取代。1965年,晶闸管整流器机车问世, 使牵引动力电传动系统发生了根本性的技术变革, 全球兴起了单相工频交流电网电气化的高潮。随着大功率的晶闸管特别是大功率可关断晶闸管(GTO)的出现和微机控制技术等的发展,20世纪70年代以后出现了交-直-交传动(交流发电机或交流供电-硅整流-逆变器-交流电动机),即所谓的交流传动,又很自然地取代了交-直传动。 与直流传动机车相比,交流传动机车具有启动牵引力大、恒功率范围宽、粘着系数高、电机维护简单、功率因数高、等效干扰电流小等诸多优点,是目前我国铁路发展的必然趋势。

2.交流传动与直流传动的比较 2.1 机车工作原理的比较 2.1.1 直流传动电力机车工作原理 直流传动电力机车包括直直型电力机车和交直型整流器电力机车。 直直型电力机车是由直流电源供电,直流串励牵引电机驱动,通过串并联切换加凸轮变阻或晶闸管斩波器调阻(调压)方式进行调速和控制的机车。一般工矿用4轴电力机车串并联切换加凸轮变阻的电传动装置工作过程为:机车由受电弓从接触网取得直流电,经断路器QF,启动电阻R,向4台直流牵引电动机M1-M4供电,牵引电流经钢轨流回变电所。随着4台牵引电动机接通电源即行旋转,电能转变为机械能,分别通过各自的齿轮传动装置,驱动机车动轮实现牵引运行。 交直型整流器电力机车的能量传递是将接触网供给的单相工频交流电,经机车内部的牵引变压器降压,再经整流装置将交流转换为直流,然后向直流(脉流)牵引电动机供电,从而产生牵引力牵引列车运行。如图所示。

电力牵引控制系统1

电力牵引控制系统1 15. 主电路设计时要考虑()五方面的因素 参考答案:电机连接与激磁方式、电机的供电方式、整流线路、调速方式、电气制动方式16. 机车牵引特性是指()与()关系曲线 参考答案: 机车牵引力、机车速度 17. 要改变电机励磁绕组电流实现磁场削弱调速主要有()、()两种方法 参考答案: 电阻分路法、晶闸管分路法 18. 机车制动特性是指()与()关系曲线 参考答案: 制动力、速度 19. 机车牵引限制包括()、()、()、() 参考答案: 最大速度限制、电机的安全换向限制、粘着限制、电机最大电枢电流限制 20. 机车制动限制包括()、()、()、()、() 参考答案: 最大速度限制、电机的安全换向限制、粘着限制、电机最大制动电流限制、最大励磁电流限制 21. 电阻制动在低速时,制动力直线下降。为提高制动力,可采用()、()两种方法 参考答案: 加馈电阻制动、分级电阻制动 22. 机车主电路保护主要有()、()、()和()保护 参考答案: 短路、过载、接地、过压 23. 机车辅助电路主要分()辅助电路和()辅助电路两大类 参考答案:直流、交流 24. 主电路设计时要考虑那几方面的因素? 参考答案: 五个方面的考虑 ①电机连接与激磁方式; ②电机的供电方式; ③整流线路; ④调速方式; ⑤电气制动方式 25. 交直型电力机车采用最是那种励磁方式?串联还是并联? 参考答案: 交直机车多采用串励励磁方式,也有机车采用复励励磁方式。 与并励电机相比,串励电机起动力矩大、恒功性能好,但是其防空转较差; 电机多采用并联方式,只有8K机车采用电机串联方式。 电机并联与串联相比有更好的防空转能力,且一个电机故障时对牵引力影响较小,但是其电器线路设备较为复杂,且因轮径差和性能差引起的负载分配不均匀较大。

电力牵引传动系统

.. . … 目录 1. 概述 (1) 1.1 电力牵引的特点 (1) 2. 电力机车的传动方式 (2) 2.1 直-直流传动 (2) 2.2 交-直流传动 (3) 2.3 直-交流传动 (3) 2.4 交-直-交流传动 (3) 3. 我国机车电传动技术的发展与现状 (4) 3.1 交-直传动技术的发展 (4) 3.2 交流传动技术的发展 (5) 4. 动车组的牵引传动系统的现状 (6) 5. 电力牵引传动系统网侧原理图 (8)

1.概述 1.1电力牵引的特点 电力机车属非自带能源式机车,电力牵引具有一系列燃牵引所不及的优越性,表现在以下几方面: 1、电力机车的功率大 燃机车功率受到柴油机本身容量、尺寸和重量的限制,故机车功率不能过大。而电力机车不受上述条件的限制,机车功率(或单位重量功率)要大得多,目前轴功率已达1000kW(若交流牵引电动机可达1600kW)。一台电力机车的牵引能力相当于1.5台(或更多一些)燃机车的牵引能力。由于电力机车功率大、起动快、允许速度高,所以能够多拉快跑,极提高了线路的通过能力和输送能力。 2、电力机车的效率高 由于电力牵引所需的电能是由发电厂(或电站)集中产生,因此燃料的利用率要比燃牵引高得多。由火电厂供电的电力牵引的效率高达35%,由水电站供电的电力牵引则更高,可达60%以上。而燃牵引的效率约为25%左右,而且柴油价格较贵,有燃烧排放污染。 3、电力机车的过载能力强 机车在起动列车或牵引列车通过限制坡道时,其过载能力具有很大的意义。由于电力机车的过载能力不会受到能源供给的限制,而牵引电动机的短时过载能力总是比较大。因此,电力机车所需的起动加速时间一般约为燃机车的1/2,从而能够提高列车速度。 4、电力机车的运营费用较低

高速铁路牵引供电系统

第二章高速铁路牵引供电系统 第一节电气化铁路的组成 由于电力机车本身不带原动机,需要靠外部电力系统经过牵引供电装置供给其电能,故电气化铁路是由电力机车和牵引供电系统组成的。 牵引供电系统主要由牵引变电所和接触网两部分组成,所以人们又称电力机车、牵引变电所和接触网为电气化铁道的三大元件。 一、电力机车 (一)工作原理 电力机车靠其顶部升起的受电弓和接触网接触获取电能。电力机车顶部都有受电弓,由司机控制其升降。受电弓升起时,紧贴接触网线摩擦滑行,将电能引入机车,经机车主断路器到机车主变压器,主变压器降压后,经供电装置供给牵引电动机,牵引电动机通过传动机构使电力机车运行。 (二)组成部分 电力机车由机械部分(包括车体和转向架)、电气部分和空气管路系统构成。 车体是电力机车的骨架,是由钢板和压型梁组焊成的复杂的空间结构,电力机车大部分机械及电气设备都安装在车体内,它也是机车乘务员的工作场所。 转向架是由牵引电机把电能转变成机械能,便电力机车沿轨道走行的机械装置。它的上部支持着车体,它的下部轮对与铁路轨道接触。 电气部分包括机车主电路、辅助电路和控制电路形成的全部电气设备,在机车上占的比重最大,除安装在转向架中的牵引电机之外,其余均安装在车顶、车内、车下和司机室内。 空气管路系统主要执行机车空气制动功能,由空气压缩机、气阀柜、制动机和管路等组成 (三)分类 干线电力牵引中,按照供电电流制分为:直流制电力机车和交流制电力机车和多流制电力机车。交流机车又分为单相低频电力机车(25Hz或16 2/3Hz)和单相工频(50Hz)电力机车。单相工频电力机车,又可分为交--直传动电力机车和交—直—交传动电力机车。 二、牵引变电所 牵引变电所的主要任务是将电力系统输送来的110kV三相交流电变换为(或55)kV单相电,然后以单相供电方式经馈电线送至接触网上,电压变化由牵引变压器完成。电力系统的三相交流电改变为单相,是通过牵引变压器的电气接线

电力牵引传动系统

目录 1. 概述 (1) 1.1 电力牵引的特点 (1) 2. 电力机车的传动方式 (2) 2.1 直-直流传动 (2) 2.2 交-直流传动 (3) 2.3 直-交流传动 (3) 2.4 交-直-交流传动 (4) 3. 我国机车电传动技术的发展与现状 (4) 3.1 交-直传动技术的发展 (4) 3.2 交流传动技术的发展 (5) 4. 动车组的牵引传动系统的现状 (6) 5. 电力牵引传动系统网侧原理图 (8)

1.概述 1.1电力牵引的特点 电力机车属非自带能源式机车,电力牵引具有一系列内燃牵引所不及的优越性,表现在以下几方面: 1、电力机车的功率大 内燃机车功率受到柴油机本身容量、尺寸和重量的限制,故机车功率不能过大。而电力机车不受上述条件的限制,机车功率(或单位重量功率)要大得多,目前轴功率已达1000kW(若交流牵引电动机可达1600kW)。一台电力机车的牵引能力相当于1.5台(或更多一些)内燃机车的牵引能力。由于电力机车功率大、起动快、允许速度高,所以能够多拉快跑,极大地提高了线路的通过能力和输送能力。 2、电力机车的效率高 由于电力牵引所需的电能是由发电厂(或电站)集中产生,因此燃料的利用率要比内燃牵引高得多。由火电厂供电的电力牵引的效率高达35%,由水电站供电的电力牵引则更高,可达60%以上。而内燃牵引的效率约为25%左右,而且柴油价格较贵,有燃烧排放污染。 3、电力机车的过载能力强 机车在起动列车或牵引列车通过限制坡道时,其过载能力具有很大的意义。由于电力机车的过载能力不会受到能源供给的限制,而牵引电动机的短时过载能力总是比较大。因此,电力机车所需的起动加速时间一般约为内燃机车的1/2,从而能够提高列车速度。 4、电力机车的运营费用较低 (1)功率大、起动快、运行速度高、过载能力强、可以多拉快跑; (2)整备距离长、适合于长交路,提高了机车的利用率; (3)检修周期长、日常维护保养工作量也小。 一般情况下,电力牵引的运营费用比内燃牵引要低15%左右。 此外,由于电力机车运行过程中不污染环境,对于大型铁路枢纽站及隧道长

最新电气化铁路牵引供电系统试卷1

电气化铁路供电系统 试卷1一、单项选择题(在 每小题的四个备选答案中,选出一个正确的答案,并将其代码填入题干后的括号内。每小题1分,共20分) 1.我国电气化铁道牵引变电所由国家( )电网供电。 ( ) A 超高压电网 B 区域电网 C 地方电网 D 高压电网 2.牵引网包括 ( ) A 馈电线、轨道和大地、回流线 B 馈电线、接触网、轨道和大地、回流线 C 馈电线、接触网、回流线 D 馈电线、接触网、电力机车、大地 3.通常把( )装置的完整工作系统称为电力系统。 ( ) A 发电、输电、变电、配电、用电 B 发电、输电、配电、用电 C 发电、输电、配电、 用电 D 发电、输电、用电 4.低频交流制牵引网供电电流频率有:( ) ( ) A 50Hz 或25Hz B 30Hz 或50Hz C 2 163 Hz 或25Hz D 20Hz 或25Hz 5.单相结线牵引变电所牵引变压器的容量利用率(额定输出容量与额定容量之比值)可达( )。 ( ) A 100% B 75.6% C 50% D 25% 6.牵引变压器采用阻抗匹配平衡变压器时,阻抗匹配系数等于1时, 且副边两负荷臂电流I I αβ=&&,原边三相电流( ) ( ) A 平衡 B 无负序电流 C 对称 D 有零序电流 7.交流牵引网对沿线通信线的静电影响由( )所引起。 ( ) A 牵引网电流的交变磁场的电磁感应 B 牵引网电场的静电感应 C 牵引网电场的高频感应 D 牵引电流的高次谐波 8.牵引网导线的有效电阻0r r ξ=(0r 是直流电阻;ξ是有效系数)。对于

工频和牵引网中应用的截面不太大的铝、铜等非磁性导线,有效系数ξ( )。 ( ) A ξ≈1 B ξ≈2 C ξ≈3 D ξ≈4 9.以下不属于减少电分相的方法有( )。 ( ) A 采用单相变压器 B 区段内几个变电所采用同相供电 C 复线区段内采用变电所范围内同行同相,上、下行异相 D 采用直供+回流线供电方式 10.对于简单悬挂的单线牵引网,1z 、2z 和12z 分别表示接触网—地回路, 轨道—地回路的自阻抗及两回路的互阻抗,牵引网的等值单位阻抗z ( )。 ( ) A 2 12 21 z z z - B 12212z z z z - C 12221 z z z z - D 212 12 z z z - 11.单链形悬挂的单线牵引网比简单悬挂相比多了一条( )。 ( ) A 承力索 B 接触网 C 回流线 D 加强导线 12.根据国家标准《铁道干线电力牵引交流电压标准》的规定,铁道干线 电力牵引变电所牵引侧母线上的额定电压为( )kV 。 ( ) A 27.5 B 25 C 20 D 19 13.牵引网的电压损失等于牵引变电所牵引侧母线电压与电力机车受电弓 上电压的 ( ) A 平方差 B 算数差 C 向量差 D 平均值 14.牵引网当量阻抗Z 为 ( ) A sin cos R X ??+ B cos sin R X ??+ C sin R X ?+ D cos R X ?+ 15.对于三相结线变压器,应以( )向轻负荷臂供电为宜。 ( ) A 任一相 B 引前相 C 滞后相 D 以上答案都不对 16.牵引供电系统的电能损失包括( )。 ( ) A 电力系统电能损失,牵引网电能损失 B 电力系统电能损失,牵引变电所电能损失 C 牵引网电能损失,牵引变电所电能损失 D 牵引变电所电能损失,馈线电能损失 17.按经济截面选择接触悬挂,如果增大导线截面引起的一次投资增量,

铁路牵引供电系统实习总结

天津铁道职业技术学院 毕业环节总结 电气化铁道技术专业毕业总结 系部铁道动力系 班级电气化铁道技术1207班 姓名魏子涵 完成日期 2015年5月31日

电气化铁道技术毕业实习总结 魏子涵 时间就像白驹过隙一样,很快的三年的大学生活就要落幕,这三年的学习生活充满的各种滋味,有欢笑有汗水,生活就是这样,每一段时间都有不一样的事情发生,这三年是十分充实的,也是这三年的时间,促使我从一个学生不断的转变,让我不断的在探索中融入这个社会。大学生活即将结束时,感谢学校和单位给我们提供一个实习机会,让我在实践中更好地掌握从书本中学习的专业知识感受企业和社会文化,帮助我在将来的工作中更好地适应和发挥。 一、实习概况 (一)实习时间 2014年12月1日—15年5月31日 (二)实习地点兰州铁路局兰州供电段 (三)实习基本内容:在兰州供电段实习期间,主要学习供电段日常安全及工作是注意事项和铁路牵引变电所一、二次设备的绝缘测试以及接触网的维护与检修。 二、实习具体过程 (一)接触网部分 1.接触网工作基本知识的学习 通过对铁路安全文件的学习,我了解到接触网工必须实行安全等级制度, 经过考试评定安全等级, 取得安全合格证之后, 方准参加接触网的运行和检修工作。 接触网工分工较细, 同为接触网工岗位, 根据工作性质、安全等级的不同, 分为工作票填发人、工作领导人、监护( 工作监护、验电接地监护) 人、操作人、要令人、车梯负责人、防护人等。 工作职责也相应分为接触网工作票签发人工作职责、接触网工作领导人工作职责和作业组成员(包括监护、操作、要令、防护、车梯负责人等; 工作票签发人可以是作业组成员参加作业, 但必须履行作业组成员的工作职责) 工作职责。 2 .接触网日常工作 在师傅的指导下,我们学习了:

电力牵引传动..

电力牵引传动与控制第一章电力牵引传动与控制系统概述 一、系统组成与功用 1.①内燃机车电力传动与控制系统组成 ②电力机车电力传动与控制系统组成 2.机车理想牵引特性曲线 图1.2 牛马特性 理想特性要求:机车在运行时能经常利用其动力装置的额定功率.即:F·V=3.6η·N=const.

3.电传动装置的功用? 图1.3 柴油机功率特性和扭矩特性 ①充分利用和发挥机车动力装置的功率; ②扩大机车牵引力F与速度V的调节范围; ③提高机车过载能力,解决列车起动问题; ④改善机车牵引控制性能。 Why要电传动:柴油机通过机械直接传动不能适应机车起动、过载、恒功等要求 二、系统分类 1.直-直电力传动系统 内燃或电力机车采用直流牵引发电机或直流电网直接向数台直流牵引电动机供电的传动方式。 特点: ①调速性能优良,系统简洁。 ②直流牵引电机造价较高,但可靠性、维护性相对较差。 ③受直流电机换向条件和机车限界、轴重等限制,主发电机单机功率受到限制。一般在2200KW以下。 ④车型:早期DF,DF2,DF3,ND1,ND2等

2.交-直电力传动系统 内燃或电力机车采用交流牵引发电机或单相交流网及变压器,通过整流器向数台直流牵引电动机供电的传动方式。 特点: ①采用三相交流同步发电机,结构简单,可靠性高,重量轻,造价较低。 ②适用于大功率机车。 ③车型:DF4,DF5,DF7,DF11,ND4,ND5,SS3-SS9等。 3.交-直-交电力传动系统 内燃或电力机车采用交流牵引发电机或单相交流电网及变压器,经整流器将交流电变换成直流,再通过逆变器将直流电变换成频率和幅值按列车运行控制要求变化的交流电,向数台交流牵引电动机供电的传动方式。 特点: ①采用交流牵引电机,彻底克服了直-直系统的不足,重量轻,造价低,可靠性及维修性好 ②良好的粘着性能 ③适用于大功率 ④控制系统复杂 ⑤车型:DF4DAC,NJ1; DJ,DJ2,DJJ1,DJ4; HX、CRH系列等 三、发展历史与现状 1.大功率(内然)机车电力传动与液力传动两种主要传动方式的演变与发展 主要趋势:电力传动 2.电力传动形式的发展:直-直→交-直→交-直-交 发展趋势:大功率、电力牵引、交流传动

电力牵引控制系统 主观题知识分享

电力牵引控制系统主 观题

电力牵引控制系统1 15. 主电路设计时要考虑(电机连接与激磁方式、电机的供电方式、整流线路、调速方式、电气制动方式)五方面的因素 16. 机车牵引特性是指(机车牵引力)与(机车速度)关系曲线 17. 要改变电机励磁绕组电流实现磁场削弱调速主要有(电阻分路法)、(晶闸管分路法)两种方法 18. 机车制动特性是指(制动力)与(速度)关系曲线 19. 机车牵引限制包括最大速度限制、电机的安全换向限制、粘着限制、电机最大电枢电流限制 20. 机车制动限制包括最大速度限制、电机的安全换向限制、粘着限制、电机最大制动电流限制、最大励磁电流限制 21. 电阻制动在低速时,制动力直线下降。为提高制动力,可采用(加馈电阻制动)、(分级电阻制动)两种方法 22. 机车主电路保护主要有短路、过载、接地、过压保护 23. 机车辅助电路主要分直流辅助电路和交流辅助电路两大类 24. 主电路设计时要考虑那几方面的因素? 参考答案: 五个方面的考虑 ①电机连接与激磁方式; ②电机的供电方式; ③整流线路;

④调速方式; ⑤电气制动方式 25. 交直型电力机车采用最是那种励磁方式?串联还是并联? 参考答案: 交直机车多采用串励励磁方式,也有机车采用复励励磁方式。 与并励电机相比,串励电机起动力矩大、恒功性能好,但是其防空转较差;电机多采用并联方式,只有8K机车采用电机串联方式。 电机并联与串联相比有更好的防空转能力,且一个电机故障时对牵引力影响较小,但是其电器线路设备较为复杂,且因轮径差和性能差引起的负载分配不均匀较大。 26. 交直型机车的调速过程是先调压弱磁,为何要先弱磁? 参考答案: 交直机车先进行调压调节器速,到额电压时,保持电压不变,再进行弱磁调速。 机车牵引时,一方面要速度控制,同时也要牵引力。 电机的转矩为: 如果先开始弱磁,意味着在大要得到同样的牵引力,要更大的电枢电流,这是不经济的。所以要满磁场工作,在调压到额定电压之后,电枢电流没有达到额定值前采用弱磁调速方式。 27. 什么是空转?其危害是什么?如何检测和防护? 参考答案:

牵引供电系统简介.

牵引供电系统简介 (丁为民) 一、系统功能 牵引供电系统的主要功能是:将地方电力系统的电源(交流电气化铁路: AC110 kV或AC220kV ,城市轨道交通:中心变电所AC220kV 或AC110kV →AC35 kV 环网)引入牵引供电系统的牵引变电所,通过牵引变压器变压为适合电力机车运行的电压制式(交流电气化铁路:AC25kV 或AC2×25kV ,城市轨道交通:DC750V 、DC1500V 或DC3000V ),向电力机车提供连续电能。 电力牵引负荷为一级负荷,引入牵引变电所的外部电源应为两回独力可靠的电源,并互为热备用,能够实现自动切换。 交流电气化铁路及城市轨道交通牵引供电系统简图分别如图1.1和图1.2所示。 图1.1 交流电气化铁路牵引供电系统

图1.2 城市轨道交通牵引供电系统 二、牵引网供电方式 1. 交流电气化铁路 交流电气化铁路牵引网供电方式大体上可分为三种:直接供电方式(包括带回流线的直接供电方式)、BT 供电方式和AT 供电方式。 (1)直接供电方式 直接供电方式又可分为不带回流线直接供电方式(图2.1 和带回流线的直接供电方式(图2.2 两种。 图2.1 不带回流线的直接供电方式

图2.2 带回流线的直接供电方式 不带回流线的直接供电方式在我国早期的电气化铁路中采用,机车电流完全通过钢轨和大地流回牵引变电所,牵引网本身不具备防干扰功能。在接地方面,每根支柱需单独接地(设接地极或通过火花间隙),或者通过架空地线实现集中接地(架空地线不与信号扼流圈中性点连接)。 带回流线的直接供电方式,机车电流一部分通过钢轨和大地流回牵引变电所(约70%),其余通过回流线流回牵引变电所(约30%)。由于流经接触网的电流和流经回流线的电流虽然大小不等,单方向相反,且安装高度比较接近,两者对铁路沿线通讯设施的电磁干扰影响趋于抵消,因此牵引网本身具备防干扰功能。在接地方面,接触网支柱通过回流线实现集中接地,回流线每隔一个闭塞分区通过吸上线(铝芯或铜芯电缆,常用VLV-70和2xVLV-150)与信号扼流圈中性点连接(吸上线间距3~4km )。 (2) BT 供电方式 BT (Boost Transformer)供电方式又称吸流变压器供电方式,也是在我国早期电气化铁路中有采用,其主要目的是为了提高牵引网防干扰能力,但随着通讯线路电缆化和光缆化,防干扰矛盾越来越不突出,其生命力也已大大降低,该种供电

哈大电气化铁路牵引供电系统情况介绍

哈大电气化铁路牵引供电系统情况介绍

————————————————————————————————作者:————————————————————————————————日期:

哈大电气化铁路牵引供电系统情况介绍哈大铁路为中国铁路网中一条重要干线,贯穿哈尔滨、长春、沈阳、大连四大枢纽,始建于1898年,为双线铁路,线路全长946.5公里。在东北乃至全国铁路运输中具有十分重要的地位。国家计委于1990年12月31日批准对哈大铁路进行电气化技术改造。2001年8月18日开通沈阳至哈尔滨段,11月30日开通沈阳至大连段,既全线开通运行。 哈大电气化铁路是我国首次系统引进具有国际先进水平的德国技术、设备和管理模式,其牵引供电系统适应200km/h高速铁路。牵引供电系统新建牵引变电所17座,架设接触网3314条公里,RTU135个,隔离开关900余台,远动控制系统设置1个主控中心和4个分控中心,设置抢修基地4个,引进接触网动态检测车1辆。开通之初成立了哈尔滨、长春、沈阳、大连4个供电中心,随着铁路改革的深入,维修体制也几经变化,现全线由沈哈两局的沈阳、长春、哈尔滨供电段担负运营管理工作。 哈大电气化工程系统引进规模大,设备技术水平新,建设速度快,自全线开通至今,系统设备性能稳定,总体质量优良,达到了项目引进的预期目的。现全面介绍如下: 一、哈大牵引供电系统特点 (一)供电方式 1、全线采用220/27.5kv单相变压器供电,牵引变压器利用率高,变电所接线简洁,接触网电分相数目少,适应高速、繁忙区段。两路进线电源,设有跨桥连接,两台主变压器互为备用。 2、采用带回流线上下行全并联直接供电方式。上下行正线的接触网在车站通过一个带短路报警互感器的柱上开关进行并联。为了改善接触网的电传输特性,沿正线贯通架设加强线和回流线,每隔1500米加强线和回流线进行一次电连接,可每隔300米上下行的回流线并联一次,以明显降低接触网阻抗值和电压降,从而加大变电所的间距,减少牵引变电所的数量,节省了工程投资,降低了运营成本。

交流传动与直流传动的比较

《电力牵引交流传动及其控制系统》报告 交流传动与直流传动优劣的比较

1.电力传动的发展 从十九世纪七十年代开始,人们就一直努力探索机车牵引动力系统的电传动技术。1879年的世界第一台电力机车和1881年的第一台城市电车都在尝试直流供电牵引方式。1891年西门子试验了三相交流直接供电、绕线式转子异步电动机牵引的机车,1917年德国又试制了采用“劈相机”将单相交流供电进行旋转、变换为三相交流电的试验车。这些技术探索终因系统庞大、能量转换效率低、电能转换为机械能的转换能量小等因素,未能成为牵引动力的适用模式。 1955年,水银整流器机车问世,标志着牵引动力电传动技术实用化的开始。1957年,硅可控整流器(即普通晶闸管)的发明,标志着电力牵引跨入了电力电子时代。大功率硅整流技术的出现,使电传动内燃机车和电力机车的传动型式从直-直传动(直流发电机或直流供电-直流电动机),很自然地被更优越的交-直传动(交流发电机或交流供电-硅整流-直流电动机)所取代。1965年,晶闸管整流器机车问世,使牵引动力电传动系统发生了根本性的技术变革,全球兴起了单相 工频交流电网电气化的高潮。随着大功率的晶闸管特别是大功率可关断晶闸管(GTO)的出现和微机控制技术等的发展,20世纪70年代以后出现了交-直-交传动(交流发电机或交流供电-硅整流-逆变器-交流电动机),即所谓的交流传动,又很自然地取代了交-直传动。 与直流传动机车相比,交流传动机车具有启动牵引力大、恒功率范围宽、粘着系数高、电机维护简单、功率因数高、等效干扰电流小等诸多优点,是目前我国铁路发展的必然趋势。

2 .交流传动与直流传动的比较 2.1机车工作原理的比较 2.1.1直流传动电力机车工作原理 直流传动电力机车包括直直型电力机车和交直型整流器电 力机车。 直直型电力机车是由直流电源供电,直流串励牵引电机驱动,通过串并联切换加凸轮变阻或晶闸管斩波器调阻(调压)方式进行调速 和控制的机车。一般工矿用4轴电力机车串并联切换加凸轮变阻的电传动装置工作过程为:机车由受电弓从接触网取得直流电,经断路器QF启动电阻R,向4台直流牵引电动机M1-M4供电,牵引电流经钢轨流回变电所。随着4台牵引电动机接通电源即行旋转,电能转变为机械能,分别通过各自的齿轮传动装置,驱动机车动轮实现牵引运行。 交直型整流器电力机车的能量传递是将接触网供给的单相工频交流电,经机车内部的牵引变压器降压,再经整流装置将交流转换为直流,然后向直流(脉流)牵引电动机供电,从而产生牵引力牵引列车运行。如图所示

牵引供电系统简介

牵引供电系统简介 一、系统功能 牵引供电系统的主要功能是:将地方电力系统的电源(交流电气化铁路:AC110 kV或AC220kV,城市轨道交通:中心变电所AC220kV或AC110kV→AC35kV环网)引入牵引供电系统的牵引变电所,通过牵引变压器变压为适合电力机车运行的电压制式(交流电气化铁路:AC25kV或AC2×25kV,城市轨道交通:DC750V、DC1500V或DC3000V),向电力机车提供连续电能。 电力牵引负荷为一级负荷,引入牵引变电所的外部电源应为两回独力可靠的电源,并互为热备用,能够实现自动切换。 交流电气化铁路及城市轨道交通牵引供电系统简图分别如图1.1和图1.2所示。 图1.1 交流电气化铁路牵引供电系统 图1.2城市轨道交通牵引供电系统

二、牵引网供电方式 1.交流电气化铁路 交流电气化铁路牵引网供电方式大体上可分为三种:直接供电方式(包括带回流线的直接供电方式)、BT供电方式和AT供电方式。 (1)直接供电方式 直接供电方式又可分为不带回流线直接供电方式(图2.1)和带回流线的直接供电方式(图2.2)两种。 图2.1 不带回流线的直接供电方式 图2.2 带回流线的直接供电方式 不带回流线的直接供电方式在我国早期的电气化铁路中采用,机车电流完全通过钢轨和大地流回牵引变电所,牵引网本身不具备防干扰功能。在接地方面,每根支柱需单独接地(设接地极或通过火花间隙),或者通过架空地线实现集中接地(架空地线不与信号扼流圈中性点连接)。 带回流线的直接供电方式,机车电流一部分通过钢轨和大地流回牵引变电所(约70%),其余通过回流线流回牵引变电所(约30%)。由于流经接触网的电流和流经回流线的电流虽然大小不等,单方向相反,且安装高度比较接近,两者对铁路沿线通讯设施的电磁干扰影响趋于抵消,因此牵引网本身具备防干扰功能。在接地方面,接触网支柱通过回流线实现集中接地,回流线每隔一个闭塞分区通过吸上线(铝芯或铜芯电缆,常用VLV-70和2xVLV-150)与信号扼流圈中性点连接(吸上线间距3~4km)。

交直流调速实验报告(图形 文字)-电力牵引交流传动系统

六:实验报告 1:列写SPWM控制时,在不同输出频率条件下所测量的各种波形和电机工作情况 SPWM 30HZ 同步调制 CH1=20.0mv CH1/23.2mv CH1=50.0mv CH1/314mv CH1=200mv CH1/1.15v SPWM 30HZ 异步调制 CH1=20.0mv CH1/124mv CH1=200mv CH1/1.12v CH1=5.00v CH1/31.4v

SPWM 30HZ 混合调制 CH1=10.0mv CH1/62.8mv CH1=100mv CH1/628mv CH1=100mv CH1/31.2v 2:列写电压空间矢量控制时,在不同输出频率条件下所测量的各种波形和电机工作情况 SVPWM 50HZ 同步调制 CH1=10.0mv CH1/62.8mv CH1=10.0mv CH1/31.2v CH1=5v CH1/27.4v

SVPWM 50HZ 异步调制 CH1=10.0mv CH1/62.8mv CH1=100mv CH1/560mv CH1=5.00v CH1/27.2v SVPWM 50HZ 混合调制 CH1=10.0mv CH1/62.8mv CH1=50.0mv CH1/27.2v CH1=5.00v CH1/27.2v

SVPWM 30HZ 同步调制 CH1=10.0mv CH1/65.2mv CH1=50.0mv CH1=100mv CH1/652mv SVPWM 30HZ 异步调制 CH1=10.0mv CH1/65.2mv CH1=50.0mv CH1/326mv CH1=5.00v CH1/27.2v

高速铁路牵引供电系统组成

高速铁路牵引供电系统 电气化铁路的组成 由于电力机车本身不带原动机,需要靠外部电力系统经过牵引供电装置供给其电能,故电气化铁路是由电力机车和牵引供电系统组成的。 牵引供电系统主要由牵引变电所和接触网两部分组成,所以人们又称电力机车、牵引变电所和接触网为电气化铁道的三大元件。 一、电力机车 (一)工作原理 电力机车靠其顶部升起的受电弓和接触网接触获取电能。电力机车顶部都有受电弓,由司机控制其升降。受电弓升起时,紧贴接触网线摩擦滑行,将电能引入机车,经机车主断路器到机车主变压器,主变压器降压后,经供电装置供给牵引电动机,牵引电动机通过传动机构使电力机车运行。 (二)组成部分 电力机车由机械部分(包括车体和转向架)、电气部分和空气管路系统构成。 车体是电力机车的骨架,是由钢板和压型梁组焊成的复杂的空间结构,电力机车大部分机械及电气设备都安装在车体内,它也是机车乘务员的工作场所。 转向架是由牵引电机把电能转变成机械能,便电力机车沿轨道走行的机械装置。它的上部支持着车体,它的下部轮对与铁路轨道接触。 电气部分包括机车主电路、辅助电路和控制电路形成的全部电气设备,在机车上占的比重最大,除安装在转向架中的牵引电机之外,其余均安装在车顶、车内、车下和司机室内。 空气管路系统主要执行机车空气制动功能,由空气压缩机、气阀柜、制动机和管路等组成 (三)分类 干线电力牵引中,按照供电电流制分为:直流制电力机车和交流制电力机车和多流制电力机车。交流机车又分为单相低频电力机车(25Hz或16 2/3Hz)和单相工频(50Hz)电力机车。单相工频电力机车,又可分为交--直传动电力机车和交—直—交传动电力 机车。 二、牵引变电所 牵引变电所的主要任务是将电力系统输送来的110kV三相交流电变换为(或55)kV单相电,然后以单相供电方式经馈电线送至接触网上,电压变化由牵引变压器完

交流传动与直流传动优劣的比较

交流传动与直流传动优劣的比较 一、交流传动背景介绍 1、发展历程 电力传动诞生于19世纪,20世纪初被广泛应用于工业、农业、交通运输和日常生活中。 执行机构由直流电动机驱动,则称为直流电气传动系统,执行机构由交流电动机驱动,则称为交流电气传动系统。 20世纪30年代,人们已经认识到变频调速是交流电动机一种最理想的调速方法;60年代,随着电力电子技术的发展和变频调速装置的研制成功,交流调速技术成为电动机调速的发展方向;70年代中期,在世界范围内出现能源危机,节约能源成为人们关注的问题;许多过去不调速的传动装置,如风机、水泵等,也都采用了调速传动;90年代以来,随着大功率电力电子器件和微电子技术的飞速发展,以及现代控制理论和控制技术的应用,交流传动调速技术取得了突破性的进展,逐步具备了调速范围宽、稳速精度高、动态响应快以及可作四象限运行等优良的技术性能。目前,交流传动已经作为一种完全被肯定的系统,大举进入电气传动调速控制的各个领域。 2、交流传动电力机车发展综述 随着科技的进步,电力机车的发展方向逐渐成为以安全性、实用性、可靠性、灵活性、舒适性越高越好;费用越低越好的发展目标。但是,不可避免的,存在着地域规范、供电制式、空间、体积、重量、技术水平、工艺水平等限制。随着电力电子技术、微电子技术、新材料、新工艺等的出现与发展,行业从业者们满足运输的需求,充分利用新技术,利用新材料,采用新工艺从而实现新一代电力机车的发展。

3、交流传动电力机车的组成 辅助变频器 主变频器及电机驱动模 动力制动模 通讯模块 空气系统模块 电子设备 图1-1 机车内部构造 4、我国交流传动机车的发展现状 我国交流传动技术的研究始于70年代初,可以说起步不晚,但国际上80年代初交流传动机车就已经进入商用化,技术日趋成熟。铁道部主管领导曾指出,

电力牵引控制系统试卷及答案

电力牵引控制系统 班级学号姓名 一、填空(每空1分,共20分) 1.电力机车的电气线路按其作用的不同,可分为、和三大部分。2.有级调速电力机车如SS1型机车,它有个调压级和有级消磁。 3.为了保证电力机车正常运行,机车上设有辅助电路和辅助机械装置。 4.6K型机车采用牵引电动机,当机车运行于高速区域时,通过控制 的办法来达到规定的磁场削弱系数。 5.斩波器主要由组合而成。 6.电源电流谐波与等因素有关系,且不同斩波器情况也不一样。7.利用二点式逆变器,只能把中间直流回路的接到电动机上去。 8.东风4型内燃机车励磁电路的调整就是保证在不同主手柄下牵引发电机励磁电流随负载电流的变化而按相应的形曲线变化。 9.对于城市电车或地铁动车,一般由直流的接触网供电。10.为了机车能安全可靠地工作,必须设置可靠的保护系统,以便在出现各种不利的 能及时地采取防护措施。 11.单闭环调节系统对于都有抑制作用,因为一切扰动最终都要反映到被调量上来,都可以通过测出被调量的偏差而进行调节。 12.系统动态特性的数学表达式,叫做。 13.SS1型机车设有两个两位置开关,即开关和。 14.6G型机车为六轴机车,六台牵引电动机分成两组,每组三台牵引电动机。 二、名词解释(每题4分,共20分) 1.四象限脉冲整流器: 2.恒压运行: 3.调速性能指标:

4.斩波器: 5、交-直流传动方式: 三、简答题(每题5分,共30分)1.串激牵引电机有哪些优缺点? 2.电阻制动有哪些优缺点? 3.电力机车上可能发生的过电压有哪几种?4.移相电路分为哪几种?各有什么用途?

5采用异步电机作牵引电机有哪些优点? 四、叙述题(每题10分,共计10分) 细述SS1型电力机车司机控制器的转换手柄与调速手柄之间的机械联锁作用。

高速铁路牵引供电系统

高速铁路牵引供电系统 1.牵引变电所 牵引变电所是电气化铁路的心脏,其作用是将110 kV(220 kV)三相交流电变换成27.5 kV(或55 kV)单相工频交流电,并供给电力牵引网和电力机车。此外,有少数牵引变电所还需担负10 kV动力负荷。所以,牵引变电所具有3个主要功能:接受三相电能,降压分配电能,减相以单相馈出供给牵引网。 2.分区亭 在电气化铁路上,为了提高运行的可靠性,增加供电工作的灵活性,在相邻变电所供电的相邻两供电分区的分界处常用分相绝缘器断开,若在断开处设置开关设备和相应的配电装置,则组成分区亭。 在复线电气化区段,分区亭的主要功能如下: (1)使同一供电臂上的上、下行接触网并联工作或单独工作。当并联工作时,分区亭内的断路器闭合以提高接触网的末端电压;当单独工作时,断路器打开。(2)当同一供电臂上的上、下行接触网(并联工作)发生短路事故时,由牵引变电所相应的馈线断路器和分区亭中的断路器配合动作,切除事故区段,缩小事故范围;非事故区段仍可正常供电。 (3)当某牵引变电所全所停电时,可闭合分区亭中的越区隔离开关,由相邻牵引变电所向停电牵引变电所进行越区供电。 总之,分区亭的作用是:对单线牵引网,使两相邻供电臂单独工作或实现越区供电;对双线牵引网,使上、下行接触网并联,提高末端电压,缩小事故范围和实行必要时的越区供电。 3.开闭所 当远离牵引变电所的枢纽站、电力机务段等大宗负荷需要多条馈电线向这些接触网分组供电时,一般采用建立开闭所的办法来解决。开闭所是指不进行电压变换而用开关设备实现电路开闭的配电所。开闭所一般有两条进线,然后多路馈

出向枢纽站场接触网各分段供电,进线和出线均经过断路器,以实现接触网各分段停、供电的灵活运行,又由于断路器对接触网短路故障进行保护,从而可以缩小事故停电范围。开闭所的作用是增加馈线数目,将主线接触网与分支接触网分开,缩小事故范围,提高供电可靠性,保证枢纽站、站场装卸作业和接触网分组检修的灵活性和安全性;降低牵引变电所的复杂程度,还可实现上、下行扭接,保证在事故情况下供电,正常情况下扭接有利于改善牵引网电压水平,降低电能损失。

相关文档
最新文档