地物重点_地震、测井

地物重点_地震、测井
地物重点_地震、测井

1.煤矿地质保障的三个层面

现行的高产高效矿井地质条件保障是以物探技术为先导,钻探、巷探等基础地质手段加以配合,同时依托计算机技术实现生产地质工作的动态管理。其工作模式可分为三个层面:(1)井田围主要可采煤层开采地质条件评价,查明煤层构造是主要工作,主要勘查手段为二

维地震勘探、电法勘探与钻孔。

(2) 采区采前地质条件勘查,主要工作是查明采区围的小构造,包括落差5m左右的断层、

陷落柱、老窑及采空区的空间分布形态,根据采区衔接的要求,应提前布置实施。在地表条件允许的前提下,三维高分辨率地震勘探技术是首选方法。

(3) 综采工作面地质条件超前探测,在综采设备安装或开采前,查明工作面一切地质异常现象,为工作面持续开采提供地质保障是主要工作。

2、地震勘探的基本原理

地震勘探主要是研究人工激发的地震(弹性)波在浅岩层、土介质中的传播规律。其传播的动态特征集中反映在两个方面,一是波传播的时间与空间的关系,称为运动学特征;另一是波传播中其振幅、频率、相位等的变化规律,称为动力学特征。前者是地震波对地下地质体的构造响应,后者则更多的表现出地下地质体的岩性特征,有时亦是地质体结构特征的响应。

3、地震地质条件

岩土介质的岩性、物性、成分和结构以及所处环境的构造和地表条件等的不同,都会使得地震波的运动学和动力学特征发生变化。

影响地震波速度的因素:岩土介质的密度、岩土介质的孔隙度、地质埋深和地质年代、岩性和弹性常数。

浅层地震地质条件

地震勘探的效果在很大程度上取决于工作地区是否具有应用地震勘探的前提,也就是工区的地震地质条件。在浅层地震勘探中,其地震地质条件主要是指浅部岩土介质的性质和地质特征,以及地表的各种影响因素:疏松覆盖层、潜水面和含水层、地质剖面的均匀性、地质界面和地震界面的差异、“地震标志层”的确定。

4、二维地震勘探特点及能够解决的地质问题

(1)查明大于十米断层

(2)查明大于十米的褶曲

(3)查明第四纪地层

(4)查明大于三十米陷落柱

5、三维地震勘探特点及能够解决的地质问题

(1) 查明落差大于等于5m的断层,提供落差小于5m的断点,平面摆动误差小于30m;

(2) 查明幅度大于等于5m的褶曲,主要可采煤层底板深度误差不大于1.5%;

(3) 查明新生界(第四系)厚度,深度误差不大于1.5%;

(4) 探明直径大于30m的陷落柱。

6、传统三维地震勘探存在问题及现在的数据动态解释(重点)

近年来,在使用三维地震勘探成果的过程中暴露出许多问题,主要包括:

(1) 地震成果的利用率低,仅限于煤层底板等高线图和固定间距的地震时间剖面,无法利用三维地震数据体的所有信息;

(2) 无法实时获得沿巷道方向(即任意方向)的地震剖面;

(3) 无法对煤层底板等高线的误差进行修正;

(4) 在掘进和回采过程中,可以发现许多小于5m的断层,但是无法自动修改原构造解释方案(即无法自动修改煤层底板等高线图)。

传统的三维地震解释服务于煤矿勘探阶段,与煤矿安全生产过程相脱节。煤矿三维地震数据动态解释技术是指“三维地震信息与煤矿生产过程中所获得的矿井地质信息相互融合”。这是一个动态过程,服务于煤矿生产阶段,实现了三维地震信息随煤矿生产进行全程动态解释,彻底改变了传统的三维地震解释模式,提高了三维地震成果的利用水平,能够解决更多的地质问题。

7、煤矿的岩性地震勘探与煤矿安全生产的关系

影响煤矿安全生产的四质因素构造、水文、瓦斯、煤层顶底板条件。目前,主要成熟的勘探手段之一是三维地震勘探,但也仅限于解决构造问题。煤矿安全生产中的主要地质问题水文地质条件、瓦斯突出条件与煤层顶底板力学性质均属岩性勘探畴。

构造地震勘探主要利用地震波的运动学特征,计算出地层分界面上各点的埋藏深度,从而确定出地层的构造形态。

岩性地震勘探除了利用地震波的运动学特征外,还利用地震波的动力学特征来研究地层的岩性。

地震属性技术、叠后地震反演技术、方位各向异性技术和叠前地震反演技术是煤田岩性地震勘探的重要手段。

8、地震属性技术及其应用( 重点)

地震属性是指从叠前和叠后地震数据中提取出来的运动学、动力学和统计学地震特殊测量值。地震属性技术是指提取、显示、分析和评价地震属性的技术

应用:

在煤田地震勘探中,可以利用地震属性的变化区分构造、进行煤层结构和岩性解释。在地震地质条件较好的地区,可以解决的主要地质问题是:(1) 解释小构造,特别是落差小于5m 的断层;(2) 探查隐伏陷落柱;(3) 探查采空区和古溶洞;(4) 预测奥系灰岩岩溶裂隙发育带;(5) 解释煤层底板的断裂构造发育带;(6) 解释煤层的分叉、合并、冲刷变薄带;(7) 预测瓦斯富集带。

9、地震反演技术及其应用(重点)

地震反演技术是岩性地震勘探的重要手段之一,是一门集地震、测井、地质、计算机等多学科的综合地球物理勘探技术。地震反演利用地表观测地震资料,以已知地质规律和钻井、测井资料为约束,对地下岩层空间结构和物理性质进行成像(求解)的过程,是反演地层波阻抗(或速度)的地震特殊处理解释技术。地震反演方法具有明确的物理意义,是预测岩性的确定性方法,在油气勘探中取得了显著的地质效果。

煤田地震反演工作起步较晚,处在叠后地震反演的研究和初步应用阶段。近年来,我们把地震反演技术应用于多家煤矿,其关注的重点是煤矿安全开采的有关地质问题,获得了丰富的地质成果,主要包括:

(1) 提高弱反射煤层的可检测性;

(2) 利用反演剖面提供的岩性信息来划分地层,研究煤层顶板的稳定性;

(3) 划分新生界下部地层、煤系地层和奥系灰岩顶部地层的岩性和含隔水性,查明含、隔水层的空间分布和厚度分布;

(4) 圈定火成岩侵入煤层的围;

(5) 预测煤层厚度;

(6) 预测构造煤发育带(瓦斯富集带)。

10、AVO技术(了解定义)

AVO是振幅随偏移距变化(Amplitude Variation with Offset)的英文缩写。

AVO技术是利用反射系数随入射角变化的原理,在叠前道集上分析振幅随偏移距变化的规律,估求岩石的弹性参数、研究岩性、检测油气的重要技术。

11、各向异性(了解)

由于地质体在三维空间的不均一性,反射波也会表现出不同的特征,主要用于裂隙发育的研究。

反射纵波对裂缝性地层所表现出的方位各向异性特征很敏感,所有的纵波属性分布函数均为椭圆,B/A值越高,裂隙越发育。

12、利用地震方法如何解决岩浆岩、水害、瓦斯等方面的问题(了解用什么技术解决什么问题)

(1)岩浆岩

三维地震资料具有大面积密集采集信息的优势,利用地震信息可以从平面和立体角度研究地层的构造、岩性的变化,因此利用地震信息确定岩浆岩分布围。主要应用技术有波阻抗反演技术、地震相分析技术、谱分解技术。

(2)煤矿水害

利用地震属性技术,提取振幅、宽频带能量、主频相位等地震属性,分析在区域的异常带。

(瓦斯)参考第13题

13、煤层气(瓦斯)地震勘探(重点)

现行的煤田地震勘探技术主要是利用反射波的运动学特征来解决构造问题,而煤层气(瓦斯)地震勘探属于岩性地震勘探的畴。煤层气(瓦斯)地震勘探的核心任务是查明煤层孔隙度、构造煤的分布、煤层及顶板中裂隙裂缝的发育密度。

利用国外油气勘探的成功经验并结合煤层气(瓦斯)地震勘探的任务,提出利用“两个理论、四项技术”来指导煤层气(瓦斯)地震勘探。

两个理论是双相介质理论和各向异性介质理论。

四项技术是地震属性技术、AVO技术、方位各向异性技术和地震反演技术。

利用地震岩性信息定量评价影响煤层瓦斯突出的主要地质因素:

(1) 断层及其它构造分布,利用煤层相干/方差切片表示;

(2) 煤层埋藏深度,利用煤层反射波的T0时间表示;

(3) 煤层的倾角和褶曲,利用归一化曲率属性表示;

(4) 煤层厚度变化规律,利用波阻抗反演数据体计算获得;

(5) 煤层顶、底板岩性,利用波阻抗反演切片表示;

(6) 煤层孔隙度,利用概率神经网络反演获得的孔隙度切片表示;

(7) 构造煤的分布与厚度(煤体结构破坏程度),利用弹性波阻抗反演获得的各种反演切片表示;

(8) 煤层及顶底板的裂隙发育(透气性),利用各向异性技术获得的综合地震属性计算煤层裂隙发育密度。

14、地震资料处理的主要环节(反褶积、叠加、偏移)

反褶积

定义:将信号波形恢复到它被不希望线性滤波作用之前形状的一种处理。旨在改进反射同相轴的可识别性与分辨率。作用:提高分辨率

偏移旨在:倾斜界面正确归位,呈现正常的构造形态;作用:提高分辨率

叠加

定义:联合不同炮的地震道的叠加,如共中心点叠加、垂直叠加、井口叠加等。作用:提高信噪比

15、视电阻率测井(主要看电位电极系)(四个方面1、方法原理2、曲线解释3、影响因素4应用)

(1)方法原理

定义:在井中测量被钻孔穿过的矿、岩层的电阻率,并根据电阻率的差异,来划分钻孔地质剖面,研究和解决井下的一些地质问题的测井方法。

供电电极:A、B

测量电极:M、N

A——B组成供电回路

M——N组成测量回路

(2)曲线解释(理想电位电极系)

理想电位电极系

成对电极系间距趋于无穷大的电位电极系称理想电位电极系。

电位电极系理论曲线特点:

(1)特征点cd的中点相当于高阻岩层的底界面,gh的中点为

去其顶界面,cd和gh的距离等于电极距L;

(2)特征点ef为曲线的极大值,在高阻厚层条件下,极大值接

近岩层的真电阻率;

(3) 对于高阻岩层中点,理论曲线上下对称。

(3)视电阻率曲线的影响因素

1.厚度影响(有最小识别厚度)

2.井眼影响(泥浆影响)

3.岩层倾斜的影响(对电极电位影响不明显)

(4)应用

视电阻率测井与其它测井相配合可鉴别煤层、含油气水层和金属或非金属等矿层,区分岩性,确定矿岩层的深度和厚度,划分钻孔地质剖面;进行钻孔剖面的地层对比,研究勘探区的地质构造;确定第四纪含水层层位、井径局部扩大段(如扩孔、岩溶等),以及井金属物(如钻探事故残留在孔的套管、钻杆)的位置;计算煤层的灰分与水分,以及储集层的孔隙度、含油气饱和度和含水饱和度、估计渗透层的渗透率;研究沉积环境等地质任务。

16、电化学测井(自然电位测井)(四个方面1、方法原理2、曲线解释3、影响因素4应用)

1、原理方法

在井和地面各放入一个测量电极 M 和N ,构成一个测量回路。

自然电位产生的原因

(1)扩散与扩散吸附作用 ;

(2)氧化还原作用 ;

(3)电极极化作用。

2、曲线解释

自然电位曲线特征

分层点在“半幅点”。

3、自然电位曲线的影响因素

(1)井径与厚度的影响(H/d ≥4地层的自然电位异常达到最大)

(2)岩性的影响

(3)水文地质条件的影响

(4)地层倾斜影响

(5)邻层的影响

17、声速测井(四个方面1、方法原理2、曲线解释3、影响因素4应用)

1、原理方法

声速测井是以岩石声波速度为基础,以记录声波时

差为手段的一类声测井方法。

式中 l ─两接收器中点的距离,称为间距,m ;

△t ─声波到达两接收器的时间差,μs ;

△T ─声波传播单位距离所需的时间,即声

波时差,μs /m 。

t

v l t T 1=?=?

2、曲线解释

不同厚度低速地层的声波时差理论曲线

Vt—地层声波速度; Vm—围岩声波速度; Vt<Vm;

圆点代表半幅点;叉代表分层点;曲线标码:H/l

3、声波时差曲线与声波测井的影响因素

声速测井主要包括围岩、井眼、周波跳跃和探管在孔摩擦与碰撞等影响因素。

4声速测井的应用

①划分地层

②判断气层

③确定地层孔隙度

④估算岩石力学参数

⑤估计地层异常压力

⑥工程地质调查中的应用

18、核测井(密度测井)(四个方面1、方法原理2、曲线解释3、影响因素4应用)

1、方法原理

研究地层对伽马射线的散射和吸收特性,在钻孔中测定地层的散射伽马射线强度,从而解决地质问题的一种人工伽马测井方法。

(1) 当源距一定时,在岩石密度大于1g/cm3的介质中,随着岩石密度的增加,一次散射伽马射线强度减小。

(2) 当源距增加时,一次散射伽马射线强度与岩石密度关系更为密切,即在同样密度变化条件下大源距引起Jγγ的变化要比小源距更剧烈。

(3) 当伽马源放出的伽马射线能量增加时,一次散射伽马射线强度对岩石密度变化的灵敏度减小。在同样的密度变化的条件下,大能量的伽马射线引起Jγγ的变化比小能量伽马射线引起Jγγ的变化要小。

2、曲线解释

3、应用

1.解释煤层、区分岩性及划分钻孔地质剖面

2.确定岩层的孔隙度

3.划分岩溶、裂隙发育带和破碎带

4.研究煤层的灰分和发热量

5.计算岩石力学参数

6.配合声波测井资料人工合成地震记录

地震勘探的一些基础知识.doc

接收条件received condition:指地震勘探中接收地震波的仪器的工作状态和条件。广义地说, 接收条件包括地震检波器的安置情况、组合个数与方式,以及地震仪的各种因素等。但通常将接收条件狭义地指地震检波器的安置情况。地震资料的质量与接收条件有密切关系。陆地工作中埋置检波器,海洋工作中使检波器处于水面下一定深度,都是为了避免风、浪等影响而改善接收条件。 界面速度interface velocity:指折射波沿折射界面滑行的速度。界面速度主要反映折射界面以下地层中岩石的物理性质。由于组成地层的岩石颗粒排列有方向性,通常界而速度大于层速度。界面速度可通过折射波测得。 加速度检波器accelerometer:即“压电地震检波器”。 激发条件excited condition:地震勘探中将震源种类、能最、周围介质的情况总称为激发条件。对于炸药震源来说,激发条件一般包括炸药量大小、药包形状,个数,分布方式及埋置岩性和沉放深度等。对于非炸药震源,激发条件则包括装置的种类、能量、参数选择及安置情况等。激发条件的选择是否适当,对地震勘探原始资料质量的影响很大。一般认为,陆地工作中, 风化层下的含水可塑性岩层是有利的激发条件,因此往往采用井中爆炸,在海洋工作小,主要是以减小气泡影响作为合适的激发条件。 海洋地震勘探marine seismic survey:是利用勘探船在海洋上进行地震勘探的方法°其特点是在水中激发,水中接收,激发,接收条件均一;可进行不停船的连续观测。震源多使用非炸药震源,接收常用压电地震检波器,工作时,将检波器及电缆拖曳于船后一定深度的海水中由于上述特点,使海洋地震勘探具有比陆地地震勘探高得多的生产效率,更需要用数字电子计算机处理资料。海洋地震勘探中常遇到一些特殊的干扰波,如鸣震和交混问响,以及与海底有关的底波干扰。海洋地震勘探的原理,使用的仪器,以及处理资料的方法都和陆地地震勘探基本相同。由于在大陆架地区发现大量的石汕和天然气,因此.海洋地震勘探有极为广阔的前景。 高频地震high frequency seismic survey:在水文地质、工程地质调杏和金属矿床勘探中,勘测深度只在儿米到儿百米之间,需要精细分层和精确地测定波的传播时间。为了提高仪器的分辨能力,要用专门的高频地震仪,记录震波的高频分量。高频地震仪的通频带?般在60-350周 /秒之间,专门测定岩石波速时需提高到500-600周/秒。为了压制低频干扰,仪器频率特性的低频一边应有较大的陡度。 干扰波noise:地震勘探中妨碍分辨有效波的振动都属于干扰波。干扰波大体上可分为两种:其中具有明显传播规律的称为规则干扰或干扰波,如声波、面波,多次波等等;没有明显传播规律性的振动称为随机干扰,或简称干扰,如微震等。抗干扰的问题是关系到地震勘探中提高勘探的质量和能力的极其重要的问题。因此,在野外工作和资料处理上采用多种措施,以提高有效波而压制干扰波。干扰波有时也是相对的概念,如在反射法中,折射波就常

地震勘探常用术语及计算公式

地震勘探缩写术语 2-D Two Dimensional 二维。 3-C Three Component 三分量。 3C3D 三分量三维。 3-D Three Dimensional三维。 9-C Nine Component 九分量。3分量震源╳3分量检波器=九分量。 9C3D 九分量三维。 A/D Analog to Digital模数转换。 AGC Automatic Gain Control 自动增益控制。 A V A Amplitude Variation With Angle 振幅随采集平面的方位角的变化。 A VO Amplitude Variation With Offset 振幅随偏移距的变化。 A VOA 振幅随炮检距和方位角的变化。 CDP Common Depth Point 共深度点。 CDPS Common Depth Point Stack共深度点迭加。 CMP Common Mid Point 共反射面元。共中心点。 CPU Central Processing Unit 中央控制单元。 CRP Common Reflection Point 共反射点。 D/A Digital to Analog 数模转换。 d B/octa d B/octv e 分贝/倍频程。 DMO Dip Moveout Processing 倾角时差校正。 G波G-wave 一种长周期(40—300秒)的拉夫波。通常只限于海上传播。H波H-wave 水力波。 IFP Instantaneous Floating Point 仪器上的瞬时沸点放大器。 K波K-wave 地核中传播的一种P波。 LVL Low Velocity Layer 低速层。 L波L-wave 天然地震产生的长波长面波。 NMO Normal Moveout Correction 正常时差校正,动校正。 OBS Ocean Bottom Seismometer 海底检波器。 P波P-wave 即纵波。也称初始波、压缩波、膨胀波、无旋波。 QC Quality Control 质量控制。

地震数据处理方法(DOC)

安徽理工大学 一、名词解释(20分) 1、、地震资料数字处理:就是利用数字计算机对野外地震勘探所获得的原始资料进行加工、改进,以期得到高质量的、可靠的地震信息,为下一步资料解释提供可靠的依据和有关的地质信息。 2、数字滤波:用电子计算机整理地震勘探资料时,通过褶积的数学处理过程,在时间域内实现对地震信号的滤波作用,称为数字滤波。(对离散化后的信号进行的滤波,输入输出都是离散信号) 3、模拟信号:随时间连续变化的信号。 4、数字信号:模拟数据经量化后得到的离散的值。 5、尼奎斯特频率:使离散时间序列x(nΔt)能够确定时间函数x(t)所对应的两倍采样间隔的倒数,即f=1/2Δt. 6、采样定理: 7、吉卜斯现象:由于频率响应不连续,而时域滤波因子取有限长,造成频率特性曲线倾斜和波动的现象。 8、假频:抽样数据产生的频率上的混淆。某一频率的输入信号每个周期的抽样数少于两个时,在系统的的输出端就会被看作是另一频率信号的抽样。抽样频率的一半叫作褶叠频率或尼奎斯特频率fN;大于尼奎斯特频率的频率fN+Y,会被看作小于它的频率fN-Y。这两个频率fN+Y和fN-Y相互成为假频。 9、伪门:对连续的滤波因子h(t)用时间采样间隔Δt离散采样后得到h (nΔt)。如果再按h (nΔt)计算出与它相应的滤波器的频率特性,这时在频率特性图形上,除了有同原来的H (ω)对应的'门'外,还会周期性地重复出现许多门,这些门称为伪门。产生伪门的原因就是由于对h(t)离散采样造成的。 10、地震子波:由于大地滤波作用,使震源发出的尖脉冲经过地层后,变成一个具有一定时间延续的波形w(t)。 11、道平衡:指在不同的地震记录道间和同一地震记录道德不同层位中建立振幅平衡,前者称为道间均衡,后者称为道内均衡。 12、几何扩散校正:球面波在传播过程中,由于波前面不断扩大,使振幅随距离呈反比衰减,即Ar=A0/r,是一种几何原因造成的某处能量的减小,与介质无关,叫几何扩散,又叫球面扩散。为了消除球面扩散的影响,只需A0=Ar*r即可,此即为几何扩散校正, 13、反滤波(又称反褶积):为了从与干扰混杂的地震讯息中把有效波提取出来,则必须设法消除由于水层、地层等所形成的滤波作用,按照这种思路所提出的消除干扰的办法称为反滤波,即把有效波在传播过程中所经受的种种我们不希望的滤波作用消除掉。 14、校正不足或欠校正:如果动校正采用的速度高于正确速度,计算得到的动校正量偏小,动校正后的同相轴下拉。反之称为校正过量或过校正。 15、动校正:消除由于接受点偏离炮点所引起的时差的过程,又叫正常时差校正。 16、剩余时差:当采用一次波的正常时差公式进行动校正之后,除了一次反射波之外,其他类型的波仍存在一定量的时差,我们将这种进过动校正后残留的时差叫做剩余时差。

地震等自然灾害应急预案及处理流程

地震应急预案及处理流程 为加强我院安全生产工作,做好安全生产和灾害事故应急处理工作,保护人民的生命和财产安全,根据《中华人民共和国安全生产法》和《灾害事故医疗救援工作管理办法》、参照《全国救灾防病预案》、《国家突发公共事件医疗卫生救援应急预案》和《医疗卫生机构灾害事故防范和应急处置指导意见》有关规定,结合我院实际,制定本预案: 一、指导思想 根据有关规定和我院安全工作的总体部署,切实做好地震等灾害事故各项准备工作,当破坏性地震发生后迅速启动本预案,统一部署,紧急处置,迅速全面地做好各项抗震救灾准备,高效、有序地开展应急自救工作,以最快速度恢复医疗工作正常开展,最大限度减轻地震灾害,减少人员伤亡和经济损失。 二、组织机构 1、指挥部 总指挥:院长(党支部书记) 副总指挥:业务副院长 成员:保卫科、后勤科、医务科、护理部、各临床科室主任 职责:

(1)统一领导,健全组织,强化工作职责,加强对破坏性地震及防震减灾工作的研究,完善各项应急预案的制定和各项措施的落实。 (2)充分利用各种渠道进行地震灾害知识的宣传教育,组织、指导医院防震抗震知识的普及教育,广泛开展地震灾害中的自救和互救训练,不断提高广大医务人员防震抗震的意识和基本技能。 (3)认真做好各项物资保障,严格按预案要求积极筹储、落实食品饮用水、防冻防雨、医疗器械、抢险设备等物资,强化管理,使之始终保持良好状态。 (4)破坏性地震发生后,采取一切必要手段,组织各方面力量全面进行抗震减灾工作,把地震灾害造成的损失降到最低点。 (5)调动一切积极因素,迅速恢复正常医疗秩序,全面保证和促进社会安全稳定。 指挥部设在院办,电话: 2、疏散组: 组长:保卫科科长 组员:各临床、医技科室主任、护士长 职责:平时负责全院地震等自然灾害培训演练的具体工作,保持疏散通道畅通。 (1)现场指挥,迅速组织医务人员指导患者及其家属按照

地震勘探原理复习题答案

绪论 一、名词解释 1.地球物理方法(ExplorationMethods):利用各种仪器在地表观测地壳上的各种物理现象,从而推断、了 解地下的地质构造特点,寻找可能的储油构造。它是一种间接找油的方法。特点:精度和成本均高于 地质法,但低于钻探方法。 2、地震勘探:就是利用人工方法激发的地震波(弹性波),研究地震波在地层中传播的规律,以查明地下的地质构造,从而来确定矿藏(包括油气、矿石、水、地热资源等)等的位置,以及获得工程地质信息。 二、简答题 1、了解地下资源信息有那些主要手段。 (1)、地质法(2)、地球物理方法(3)、钻探法(4)、综合方法:地质、物探(物化探)、钻探 结合起来,进行综合勘探。其中,地质法贯穿始终,物探是关键,钻探是归宿。 2有几种主要地球物理勘探方法,它们的基本原理。 地球物理勘探方法是以岩矿石(或地层)与其围岩的物理性质差异为物质基础,用专门的仪器设备 观测和研究天然存在或人工形成的物理场的变化规律,进而达到查明地质构造寻找矿产资源和解决工 程地质、水文地质以及环境监测等问题为目的勘探,叫地球物理勘探,简称物探。相应的各种勘探方法,叫地球物理勘探方法,简称为物探方法,有地震勘探、重力勘探、磁法勘探、电法勘探、地球物 理测井。 (1)重力勘探:利用岩石、矿物(地层)之间的密度差异,引起重力场变化,产生重力异常,用重 力仪测量其异常值,根据异常变化情况反演地下地质构造情况。 (2)磁法勘探:利用岩石、矿物(地层)之间的磁性差异,引起磁场变化,产生磁力异常,用磁力 仪测量其异常值,根据异常变化情况反演地下地质构造情况。 (3)电法勘探:利用岩石、矿物(地层)之间的电性差异,引起电(磁)场变化,产生电性异常,用 电法(磁)仪测量其异常,根据异常变化情况反演地下地质构造情况。 (4)地震勘探:利用岩石、矿物(地层)之间的弹性差异,引起弹性波场变化,产生弹性异常(速 度不同),用地震仪测量其异常值(时间变化),根据异常变化情况反演地下地质构造情况。 (5)地球物理测井:电测井;电磁测井;放射性测井;声波测井;地温测井;密度测井。 3、地震勘探的主要工作环节。 (1)野外数据采集(2)室内资料处理(3)地震资料解释

842_勘探地球物理概论考试大纲_地震测井

中国地质大学(北京)硕士研究生《勘探地球物理概论》(地 震测井)考试大纲 科目名称:勘探地球物理概论(地震测井) 代码:842 一、考试性质 《勘探地球物理概论》(地震测井)考试包括勘探地球物理的2个分支学科内容——地震勘探和地球物理测井。要求考生理解并掌握地震勘探和测井这2种勘探地球物理方法的基本理论和基本方法。注重掌握典型地质体理论异常及其特点,数据的采集、整理和解释,以及主要应用领域等方面。它的评价标准是使高校优秀本科毕业生能达到及格或及格以上水平。 二、考试形式与试卷结构 1、答卷方式:闭卷、笔试 2、答卷时间:180分钟 3、题型比例:满分150分,简答题30%、综合论述题40至50%、计算题20至30%。 三、考查要点 (一)地震勘探 1、理解并掌握地震勘探中的基本概念和基本原理。 2、能够推导水平及倾斜界面情况下,反射波、折射波、直达波、面波等的时距曲线表达式。 3、掌握地震勘探中几种速度的概念,会分析在什么情况下用哪种速度,要

求会计算。 4、地震资料处理中的几个重要环节,涉及到的重要技术手段,掌握几种提高地震信噪比、分辨率和保真度的主要方法和实现过程。 5、掌握地震剖面基本分析方法、波的对比方法、断层的识别方法等。 6、能够识别各类地震剖面和道集记录,能从地震剖面上辨别各种类型的波,分析简单的地质现象。 (二)地球物理测井 1、基本概念 地球物理测井的含义、测井方法分类和用途;含油气储集层类型、特点和基本参数;测井及其资料解释常见术语、储集层评价要点。 2、常规测井方法的基本原理 岩石的电学性质;自然电位测井、普通电阻率测井、冲洗带电阻率测井、侧向测井和感应测井原理。 岩石的声学性质;声速测井和声幅测井原理。 岩石的核物理性质;自然伽马测井、密度测井和中子测井原理。 井径测井原理。 3、常规测井方法的基本应用 自然电位测井、普通电阻率测井、冲洗带电阻率测井、侧向测井和感应测井的基本用途;声速测井和声幅测井的基本用途;自然伽马测井、密度测井和中子测井的基本用途;井径测井的基本用途。 要求考生掌握利用常规测井资料划分储集层和计算储集层参数的最基本方法。 四、参考资料 1、《勘探地球物理教程》(第一版)孟令顺等,地质出版社,2012 《地球物理测井教程(上篇)》邹长春等编,地质出版社,2010 2、辅助参考:《地球物理系列教材》刘光鼎主编(《地震波场与地震勘探》姚姚),地质出版社,2005

地震勘探名词解释(随身携带版)

振动图:从某一确定距离观察该处指点位移随时间变化的图形。 波剖面:某一确定时刻观察质点位移与波传播距离关系的图形。 隐伏层:指初至折射波法中不能探测到的地层。(两类:一类是层状介质 中的低速夹层,由于V 上>V 下,因而在低速夹层的上界面不能产 生折射波而形成隐伏层。另一类;虽然波速逐层递增,但其中某 层厚度很小,所形成的折射波不能出现在初至区,而是隐藏在续 至区中难以识别) 波前扩散:地震波由震源向周围介质传播,波前面越来越大,就是说越来 越远地离开震源,其振幅也越来越少。 吸收系数:吸收作用使地震波的振幅随传播距离成指数减小,而减小的快 慢又与岩石的物理性质和波的振动频率有关,常用吸收系数表示 波损失:反射波在离开反射点的振动方向相对于入射波到达入射点的振动 相差半个周期。 转换波:当一入射波入射到反射界面时,会产生与其类型相同的反射波或 透射波,也会产生类型不同的,与其类型不同的称为转换波. 瑞雷面波:分布在自由界面附近并沿自由界面传播的面波。 勒夫面波:当存在一速度低于下层介质的表面时,在低速带顶、底界面之 间产生一种平行于 界面的波动。 散射波:相对于波长较小或可比时则发生散射。 斯奈尔定理:是描述反射波和透射波射线几何关系的一个定律,所以又称 为反射透射定律。其主要内容有以下三个方面:①入射线、反射线、透射线在同一平面内(即射线平面)②入射角=反射角③透射角取决于入射角和界面上、下介质的波速比值 P V V V =='=2 1 1 sin sin sin β αα 式中v1、v2分别为界面上、 下介质的波速,p 为射线参量 纵向分辨率:地震记录沿垂直方向可分辨的最小地层厚度 横向分辨率:地震记录沿水平方向可分辨最窄的地质体的宽度 第一菲涅尔带:地表点震源发出的球面波到达界面时的波前面,与前面相 距1/4波长先期到达的另一波前面在界面上形成的圆 杨氏模量:当弹性体在弹性限度内单向拉伸时,应力与应变的比值。 泊松比:介质的横向应变与纵向应变的比值。 体积模量:所加压力P 与体积相对变化之比 剪切模量:固体剪切力与切应变之比 拉梅常数:当研究的弹性体是各向同性介质时,这时弹性系数可减少到只 剩2个,可用 和 来表示 单相介质:只有同一种岩相的介质 双相介质:由两种岩相组成的介质 初至波:最先到达接收点的波 临界距离:刚出现初至波的距离 截距时间:折射波时距曲线延长到时间轴的截距 回声时间:波沿界面法线传播的双程旅行时间 连续介质:水平层状介质中层与层之间的波速变化不大,可近似认为波速 为连续函数 回折波:自震源出发,在介质中沿曲射线传播,没有遇到界面就直接观测 到的波 绕射波:地震波在地下岩层传播时,当遇到岩性突变点,如断层的断棱, 地层尖灭点,不整合面上起伏点等,这些点会成为新震源,而产生一种新的球面波,这种波称为绕射波 动态范围:仪器最大允许输入信号的振幅 假频:某一连续信号在进行离散采样时,由于采样频率小于信号频率的两 倍,于是在连续信号的每个周期内采样不足两个,信号采样后变成另一种频率的新信号。 时间采样率:能够记录到的不会出现假频的最高频率 空间采样率:检波器的道间距 视距平面法:用视距曲线的方式来表示的观测系统 综合平面法:把激发点标在水平直线上,然后从激发点向两侧坐斜线组成 坐标网,当在测线上某点激发而在某地段接收时,将投影线段表示接收地段 有效波:在地震勘探中用来解决地质任务的波 干扰波:对有效波起干预和破坏作用的波 多次反射:地下存在强波阻抗界面时会发生多次反射 水平叠加:在测线上不同激发点激发、不同接收点接收来自地下界面相同 发射点的多个地震记录道进行叠加。 垂直叠加:在地面上同一点重复激发,在同一排列上重复接收,利用浅层 地震仪的垂直叠加处理功能,把同一点上重复激发,同一排列上重复接收到的信号依次叠加在一起,达到增强有效波的目的 覆盖次数:在水平叠加法中,覆盖次数n 与炮点距有如下关系:v=S*N/2n, S 为系数,v 为每次炮点移动道数,N 为仪器道数 最佳技术窗口:为了使面波、声波、直达波和折射波产生较少的干扰,可 以把接收地段选择在既较少受面波影响,也较少受折射波影响的地段 最佳偏移距技术:在最佳窗口内选择一个公共偏移距,然后移动震源,保 持所选定的偏移距,最后得到一张多道记录,各道具有相同的偏移距 波阻抗:波阻抗:指的是介质(地层)的密度和波的速度的乘积(Zi=ρiVi)。 波的反射和透射与分界面两边介质的波阻抗有关。只有在Z1 ≠ Z2的条件下,地震波才会发生反射,差别越大,反射也越强。 波振面:振动状态完全相同的点组成的 面。 波系:相邻几套稳定的波组 波形曲线:选定一个时刻t1,我们用纵坐标表示各质点离开平衡位置的距 离,就得到一条曲线,这条曲线就叫做波在t1时刻沿x 方向的波形曲线. 波前:某一时刻介质中各点刚好开始振动,这一曲面叫波前,也叫波阵面。 波后:某一时刻介质中各点的振动刚好停止,这一曲面叫波后,也叫波尾。 波面:把某一时刻介质中所有相同状态的点连成曲面,这个曲面就叫做这 个时刻的波面,也叫等相面。 不等灵敏度组合:采用某些办法使同一组内各检波器接收到的信号幅度不 一样 采样间隔:地震勘探中检波器接受的模拟信号转换为数字信号储存,需要 采样离散化,这个采样间隔就称为地震采样间隔。 地震测线:根据地震勘探的程度、目的和要求,在地面确定下来的地震勘 探野外工作的路线。可分为炮点线和接收点线 层状介质:指地质剖面是层状结构的,在每一层内速度是均匀的,但层与 层之间速度是不相同 地震波运动学:研究在地震波传播过程中的地震波波前的空间位置与其传 播时间的关系,即研究波的传播规律,以及这种时空关系与 地下地质构造的关系。 波的动力学特征:研究地震波的波形·振幅·频率·相位等与空间位置的 关系。 地震波动力学:研究地震波在传播过程中波形、振幅、频率、相位等特征 的及其变化规律,以及这些变化规律与地下的地层结构, 岩石性质及流体性质之间存在的联系。 地震子波:震源激发、沿着地层向下传播,传播一段距离后波形逐渐稳定 下来,形成具有一定形状和延续时间的波形,在地面、井中接收,接收到的振动信号就称为地震子波。 地震组合:把多个检波器的信号迭加在一起作为一道输出 多次覆盖:在测线上不同点激发相应点接收来自地下界面相同反射点的多 个多个地震记录道进行叠加。 多次覆盖观测系统:对整条反射界面进行多次覆盖的观测系统。 多次覆盖技术:压制多次反射波之类的特殊干扰波,以提高地震记录的信 噪比。 多次波记录:从震源出发,到达接收点时,在地下界面之间发生了一次以 上反射的波。多次反射波、反射-折射波、折射-反射波和绕射-反射波等等统称为多次波 地震波:由震源激发的机械振动在地下岩层中向四周传播的运动过程,这 一过程就是机械波,习称地震波。 道间距:相邻两道检波器的间距 地震勘探:通过人工方法激发地震波,研究地震波在地层中传播的情况,以 查明地下的地质构造,力寻找油气田或其他勘探目的服务的一种物探方法. 叠加原理:震源和检波器的位置可以互相交换,此种情况下,同一波的射 线路径保持不变.可用于均匀各向同性的完全弹性介质,也可用于任意形状界面的弹性介质,不均匀介质和各向异性介质。 低速带、降速带:地表附近的地层,由于长期受地质风化的作用,变得较 疏松,其波的传播速度比下层未风化层的速度要低很多,称该低速层为低速带. :某些地区,在低速带与相对高速地层之间还有一层速度偏低的过渡区,称为降速带。 单边观测系统:在炮点一方接收的观测系统。 非纵测线:激发点和接收点不在同一条直线上。 费马原理:地震波沿射线的旅行时与沿其他任何路径的旅行时相比为最 小,也是波沿旅行时最小的路径传播。 各向同(异)性介质:凡弹性性质与空间方向无关(有关)的介质 共反射点叠加:将不同接收点接收到的来自地下同一反射点的地震记录, 经过动校正后叠加起来。 共中心点叠加:将不同接收点接收到的来自地下同一中心点的地震记录, 经过动校正后叠加起来。 观测系统:观测系统是指地震波的激发点和接收点的相互位置关系。或激 发点与接收排列的相对空间位置关系。观测系统分单边和双边放炮两大类,以上两观测系统又可根据有无偏移距分为端点观测系统和有偏移距观测系统。 规则干扰:具有一定频谱和视速度,能在地震记录以上一定同相轴出现的 干扰波. 共炮点反射道集:在同一炮点激发,不同接收点上接收的反射波记录,称 为共炮点道集。在野外的数据采集原始记录中,常以这种记录形式。可分单边放炮和中间放炮。 广角反射:在第一临界角附近反射纵波和反射横波的强度都很强 滑行波:由透射定律可知,如果V2>V1 ,即sin θ2 > sin θ1 ,θ2 > θ 1。当θ1还没到90o时, θ2 到达90o,此时透射波在第二种介质中沿界面滑行,产生的波为滑行波。 横波:质点振动方向与波的传播方向垂直,速度比纵波慢,也称剪切波、 旋转波、横波或S-波,速度小于纵波约0.7倍。 横波分为SV 和SH 波两种形式。 回转波:p

地震资料处理解释大作业(处理部分)

地震资料处理/解释大作业 (处理部分) 专业:勘查技术与工程 班级:12-4 姓名:封辉、孙运庆、何瑞川 学号:2012011236、2012011249、2012011239 2016年 1 月 15 日 评分标准:第三章和第四章各20分,其余各章10分

目录 第一章数据加载和观测系统定义 (2) 第二章道编辑和真振幅恢复 (4) 第三章反褶积 (6) 第四章速度分析 (7) 第五章动校正和水平叠加 (8) 第六章静校正 (10) 第七章偏移 (12) 第八章总结和体会 (13)

第一章数据加载和观测系统定义 地震资料处理流程第一步为数据输入和预处理。预处理是地震数据处理前的准备工作,将地震数据正确加载到地震资料处理系统,进行观测系统定义,并对数据进行编辑和校正。原数据是SGY格式的地震记录文件,用Promax对其进行处理需要格式转换,将其格式转换成软件定义的格式。 图1.1是原始数据炮集。格式转换后可对数据进行加载与处理,但是处理需要的各种测网信息需要进行定义,所以我们做观测系统定义,用FFID(野外文件号)和CHAN(记录道号)为索引将测网的各检波器与炮点坐标、高程、CDP 号等信息与数据的各道联系起来。观测系统定义分为炮点定义,检波点定义与炮检关系定义。图1.3是CDP覆盖次数。 图1.1 原始数据炮集

图1.2a 炮点与检波点信息 图1.2b 炮点与检波点信息

图1.3 多次覆盖次数 第二章道编辑和真振幅恢复 通常的地震采集中,由于检波器数量很多、野外干扰因素复杂等原因,不是每一道都能很好的反应地下反射界面带回来的信息,最基础的我们需要挑出其中坏检波器采集的道与极性不正常的道,称为道编辑(如图2.1)。 在记录图中使用picking进行编辑。点击picking,有编辑错道和编辑极性翻转道。拾取所有的错道和翻转道集后,分别放在两个文件里面。由震源引发的地震波,会随着波前面变大,底层吸收衰减等因素而能量减小,而我们需要的通常是深部的地层信息,所以我们需要对地震波进行振幅恢复(如图 2.2),经过真振幅恢复以后,深层反射波能量相对增强了,反射界面变得清晰,但面波等 干扰波也增强了。

地物重点_地震、测井

1.煤矿地质保障的三个层面 现行的高产高效矿井地质条件保障是以物探技术为先导,钻探、巷探等基础地质手段加以配合,同时依托计算机技术实现生产地质工作的动态管理。其工作模式可分为三个层面:(1)井田围主要可采煤层开采地质条件评价,查明煤层构造是主要工作,主要勘查手段为二 维地震勘探、电法勘探与钻孔。 (2) 采区采前地质条件勘查,主要工作是查明采区围的小构造,包括落差5m左右的断层、 陷落柱、老窑及采空区的空间分布形态,根据采区衔接的要求,应提前布置实施。在地表条件允许的前提下,三维高分辨率地震勘探技术是首选方法。 (3) 综采工作面地质条件超前探测,在综采设备安装或开采前,查明工作面一切地质异常现象,为工作面持续开采提供地质保障是主要工作。 2、地震勘探的基本原理 地震勘探主要是研究人工激发的地震(弹性)波在浅岩层、土介质中的传播规律。其传播的动态特征集中反映在两个方面,一是波传播的时间与空间的关系,称为运动学特征;另一是波传播中其振幅、频率、相位等的变化规律,称为动力学特征。前者是地震波对地下地质体的构造响应,后者则更多的表现出地下地质体的岩性特征,有时亦是地质体结构特征的响应。 3、地震地质条件 岩土介质的岩性、物性、成分和结构以及所处环境的构造和地表条件等的不同,都会使得地震波的运动学和动力学特征发生变化。 影响地震波速度的因素:岩土介质的密度、岩土介质的孔隙度、地质埋深和地质年代、岩性和弹性常数。 浅层地震地质条件 地震勘探的效果在很大程度上取决于工作地区是否具有应用地震勘探的前提,也就是工区的地震地质条件。在浅层地震勘探中,其地震地质条件主要是指浅部岩土介质的性质和地质特征,以及地表的各种影响因素:疏松覆盖层、潜水面和含水层、地质剖面的均匀性、地质界面和地震界面的差异、“地震标志层”的确定。 4、二维地震勘探特点及能够解决的地质问题 (1)查明大于十米断层 (2)查明大于十米的褶曲 (3)查明第四纪地层 (4)查明大于三十米陷落柱 5、三维地震勘探特点及能够解决的地质问题 (1) 查明落差大于等于5m的断层,提供落差小于5m的断点,平面摆动误差小于30m; (2) 查明幅度大于等于5m的褶曲,主要可采煤层底板深度误差不大于1.5%;

地震数据处理 重点

1.一维傅里叶变换及其应用:傅里叶变换是地震数据处理的主要数学基础。它不仅是地震道、地震记录分析和数据滤波的基础,同时在地震数据处理的各个方面都有着广泛的应用。 2.采样定理:设x(t)是连续的时间函数,x(t)的最高截止频率为fn,则可用采样间隔为Δt=1/2fn的离散序列X(nΔt)唯一的确定。采样过程:从模拟地震信号到数字地震信号的过程。采样间隔/采样率:采样所用的时间间隔。 3.数字滤波:利用频谱特征的不同来压制干扰波,以突出有效波的方法。 4.频率域滤波的步骤: ①对已知地震道进行频谱分析;②设计合适的滤波器:为了滤去干扰波的频谱成分,应当设计一个带通滤波器,保留有效波频率,把干扰波频率成分滤掉; ③进行滤波运算;④对输出信号谱X(w)进行傅里叶反变换,便得到滤波后的输出X(t). 5.相位性质:最小相位也叫相位滞后或最小能量延迟,实际上最小相位滞后是指频率域,而最小能量延迟则是指时间域而言。最小能量延迟子波:能量聚集在首部;最大能量延迟子波:能量集中在尾部;混合延迟子波:能量聚集在中部。 6.褶积滤波的物理意义: 单位脉冲响应:在时间域的表示方法中,令一个单位脉冲通过一个滤波器,然后观测滤波器的输出,这个滤波器输出的自然过程曲线称为滤波器的脉冲响应。也称滤波器的时间特性。 褶积滤波的物理意义:它相当于把地震信息x(t)分解为起始时间、极性、幅度各不相同的脉冲序列,令这些脉冲按时间书序依次通过滤波器,这样在滤波器的输出端就得到对输入脉冲序列的脉冲响应,这些脉冲响应有不同的的起始时间、不同的极性和不同的幅度(这个幅度是与引起它的输入脉冲幅度成正比的),将它们叠加起来就得到滤波后的输出x(t). 7.数字滤波的特殊性质:离散性:数字滤波是对离散的信号进行运算,这是所谓的离散性;有限性:在数字计算机上进行计算时,滤波因子不可能无穷项,而是取有限项,这就是所谓的有限性。 8.产生“伪门”原因:由于对A离散采样造成的,可以证明“伪门”在频率域出现的周期为A,为了避免“伪门”造成的影响,可以适当的选择采样间隔A,使第一个“伪门”出现在干扰波的频谱范围之外。9.波谱:以任何一种形式展示电磁辐射强度与波长之间的关系,叫波谱。波数:波长的倒数。K0=1/λ 二维频率-波数域中的二维频率-波数谱(简称二维频-波谱)分析是对地震波场进行分析的重要手段,它是建立在二维傅里叶变换的基础上。 10.空间假频:频率不变,倾角越大或者倾角不变,频率越高越容易产生空间假频。产生条件:地震信号的频率f一定时,地震信号倾斜时差δt越大,其频-波振幅谱中的波数k0也越大,而当地震信号频率f 增大时,具有相同倾斜时差δt的地震信号的频-波振幅谱中的波数k0随之增大,当频率f增大到某一个门槛频率fmax时,便开始产生空间假频。 11.二维滤波器的设计:一般二维滤波是指对于波动函数X(t,x)所进行的频率-波数域滤波。这时设计的滤波因子是时间-空间的函数h(t,x),滤波过程类似一维滤波在时间-空间域,可用二维褶积公式表示A. 12.共中心点CMP叠加及叠后处理流程图:野外采集地震数据-解编-预处理-反褶积-抽CMP道集-速度分析-动校正-CMP水平叠加-叠后时间深度偏移。13.共中心点叠加优点:①压制多次波;②压制规则干扰波;③压制随机噪声。综上,共中心点叠加可以有效地压制各种干扰波,增强有效波,使地震剖面的信噪比明显提高,掀桌改善地震剖面的质量。 14共中心点水平叠加存在的问题:当反射界面为弯曲界面时,其反射旅行时存在如图1所示的畸变;当反射界面为,其射旅行时发生如图2所示的畸变;当覆盖介质速度横向变化时,其反射旅行时存在如图3所示的畸变;当覆盖介质速度各向异性时,其反射旅行时存在如图4所示的畸变. 15.块状介质模型地震数据处理的特点:①介质呈块状分布,它不仅有顶部和底部界面,而且其侧面也由断层面或岩层界面所封闭;②由于剧烈的构造运动作用,界面往往呈弯曲界面,界面陡、倾角较大;③介质速度往往沿水平方向变化较快。 16.共反射点CRP叠前处理基本流程图:野外采集地震数据-解编-预处理-反褶积-抽CRP道集-层速度场-速度深度模型-叠前深度偏移 ①②③④⑤⑥⑦ 1.预处理:指地震数据处理前的准备工作,是地震数据处理中的重要基础工作,一般定义为将野外采集的地震数据正确加载到地震资料处理系统,进行观测系统定义并对地震数据进行编辑和校正的过程。预处理包括:数据解编、格式转换、道编辑、观测系统定义等工作。 2.解编:就是按照野外采集的记录格式将地震数据检测出来,并将时序的野外数据转换为道序数据,然后按照道和炮的顺序将地震记录存放起来。 3.野外观测系统定义:观测系统就是以野外文件号和

地震勘探原理名词解释(2)

第一章 地球物理方法(Exploration Methods): 利用各种仪器在地表观测地壳上的各种物 理现象,从而推断、了解地下的地质构造特点,寻找可能的储油构造。它是一种间接找油的方法。特点:精度和成本均高于地质法,但低于钻探方法。 地震勘探:就是利用人工方法激发的地震波(弹性波),研究地震波在地层中传播的规律,以查明地下的地质构造,从而来确定矿藏(包括油气、矿石、水、地热资源等)等的位置,以及获得工程地质信息。 第二章 地震勘探:通过人工方法激发地震波,研究地震波在地层中传播的情况,以查明地下的地质构造,力寻找油气田或其他勘探目的服务的一种物探方法. 地震波:在岩层中传播的弹性波。 反射定律:入射波与反射波分居法线两侧,反射角等于入射角,条件为:上下界面波阻抗存在差异,入射波与反射波类型相同. 地震子波:震源产生的信号传播一段时间后,波形趋于稳定,我们称这时的地震波为地震子波。 爆炸时产生的尖脉冲,在爆炸点附近的介质中以冲击波的形式传播,当传播到一的距离后,波形逐渐稳定,我们称这时的地震波为地震子波。 几何地震学:地震波的运动学是研究地震波,波前的空间位置与传播时间的关系,他与几何光学相似,也是引用波前,射线等几何图形来描述波的运动过程和规律,因此又叫几何地震学. 波形曲线:选定一个时刻t1,我们用纵坐标表示各质点离开平衡位置的距离,就得到一条曲线,这条曲线就叫做波在t1时刻沿x方向的波形曲线. 正常时差的定义:第一种定义:界面水平情况下,对界面上某点以炮检距x进行观测得到的反射波旅行时同以零炮检距(自激自收)进行观测得到的反射波旅行时之差,这纯粹是因为炮检距不为零引起的时差. 第二种定义:在水平界面情况下,各观测点相对于爆炸点纯粹是由于炮检距不同而引起的反射波旅行时间差. 倾角时差:当界面倾斜时,炮检距相同,但相邻反射点传播时间不同而产生的角度差由激发点两侧对称位置观测到的来自同一界面的反射波的时差。这一时差是由于界面存在倾角引起的。 波线:在条件适当时,可以认为波及其能量是沿着一条“路径”从波源传到所考虑的一点P,

论地震勘探资料解释

论地震勘探资料解释 论文提要 地震勘探资料解释是地震勘探工程的最终环节。它包括了地层、构造、沉积以及盆地分析和油气勘探等多方面内容,成为油气勘探以及盆地基础地质研究中不可缺少的重要方法。它也是要把地震勘探所取得的地震资料转化成我们对勘探区地下地质情况的认识。应用数字处理后提供的大量水平叠加剖面、偏移剖面或者一块三维数据体等地震资料,再结合地质、钻井、测井等资料,应用解释工作站等现代科技手段,对这些资料进行综合分析、模拟计算、反复对比,最后给出比较符合地下实际情况的认识,并将这些认识绘制成图幅和图表。 地震勘探资料解释在正式工作中是非常重要的,没有这一步那就不会得出最后的结果。在野外把数据采集回来,要经过最后的资料解释才能够把数据转换成图表,为后续的工作打好基础。 正文 一、地震资料解释 包括地震构造解释、地震地层解释及地震烃类解释或地震地质解释。 地震构造解释以水平叠加时间剖面和偏移时间剖面为主要资料,分析剖面上各种波的特征,确定反射标准层层位和对比追踪,解释时间剖面所反映的各种地质构造现象,构制反射地震标准层构造图。 地震地层解释以时间剖面为主要资料,或是进行区域性地层研究,或是进行局部构造的岩性岩相变化分析。划分地震层序是地震地层解释的基础,据此进行地震层序之沉积特征及地质时代的研究,然后进行地震相分析,将地震相转换为沉积相,绘制地震相平面图,划分出含油气的有利相带。 地震烃类解释利用反射振幅、速度及频率等信息,对含油气有利地区进行烃类指标分析。通常需综合运用钻井资料与测井资料进行标定分析与模拟解释,对地震异常作定性与定量分析,进一步识别烃类指示的性质,进行储集层描述,估算油气层厚度及分布范围等。 二、地震剖面特点 地震勘探方法是在地面上布置一条条的测线,沿各条测线进行地震施工采集地震信息,然后经过电子计算机处理就得出一张张地震剖面图。经过地质解释的地震剖面图就象从地面向下切了一刀,在二维空间(长度和深度方向)上显示了地下的地质构造情况。 垂直地震剖面是相对于前面讲的地震勘探而言。那么什么叫垂直地震剖面(简称VSP)呢? 20世纪70年代提出的、70年代后期和80年代很流行的垂直地震剖面技术和以往提到的地震勘探不同,它是将接收器放在已打好的深井中,接收线沿井孔布置,并借助推靠器将接收器紧紧贴在井壁上。也就是说,前面讲的地震勘探的接收器是放在地面上,而垂直地震剖面的接收器是垂直地面放在井下,故而得名。工作时首先将一组接收器下

VSP(垂直地震剖面测井技术)

?ˊ Ё?????Ё????????????? ???

???? ?? ???▊?? ?ˊ ?ˊ?? ?? ?ˊ?? ??? ?? ????? ??

?? ???○?????????????○???????????? ???? ?????? ??? ?????? ??????? ???? ????????????? ??○⑤????????? ?? ?? ??????○⑤??? ????? ???? ???????????????????????? ╓? ??

?? ???○?? ????Ё?○????????Ё?○??????????○???○???? ????????????????????????????????????????????????? ??????????????????П?????????П?????????????????○ ???ˊ??????????????????????????????????????????????

?? ???┈???????????┈??????????????????????????? ????????????????????????└???┻?????????└???┻????????????▔???? ???????? ????????????????┈??????○???????????????????????? ???????????????????????????????????????????????? ??????????????????????????????????????????? ??????????????????

相关文档
最新文档