基因表达的检测的几种方法

基因表达的检测的几种方法
基因表达的检测的几种方法

基因表达检测的最终技术目标是能确定所关注的任何组织、细胞的

RNA的绝对表达量。可以先从样本中抽提RNA,再标记RNA,

然后将这些标记物作探针与芯片杂交,就可得出原始样本中不同

RNA的量。然而用于杂交的某个特定基因的RNA的量与在一个

相应杂交反应中的信号强度之间的关系十分复杂,它取决于多种

因素,包括标记方法、杂交条件、目的基因的特征和序列。所以

芯片的方法最好用于检验两个或多个样本中的某种RNA的相对

表达量。样本之间某个基因表达的差异性(包括表达的时间、空

间特性及受干扰时的改变)是基因表达最重要的,而了解RNA

的绝对表达丰度只为进一步的应用或多或少地起一些作用。

基因表达的检测有几种方法。经典的方法(仍然重要)是根据在

细胞或生物体中所观察到的生物化学或表型的变化来决定某一

特定基因是否表达。随着大分子分离技术的进步使得特异的基因

产物或蛋白分子的识别和分离成为可能。随着重组DNA技术的

运用,现在有可能检测.分析任何基因的转录产物。目前有好几

种方法广泛应用于于研究特定RNA分子。这些方法包括原位杂交.NORTHERN凝胶分析.打点或印迹打点.S-1核酸酶分

析和RNA酶保护研究。这里描述RT-PCR从RNA水平上检查

基因表达的应用。8 f3 f- |2 L) K) b7 ]- ~- |

RT-PCR检测基因表达的问题讨论

关于RT-PCR技术方法的描述参见PCR技术应用进展,在此主要讨论它在应用中的问题。理论上1μL细胞质总RNA对稀有mRNA扩增是足够了(每个细胞有1个或几个拷贝)。1μL差不多相当于50-100,000个典型哺乳动物细胞的细胞质中所含RNA的数量,靶分子的数量通常大于50,000,因此扩增是很容易的。该方法所能检测的最低靶分子的数量可能与通常的DNAPCR相同;例如它能检测出单个RNA分子。当已知量的转录RNA(用T7RNA聚合酶体外合成)经一系列稀释,实验结果表明通过PCR的方法可检测出10个分子或低于10个分子,这是反映其灵敏度的一个实例。用此技术现已从不到1个philadelphia染色体阳性细胞株K562中检测到了白血病特异的MRNA的转录子。因此没必要分离polyA+RNA,RNA/PCR法有足够的灵敏度来满足绝大多数实验条件的需要。

7 H+ F& _* S6 W( a8 p: [, @- d, {

将PCR缓冲液同时用于反转录酶反应和PCR反应,可简化实验步骤。我们发现整个反应过程皆用PCR缓冲液的结果相当于或优于先用反转录缓冲液合成CDNA,然后PCR缓冲液进行PCR扩增循环。当然,值得注意的是PCR缓冲液并不最适合第一条DNA链的合成。我们对不同的缓冲液用于大片段DNA 合成是否成功还没有进行过严格的研究。

反转录酶的选择似乎对实验方法成功与否并不十分重要。BRL和BOEHRINGERMANNHEIM的MULV反转录酶进行全面的研究,但没有理由认为来源可靠的反转录酶不能适用于该方法。在研究中,我们仅使用了PERKINELMER/CETUS公司生产的TAQ聚合酶。

cDNA第一条链的合成可用不规则六聚体、寡聚(dT)或PCR 下游引物来启动反应。如果用寡聚(dT),一般每次反应加0.1μL 就够了。如果用下游寡核苷酸作为第一条链的起始引物,10-50pmol最为理想。反转录反应以后,加入适量的上游和下游引物进行PCR反应与用不规则六聚体方法一样。三种启动方法中无论用那一种最后得到的扩增产物都同样理想。而加入不规则六聚体似乎更容易得到前后一致的结果,且靶序列的合成量通常最多(E.S.K.)加入不规则六聚体方法一样。三种启动方法中无论用那一种最后得到的扩增产物都同样理想。而加入不规则六聚体似站更容易得到事一致的结果,且靶序列的合成量通常最多(E.S.K.未发表)。第一条链合成完毕,不必加碱或RNA酶以除去RNA模板。95℃热处理使反转录酶失活,同时也使RNA-DNA 杂合子变性。不必加碱或RNA酶以除去RNA模板。95℃热处理使反转录酶失活,同时也使RNA-DNA杂合子变性。残留的RNA模板似乎对PCR反应无干扰。

5 d' b" L& Q' \ y

寻找使PCR反应产生良好扩增结果的最低浓度的寡核苷酸引物是十分重要的。我们发现过量的引物通常会产生许多妨碍随后分析的额外扩增产物。浓度为5pmol的引物可得到非常清晰及有效的扩增产物。当然,最好是找到你要扩增的每个序列的最佳引物量。没有必要用全部的cDNA反应产物进行PCR扩增。可取等分量cDNA样品用几组不同的引物作PCR分析;例如:一份cDNA反应物可用于研究几种不同类型的RNA。cDNA反应物通常用PCR缓冲液衡释5倍。将cDNA的浓度隆低至0.2mM,此浓度更适于Taq聚合酶。dNTP浓度不应超过0.2mM,因为较高浓度的dDTP使Taq聚合酶的错误掺入或突变率增高。对于扩增来说,即使dNTP的浓度低到0.05mM也不会出现问题。' R7 z) H' u1 ]( }

镁离子浓度对反应十分重要,因此应注意将镁的摩尔浓度保持恒定。有时核酸溶于含1mMEDTA的缓冲液中,EDTA可歼螯合大多数镁离子。通常,PCR反应中游离镁离子浓度应保持在2mM。

将PCRA循环次数减少,不可避免地产生许多非特异性的扩增产物。很容易将长度不同的DNA的扩增。即使基因组序列得到扩增,当引物与大小不同的外显子结合时,很容易将长度不同的MRNA与基因组的产物区别一来。如果不了解基因组的结构,选用与5"编码基因间隔300-400bp的引物,脊椎动物的外

显子很少大于300-400bp,因此很容易从不同的外显子中导出引物。如果所研究的基因无内含子、或者研究完整原病毒RNA转录,为了获得有关PCR的结果有必要用DNA酶彻底处理RNA。只要有很少量的基因组DNA污染,用此方法分析就会出现假阳性结果。9 @9 o- ]( v; U N# ]% r$ h

~9 |- L1 i7 ]( _+ `- h

实际应用举例}/ W" [1 T. m$ P0 F$ M+ x

基因表达检测

8 p. z L9 A' G7 J" Q c8 q7 X

用该方法先后扩增,检测了许多不同类型的细胞、组织和器官的mRNA。当然,仅仅检测mRNA并没有新颖之处,它的新颖在于能对10-1000个细胞的RNA进行分析。所需起始物质比通常的低很多,这使得研究者能设计并进行以前看是不可能进行的实验。例如研究血细胞生成的研究人员经常用群体分析确定生长因子或环境对特殊细胞系发育的影响。经常部到的一个问题是:群体细胞产生的何种生长/分化因子会影响其本身的发育。现在可以确信,利用RNA/PCR技术能够对数百个群体的mRNA对任何与生长或分化有关的因子进行分析。而用常规的杂交或抗体检测方法来分析它们是极其因难、甚至是不可能的。RNA/PCR 技术在研究转基因动物方面将非常有用。我们常常不仅要知道在动物体内转移的基因是否表达,而且要知道是在哪些细胞.组织

或器官中表达。随着RNA/PCR检测灵敏度的提高,能够检测转基因动物的多个部位而不必为取样而将它处死。我们还可以列举许多这样的例子,但我们留给读者一些有关检测方面的设想。

4 ^$ i k2 N2 N, s( q

用于诊断的RNA序列的扩增' n. u6 Y& `! m: g( |/ Z

" j# i' V7 _. l" f. h, e. M

在许多情况下,一个特异性的RNA分子可作为感染或遗传/癌疾病的诊断。在反转录病毒疾病领域中,检测与具有侵染活性密切相关的反转录病毒RNA基因组或特异转录子是否存在是非常重要的。现已对HIV-1病人,HTLV-1,2以及MoloneyMulV 的细胞株进行了研究。也可以用RNA/PCR比较容易地检测出常见的感冒病毒即人鼻病毒。对RNA和DNA病毒的RNA转录子的分析有利于对病毒的潜伏期,复制期等生活周期进行研究。) T0 @% v7 C5 O7 z' _! ?

- l$ W) p9 {+ p5 w) }

在某些类型的癌细胞中有新的mRNA表达。如慢性骨髓性白血病(CML).某些急性淋巴白血病(ALL)和急性骨髓白血病(AML),只在病人的白细胞中发现有嵌合的mRNA(BCR-ABL)。此嵌合mRNA是诊断此类疾病存在的良好依据。在许多肿瘤的治疗过程中,肿瘤细胞对化学治疗具有抗性。DNA水平的扩增并不一定导致表达的增加,但大量相应的mRNA的存在则使表达增加。DNA水平的扩增并不一定导致表达的增加,但大量相

应的cDNA的存在则使表达增加。用RNA/PCR方法来分析复合抗药性(MDR)10基因和胸腺核苷酸合成酶(TS)基因,发现了这mRAN水平的增高.突变的RAS原癌基因的mRNA分析(见参考文献25综术述)在癌症的诊断或预测方面具有诊断价值。mRNA分析比常规的DNA基因组分析有优越之处。由于没有内含子序列干扰mRNA的扩增,因此可以仅用一组引物就能够扩增H-,K-,和N-RAS三个mRNA序列(E.S.K,未发表)。这样便可以比较容易地检测出第12、13和61密码的突变,这些突变被认为是发生癌的原因。

癌症诱因的检测

3 j. s) S/ \' v' f; g

在下面将列举数个RNA/PCR扩增方法的主要应用。首先是对鼠鸟氨酸氨甲栈基转移酶mRNA进行亚克隆来确定缺失点突变的位置。同样,该方法可用于检测哺乳动物细胞mRNA转录后的剪接,研究与HLA疾病相关性因素,分析人HPRT突变,研究自身免疫与T细胞受体序列之间的关系,分析人碱性磷酸脂酶的突变,研究土拨鼠肝炎病毒引发的c-myc活性,确定刺桐丁蛋白4.1mRNA的剪接变异,等等。6 p/ l$ I6 ~5 W' E5 ^; U9 a$ \

根据已发表的序列合成扩增mRNA的引物,我们发现用

RNA/PCR是获取cDNA的最简便的方法。用在5"末端带有限制性内切酶位点的引物来扩增mRNA的一部分或全部编码区域。扩增后,PCR产物经合适的酶切并与适于表达的载体连接或制备成探针。按此方法可在一星期内完成从RNA样品到用于高效表达的修饰cDNA克隆.这比常规的合成/筛选cDNA库,亚克隆靶cDNA,为达到表达目的而对克隆进行诱变等过程要简单得多。区别主要在于用于扩增和分离cDNA克隆的引物为简并引物。引物序列是根据氨基酸的序列而定的,因此当只知道很少的蛋白质序列时,就有可能扩增特异的RNA分子。当只知一个内部序列时,只用一个基因特异性寡核苷酸引物,也可用PCR 从稀有mRNA中分离出cDNA。扩增cDNA的分析因使用本书其它章切有关PCR产物的直接序列分析步骤而变得简单。将噬菌体(T7)启动了作为PCR引物的一部分同样可用于序列分析,因为PCR终产物中有大量的群体特异的产物。

河流断面水质自动监测站方案(常规参数)20150707

水质自动监测站建设方案 编制单位:榆林兴源电子科技有限公司编制时间:2015年07月

目录 一、水质在线自动监测系统概述 (2) 二、水质在线自动监测系统设计依据 (3) 三、水质在线自动监测系统详述 (4) 3.1 采配水单元 (4) 3.2 预处理单元 (4) 3.3 清洗单元 (6) 3.4系统控制单元 (6) 3.5 数据采集、传输和远程监控 (9) 四、水质在线自动监测仪器 (10) 4.1 五参数分析仪(德国科泽 K100 W系列) (10) 4.2 高锰酸盐指数(德国科泽 K301 COD Mn A) (13) 4.3 氨氮分析仪 (德国科泽K301 NH4 A ) (16) 五、项目预算 (18)

一、水质在线自动监测系统概述 在线水质自动监测系统是以自动监测设备——在线水质分析仪为核心,结合现代的计算机(包括软件)技术、自控技术、网络通讯技术、流体取样术等先进技术手段高度集成的一套完整的自动分析系统。它可以有效地分析来水的各项水质参数,并对水样进行自动留样。同时可利用水质模型功能软件对水质变化趋势进行有效的预测预警,也可以根据实时水质参数之间的关联组合所表现的综合性质,为决策人员提供大量客观详实的有效数据和判断依据。 通常水质在线自动监测系统包括自动分析仪器、取样单元、配水单元、预处理单元、数据采集单元、通讯单元和控制单元;除此以外,还包括清洗除藻、纯水、供电、防雷等辅助单元。水样通过取样设备自动抽取到指定位置,由中控设备控制相应的管路和阀门对水样进行初步的预处理后再进行有针对性的分类处理,合理分配给相应的水质分析设备,分析设备采用符合国家统一颁布的标准方法对水样进行分析测量,并将测量得到的结果传输到数据采集设备,最后由数据采集设备统一发送到远程服务器。在现场,中控设备通常可以对各个系统进行简单的控制,并将测量结果实时显示在中控监视器上。在远程控制中心,一方面通过有功能强大的数据平台,可以把接收来自各站点的监控系统相关信息,汇总得到各种数据报表,并可对数据进行分析处理。先进的数据平台还能结合水质模型功能软件对水质数据进行分析评估以及预测、预警。 本项目监测以下7个常规参数:水温、PH、电导率、DO、浊度、高锰酸盐指数、氨氮。

基因表达的检测的几种方法

基因表达检测的最终技术目标是能确定所关注的任何组织、细胞的 RNA的绝对表达量。可以先从样本中抽提RNA,再标记RNA, 然后将这些标记物作探针与芯片杂交,就可得出原始样本中不同 RNA的量。然而用于杂交的某个特定基因的RNA的量与在一个 相应杂交反应中的信号强度之间的关系十分复杂,它取决于多种 因素,包括标记方法、杂交条件、目的基因的特征和序列。所以 芯片的方法最好用于检验两个或多个样本中的某种RNA的相对 表达量。样本之间某个基因表达的差异性(包括表达的时间、空 间特性及受干扰时的改变)是基因表达最重要的,而了解RNA 的绝对表达丰度只为进一步的应用或多或少地起一些作用。 基因表达的检测有几种方法。经典的方法(仍然重要)是根据在 细胞或生物体中所观察到的生物化学或表型的变化来决定某一 特定基因是否表达。随着大分子分离技术的进步使得特异的基因 产物或蛋白分子的识别和分离成为可能。随着重组DNA技术的 运用,现在有可能检测.分析任何基因的转录产物。目前有好几 种方法广泛应用于于研究特定RNA分子。这些方法包括原位杂交.NORTHERN凝胶分析.打点或印迹打点.S-1核酸酶分 析和RNA酶保护研究。这里描述RT-PCR从RNA水平上检查 基因表达的应用。8 f3 f- |2 L) K) b7 ]- ~- | RT-PCR检测基因表达的问题讨论

关于RT-PCR技术方法的描述参见PCR技术应用进展,在此主要讨论它在应用中的问题。理论上1μL细胞质总RNA对稀有mRNA扩增是足够了(每个细胞有1个或几个拷贝)。1μL差不多相当于50-100,000个典型哺乳动物细胞的细胞质中所含RNA的数量,靶分子的数量通常大于50,000,因此扩增是很容易的。该方法所能检测的最低靶分子的数量可能与通常的DNAPCR相同;例如它能检测出单个RNA分子。当已知量的转录RNA(用T7RNA聚合酶体外合成)经一系列稀释,实验结果表明通过PCR的方法可检测出10个分子或低于10个分子,这是反映其灵敏度的一个实例。用此技术现已从不到1个philadelphia染色体阳性细胞株K562中检测到了白血病特异的MRNA的转录子。因此没必要分离polyA+RNA,RNA/PCR法有足够的灵敏度来满足绝大多数实验条件的需要。 7 H+ F& _* S6 W( a8 p: [, @- d, { 将PCR缓冲液同时用于反转录酶反应和PCR反应,可简化实验步骤。我们发现整个反应过程皆用PCR缓冲液的结果相当于或优于先用反转录缓冲液合成CDNA,然后PCR缓冲液进行PCR扩增循环。当然,值得注意的是PCR缓冲液并不最适合第一条DNA链的合成。我们对不同的缓冲液用于大片段DNA 合成是否成功还没有进行过严格的研究。

水质在线监测仪器发展现状(DOC)

水质在线监测仪器发展现状 水质在线监测仪器作为水质在线自动监测系统的核心,运用现代传感器技术、自动测量技术、自动控制技术等,采用化学法、电化学法、光谱法等分析方法,能对水质参数进行实时连续在线测量和分析。水质在线监测仪器主要监测对象有:化学需氧量(COD)、氨氮、总氮、总有机碳(TOC)、总磷、锑、砷、铜、汞、铬、金属离子、pH值、电导率、浊度、溶解氧等。 1 COD在线监测仪器发展现状 化学需氧量(COD)是指水体中易被强氧化剂氧化的还原性物质所消耗的氧化剂的量,以氧的mg/L来表示,反映了水体中受还原性物质污染的程度,这个指标是为了了解水中的污染物将要消耗多少氧。 1.1 COD在线监测仪器的技术原理 目前COD在线监测仪器的主要技术原理有6种: 1)重铬酸盐法-光度比色法; 2)重铬酸盐法-库仑滴定法; 3)重铬酸盐法-氧化还原滴定法; 4)电化学氧化法-氢氧基及臭氧(混合氧化剂)氧化法; 5)电化学氧化法-臭氧氧化法; 6)紫外吸收法(UV法)。 为便于比较,可将以上6种技术原理归为三类:重铬酸盐法、电化学氧化法和紫外吸收法(UV法)。 1.1.1 重铬酸盐法 1)重铬酸盐法根据测得数值的方法不同分为光度比色法、库仑滴定法、氧化还原滴定法。通常在一定的温度下,在强酸溶液中用一定量的重铬酸钾氧化水样中还原性物质,经过高温消解后,Cr6+被水中还原性物质还原为Cr3+。再使用分光光度计、库仑滴定、氧化还原等方法测得数值,利用该数值与试样中氧化还原物质浓度的关系进行定量分析。

2)该类是国家推荐使用的方法,有测量准确、测量范围广、技术成熟等优点。 3)但该类仪器也存在以下问题:①测量时间相对较长,一旦水质突变,有可能无法及时监测;②通常采用加温或加压的办法提高消解速度,增加了设备的复杂性,易故障;③产生强腐蚀性、含有毒的重金属离子废液,易腐蚀管路,同时会产生二次污染。 1.1.2 电化学氧化法 1)电化学氧化法根据所使用的氧化剂不同分为氢氧基及臭氧(混合氧化剂)氧化法和臭氧氧化法。电化学氧化法采用三电极设计,包括工作电极、辅助电极和参比电极。工作电极(即阳极):该电极头表面镀PbO2,接电源正极,发生的是氧化还原反应。在一定的工作电压下,溶液中的OH-在PbO2的表面放电产生OH 基,具有很强的氧化性。辅助电极(即阴极):该电极也是铂电极,接电源负极,发生的是还原反应。信号电流通过阴、阳两极。参比电极:该电极独立于信号电流以外,自身电位稳定,作为工作电极的电位参照,当水样与电解液定量进入测量池时,有机物被工作电极表面所产生的OH基所氧化,而氧化过程所消耗的电流大小与水样的COD值的大小成线性关系。只要将氧化所消耗的电流信号通过检测、放大与处理就可知与水样浓度相对的COD值。 2)电化学氧化法测量时间较短,运行可靠,OH基通常能将有机物100%氧化,不存在选择性问题,测量范围较广,适用于各种场合的废水。采用该原理的在线监测仪器结构相对简单,由于是链式反应,基本上不消耗电解液。 3)电化学氧化法不属于国标或推荐方法,在应用时,需要将其分析结果与国标方法进行比对试验并进行适当的校正。同时电化学氧化法的在线监测仪器需要添加温度补偿。 1.1.3 紫外吸收法(UV法) 1)UV是Ultraviolet Ray(紫外线)的简称,UV计是应用紫外线吸光度原理,用双波长吸光度测定法测量水中的有机污染物浓度的一种自动在线监测仪器。由于各种有机物对254nm的紫外光大多有吸收,通过测定污水对UV254的吸收程度得到UV吸收值,在通过UV值与COD之间的线性关系式就可以自动换算出所测水样的COD值。同时UV计利用波长为550nm的参比光可以自动校正浊度、电源的波动、元器件老化等因素对测量结果的干扰,从而提高测量精度。 2)UV法不用试剂,不用取样,对样品条件没有任何限制,不需要样品的预处理,因此结构简单,故障率低。适用于市政污水宏观监测、水质变化比较稳定的环境,对水中的一大类芳香族有机物和带双键有机物尤为灵敏,对苯类、苯环

水质在线监测系统

水质在线监测系统,通过建立无人值守实时监控的水质自动监测站,可以及时获得连续在线的水质监测数据( 常规五参数、COD、氨氮、重金属、生物毒性等),利用现代信息技术进行数据采集并将有关水质数据传送至环保信息中心,实现环保信息中心对自动监测站的远程监控,有利于全面、科学、真实地反映各监测点的水质情况,及时、准确地掌握水质状况和动态变化趋势。水质在线监测系统由水质在线分析仪、采样系统、辅助参数监测系统等组成。 其中水质在线分析仪是基于紫外全光谱技术的连续在线式水中有机物浓度分析仪,在水质的在线监测方面与传统的COD化学法和现有的紫外单/双波长法相比均具有非常明显的技术优势,同时给用户的使用带来了明显的经济效益,具体表现如下: 与传统的COD化学法在线监测设备想比,在技术上具有结构简单、可靠性高、响应速度快(1秒钟一个数据)实时性高、不存在二次污染等特点,从经济效益上讲水质在线分析仪具有运行费用低、维护周期特别长(一般可达到半年之久)、维护量小等显著特点。 与现有的紫外单/双波长法(利用污水在254nm处的吸光度与污水中COD之间的线性关系测定COD浓度)相比具有测试准确度高、检测范围宽、维护周期特别长(一般可达到半年之久)、维护量小等显著特点。这是因为单波长法仅能对有机污染物组分较为单一的污水或者污水中所含有机污染物组分相对固定的污水进行COD的测定,而对于污染物组分复杂多变的样品由于吸光度与COD之间的相关性较差直接导致测试结果的误差增大。紫外全谱扫描技术则通过污水的紫外光谱数据与有机污染物浓度之间所建立的数学模型来预测水中有机污染物的浓度,由于模型本身的外推能力会使测试准确度随着用户的使用时间增长而愈来愈高。在检测范围上采用专利型在线稀释装置,可以满足在不更换或调整比色皿的

特定基因表达水平的检测

特定基因表达水平的检测(试剂制备、操作步骤和注意事项)2010-01-10 23:19:59 来源:易生物实验浏览次数:192 网友评论0 条 Northern杂交也采用琼脂糖凝胶电泳,将分子量大小不同的RNA 分离开来,随后将其原位转移至固相支持物(如尼龙膜、硝酸纤维膜等)上,再用放射性(或非放射性)标记的DNA 或RNA 探针,依据其同源性进行杂交,最后进行放射自显影(或化学显影),以目标RNA 所在位置表示其分子量的大小,而其显影强度则可提示目标RNA 在所测样品中的相对含量(即目标RNA 的丰度)。 关键词:基因表达 RNA -gel blot analysis 或Northern Blot 继分析DNA 的Southern杂交方法出现后,1977年Alwine等人提出一种与此相类似的、用于分析细胞总RNA 或含poly A尾的RNA 样品中特定mRNA 分子大小和丰度的分子杂交技术,这就是与Southern相对应而定名的Northern杂交技术。这一技术自出现以来,已得到广泛应用,成为分析mRNA 最为常用的经典方法。 与Southern杂交相似,Northern杂交也采用琼脂糖凝胶电泳,将分子量大小不同的RNA 分离开来,随后将其原位转移至固相支持物(如尼龙膜、硝酸纤维膜等)上,再用放射性(或非放射性)标记的DNA 或RNA 探针,依据其同源性进行杂交,最后进行放射自显影(或化学显影),以目标RNA 所在位置表示其分子量的大小,而其显影强度则可提示目标RN A 在所测样品中的相对含量(即目标RNA 的丰度)。但与Southern杂交不同的是,总R NA 不需要进行酶切,即是以各个RNA 分子的形式存在,可直接应用于电泳;此外,由于碱性溶液可使RNA 水解,因此不进行碱变性,而是采用甲醛等进行变性电泳。虽然North ern也可检测目标mRNA 分子的大小,但更多的是用于检测目的基因在组织细胞中有无表达及表达的水平如何。 一、试剂准备(易生物试剂购销平台https://www.360docs.net/doc/158931570.html,/yp/product-list-43.html) 1、0.5M EDTA: EDTA16.61g加ddH2O至80ml, 调pH至8.0, 定容至100ml。

(完整word版)铅水质自动在线监测仪技术要求和检测方法作业指导书

ZY 环境保护部环境监测仪器质量监督检验中心 作业指导书 HJC-ZY62-2014 铅水质自动在线监测仪技术要求和 检测方法作业指导书 参考《铅水质自动在线监测仪技术要求和检测方法(送审稿)》 自2014年03月01日起实施编写:贺鹏审核:王强批准:杨凯

1、适用范围 本作业指导书规定了铅水质自动在线监测仪的技术要求、性能指标及检测方法。针对应用于不同场合的铅水质自动在线监测仪(以下简称“仪器”),规定了两型仪器的检测范围。 I型仪器的检测范围为:(0.005~0.2)mg/L,??型仪器的检测范围为:(0.2~2)mg/L。 2、规范性引用文件 本作业指导书内容引用了下列文件或其中的条款。凡是不注明日期的引用文件,其有效版本适用于本标准。 GB 4208 外壳防护等级(IP代码) GB/T 13306 标牌 HJ/T 212 污染源在线自动监控(监测)系统数据传输标准 3、术语和定义 下列术语和定义适用于本标准。 3.1 标样核查check with standard solution 仪器测量标准溶液,判定测量结果的准确性。 3.2 定量下限limit of quantification 在满足示值误差要求的前提下仪器能够测定待测物质的最小浓度。 3.3 记忆效应memory effect 仪器完成某一标准溶液或水样测量后对下一个测量结果的影响程度。 3.4 标样加入试验回收率recovery 仪器分别测量加入一定浓度的标准溶液前后的实际水样,计算加入标准浓液后测定值的增加量相对于理论加入量的百分率。 3.5 零点漂移zero drift 在未对仪器进行计划外的人工维护和校准的前提下,按规定周期连续测量浓度值为检

水质在线检测教程

一水质监测分析方法 1 COD cr 定义:是指水体中易被强氧化剂氧化的还原性物质所消耗氧化剂的量,结果折算成氧的量(以mg/L计)。 意义:测COD是为了了解水中的污染物将要消耗多少氧. 水中的还原性物质:有机物、亚硝酸盐、亚铁盐、硫化物等. 测量原理:在强酸性溶液中,用一定量的K2Cr2O7氧化水样中还原性物质,过量的K2Cr2O7以试亚铁灵作指示剂,用(NH4)2Fe(SO4)2`6H2O 回滴(黄-蓝-红褐色即为终点).根据(NH4)2Fe(SO4)2`6H2O的用量算出水中还原性物质消耗氧的量. 测量过程中一般以Ag2SO4作为催化剂,HgSO4掩蔽CL-干扰. 公式: COD cr(o2,mg/L,)=(V0-V1).C×8×1000/V 2 NH3-N 定义:水容易中的NH3-N是以游离氨或离子氨形式存在的氮. 氮的种类:硝酸盐氮、亚硝酸盐氮、NH3-N、和有机氮. 意义:鱼类对非离子氨比较敏感,为保护淡水水生物,水中非离子<0.02 mg/L. 实验室测量方法:①纳氏试剂光度法②水杨酸-次氯酸盐比色法

3 TN:指水中可溶性及悬浮颗粒中的含氮量 测定方法: 碱性过硫酸钾消解紫外分光光度法 原理:在水样中加过硫酸钾并高温消解,然后在220nm紫外光处测量吸光度,通过吸光度计算TN浓度的方法. 4 TP:P几乎都以各种磷酸盐的形式存在 测定TP的意义:防止水质”富营养化” 检测分析方法:第一步可由氧化剂K2S2O8将水样中不同形态的P转化为磷酸盐;第二步测定正磷酸,从而求的TP含量. 测定方法:K2S2O8-钼蓝法 ①K2S2O8消解 原理:K2S2O8溶液在高压釜内经120℃加热,产生如下反应: K2S2O8+H2O→2KHSO4+?O2 从而将水中存在的有机P、无机P和悬浮P氧化成正磷酸. ②钼蓝分光光度法 方法原理:在酸性条件下,正磷酸盐与钼酸铵、酒石酸锑氧钾反应,生成磷钼杂多酸,被还原剂抗坏血酸还原,则变成蓝色络合物,通常即称磷钼蓝. 保存:由于磷酸盐可能吸附于塑料瓶壁上,故不可用塑料瓶储存,所有

水质在线自动监测管理汇总

水污染源在线监测系统的运营管理方法 1、定期进行仪器现场巡查,进行必要的校准、维护、维修、耗材更换工作。以 保障仪器准确可靠运行。 2、负责每天进行一次仪器运行状态检查,如发现问题则在第一时间解决。 3、按仪器运行要求定期对系统进行校准,以保证仪器数据的准确有效。 4、应对在线监测站建立专人负责制,制定操作及维修规程和日常保养制度,建 立日常运行记录和设备台账,建立相应的质量保证体系,并接受环境保护管理部门的台账检查。 5、应每月向有关环境保护管理部门作运营工作报告,陈述站点在线监测系统的 运营情况。 6、安排相对固定的专业人员负责运营维护工作。 7、应备有常用耗材与配件及必要的交通工具,以保障维修及时。 8、接受环保部门的监督、指导、考核,及时汇报重大事故或仪器严重故障的情 况。 一、日常管理 1、质量保证与质量控制制度 1.1操作人员应按国家相关规定,经培训考核合格,持证上岗。 1.2在线监测仪器在有效使用期内应通过检定或校验。应具备运行过程中定期自 动标定和人工标定功能,以保证在线监测系统监测结果的可靠性和准确性。 1.3采用国家级样品,若采用自配标样,应用有证标准样品对自配标样进行验证, 验证结果应在标准值确定度范围内。标样浓度应与被测废水浓度相匹配。每周用国家认可的质控样(或按规定方法配制的标准溶液)对自动分析仪进行一次标样溶液核查,质控样(或标准溶液)测定的相对误差应不大于标准值的±10%,若不符合,应重新绘制校准曲线,并记录结果。 1.4样品的测定值应在校准曲线的浓度范围内。 1.5按照国家规定的监测分析方法进行实际水样比对试验,比对试验时,实验室 质量控制按照有关规定执行,比对试验实验室监测分析方法请见《水污染源在线监测系统运行于考核基数规范(试行)》(HJ/T355-2007)中的表2,比对试验相对误差值应满足HJ/T355-2007表1中规定的性能指标要求。

基因表达量实时荧光定量PCR检测步骤

基因表达量实时荧光定量PCR检测步骤 1 材料(试剂和耗材) 1.1 样本(小鼠组织)-2个 1.2 引物(life technology公司合成) 1.3 Bestar TM qPCR RT Kit(德国DBI货号:DBI-2220) 1.4 Bestar? SybrGreenqPCRmastermix(德国DBI货号:DBI-2043) 1.5 96孔板(美国life technology) 2 材料(仪器) 2.1 ABI7500荧光定量PCR仪(life technology公司) 2.2 TGL-16M低温冷冻离心机(湘仪) 2.3 SW-CJ-1D单人净化工作台(泸净净化) 2.4 HR40-ⅡA2生物安全柜(Haier) 3 实验步骤 3.1 RNA的抽提 RNA 的提取按life technology公司提供的Triozol RNA提取试剂盒的使用说明进行。程序如下: (1)将组织在液氮中磨碎,每50-100mg组织加入1ml TRIzol; (2)加入0.2mL氯仿,盖紧离心管管盖,上下颠倒混匀60s(请勿涡漩激烈振荡),室温静置3min,12,000g,4℃离心15min,置于冰上; (3)溶液分为三层,RNA溶解在水相中,小心吸取500μl水相至另一个新的RNase free的EP管中; (4)加入500μl异丙醇,-20度放置1h,12,000g,4℃离心10min,离心后管底出现RNA沉淀,弃上清; 1

(5)加入1ml 75%乙醇,用手轻轻颠倒,12,000g离心5min,去上清; (6)超净工作台上吹干样品10min,加入适量DEPC水溶解RNA。加入40μl DEPC 水溶解沉淀。 3.2 RNA质量检测 紫外分光光度计测定RNA浓度: 3.3去基因组DNA和cDNA的合成 将RNA加入到gDNA吸附柱,室温10,000g离心1min,收集滤液即为去除基因组DNA的RNA。 把RNA在65°C条件下热变性5分钟后,立即置于冰上冷却。 逆转录反应: 5×RT Buffer 2μL RT Enzyme Mix 0.5μL Primer Mix 0.5μL RNA 6μL RNase-free Water 1μL Toal10μL 反应条件: 37°C, 15min 98°C, 5min 4°C,hold 反应结束后,-20°C保存。

水污染源在线监测系统验收技术规范

水污染源在线监测系统验收技术规范 HJ/T 354-2007 1 适用范围 1.1 本标准规定了水污染源在线监测系统的验收方法和验收技术指标。 1.2 本标准适用于已安装于水污染源的化学需氧量(CODCr)在线自动监测仪、总有机碳(TOC)水 质自动分析仪、紫外(UV)吸收水质自动在线监测仪、pH 水质自动分析仪、氨氮水质自动分析仪、总 磷水质自动分析仪、超声波明渠污水流量计、电磁流量计、水质自动采样器、数据采集传输仪等仪器的 验收监测。 2 规范性引用文件 本标准内容引用了下列文件中的条款。凡是不注日期的引用文件,其有效版本适用于本标准。 GB 6920 水质 pH值的测定玻璃电极法 GB 7479 水质铵的测定纳氏试剂比色法 GB 7481 水质铵的测定水杨酸分光光度法 GB 11893 水质总磷的测定钼酸铵分光光度法 GB 11914 水质化学需氧量的测定重铬酸盐法 GB 50093-2002 自动化仪表工程施工及验收规范 GB 50168-92 电气装置安装工程电缆线路施工及验收规范 HBC 6-2001 环境保护产品认定技术要求化学需氧量(CODCr)在线自动监测仪HJ/T 15-1996 超声波明渠污水流量计 HJ/T 70 高氯废水化学需氧量的测定氯气校正法 HJ/T 96-2003 pH水质自动分析仪技术要求 HJ/T 101-2003 氨氮水质自动分析仪技术要求 HJ/T 103-2003 总磷水质自动分析仪技术要求 HJ/T 104-2003 总有机碳(TOC)水质自动分析仪技术要求 HJ/T 191-2005 紫外(UV)吸收水质自动在线监测仪技术要求 HJ/T 212-2005 污染源在线自动监控(监测)系统数据传输标准 JB/T 9248-1999 电磁流量计 ZBY 120 工业自动化仪表工作条件温度、湿度和大气压力 3 术语和定义 下列术语和定义适用于本标准。 3.1 水污染源在线监测仪器 指在污染源现场安装的用于监控、监测污染物排放的化学需氧量(CODCr)在线自动监测仪、总有机碳(TOC)水质自动分析仪、紫外(UV)吸收水质自动在线监测仪、pH水质自动分析仪、氨氮水质自动分析仪、总磷水质自动分析仪、超声波明渠污水流量计、电磁流量计、水质自动采样器和数据采集 传输仪等仪器、仪表。

水质在线监测系统及检测分析方法

水质在线监测系统及检测分析方法 吴子岳,赵婷婷 (上海水产大学工程学院,上海200090) 摘要:针对我国水产养殖急需在线监测技术的现状,介绍了水质在线监测系统的组成,我国现已开发且较为先进的几种水质在线监测系统,以及在线水质监测分析方法。关键词:水质;工厂化养殖;在线监测系统;在线水质监测方法 基金项目:中国水产科学研究院渔业水体净化技术和系统研究重点开放实验室基金项目(技06271) 1在线监测系统的组成和作用 水质在线监测系统一般由水样采集单元、监 测仪器单元和控制及数据处理单元组成 (图1)。 图1 水质在线监测系统原理图 (1)水样采集单元:通常由抽水泵、阀门组及 其控制电路、进水及出水管道组成。负责对所监测的水样进行采集,送入监测单元或保存。(2)监测仪器单元:由溶解氧、pH 、温度等在线分析仪器组成(可根据所测水质的具体要求,增加其他参数如浊度、COD 、氨氮等)。此单元负责测试水样的各种参数,由于监测仪器所输出的信号为电流信号,所以要经过变送器变换为标准电流信号(4~20mA )或电压信号(±5V ),再经过模数转换即A /D 转换,将模拟量转换为数字量送往数据处理单元。 (3)数据处理及控制单元:包括计算机、打印机、232接口、系统专用软件等。该单元的功能是控制整个系统的正常、有序运行,进行系统原始参数的设定和更改。对现场执行采样、水样监测、执行设备运行及数据传输、显示、存储、打印等。 2我国水质在线监测仪表系统 虽然我国污染物质浓度监测仪表在水质测量及控制上早有应用,但一台或几台分析仪表用于现场监测并不能构成一套完整的监测系统,只能称为水质监测中的仪器监测手段。因此,笔者在现有污染物浓度分析仪表的基础上开发了数据采集、数据记录、网络通讯系统以及计算机控制系统,并将以上功能充分集成,形成了“水质远程智能监测系统”。其中,监测记录仪被安装在监测 现场进行数据采集、处理,将采集到的各种不同标准与格式的数据转化为标准数据格式,通过因特网或局域网络送到上端管理软件,并将数据存放于数据库中。 仪表系统由常规5参数分析仪、高锰酸盐指数分析仪、总有机磷(T OC )分析仪、氨氮分析仪、总磷分析仪、硝酸盐自动分析仪组成,可对温度、pH 值、溶解氧、电导率、浊度、氨氮、高锰酸盐指数、硝酸盐、总有机磷、总磷等10个参数进行在线监测。控制系统由P LC 或单片机控制,包括系统及设备的启停、报警控制、数据采集等。软件主要是对仪表的数据进行显示、记录、传送,设备操作,远程监控和通讯等。 以下是我国现已开发且较为先进的水质在线监测系统: (1)多点在线水质监测系统:该系统可同时

基因表达谱分析技术

基因表达谱分析技术 1微阵列技术(microarray) 这是近年来发展起来的可用于大规模快速检测基因差别表达、基因组表达谱、DNA序列多态性、致病基因或疾病相关基因的一项新的基因功能研究技术。其原理基本是利用光导化学合成、照相平板印刷以及固相表面化学合成等技术,在固相表面合成成千上万个寡核苷酸“探针”(cDNA、ESTs或基因特异的寡核苷酸),并与放射性同位素或荧光物标记的来自不同细胞、组织或整个器官的DNA或mRNA反转录生成的第一链cDNA进行杂交,然后用特殊的检测系统对每个杂交点进行定量分析。其优点是可以同时对大量基因,甚至整个基因组的基因表达进行对比分析。包括cDNA芯片(cDNA microarray)和DNA芯片(DNA chips)。 cDNA芯片使用的载体可以是尼龙膜,也可以是玻片。当使用尼龙膜时,目前的技术水平可以将20000份材料点在一张12cm×18cm的膜上。尼龙膜上所点的一般是编好顺序的变性了的双链cDNA片段。要得到基因表达情况的数据,只需要将未知的样品与其杂交即可。杂交的结果表示这一样品中基因的表达模式,而比较两份不同样品的杂交结果就可以得到在不同样品中表达模式存在差异的基因。杂交使用的探针一般为mRNA的反转录产物,标记探针使用32PdATP。如果使用玻片为载体,点阵的密度要高于尼龙膜。杂交时使用两种不同颜色的荧光标记不同的两份样品,然后将两份样品混合起来与一张芯片杂交。洗去未杂交的探针以后,能够结合标记cDNA的点受到激发后会发出荧光。通过扫描装置可以检测各个点发出荧光的强度。对每一个点而言,所发出的两种不同荧光的强度的比值,就代表它在不同样品中的丰度。一般来讲,显示出来的图像中,黄色的点表示在不同的样品中丰度的差异不大,红色和绿色的点代表在不同样品中其丰度各不相同。使用尼龙膜为载体制作cDNA芯片进行研究的费用要比玻片低,因为尼龙膜可以重复杂交。检测两种不同的组织或相同组织在不同条件下基因表达的差异,只需要使用少量的尼龙膜。但是利用玻片制作的cDNA芯片灵敏度更高,而且可以使用2种探针同时与芯片杂交,从而降低了因为杂交操作带来的差异;缺点是无法重复使用还必须使用更为复杂的仪器。 Guo等(2004)将包含104个重组子的cDNA文库点在芯片上,用于检测拟南芥叶片衰老时的基因表达模式,得到大约6200差异表达的ESTs,对应2491个非重复基因。其中有134个基因编码转录因子,182个基因预测参与信号传导,如MAPK级联传导路径。Li等(2006)设计高密度的寡核苷酸tiling microarray方法,检测籼稻全基因组转录表达情况。芯片上包含13,078,888个36-mer寡核苷酸探针,基于籼稻全基因组shot-gun测序的序列合成,大约81.9%(35,970)的基因发生转录事件。Hu等(2006)用含有60,000寡核苷酸探针(代表水稻全部预测表达基因)的芯片检测抗旱转基因植株(过量表达SNAC1水稻)中基因的表达情况,揭示大量的逆境相关基因都是上升表达的。 2基因表达系列分析(Serial analysis of gene expression,SAGE) 基因表达系列分析(SAGE)是一种转录物水平上研究细胞或组织基因表达模式的快速、有效的技术,也是一种高通量的功能基因组研究方法,它可以同时将不同基因的表达情况进行量化研究(Velculescu et al.,1995)。SAGE的基本原理是:每一条mRNA序列都可以用它包含的9bp的小片段(TAG)代替,因此考查这些TAGs出现的频率就能知道每一种mRNA 的丰度。首先利用生物素标记的oligo(dT)引物将mRNA反转录成双链cDNA,然后利用NlaIII 酶切双链cDNA。NlaIII酶的识别位点只有4bp,因此cDNA都被切成几十bp的小片段。带有生物素标记的小片段cDNA被分离出来,平均分成2份。这2份cDNA分别跟2个接头连接,2个接头中均有一个FokI酶切位点。FokI是一种II S型核酸内切酶,其识别位点不对称,切割位点位于识别位点下游9bp且不依赖于特异的DNA序列。FokI酶切分成2份的cDNA之

基因表达谱分析技术

基因表达谱分析技术 1、微阵列技术(microarray) 这是近年来发展起来的可用于大规模快速检测基因差别表达、基因组表达谱、DNA序列多态性、致病基因或疾病相关基因的一项新的基因功能研究技术。其原理基本是利用光导化学合成、照相平板印刷以及固相表面化学合成等技术,在固相表面合成成千上万个寡核苷酸“探针”(cDNA、ESTs或基因特异的寡核苷酸),并与放射性同位素或荧光物标记的来自不同细胞、组织或整个器官的DNA或mRNA反转录生成的第一链cDNA进行杂交,然后用特殊的检测系统对每个杂交点进行定量分析。其优点是可以同时对大量基因,甚至整个基因组的基因表达进行对比分析。包括cDNA芯片(cDNA microarray)和DNA 芯片(DNA chips)。 cDNA芯片使用的载体可以是尼龙膜,也可以是玻片。当使用尼龙膜时,目前的技术水平可以将20000份材料点在一张12cm×18cm的膜上。尼龙膜上所点的一般是编好顺序的变性了的双链cDNA片段。要得到基因表达情况的数据,只需要将未知的样品与其杂交即可。杂交的结果表示这一样品中基因的表达模式,而比较两份不同样品的杂交结果就可以得到在不同样品中表达模式存在差异的基因。杂交使用的探针一般为mRNA的反转录产物,标记探针使用32PdATP。如果使用玻片为载体,点阵的密度要高于尼龙膜。杂交时使用两种不同颜色的荧光标记不同的两份样品,然后将两份样品混合起来与一张芯片杂

交。洗去未杂交的探针以后,能够结合标记cDNA的点受到激发后会发出荧光。通过扫描装置可以检测各个点发出荧光的强度。对每一个点而言,所发出的两种不同荧光的强度的比值,就代表它在不同样品中的丰度。一般来讲,显示出来的图像中,黄色的点表示在不同的样品中丰度的差异不大,红色和绿色的点代表在不同样品中其丰度各不相同。使用尼龙膜为载体制作cDNA芯片进行研究的费用要比玻片低,因为尼龙膜可以重复杂交。检测两种不同的组织或相同组织在不同条件下基因表达的差异,只需要使用少量的尼龙膜。但是利用玻片制作的cDNA芯片灵敏度更高,而且可以使用2种探针同时与芯片杂交,从而降低了因为杂交操作带来的差异;缺点是无法重复使用还必须使用更为复杂的仪器。 Guo等(2004)将包含104个重组子的cDNA文库点在芯片上,用于检测拟南芥叶片衰老时的基因表达模式,得到大约6200差异表达的ESTs,对应2491个非重复基因。其中有134个基因编码转录因子,182个基因预测参与信号传导,如MAPK级联传导路径。Li等(2006)设计高密度的寡核苷酸tiling microarray方法,检测籼稻全基因组转录表达情况。芯片上包含13,078,888个36-mer寡核苷酸探针,基于籼稻全基因组shot-gun测序的序列合成,大约81.9%(35,970)的基因发生转录事件。Hu等(2006)用含有60,000寡核苷酸探针(代表水稻全部预测表达基因)的芯片检测抗旱转基因植株(过量表达SNAC1水稻)中基因的表达情况,揭示大量的逆境相关基因都是上升表达的。 2、基因表达系列分析(Serial analysis of gene expression, SAGE)

国产全光谱水质在线监测仪的应用原理及研发步骤分析(精)

国产全光谱水质在线监测仪的应用原理及研发步骤分析 一、全光谱在线分析仪器市场现状我国环境水质监测仪器以往主要依赖进口,从2000年开始,成熟的国产化设备才开始在全国范围内大规模推广。我国的环境水质在线监测仪器厂家主要以民营为主,在成长初期,普遍存在规模偏小、技术不够成熟、仪器的可靠稳定性不足等问题,难以满足我国复杂的水体环境和日益多样化的污染物监测需求。另外,仪器市场整体存在集中度不高、区域分割严重、单一企业所占市场份额小等问题。后期随着国家对环保产业的重视和水质自动监测网络体系的建立,环境水质在线监测仪器厂家数量迅速增长,部分具备自主研发实力的企业发展壮大起来,成为与国外品牌如美国哈希、日本岛津等相抗衡的仪器生产企业。 具体到光谱在线监测领域,国内目前主要以单光谱UV254为主,较为先进也只有COD 等少数数值可进行在线测量,且测量参数及精度较国外设备均有一定差距,如S::CAN公司的高端产品spectro 就可以同时测量COD ,BOD ,BTX ,NO3-N ,TSS ,温度,AOC 等参数,并保证测量精度。 外国设备价钱高企业和政府采购难以负担高额成本,而国内仪器设备技术落后等缺陷却无法满足精准监测的要求,此外国外仪器在国内也存在“水土不服”的情况,针对这一矛盾现状,陕西正大环保科技与浙江大学强强合作,发挥自身优势推进全光谱在线设备国产化进程,正大环保以多年的设备设计与运维经验选择相应的原材料进行整合,提供基础设备;浙江大学提供设备内部计算模型及先进完善机制,共同致力于为客户提供运行稳定,数据可靠,价格合理的全光谱在线监测设备。 二、全光谱分析法原理 朗伯-比尔定律光度分析中定量分析是最基础、最根本的依据, 如图所示, 可以用如下公式描述: 式中: A 为吸光度值; I0为空白溶液(即

基因蛋白表达检测步骤

Western blot法测定蛋白表达 1 样品制备 称取100mg组织置于裂解液中充分匀浆,裂解液于4℃、12000rp m离心5min,取上清液。 2 定蛋白 利用BCA蛋白浓度测定试剂盒测定上清液中蛋白含量,将每个样品的蛋白浓度调至相同。上清液与5×SDS上样缓冲液按5:1(v:v)混合后,沸水浴中加热5min,离心取上清。 3 蛋白质上样及电泳 每个样品取20μL上清液上样(蛋白总量约50μg),于20%SDS-PAGE电泳分离。样品首先在80V恒定电压下电泳。当染料显示样品接近分离胶顶端时,调节恒定电压为110V继续电泳至溴酚蓝到达分离胶底部。 4 蛋白质转膜 电泳完毕后,卸下玻璃板并取出凝胶。遵循凝胶在负极,膜在正极的原则,按阴极–吸水纸–滤纸–凝胶–硝酸纤维素膜(NC)膜–滤纸–吸水纸–阳极的顺序将凝胶装配于转移装置上。200mA恒定电流条件下,4℃转移1h以上。转移完毕后,剪角标记NC膜,用1×丽春红染液染色以观察转膜效果。用TBS/T洗膜3次,每次5min。 5 封闭 用5%脱脂奶粉溶液封闭膜上的非特异位点,于4℃孵育过夜。 1.2.3.6 一抗孵育 加入一级抗体(工作浓度1:1000),4℃孵育过夜,使抗原抗体结合。一抗孵育结束后,用TBS/T洗膜3次,每次5min。 7 二抗孵育 加入HRP标记的二级抗体(工作浓度1:5000),室温孵育1h,以结合一级抗体。孵育结束后用TBS/T洗膜3次,每次5min。

8 ECL化学发光检测 按ECL试剂盒说明书方法曝光底片,显影、定影后保存胶片。 9 图像扫描及分析 将显影后所得条带扫描并保存为电脑文件,用Image J 图像分析软件对条带的灰度值进行分析。关键控制基因蛋白表达量以目的条带的灰度值与内参条带的比值代表目的蛋白的相对表达水平。

基因表达及分析技术

基因表达及其分析技术 生命现象的奥秘隐藏在基因组中,对基因组的解码一直是现代生命科学的主流。基因组学研究可以说是当今生命科学领域炙手可热的方向。从DNA测序到SNP、拷贝数变异(copy number variation,CNV)等DNA多态性分析,到DNA 甲基化修饰等表观遗传学研究,生命过程的遗传基础不断被解读。 基因组研究的重要性自然不言而喻。应该说,DNA测序技术在基因组研究中功不可没,从Sanger测序技术到目前盛行的新一代测序技术(Next Generation Sequencing, NGS)到即将走到前台的单分子测序技术,测序技术是基因组解读最重要的主流技术。而基因组测序、基因组多态性分析、DNA甲基化修饰等表观遗传分析等在基因组研究中是最前沿的课题。但是基因组研究终究类似“基因算命”,再清晰的序列信息也无法真正说明一个基因的功能,基因功能的最后鉴定还得依赖转录组学和蛋白组学,而转录作为基因发挥功能的第一步,对基因功能解读就变得至关重要。声称特定基因、特定SNP、特定CNV、特定DNA修饰等与某种表型有关,最终需要转基因、基因敲除、突变、RNAi、中和抗体等技术验证,并必不可少要结合基因转录、翻译和蛋白修饰等数据。 基因实现功能的第一步就是转录为mRNA或非编码RNA,转录组学主要研究基因转录为RNA的过程。在转录研究中,下面几点是必须考虑的:1,基因是否转录(基因是否表达)及基因表达水平高低(基因是低丰度表达还是中、高丰度表达)。特定基因有时候在一个细胞中只有一个拷贝的表达,而表达量会随细胞类型不同或发育、生长阶段不同或生理、病理状态不同

而改变。因此任何基因表达检测技术,其是否科学,就是要看能否检测到低丰度表达基因,能否检测到基因丰度的变化尤其是微弱变化,线性范围是否宽广等。这方面的误区在于,很多人过分强调特定技术能否检测到低丰度基因的表达,忽视了特定技术能否检测到基因表达丰度微弱的改变。 如果关注全基因组表达信息,那么目前最经典的技术就是全基因组表达谱芯片技术,这种基因芯片设计了数据库中所有已知基因、EST和预测基因、EST 的已知转录本的探针,用来分析全基因组中已知基因、预测基因的已知转录本的表达信息。在利用基因芯片进行转录研究时,应该选择能检测低丰度表达基因的芯片技术,选择可以反映基因表达微弱变化并且线性范围广的技术,比如Affymetrix公司的转录研究方面的芯片。以GeneChip? Human Genome U133 Plus 2.0 Array 为例,该芯片可以分析多达38500个基因的47400个转录本(而GeneChip? Human Genome U133A 2.0 Array 是对其中14500个well-characterized human genes的18400个转录本进行分析的)。从精确度、重复性、性价比等角度来讲,芯片技术仍然是基因表达研究的首选技术。 除人全基因组表达谱芯片外,Affymetrix公司还可以提供以下物种的全基因组表达谱芯片:大鼠,小鼠,拟南芥,大麦,牛,线虫,狗,鸡,柑橘,棉花,果蝇,大肠杆菌,玉M,苜蓿,绿脓杆菌,蚊子/疟原虫、杨树,猪,恒河猴,水稻,金黄色葡萄球菌,大豆,甘蔗,西红柿,葡萄,小麦,爪蟾,酵母,斑马鱼等。 2,对mRNA表达而言,更重要的问题是,每个基因的编码区域由若干外显子组成,而特定基因在不同细胞类型中或不同发育、生长阶段或不同生理、病理状态下,外显子存在选择性剪接(alternative splicing),因而会出现不同

高考生物复习题基因的表达检测含解析

基因的表达 [基础达标] 1.(2019·福建莆田期中)下列有关遗传信息、密码子和反密码子的叙述,错误的是( ) A.DNA中的遗传信息通过转录传递给mRNA B.一种密码子在不同细胞中决定不同种氨基酸 C.不同密码子编码同种氨基酸可增强密码子的容错性 D.反密码子是tRNA中与mRNA碱基互补配对的三个碱基 解析:选B。DNA中的遗传信息通过转录传递给 mRNA,然后再由mRNA翻译给蛋白质;密码子具有通用性,生物界共用一套遗传密码;不同密码子编码同种氨基酸,在基因突变或其他原因导致mRNA上密码子出错时,生物性状可以不改变,所以可以增强密码子的容错性;反密码子是指tRNA上的三个碱基,这三个碱基可以与mRNA上的密码子碱基互补配对。 2.如图是基因指导蛋白质合成的某个过程示意图,据图分析下列说法错误的是( ) A.合成多肽链的第二步是携带氨基酸的tRNA进入A位 B.1为tRNA上的密码子,可与mRNA进行碱基互补配对 C.合成多肽链的第三步主要是P位的氨基酸转移到A位的tRNA上 D.2是由DNA转录而来的,2中不存在胸腺嘧啶核糖核苷酸 解析:选B。翻译时,合成多肽链的第二步是与mRNA上第二个密码子互补配对的tRNA 携带氨基酸进入A位,A正确。密码子存在于mRNA上,tRNA上的为反密码子,B错误。合成多肽链的第三步是在相关酶的作用下,P位的氨基酸与A位的氨基酸经脱水缩合形成肽键而转移到A位的tRNA上,C正确。2表示mRNA,mRNA上不存在胸腺嘧啶核糖核苷酸,D正确。 3.(2019·河北保定高三摸底)若细胞质中tRNA1(AUU)可转运氨基酸a,tRNA2(ACG)可转运氨基酸b,tRNA3(UAC)可携带氨基酸c,以DNA链……—T—G—C—A—T—G—T—……的互补链为模板合成蛋白质,则该蛋白质基本组成单位的排列可能是( ) A.a—b—c B.c—b—a C.b—c—a D.b—a—c 解析:选C。以DNA链……—A—C—G—T—A—C—A—……为模板转录形成的mRNA的碱基序列为……—U—G—C—A—U—G—U—……,其中第一个密码子(UGC)对应的反密码子为ACG,编码的氨基酸为b;第二个密码子(AUG)对应的反密码子为UAC,编码的氨基酸为c;

相关文档
最新文档