第七专题平面桁架结构

第七专题平面桁架结构
第七专题平面桁架结构

平面桁架结构

一、平面桁架的形式

1.屋盖结构体系

屋盖分为无檩屋盖有檩屋盖。无檩屋盖一般用于预应力混凝土大型屋面板等重型屋面,将屋面板直接放在屋架上。有檩屋盖常用于轻型屋面材料的情况。

2.屋架的形式

屋架外形常用的有三角形、梯形、平行弦和人字形等。

桁架外形应尽可能与其弯矩图接近,这样弦杆受力均匀,腹杆受力较小。腹杆的布置应尽量用长杆受拉、短杆受压,腹杆的数目宜少,总长度要短,斜腹杆的倾角一般在30°~60°之间,腹杆布置时应注意使荷载都作用在桁架的节点上。

(1)三角形桁架

三角形桁架适用于陡坡屋面(i>1/3)的有檩屋盖体系,屋架通常与柱子只能铰接。弯矩图与三角形的外形相差悬殊,弦杆受力不均,支座处内力较大,跨中内力较小,弦杆的截面不能充分发挥作用。支座处上、下弦杆交角过小内力又较大,使支座节点构造复杂。

(2)梯形桁架

梯形屋架适用于屋面坡度较为平缓的无檩屋盖体系,它与简支受弯构件的弯矩图形比较接近,弦杆受力较为均匀。梯形屋架与柱的连接可以做成铰接也可以做成刚接。梯形屋架的中部高度一般为(1/10~1/8)L,与柱刚接的梯形屋架,端部高度一般为(1/16~1/12)L,通常取为2.0~2.5m。与柱铰接的梯形屋架,端部高度可按跨中经济高度和上弦坡度决定。

(3)人字形桁架

人字形屋架的上、下弦可以是平行的,坡度为1/20~1/10,节点构造较为统一;也可以上、下弦具有不同坡度或者下弦有一部分水平段,以改善屋架受力情况。人字形屋架因中高度一般为2.0~2.5m,跨度大于36m时可取较大高度但不宜超过3m;端部高度一般为跨度的1/18~1/12。

(4)平行弦桁架

平行弦桁架在构造方面有突出的优点,弦杆及腹杆分别等长、节点形式相同、能保证桁架的杆件重复率最大,且可使节点构造形式统一,便于制作工业化。

3.托架形式

支承中间屋架的桁架称为托架,托架一般采用平行弦桁架,其腹杆采用带竖杆的人字形体系。托架高度般取跨度的1/5~1/10,托架的节间长度一般为2m或3m。

二、屋盖支撑

平面屋架在屋架平面外的刚度和稳定性很差,不能承受水平荷载。因此,为使屋架结构有足够的空间刚度和稳定性,必须在屋架间设置支撑系统。

图1 屋盖支撑示意图

1.支撑的作用

①保证结构的空间整体作用

仅由平面桁架、檩条及屋面材料组成的屋盖结构,是一个不稳定的体系,如果将某些屋架在适当部位用支撑连系起来,成为稳定的空间体系,其余屋架再由檩条或其他构件连接在这个空间稳定体系上,就保证了整个屋盖结构的稳定。

②避免压杆侧向失稳,防止拉杆产生过大的振动

支撑可作为屋架弦杆的侧向支撑点,减小弦杆在屋架平面外的计算长度。

③承担和传递水平荷载(如风荷载、悬挂吊车水平荷载和地震荷载等)。

④保证结构安装时的稳定与方便

屋盖的安装首先用支撑将两相邻屋架连系起来组成一个基本空间稳定体,在此基础上即可顺序进行其他构件的安装。

2.支撑的布置

屋盖支撑系统可分为:横向水平支撑、纵向水平支撑、垂直支撑和系杆。

①上弦横向水平支撑

通常情况下屋架上弦应设置横向水平支撑。横向水平支撑一般应设置在房屋两端或纵向温度区段两端。有时可将屋架的横向水平支撑布置在第二个柱间,但在第一个柱间要设置刚性系杆以支持端屋架和传递端墙风力。两道横向水平支撑间的距离不宜大于60m。

②下弦横向水平支撑

当屋架间距<12m时,尚应在屋架下弦设置横向水平支撑,但当屋架跨度比较小(<18m)又无吊车或其他振动设备时,可不设下弦横向水平支撑。

下弦横向水平支撑一般和上弦横向水平支撑布置在同一柱间以形成空间稳定体系的基本组成部分。

当屋架间距≥12m时,可不必设置下弦横向水平支撑,但上弦支撑应适当加强,并应用隅撑或系杆对屋架下弦侧向加以支承。

屋架间距≥18m时,宜设置纵向次桁架。

当房屋较高、跨度较大、空间刚度要求较高时,设有支承中间屋架的托架,或设有重级或大吨位的中级工作制桥式吊车等较大振动设备时,均应在屋架端节间平面内设置纵向水平支撑。

屋架间距<12m时,纵向水平支撑通常布置在屋架下弦平面。

屋架间距≥12m时,纵向水平支撑宜布置在屋架的上弦平面内。

④垂直支撑

屋架的垂直支撑应与上、下弦横向水平支撑设置在同一柱间。

三角形屋架的垂直支撑,当屋架跨度≤18m时,可仅在跨度中央设置一道;当跨度>18m时,宜设置两道(在跨度1/3左右处各一道)。

梯形屋架、人字形屋架或其他端部有一定高度的多边形屋架,必须在屋架端部设置垂直支撑,此外,尚应按下列条件设置中部的垂直支撑:当屋架跨度≤30m时,可仅在屋架跨中布置一道垂直支撑;当跨度>30m时,则应在跨度1/3左右的竖杆平面内各设一道垂直支撑。

⑤系杆

在横向支撑或垂直支撑节点处沿房屋通长设置系杆。

在屋架上弦平面内,对无檩体系屋盖应在屋脊处和屋架端部处设置系杆;对有檩体系只在有纵向天窗下的屋脊处设置系杆。

在下弦平面内,当屋架间距为6m时,应在屋架端部处、下弦杆有弯折处、与柱刚接的屋架下弦端节间受压但未设纵向水平支撑的节点处等部位皆应设置系杆。当屋架间距≥12m时,将水平支撑全部布置在上弦平面内并利用檩条作为支撑体系的压杆和系杆,而作为下弦侧向支承的系杆可用支于檩条的隅撑代替。

系杆分刚性系杆和柔性系杆两种。屋架主要支承节点处的系杆,屋架上弦脊节点处的系杆均宜用刚性系杆,当横向水平支撑设置在房屋温度区段端部第二个柱间时,第一个柱间的所有系杆均为刚性系杆,其他情况的系杆可用柔性系杆。

3.支撑的计算和构造

屋架的横向和纵向水平支撑都是平行弦桁架,屋架或托架的弦杆均可兼作支撑桁架的弦杆,斜腹杆一般采用十字交叉式,斜腹杆和弦杆的交角值在30o~60o之间。通常横向水平支撑节点间的距离为屋架上弦节间距离的2~4倍,纵向水平支撑的宽度取屋架端节间的长度,一般为6m左右。

屋架垂直支撑也是一个平行弦桁架,其上、下弦可兼作水平支撑的横杆。有的垂直支撑还兼作檩条,屋架间垂直支撑的腹杆体系应根据其高度与长度之比采用不同的形式。

支撑中的交叉斜杆以及柔性系杆按拉杆设计,通常用单角钢做成;非交叉斜杆、弦杆、横杆以及刚性系杆按压杆设计,宜采用双角钢做成的T形截面或十字形截面,其中横杆和刚性系杆

常用十字形截面使在两个方向具有等稳定性。屋盖支撑杆件的节点板厚度通常采用6mm,对重型厂房屋盖宜采用8mm。

屋盖支撑受力较小,截面尺寸一般由杆件容许长细比和构造要求决定。对于承受端墙风力的屋架下弦横向水平支撑和刚性系杆,以及承受侧墙风力的屋架下弦纵向水平支撑,当支撑桁架跨度较大(≥24m)或承受风荷载较大(风压力的标准值>0.5kN/m)时,或垂直支撑兼作檩条以及考虑厂房结构的空间工作而用纵向水平支撑作为柱的弹性支承时,支撑杆件除应满足长细比要求外,尚应按桁架体系计算内力,并据此内力按强度或稳定性选择截面并计算其连接。

具有交叉斜腹杆的支撑桁架,通常将斜腹杆视为柔性杆件,只能受拉,不能受压。因而每节间只有受拉的斜腹杆参与工作。

支撑和系杆与屋架的连接通常采用C级螺栓,每一杆件接头处的螺栓数不少于两个。螺栓直径一般为20mm。有重级工作制吊车或有较大振动设备的厂房中,屋架下弦支撑和系杆的连接,宜采用高强度螺栓,或除C级螺栓外另加安装焊缝,每条焊缝的焊脚尺寸不宜小于6mm,长度不宜小于80mm。

三、简支屋架设计

1.屋架的内力分析

屋架上的荷载包括恒载、活荷载、雪荷载、风荷载、积灰荷载及悬挂荷载等。

(1)基本假定

通常将荷载集中到节点上,并假定节点处的所有杆件轴线在同一平面内相交于一点,而且各节点均为理想铰接。

(2)节间荷载引起的局部弯矩

节间荷载作用的屋架,除了把节间荷载分配到相邻节点外,还应计算节间荷载引起的局部弯矩。

(3)内力计算与荷载组合

与柱铰接的屋架应考虑下列荷载作用情况:

①全跨荷载:全跨永久荷载+全跨屋面活荷载或雪荷载(取两者的较大值)+全跨积灰荷载+悬挂吊车荷载。

②半跨荷载:梯形屋架、人字形屋架、平行弦屋架等的少数斜腹杆可能在半跨荷载作用下产生最大内力或引起内力变号。必要时,可按下列半跨荷载组合计算:全跨永久荷载+半跨屋面活荷载(或半跨雪荷载)+半跨积灰荷载+悬挂吊车荷载。采用大型混凝土屋面板的屋架,尚应考虑安装时可能的半跨荷载:屋架自重+半跨屋面板重+半跨屋面活荷载。

③轻质屋面材料的屋架,一般应考虑负风压的影响。

④轻屋面的厂房,当吊车起重量较大(Q ≥300kN )应考虑按框架分析求得的柱顶水平力是否会使下弦内力增加或引起下弦内力变号。

2.杆件的计算长度和容许长细比

(1)杆件的计算长度

确定桁架弦杆和单系腹杆的长细比时,其计算长度应按表1的规定采用。

表 1 桁架弦杆和单系腹杆的计算长度l 0

如桁架受压弦杆侧向支承点间的距离为两倍节间长度,且两节间弦杆内力不等时,该弦杆在桁架平面外的计算长度按下式计算:

)25

.075.0(1

210N N l l +=,但不小于0.5l l (1) 式中 N l ——较大的压力,计算时取正值;

N 2——较小的压力或拉力,计算时压力取正值,拉力取负值。

(2)杆件的容许长细比

规范中对拉杆和压杆都规定了容许长细比。

3.杆件的截面形式

对轴心受压杆件,宜使杆件对两个主轴有相近的稳定性,即可使两方向的长细比接近相等。 基本上采用由两个角钢组成的T 形截面或十字形截面形式的杆件,也可用H 型钢剖开而成的T 形钢代替双角钢组成的T 形截面。受力较小的次要杆件可采用单角钢。

上弦杆:无节间荷载的上弦杆,宜采用不等边角钢短肢相连的截面,当y l 0=x l 0时,可采用两个等边角钢截面或TM 截面,有节间荷载的上弦杆,也可采用不等边角钢长肢相连的截面或TN 型截面。

下弦杆:通常采用不等边角钢短肢相连的截面,或TW 型截面以满足长细比要求。

支座斜杆:y l 0=x l 0时,宜采用不等边角钢长肢相连或等边角钢的截面。

其他一般腹杆:宜采用等边角钢相并的截面。连接垂直支撑的竖腹杆宜采用两个等边角钢组成的十字形截面,受力很小的腹杆(如再分杆等次要杆件),可采用单角钢截面。

图2 屋架杆件角钢截面

双角钢杆件的填板:由双角钢组成的T形或十字形截面杆件按实腹式杆件进行计算,必须每隔一定距离在两个角钢间加设填板(图3)。填板的宽度一般取50~80mm;填板的长度:对T 形截面应比角钢肢伸出10~20mm,对十字形截面则从角钢肢尖缩进10~15mm。填板的厚度与桁架节点板相同。

填板的间距对压杆l1≤40i1,拉杆l1≤80i1;在T形截面中,i1为一个角钢对平行于填板自身形心轴的回转半径;在十字形截面中,填板应沿两个方向交错放置,i1为一个角钢的最小回转半径,在压杆的桁架平面外计算长度范围内,至少应设置两块填板。

图3 桁架杆件中的填板

4.杆件的截面选择

(1)一般原则

①应优先选用肢宽而薄的板件或肢件组成的截面,但受压构件应满足局部稳定的要求。一般情况下,板件或肢件的最小厚度为5mm,对小跨度屋架可用到4mm。

②角钢杆件或T型钢的悬伸肢宽不得小于45mm。直接与支撑或系杆相连的最小肢宽,应根据连接螺栓的直径d而定:d=16mm时,为63mm;d=18mm时,为70mm;d=20mm时,为75mm。垂直支撑或系杆如连接在预先焊于桁架竖腹杆及弦杆的连接板上时,则悬伸肢宽不受此限。

③屋架节点板(或T型钢弦杆的腹板)的厚度,对单壁式屋架,可根据腹杆的最大内力(对梯形和人字形屋架)或弦杆端节间内力(对三角形屋架),按表2选用。

表2 Q235钢单壁式焊接屋架节点板厚度选用表

2.本表适用于腹杆端部用侧焊缝连接的情况。

3.无竖腹杆相连且自由边无加劲肋加强的节点板,应将受压腹杆内力乘以1.25后再查表。

④跨度较大的桁架(≥24m )与柱铰接时,弦杆宜根据内力变化改变截面,半跨内一般只改变一次。变截面位置宜在节点处或其附近。通常是变肢宽而保持厚度不变。

⑤同一屋架的型钢规格不宜太多,以便订货。

⑥当连接支撑等的螺栓孔在节点板范围内且距节点板边缘距离≥100mm 时,计算杆件强度可不考虑截面的削弱。

⑦单面连接的单角钢杆件,在按轴心构件计算其强度或稳定以及连接时,钢材和连接的强度设计值应乘以相应的折减系数。

(2)杆件的截面选择

轴心受拉杆件应验算强度和长细比要求。轴心受压杆件和压弯构件要计算强度、整体稳定、局部稳定和长细比。

5.钢桁架的节点设计

(1)一般要求

①原则上桁架应以杆件的形心线为轴线并在节点处相交于一点。通常取角钢背或T 形钢背至轴线的距离为5mm 的倍数。

②当弦杆截面沿长度有改变时,一般将拼接处两侧弦杆表面对齐,此时宜采用受力较大的杆件形心线为轴线。当两侧形心线偏移的距离e 不超过较大弦杆截面高度的5%时,可不考虑此偏心影响。

当偏心距离e 超过上述值,应根据交汇处各杆的线刚度,将此弯矩分配于各杆。所计算杆件承担的弯矩为:

∑?

=i

i i K K M M (2) 式中 M ——节点偏心弯矩;

K 1——所计算杆件线刚度;

i K——汇交于节点的各杆件线刚度之和。

③节点处,腹杆与弦杆或腹杆与腹杆之间焊缝的净距,不宜小于10mm,或者杆件之间的空隙不小于15~20mm(图5)。

④角钢端部的切割一般垂直于其轴线。有时允许切去一肢的部分,但不允许将一个肢完全切去而另一肢伸出的斜切(图4)。

图4角钢端部的切割

⑤节点板的外形应尽可能简单而规则,宜至少有两边平行,一般采用矩形、平行四边形和直角梯形等。节点板边缘与杆件轴线的夹角不应小于15°。单斜杆与弦杆的连接应使之不出现连接的偏心弯矩。节点板的平面尺寸,一般应根据杆件截面尺寸和腹杆端部焊缝长度画出大样图来确定,但考虑施工误差,宜将此平面尺寸适当放大。

图5单斜杆与弦杆的连接

图6 上弦角钢的加强

⑥支承大型混凝土屋面板的上弦杆,当支承处的总集中荷载(设计值)超过表3的数值时,弦杆的伸出肢容易弯曲,应对其采用图6的做法之一予以加强。

表3 弦杆不加强的最大节点荷载

(2)角钢桁架的节点设计

①一般节点

一般节点是指无集中荷载和无弦杆拼接的节点(图

7)。

节点板应伸出弦杆10~15mm 以便焊接。腹杆与节点

板的连接焊缝按角钢角焊缝承受轴心力方法计算。弦杆与

节点板的连接焊缝,应考虑承受弦杆相邻节间内力之差

12N N N -=?,按下列公式计算其焊脚尺寸:

肢背焊缝: 1f h ≥w

f w f l N k 7.021?? (3) 肢尖焊缝: 2f h ≥

w f w f l N k 7.022?? (4) 式中 1k 、2k ——内力分配系数;

w f f ——角焊缝强度设计值。

通常因N ?很小,实际所需的焊脚尺寸可由构造要求确定,并沿节点板全长满焊。

②角钢桁架有集中荷载的节点

为便于大型屋面板或檩条的放置,常将节点板缩进上弦角钢背(图8),缩进距离不宜小于(0.5t +2)mm ,也不宜大于t ,t 为节点板厚度。角钢背凹槽的塞焊缝可假定只承受屋面集中荷载,按下式计算其强度:

w

f f l h Q 17.02?=σ≤w f f f β (5) 式中 Q ——节点集中荷载垂直于屋面的分量;

1f h ——焊脚尺寸,取1f h =0.5t ;

f β——正面角焊缝强度增大系数。

实际上因Q 不大,可按构造满焊。

弦杆相邻节间的内力差12N N N -=?,则由弦杆角钢肢尖与节点板的连接焊缝承受,计算时应计入偏心弯矩M =N ??e (e 为角钢肢尖至弦杆轴线距离),按下列公式计算:

对N ?:

w f f l h N 27.02??=τ (6) 对M :

227.026w

f f l h M ?=σ (7) 验算式为: 22

f f f τβσ+???? ?? ≤w f f (8) 式中 2f h ——肢尖焊缝的焊脚尺寸。

图8 屋架上弦节点

当节点板向上伸出不妨碍屋面构件的放置,或因相邻弦杆节间内力差N ?较大,肢尖焊缝不满足式(7)时,可将节点板部分向上伸出或全部向上伸出。此时弦杆与节点板的连接焊缝应按下列公式计算:

肢背焊缝:

112217.02)5.0()(w f l h Q N ?+?α≤w f f (9) 肢尖焊缝:

2

22

227.02)5.0()(w f l h Q N ?+?α≤w f f (10) 式中 1f h 、1w l ——伸出肢背的焊缝焊脚尺寸和计算长度;

2f h 、2w l ——肢尖焊缝的焊脚尺寸和计算长度。

③角钢桁架弦杆的拼接及拼接节点

弦杆的拼接分为工厂拼接和工地拼接两种。工厂拼接的位置通常在节点范围以外。工地拼接的位置一般在节点处,通常不利用节点板作为拼接材料,而以拼接角钢传递弦杆内力。拼接角钢宜采用与弦杆相同的截面,使弦杆在拼接处保持原有的强度和刚度。

为了使拼接角钢与弦杆紧密相贴,应将拼接角钢的棱角铲去,为便于施焊,还应将拼接角钢的竖肢切去?=(t +h f +5)mm ,式中t 为角钢厚度,h f 为拼接焊缝的焊脚尺寸。连接角钢截面的削弱,可以由节点板或角钢之间的填板补偿。

图9 拼接节点

(a )下弦工地拼接节点;(b )、(c ) 上弦工地拼接节点

屋脊节点处的拼接角钢,一般采用热弯成形。当屋面坡度较大且拼接角钢肢较宽时,可将角钢竖肢切口再弯折后焊成。拼接角钢或拼接钢板的长度,接头一侧的连接焊缝总长度应为:

∑w l ≥w

f f f h N 7.0 (11) 式中 N ——杆件的轴心力,取节点两侧弦杆内力的较小值。

双角钢的拼接中,上式得出的焊缝计算长度∑w l 按四条焊缝平均分配。

弦杆与节点板的连接焊缝,应按式(3)和式(4)计算,公式中的N ?取为相邻节间弦杆内力之差或弦杆最大大内力的15%,两者取较大值。当节点处有集中荷载时,则应采用上述N ?值和集中荷载Q 值按式(9)和式(10)验算。

④支座节点

屋架与柱子的连接可以做成铰接或刚接。支承于混凝土柱或砌体柱的屋架一般都是按铰接设计,而屋架与柱子的连接则可为铰接或刚接。图10为人字形或梯形屋架的铰接支座节点示例。

图10 人字形或梯形屋架支座节点

(a )上承式(下弦角钢端部为圆孔,但节点板上为长圆孔);(b )下承式 支于混凝土柱的支座节点由节点板、底板、加劲肋和锚栓组成。支座节点的中心应在加劲肋上,加劲肋起分布支承处支座反力的作用,它还是保证支座节点板平面外刚度的必要零件。为便于施焊,屋架下弦角钢背与支座底板的距离e 不宜小于下弦角钢伸出肢的宽度,也不宜小于130mm 。屋架支座底板与柱顶用锚栓相连,锚栓预埋于柱顶,直径通常为20~24mm 。底板上的锚栓孔径宜为锚栓直径的2~2.5倍,屋架就位后再加小垫板套住锚栓并用工地焊缝与底板焊牢,小垫板上的孔径只比锚栓直径大1~2mm 。

支座节点的传力路线是:桁架各杆件的内力通过杆端焊缝传给节点板,然后经节点板与加劲肋之间的垂直焊缝,把一部分力传给加劲肋,再通过节点板、加劲肋与底板的水平焊缝把全部支座压力传给底板,最后传给支座。因此,支座节点应进行以下计算:

支座底板的毛面积应为

A =ab ≥

c

f R +A 0 (12) 式中 R ——支座反力;

c f ——支座混凝土局部承压强度设计值;

A 0——锚栓孔的面积。

按计算需要的底板面积一般较小,主要根据构造要求(锚栓孔直径、位置以及支承的稳定性等)确定底板的平面尺寸。

底板的厚度应按底板下柱顶反力(假定为均匀分布)作用产生的弯矩决定。 底板不宜太薄,一般其厚度不宜小于16~20mm 。

加劲肋的高度由节点板的尺寸决定,其厚度取等于或略小于节点板的厚度。加劲肋可视为支承于节点板上的悬臂梁,一个加劲肋通常假定传递支座反力的1/4,它与节点板的连接焊缝承受剪力V =R /4和弯矩M =V ·b /4,并应按下式验算:

2

227.0267.02???? ???+???? ???f w f w f l h M l h V β≤w f f (13) 底板与节点板、加劲肋的连接焊缝按承受全部支座反力及计算。验算式为:

f σ=∑w f l h R 7.0≤w f f f β (14) 其中焊缝计算长度之和

∑w l =[2a +2(b -t -2c )-6]cm ,t 和c 分别为节点板厚度和加劲肋切口宽度。

(3)T 形钢作弦杆的屋架节点

采用T 形钢作屋架弦杆,当腹杆也用T 形钢或单角钢时,腹杆与弦杆的连接不需要节点板;当腹杆采用双角钢时,有时需设节点板(图11),节点板与弦杆采用对接焊缝,此焊缝承受弦杆相邻节间的内力差12N N N -=?以及内力差产生的偏心弯矩M =e N ??,可按下式进行计算:

t

l N w ?=5.1τ≤w v f (15) 26

1w tl Ne ?=σ≤w t f 或w c f (16) 式中 w l ——由斜腹杆焊缝确定的节点板长度,若无引弧板施焊时要除去弧坑;

t ——节点板厚度,通常取与T 形钢腹板等厚或相差不超过1mm ;

w v f 、w t f 、w c f ——对接焊缝抗剪、抗拉、抗压强度设计值。

图11 T 形钢作弦杆的屋架节点 角钢腹杆与节点板的焊缝计算同角钢桁架,由于节点板与T 形钢腹板等厚(或相差1mm ),所以腹杆可伸入T 形钢腹板(见图11),这样可减小节点板尺寸。

结构力学4

作业四(问答题) 1什么是桁架,有何特点? 答:①一种由杆件彼此在两端用铰链连接而成的结构。桁架由直杆组成的一般具有三角形单元的平面或空间结构,桁架杆件主要承受轴向拉力或压力,从而能充分利用材料的强度,在跨度较大时可比实腹梁节省材料,减轻自重和增大刚度。 ②各杆件受力均以单向拉、压为主,通过对上下弦杆和腹杆的合理布置,可适应结构内部的弯矩和剪力分布.由于水平方向的拉、压内力实现了自身平衡,整个结构不对支座产生水平推力.结构布置灵活,应用范围非常广.桁架梁和实腹梁(即我们一般所见的梁)相比,在抗弯方面,由于将受拉与受压的截面集中布置在上下两端,增大了内力臂,使得以同样的材料用量,实现了更大的抗弯强度.在抗剪方面,通过合理布置腹杆,能够将剪力逐步传递给支座.这样无论是抗弯还是抗剪,桁架结构都能够使材料强度得到充分发挥,从而适用于各种跨度的建筑屋盖结构.更重要的意义还在于,它将横弯作用下的实腹梁内部复杂的应力状态转化为桁架杆件内简单的拉压应力状态,使我们能够直观地了解力的分布和传递,便于结构的变化和组合。 2平面静定桁架的计算方法有哪几种? 答: 平面静定桁架的计算方法有节点法和截面法。 3拱结构的有何特点? ①拱是一种推力结构:在竖向荷载下产生水平推力; ②拱是一种无矩结构:通过合理拱轴可使杆件无弯矩; ③拱可充分利用材料抗压强度,断面小、跨度大。 4拱结构的基本形式? 答:两铰拱、三铰拱、无铰拱 5何谓移动荷载? 答:桥梁上行驶的列车、汽车等这些车辆荷载,厂房中吊车梁上开行的吊车荷载,这些荷载的大小、方向不变、但是作用位置是随时间而变化,这些荷载我

们称它为移动荷载。 6何谓影响线? 答:结构中某一量值(如FyA)随着单位移动荷载FP = 1 作用位置变化而变化的规律,该图形就称为这个量值(如FyA)的影响线。

结构力学实验-平面桁架结构的设计

结构力学实验土木建筑学院 实验名称:平面桁架结构的设计 实验题号:梯形桁架D2-76 姓名: 学号: 指导老师: 实验日期:

一、实验目的 在给定桁架形式、控制尺寸和荷载条件下,对桁架进行内力计算,优选杆件截面,并进行刚度验算。 ①掌握建立桁架结构力学模型的方法,了解静定结构设计的基本过程; ②掌握通过多次内力和应力计算进行构件优化设计的方法; ③掌握结构刚度验算的方法。 梯形桁架D ;其中结点1到结点7的水平距离为15m;结点1到结点8的距离为2m;结点7到结点14的距离为3m。选用的是Q235钢,[ɑ]=215MPa。

完成结构设计后按如下步骤计算、校核、选取、设计、优化 二、强度计算 1)轴力和应力 2)建立结构计算模型后,由“求解→内力计算”得出结构各杆件的轴力N(见图3)再由6=N/A得出各杆件应力。 表1内力计算 杆端内力值 ( 乘子 = 1) -------------------------------------------------------------------------------------------- 杆端 1 杆端 2 ------------------------------------- ------------------------------------------ 单元码轴力剪力弯矩轴力剪力弯矩 -------------------------------------------------------------------------------------------- 1 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 2 51.9230769 0.00000000 0.00000000 51.9230769 0.00000000 0.00000000 3 77.1428571 0.00000000 0.00000000 77.1428571 0.00000000 0.00000000 4 67.5000000 0.00000000 0.00000000 67.5000000 0.00000000 0.00000000 5 39.7058823 0.00000000 0.00000000 39.7058823 0.00000000 0.00000000 6 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 7 -54.0000000 0.00000000 0.00000000 -54.0000000 0.00000000 0.00000000 8 -52.0383336 0.00000000 0.00000000 -52.0383336 0.00000000 0.00000000 9 -77.3140956 0.00000000 0.00000000 -77.3140956 0.00000000 0.00000000 10 -81.1798004 0.00000000 0.00000000 -81.1798004 0.00000000 0.00000000 11 -81.1798004 0.00000000 0.00000000 -81.1798004 0.00000000 0.00000000 12 -67.6498337 0.00000000 0.00000000 -67.6498337 0.00000000 0.00000000 13 -39.7940198 0.00000000 0.00000000 -39.7940198 0.00000000 0.00000000 14 -54.0000000 0.00000000 0.00000000 -54.0000000 0.00000000 0.00000000 15 66.4939824 0.00000000 0.00000000 66.4939824 0.00000000 0.00000000 16 -41.5384615 0.00000000 0.00000000 -41.5384615 0.00000000 0.00000000 17 33.3732229 0.00000000 0.00000000 33.3732229 0.00000000 0.00000000 18 -21.8571428 0.00000000 0.00000000 -21.8571428 0.00000000 0.00000000 19 5.27613031 0.00000000 0.00000000 5.27613031 0.00000000 0.00000000 20 -18.0000000 0.00000000 0.00000000 -18.0000000 0.00000000 0.00000000 21 19.7385409 0.00000000 0.00000000 19.7385409 0.00000000 0.00000000 22 -31.5000000 0.00000000 0.00000000 -31.5000000 0.00000000 0.00000000 23 42.0090820 0.00000000 0.00000000 42.0090820 0.00000000 0.00000000 24 -47.6470588 0.00000000 0.00000000 -47.6470588 0.00000000 0.00000000 25 62.0225709 0.00000000 0.00000000 62.0225709 0.00000000 0.00000000

第七专题平面桁架结构

平面桁架结构 一、平面桁架的形式 1.屋盖结构体系 屋盖分为无檩屋盖有檩屋盖。无檩屋盖一般用于预应力混凝土大型屋面板等重型屋面,将屋面板直接放在屋架上。有檩屋盖常用于轻型屋面材料的情况。 2.屋架的形式 屋架外形常用的有三角形、梯形、平行弦和人字形等。 桁架外形应尽可能与其弯矩图接近,这样弦杆受力均匀,腹杆受力较小。腹杆的布置应尽量用长杆受拉、短杆受压,腹杆的数目宜少,总长度要短,斜腹杆的倾角一般在30°~60°之间,腹杆布置时应注意使荷载都作用在桁架的节点上。 (1)三角形桁架 三角形桁架适用于陡坡屋面(i>1/3)的有檩屋盖体系,屋架通常与柱子只能铰接。弯矩图与三角形的外形相差悬殊,弦杆受力不均,支座处内力较大,跨中内力较小,弦杆的截面不能充分发挥作用。支座处上、下弦杆交角过小内力又较大,使支座节点构造复杂。 (2)梯形桁架 梯形屋架适用于屋面坡度较为平缓的无檩屋盖体系,它与简支受弯构件的弯矩图形比较接近,弦杆受力较为均匀。梯形屋架与柱的连接可以做成铰接也可以做成刚接。梯形屋架的中部高度一般为(1/10~1/8)L,与柱刚接的梯形屋架,端部高度一般为(1/16~1/12)L,通常取为2.0~2.5m。与柱铰接的梯形屋架,端部高度可按跨中经济高度和上弦坡度决定。 (3)人字形桁架 人字形屋架的上、下弦可以是平行的,坡度为1/20~1/10,节点构造较为统一;也可以上、下弦具有不同坡度或者下弦有一部分水平段,以改善屋架受力情况。人字形屋架因中高度一般为2.0~2.5m,跨度大于36m时可取较大高度但不宜超过3m;端部高度一般为跨度的1/18~1/12。 (4)平行弦桁架 平行弦桁架在构造方面有突出的优点,弦杆及腹杆分别等长、节点形式相同、能保证桁架的杆件重复率最大,且可使节点构造形式统一,便于制作工业化。 3.托架形式 支承中间屋架的桁架称为托架,托架一般采用平行弦桁架,其腹杆采用带竖杆的人字形体系。托架高度般取跨度的1/5~1/10,托架的节间长度一般为2m或3m。 二、屋盖支撑

结构力学作业2

结构力学课程——作业二 1.简述拱与梁的区别?拱常用的形式有哪几种? 在于杆轴线的曲直,拱在竖向荷载作用下会产生水平反力;拱分为三铰拱、两绞拱、无铰拱。 2.简述桁架结构与梁和刚架结构的区别。 梁和钢架是以承受弯矩为主的,横截面上主要产生非均匀分布的弯曲正应力,其边缘处应力最大,而中部的材料并未充分利用,桁架则主要承受轴力。 3.请叙述力法的基本概念,并解释力法典型方程中系数的物理意义。 主系数是单位多余未知力单独作用时所引起的沿其自身方向上 的位移,其值恒为正;副系数是单位多余未知力单独作用时所引起的X i 方向上的位移,其值可能为正、负或为零。 4.名词解释:1)结点法;2)截面法;3)零杆; 结点法:为了求得桁架各杆的内力,可以截取桁架的一部分为隔离体,由隔离体的平衡件来计算所求的内力,若所取隔离体只包括一个节点,称为结点法; 截面法:为了求得桁架各杆的内力,可以截取桁架的一部分为隔离体,由隔离体的平衡件来计算所求的内力,若所取隔离体不止包含一个结点,称为截面法; 零杆:桁架中内力为零的杆件称为零杆。 5.请标出图1所示桁架中的零杆。 6.求图2所示简支梁最大挠度,请写明计算的步骤。

答:对称结构作用对称荷载,最大挠度应出现在梁的中心点,在中心点加单位荷载,并画出虚拟状态的弯矩图,遵循教材P104所述图乘法应注意的三点问题,将实际状态的弯矩图分成2个部分,左右两个三角形,三角形形心位于2/3处,如图所示,两图图乘得: EI FL L L FL EI 482324242113 max = ??????= ? 7.请计算图示桁架中指定杆件1和2的内力,请写出解题步骤。 8.图4所示简支梁刚架支座B 下沉b ,试求C 点的水平位移,请写明计算的步骤。 图3 题7 图2 题6

基于MATLAB的平面刚架静力分析

基于MATLAB 的平面刚架静力分析 为了进一步理解有限元方法计算的过程,本文根据矩阵位移法的基本原理应用MATLAB 编制计算程序对以平面刚架结构进行了静力分析。本文还利用ANSYS 大型商用有限元分析软件对矩阵位移法的计算结果进行校核,发现两者计算结果相当吻合,验证了计算结果的可靠性。 一、 问题描述 如图1所示的平面刚架,各杆件的材料及截面均相同,E=210GPa ,截面为0.12×0.2m 的实心矩形,现要求解荷载作用下刚架的位移和内力。 5m 4m 3m 图1 二、矩阵位移法计算程序编制 为编制程序方便考虑,本文计算中采用“先处理法”。具体的计算步骤如下。

(1) 对结构进行离散化,对结点和单元进行编号,建立结构(整体)坐标系 和单元(局部)坐标系,并对结点位移进行编号; (2) 对结点位移分量进行编码,形成单元定位向量e λ; (3) 建立按结构整体编码顺序排列的结点位移列向量δ,计算固端力e F P 、等 效结点荷载E P 及综合结点荷载列向量P ; (4) 计算个单元局部坐标系的刚度矩阵,通过坐标变换矩阵T 形成整体坐标 系下的单元刚度矩阵e T e K T K T = ; (5) 利用单元定位向量形成结构刚度矩阵K ; (6) 按式1=K P δ- 求解未知结点位移; (7) 计算各单元的杆端力e F 。 根据上述步骤编制了平面刚架的分析程序。程序中单元刚度矩阵按下式计算。 32322 23 2 32 22 0000 1261260 064620 00001261260062640 EA EA l l EI EI EI EI l l l l EI EI EI EI l l l l K EA EA l l EI EI EI EI l l l l EI EI EI EI l l l l ??- ??? ???- ?? ? ???- ??? ?=??-?? ? ???---??? ???-??? ?

简谈结构力学桁架零杆问题Word版

简谈结构力学桁架零杆问题 姓名(楷体四号) 单位(宋体小五) 摘要:本文粗略讲解一下桁架结构中关于零杆的问题,包括零杆的判断,以及零杆在求解桁架结构的用处。关键词:结构力学、桁架、零杆 引言 学习了结构力学,个人对于桁架印象较深,特别是桁架中我们认为约定出来的零杆印象很深,因为当初个人在学习的时候,对于零杆并未掌握,充其量只是知道有这么回事,其内在含义并不清楚。但它的存在对于求解桁架结构非常重要,有时候可以让复杂的桁架变为几根杆件的简单桁架,非常实用。通过后来的学习,网上查找资料,和同学探讨,现在虽不说精通,但也有些个人见解。 1零杆的含义 在结构力学关于静定平面桁架的内力的计算中,当桁架的一些结点没有荷载时,并由于桁架形式所导致,桁架中一些杆件不产生内力,这些内力为零的杆件称为“零杆”。零杆是在理论计算中为了便于计算才提出来的,实际生活中是很少见到的,只是我们为了计算桁架内力图时为了简化的方便,或者说忽略它的一点点受力对于整个求解结果影响并不是很大,我们就将其定义为零杆。 2零杆的作用 桁架中的零杆虽然不受力,但却是保持结构坚固性所必需的。因为桁架中的载荷往往是变化的。在一种载荷工况下的零杆,在另种载荷工况下就有可能承载。如果缺少了它,就不能保证桁架的坚固性。掌握了判断出零杆的方法,在分析桁架内力时,如果首先确定其中的零杆,这对后续分析往往有利,会给计算带来很大的方便。 3零杆的判定 1、无荷载的三杆结点,若两杆在同一直线上,则第三杆为零杆。(如下图a) 2、不在同一条直线上的两杆节点上若没有荷载作用,两杆均为零杆。(如下图b) 3、不共线的两杆结点,若荷载沿一杆作用,则另一杆为零杆。(如下图c) 4、对称桁架在对称荷载作用下,对称轴上的K形结点若无荷载,则该结点上的两根斜 杆为零杆。(如下图d) 5、对称桁架在反对称荷载作用下,与对称轴重合或者垂直相交的杆件为零杆。(如下 图e) 图示: 值得注意的是,d,e中结构的支座不是对称的,但是只有竖向力的作用,铰支座的水平约束其实不起作用,因此可以忽略,这才可以把结构看成是对称的结构。另外,

桁架结构

桁架结构 桁架结构(Truss structure)中的桁架指的是桁架梁,是格构化的一种梁式结构。桁架结构常用于大跨度的厂房、展览馆、体育馆和桥梁等公共建筑中。由于大多用于建筑的屋盖结构,桁架通常也被称作屋架。 主要结构特点 各杆件受力均以单向拉、压为主,通过对上下弦杆和腹杆的合理布置,可适应结构内部的弯矩和剪力分布。由于水平方向的拉、压内力实现了自身平衡,整个结构不对支座产生水平推力。结构布置灵活,应用范围非常广。桁架梁和实腹梁(即我们一般所见的梁)相比,在抗弯方面,由于将受拉与受压的截面集中布置在上下两端,增大了内力臂,使得以同样的材料用量,实现了更大的抗弯强度。在抗剪方面,通过合理布置腹杆,能够将剪力逐步传递给支座。这样无论是抗弯还是抗剪,桁架结构都能够使材料强度得到充分发挥,从而适用于各种跨度的建筑屋盖结构。更重要的意义还在于,它将横弯作用下的实腹梁内部复杂的应力状态转化为桁架杆件内简单的拉压应力状态,使我们能够直观地了解力的分布和传递,便于结构的变化和组合。 桁架的历史演变 只受结点荷载作用的等直杆的理想铰结体系称桁架结构。它是由一些杆轴交于一点的工程结构抽象简化而成的。桁架在建造木桥和屋架上最先见诸实用。古罗马人用桁架修建横跨多瑙河的特雷江桥的上部结构(发现于罗马的浮雕中,文艺复兴时期,意大利建筑师(拔拉雕 Palladio)也开始采用木桁架建桥出现朗式、汤式、豪式桁架。英国最早的金属桁架是在1845年建成的,适合汤式木桁架相似的格构桁架,第二年又采用了三角形的华伦式桁架。 桁架种类 桁架可按不同的特征进行分类。 根据桁架的外形分为:平行弦桁架(便于布置双层结构;利于标准化生产,但杆力分布不够均匀)、折弦桁架(如抛物线形桁架梁,外形同均布荷载下简支梁的弯矩图,杆力分布均匀,材料使用经济,构造较复杂)、三角形桁架(杆力分布更不均匀,构造布置困难,但斜面符合屋顶排水需要)。

2016基本平面刚架各种荷载MATLAB程序

% 平面刚架MATLAB程序 % 2003.9.16 2007.2.28 2008.4.1 2009.10 2011.10 2013.9 2014.09 2016.03 %************************************************* % 变量说明 % NPOIN NELEM NVFIX NFPOIN NFPRES % 总结点数,单元数, 约束个数, 受力结点数, 非结点力数 % COORD LNODS YOUNG % 结构节点坐标数组, 单元定义数组, 弹性模量 % FPOIN FPRES FORCE FIXED % 结点力数组,非结点力数组,总体荷载向量, 约束信息数组 % HK DISP % 总体刚度矩阵,结点位移向量 %************************************************** format short e %设定输出类型 clear %清除内存变量 FP1=fopen('6-6.txt','rt') %打开初始数据文件 %读入控制数据 NELEM=fscanf(FP1,'%d',1); %单元数 NPOIN=fscanf(FP1,'%d',1); %结点数 NVFIX=fscanf(FP1,'%d',1); %约束数 NFPOIN=fscanf(FP1,'%d',1); %作用荷载的结点个数 NFPRES=fscanf(FP1,'%d',1); %非结点荷载数 YOUNG=fscanf(FP1,'%f',1); %弹性模量 % 读取结构信息 LNODS=fscanf(FP1,'%f',[6,NELEM])' % 单元定义:左、右结点号,面积,惯性矩,线膨胀系数,截面高度(共计NELEM组)COORD=fscanf(FP1,'%f',[2,NPOIN])' % 坐标:x,y坐标(共计NPOIN 组) FPOIN=fscanf(FP1,'%f',[4,NFPOIN])' % 节点力(共计NFPOIN 组):受力结点号、X方向力(向右正), % Y方向力(向上正),M力偶(逆时针正) FPRES=fscanf(FP1,'%f',[7,NFPRES])' % 均布力(共计 % NFPRES 组):单元号、荷载类型、荷载大小、距离左端长度,温差=(下端-上端)梯形上边。下边(改) % 荷载类型1-均布荷载2-横向集中力3-纵向集中力4-三角形荷载5-温度荷载6-梯形荷载 FIXED=fscan f(FP1,'%f',NVFIX)' % 约束信息:约束对应的位移编码(共计NVFIX 组) %--------------------------------------------------------- HK=zeros(3*NPOIN,3*NPOIN); % 张成总刚矩阵并清零 FORCE=zeros(3*NPOIN,1); % 张成总荷载向量并清零 %形成总刚 for i=1:NELEM % 对单元个数循环

结构力学自测题(第三单元三铰拱、桁架、组合结构内力计算)

结构力学自测题(第三单元三铰拱、桁架、组合结构内力计算) 姓名学号 一、是非题(将判断结果填入括弧:以O 表示正确,以X 表示错误) 1、图示拱在荷载作用下, N DE为30kN 。() 2、在相同跨度及竖向荷载下,拱脚等高的三铰拱,其水平推力随矢高减小而减小。() 3、图示结构链杆轴力为2kN(拉)。() 2m2m 4、静定结构在荷载作用下产生的内力与杆件弹性常数、截面尺寸无关。() 5、图示桁架有:N1=N2=N3= 0。() a a a a 二、选择题(将选中答案的字母填入括弧内) 1、在径向均布荷载作用下,三铰拱的合理轴线为: A.圆弧线;B.抛物线;C.悬链线;D.正弦曲线。() 2、图示桁架C 杆的内力是: A. P ; B. -P/2 ; C. P/2 ; D. 0 。()

3、图 示 桁 架 结 构 杆 1 的 轴 力 为 : A. 2P ; B. -2P C. 2P /2; D. -2P /2。 ( ) a a a a a a 4、图 示 结 构 N DE ( 拉 ) 为 : A. 70kN ; B. 80kN ; C. 75kN ; D. 64kN 。 ( ) 4m 4m 4m 4m 三 、填 充 题( 将 答 案 写 在 空 格 内 ) 1、图 示 带 拉 杆 拱 中 拉 杆 的 轴 力N a = 。 6m 6m 2、图 示 抛 物 线 三 铰 拱 , 矢 高 为 4m , 在 D 点 作 用 力 偶 M = 80kN ·m ,M D 左 =_______,M D 右 =________。 8m 4m 4m 3、图 示 半 圆 三 铰 拱 , α 为 30°, V A = qa (↑), H A = qa /2 (→), K 截 面 的 ?K =_______, Q K =________,Q K 的 计 算 式 为 __________________________________。 q A B K αa a 4、图 示 结 构 中 , AD 杆上 B 截 面 的 内 力M B =______ ,____面 受 拉 。Q B ( 右 )= ______,N B ( 右 )= ________。

平面桁架结构matlab

桁架结构计算第四章P56 ******************************************************************************* function y=plane_truss_element_stiffness(E,A,L,theta) %平面桁架单元刚度 x=theta*pi/180; C=cos(x); S=sin(x); y=E*A/L*[ C*C C*S -C*C -C*S; C*S S*S -C*S -S*S; -C*C -C*S C*C C*S; -C*S -S*S C*S S*S];%平面桁架刚度矩阵 ******************************************************************************* function y=plane_truss_assemble(K,k,i,j) %平面桁架组装 K(2*i-1,2*i-1)=K(2*i-1,2*i-1)+k(1,1); K(2*i-1,2*i)=K(2*i-1,2*i)+k(1,2); K(2*i-1,2*j-1)=K(2*i-1,2*j-1)+k(1,3); K(2*i-1,2*j)=K(2*i-1,2*j)+k(1,4); K(2*i,2*i-1)=K(2*i,2*i-1)+k(2,1); K(2*i,2*i)=K(2*i,2*i)+k(2,2); K(2*i,2*j-1)=K(2*i,2*j-1)+k(2,3); K(2*i,2*j)=K(2*i,2*j)+k(2,4); K(2*j-1,2*i-1)=K(2*j-1,2*i-1)+k(3,1); K(2*j-1,2*i)=K(2*j-1,2*i)+k(3,2); K(2*j-1,2*j-1)=K(2*j-1,2*j-1)+k(3,3); K(2*j-1,2*j)=K(2*j-1,2*j)+k(3,4); K(2*j,2*i-1)=K(2*j,2*i-1)+k(4,1); K(2*j,2*i)=K(2*j,2*i)+k(4,2); K(2*j,2*j-1)=K(2*j,2*j-1)+k(4,3); K(2*j,2*j)=K(2*j,2*j)+k(4,4); y=K; ******************************************************************************* function y=plane_truss_element_force(E,A,L,theta,u)%力的表达式 x=theta*pi/180; C=cos(x); S=sin(x); y=E*A/L*[-C -S C S]*u; ******************************************************************************* function y=plane_truss_element_stress(E,L,theta,u) %应力表达式 x=theta*pi/180; C=cos(x); S=sin(x); y=E/L*[-C -S C S]*u; ***************************************************************************************************** *****************************************************************************************************

桁架单元例子MATLAB 1

no axial forces acting on the beam. Use two elements to solve the problem. (a) Determine the deflection and slope at x = 0.5, 1 and 1.5 m; (b) Draw the bending moment and shear force diagrams for the entire beam; (c) What are the support reactions? (d) Use the beam element shape functions to plot the deflected shape of the beam. Use EI = 1,000 Nm, L = 1 m, and F = 1,000 N. Solution: Solution: (a) Given, ?(?)=?(?)=?=1?; ??=1000??; ?=1000? For any element of length L, the structural stiffness matrix is defined as, ???=????? 126? ?126? 6?4?? ?6?2?? ?12?6? 12?6?6?2?? ?6?4?? ? The element stiffness matrix for element 1 is: ?(?) =????(?)???126?12664?62?12?612?6 62?64?=1000?126?126 64?62?12?612?662?64 ? The element stiffness matrix for element 2 is: Element 1 Element 2

结构力学论文

桥梁中不同结构的比较 班级:土木二班姓名:孙俊若学号:201300206104 设计桥梁可有多种结构形式选择:石料和混凝土梁式桥只能跨越小河;若以受压的拱圈代替受弯的梁,拱桥就能跨越大河和峡谷;若采用钢桁架可建造重载铁路大桥;若采用主承载结构受拉的斜拉桥和悬索桥,不仅轻巧美观,而且是跨越大江和海峡大跨度桥梁的优选形式。桥梁中不同结构有不同的优点和缺点,通过比较选择合理、经济的结构是我们应该研究的问题。下面阐述了一些结构形式的比较,以及改善的方法。 桁架桥的特点 桁架是由一些用直杆组成的三角形框构成的几何形状不变的结构物。杆件间的结合点称为节点(或结点)。根据组成桁架杆件的轴线和所受外力的分布情况,桁架可分为平面桁架和空间桁架。屋架或桥梁等空间结构是由一系列互相平行的平面桁架所组成。若它们主要承受的是平面载荷,可简化为平面桁架来计算。 桁架桥是桥梁的一种形式,一般多见于铁路和高速公路;分为上弦受力和下弦受力两种。桁架由上弦、下弦、腹杆组成;腹杆的形式又分为斜腹杆、直腹杆;由于杆件本身长细比较大,虽然杆件之间的连接可能是“固接”,但是实际杆端弯矩一般都很小,因此,设计分析时可以简化为“铰接”。简化计算时,杆件都是“二力杆”,承受压力或者拉力。 由于桥梁跨度都较大,而单榀的桁架“平面外”的刚度比较弱,

因此,“平面外”需要设置支撑。设计桥梁时,“平面外”一般也是设计成桁架形式,这样,桥梁就形成双向都有很好刚度的整体。 有些桥梁桥面设置在上弦,因此力主要通过上弦传递;也有的桥面设置在下弦,由于平面外刚度的要求,上弦之间仍需要连接以减少上弦平面外计算长度。 桁架的弦杆在跨中部分受力比较大,向支座方向逐步减小;而腹杆的受力主要在支座附件最大,在跨中部分腹杆的受力比较小,甚至有理论上的“零杆”。 不同简支梁式桁架的比较 不同形式的桁架,其内力分布情况和适用场合也各不同。简支梁式桁架分为平行弦桁架、折弦桁架、三角形桁架;在均布荷载作用下,简支梁的弯矩分布图形是抛物线形的,两边小中间大。 a、在平行弦桁架中,弦杆的力臂是一常数,故弦杆内力与弯矩的变化规律相同,即两端小中间大。竖杆内力与斜杆的竖向分力各等于相

基于MATLAB的桁架结构优化设计

基于MAT LAB 的桁架结构优化设计 林 琳 张云波 (华侨大学土木系福建泉州 362011) 【摘 要】 介绍了基于BP 神经网络的全局性结构近似分析方法,解决了结构优化设计问题中变量的非线性映射问题。在此基础上,利用改进的遗传算法,对桁架结构在满足应力约束条件下进行结构最轻优化设计。利用 Matlab 的神经网络工具箱,编程求解了三杆桁架优化问题。 【关键词】 改进遗传算法;BP 神经网络;结构优化设计;满应力准则 【中图分类号】 T U20114 【文献标识码】 A 【文章编号】 100126864(2003)01-0034-03 TRUSS STRUCTURA L OPTIMIZATON BASE D ON MAT LAB LI N Lin ZH ANG Y unbo (Dept.of Civil Engineering ,Huaqiao University ,Quanzhou ,362011) Abstract :Optimal structural design method based on BP neural netw ork and m odified genetic alg orithm were proposed in this paper.The high parallelism and non -linear mapping of BP neural netw ork ,an approach to the global structural approximation analysis was introduced.It can s olve the mapping of design variables in structural optimization problems.C ombining with an im proved genetic alg orithm ,the truss structure is optimized to satis fy the full stress criteria.Under the condition of MAT LAB 5.3,an exam ple of truss structure has been s olved by this method. K ey w ords :G enetic alg orithm ;BP neural netw ork ;Structural optimization design ;Full stress principle 结构优化设计,就是在满足结构的使用和安全要求的基础上,降低工程造价,更好地发挥投资效益。传统的优化方法有工程法和数学规划法,其难以解决离散变量问题,对多峰问题容易陷入局部最优,且对目标函数要求有较好的连续性或可微性。而近年来提出的基于生物自然选择与遗传机理的随机搜索遗传算法对所解的优化问题没有太多的数学要求,可以处理任意形式的目标函数和约束,对离散设计变量的优化问题尤为有效。进化算子的各态历经性使得遗传算法能够非常有效地进行概率意义下的全局搜索,能高效地寻找到全局最优点。但采用遗传算法时,进化的每一代种群成员必须要进行结构分析,因此所需的结构分析次数较多。 1 桁架结构优化设计问题的表述 在满足应力约束条件下的桁架重量最轻优化问题为: min w (A )=Σn i =1ρA i L i s.t 1 σi ≤[σi ] (i =1,2……n ) A min ≤A i ≤A max w (A )为结构总重量,ρ为材料密度,L i 为第i 杆的长度,A i 为第i 杆件面积,σi 为第i 杆的应力,[σi ]为第i 杆的许用 应力,A min 、A max 分别为杆件面积的下界与上界;n 为杆件总数。 2 神经网络结构近似分析方法 人工神经网络是由大量模拟生物神经元功能的简单处理单元相互连接而成的巨型复杂网络,它是一个具有高度非线 性的超大规模连续时间自适应信息处理系统,易处理复杂的非线性建模问题。文献[1]在K olm og orov 多层神经网络映射存在定理的基础上,针对近似结构分析问题提出的多层神经网络映射存在定理,确定了近似结构分析的神经网络的基本模型。从理论上证明一个三层神经网络可用来描述任一弹性结构的应力、位移等变量和结构设计变量之间的映射关系,为利用人工神经网络来进行结构近似分析提供理论基础。 211 BP 神经网络及其算法改进 BP 神经网络,即误差反向传播神经网络。其最主要的 特性就是具有非线性映射功能。1989年R obert Hecht -Niel 2 s on 证明了对于任何闭区间内的一个连续函数,都可用一个 隐含层的BP 网络来逼近。因而一个三层BP 网络可完成任意的n 维到m 维的映照,它由输入层、隐层和输出层构成。 传统的BP 网络存在着局部极小问题和收敛速度较慢的问题,因此本文采用了动量法和学习率自适应调整的策略,提高了学习速度并增加了算法的可靠性。 动量法考虑了以前时刻的梯度方向,降低了网络对误差曲面局部细节的敏感性,有效地抑制了网络陷于局部极小。 w (k +1)=w (k )+α[(1-η)D (k )+ηD (k -1)] α(k )=2λα(k -1)λ=stg n[D (k )D (k -1)] w (A )为权值向量,D (k )=- 5E 5w (k ) 为k 时刻的负梯度,D (k -1)为k -1时刻的负梯度,η为动量因子,α为学习率。 4 3 低 温 建 筑 技 术 2003年第1期(总第91期)

结构力学自测题3 三铰拱、桁架、组合结构内力计算

结构力学自测题3(第四\五章) 三铰拱、桁架、组合结构内力计算 姓名学号 一、是非题(将判断结果填入括弧:以O 表示 正确,以X 表示错误) 1、图示拱在荷载作用下, N DE为30kN 。() 2、在相同跨度及竖向荷载下,拱脚等高的三铰拱,其水平推力随矢高减小而减小。() 3、图示结构链杆轴力为2kN(拉)。() 2m2m 4、静定结构在荷载作用下产生的内力与杆件弹性常数、截面尺寸无关。() 5、图示桁架有:N1=N2=N3= 0。() a a a a 二、选择题(将选中答案的字母填入括弧内) 1、在径向均布荷载作用下,三铰拱的合理轴线为: A.圆弧线;B.抛物线; C.悬链线;D.正弦曲线。() 2、图示桁架C 杆的内力是: A. P ; B. -P/2 ; C. P/2 ; D. 0 。 ( 3、图示的轴力为: A. 2P; B. -2P C. 2P/2; D. -2P/2。( ) a a a a a a 4、图示结构N DE( 拉)为: A. 70kN ; B. 80kN ; C. 75kN ; D. 64kN 。() 4m4m4m4m 三、填充题(将答案写在空格内) 1、图示带拉杆拱中拉杆 的轴力N a= 。 2、图,矢高为4m ,在D 点作 用力 偶M = 80kN·m,M D左=_______,M D右=________。 8m4m4m 3、图示半圆三铰拱,α为30°,V A= qa (↑), H A= qa/2 (→),K 截面的?K=_______, Q K=________,Q K的计算式 为__________________________________。 q A B K α a a 4、图示结构中,AD 杆上B 截面的内力M B=______ , ____面受拉。Q B(右)= ______,N B(右)= ________。 P d d 2 5、图示结构CD杆的内力为______。 a a a a a 6、三铰拱在竖向荷载作用下,其支座反力与三个 铰的位置__________ 关 , 与拱轴形状 _____________ 关。 7 、图示结构固定支座的竖向反力V A = 。 8、图示结构1 杆的轴力和K截面弯矩为: N 1 =, M K= ( 内侧受拉为 正)。 1m m m m m q=1 1m1m1m 9、图示三铰拱的水平推力H = 。 5m 10、图示结构中,FE N=,FD N=。 a a a a

matlab 桁架结构

% NPOIN NELEM NVFIX NFPOIN NFPRES % 总结点数,单元数, 约束个数, 受力结点数, 非结点力数 % COORD LNODS YOUNG % 结构节点坐标数组, 单元定义数组, 弹性模量 % FPOIN FPRES FORCE FIXED % 结点力数组,非结点力数组,总体荷载向量, 约束信息数组 % HK DISP % 总体刚度矩阵,结点位移向量 %************************************************** format short e %设定输出类型 clear %清除内存变量 FP1=fopen('6-6.txt','rt') %打开初始数据文件 %读入控制数据 NELEM=fscanf(FP1,'%d',1); %单元数 NPOIN=fscanf(FP1,'%d',1); %结点数 NVFIX=fscanf(FP1,'%d',1); %约束数 NFPOIN=fscanf(FP1,'%d',1); %荷载结点数 YOUNG=fscanf(FP1,'%f',1); %弹性模量 % 读取结构信息 LNODS=fscanf(FP1,'%f',[3,NELEM])' % 单元定义:左、右结点号,面积(共计NELEM组)COORD=fscanf(FP1,'%f',[2,NPOIN])' % 坐标:x,y坐标(共计NPOIN 组) FPOIN=fscanf(FP1,'%f',[3,NFPOIN])' % 节点力(共计NFPOIN 组):结点号、X方向力(向右正), Y方向力(向上正), FIXED=fscanf(FP1,'%f',NVFIX)' % 约束信息:约束对应的位移编码(共计NVFIX 组) %--------------------------------------------------------- HK=zeros(2*NPOIN,2*NPOIN); % 张成总刚矩阵并清零FORCE=zeros(2*NPOIN,1); % 张成总荷载向量并清零 %形成总刚 for i=1:NELEM % 对单元个数循环 % 生成局部单刚(局部坐标) 右手坐标系 EK=ele_EK(i,LNODS,COORD,YOUNG); T=zbzh(i,LNODS,COORD); % 坐标转换矩阵 EKT=T'*EK*T; % 生成整体单刚(整体坐标系) % 组成总刚按2*2子块加入总刚中(共计4块) for j=1:2 %对行进行循环---按结点号循环 N1=LNODS(i,j)*2; % j结点第2个位移的整体编码 for k=1:2 %对列进行循环---按结点号循环 N2=LNODS(i,k)*2; % k结点第2个位移的整体编码 HK((N1-1):N1,(N2-1):N2)=HK((N1-1):N1,(N2-1):N2)... +EKT(j*2-1:j*2,k*2-1:k*2); end end end % 由结点力生成总荷载向量列阵 for i=1:NFPOIN % 对结点荷载个数进行循环 N1=FPOIN(i,1); % 作用荷载的结点号 N1=N1*2-2; % 该结点号对应第一个位移编码- 1 for j=1:2 FORCE(N1+j)=FORCE(N1+j)+FPOIN(i,j+1);%取结点荷载end end % 总刚、总荷载进行边界条件处理 for j=1:NVFIX % 对约束个数进行循环 N1=FIXED(j); HK(1:2*NPOIN,N1)=0; HK(N1,1:2*NPOIN)=0; HK(N1,N1)=1; % 将零位移约束对应的行、列变成零,主元变成1 FORCE(N1)=0; end %--------------------------------------------------------- DISP=HK\FORCE % 方程求解,HK先求逆再与力向量左乘 %--------------------------------------------------------- % 求结构各个单元内力 EDISP=zeros(4,1); % 单元位移列向量清零 for i=1:NELEM % 对单元个数进行循环 for j=1:2 %对杆端循环 % i单元左右端结点号*2 = 该结点的最后一个位移编码 N1=LNODS(i,j)*2; % 取一端的单元位移列向量 EDISP(2*j-1:2*j)=DISP(N1-1:N1); end % 生成局部单刚(局部坐标) 右手坐标系 EK=ele_EK(i,LNODS,COORD,YOUNG); T=zbzh(i,LNODS,COORD); % 坐标转换矩阵 FE=EK*T*EDISP; %计算局部坐标杆端力(由结点位移产生) FE % 打印杆端力 end%------------------------------------------------------------------------------- ele_EK.m % 计算单元刚度矩阵函数EK % 入口参数:单元号、单元信息数组、结点坐标、弹性模量 % 出口参数:局部单元刚度矩阵EK function EK=ele_EK(i,LNODS,COORD,E)

相关文档
最新文档