作业调度实例(全部代码)

作业调度实例(全部代码)
作业调度实例(全部代码)

源代码:

#include

#include

#include

#define getpch(type) (type*)malloc(sizeof(type))

#define NULL 0

int n;

float T1=0,T2=0;

int times=0;

struct jcb //作业控制块

{

char name[10]; //作业名

int reachtime; //作业到达时间

int starttime; //作业开始时间

int needtime; //作业需要运行的时间

float super; //作业的响应比

int finishtime; //作业完成时间

float cycletime; //作业周转时间

float cltime; //作业带权周转时间

char state; //作业状态

struct jcb *next; //结构体指针

}*ready=NULL,*p,*q;

typedef struct jcb JCB;

void inize() //初始化界面

{

printf("\n\n\t\t*********************************************\t\t\n"); printf("\t\t\t\t单道批处理作业调度系统\n");

printf("\t\t*********************************************\t\t\n"); printf("\n\n\n\t\t\t\t\t09软件+电子商务2班\n");

printf("\t\t\t\t\t\t黄才旺\n\n");

printf("\n\n\n\t\t请按任意键进入主菜单:");

getch();

}

void inital() //建立作业控制块队列,先将其排成先来先服务的模式队列{

int i;

printf("\n输入作业数:");

scanf("%d",&n);

for(i=0;i

{

p=getpch(JCB);

printf("\n输入作业名:");

scanf("%s",p->name);

getch();

p->reachtime=i;

printf("作业默认到达时间:%d",i);

printf("\n输入作业需运行时间:");

scanf("%d",&p->needtime);

p->state='W';

p->next=NULL;

if(ready==NULL) ready=q=p;

else{

q->next=p;

q=p;

}

}

}

void disp(JCB* q,int m) //显示作业运行后的周转时间及带权周转时间等{

if(m==3) //显示高响应比算法调度作业后的运行情况 {

printf("\n作业%s正在运行,估计其运行情况:\n",q->name);

printf("\n 开始运行时刻 \t 完成时刻 \t 周转时间 \t 带权周转时间 \t相应比 \n");

printf(" %d \t",q->starttime);

printf(" %d \t",q->finishtime);

printf(" %f \t",q->cycletime);

printf(" %f\t",q->cltime);

printf(" %f\n",q->super);

getch();

}

else // 显示先来先服务,最短作业优先算法调度后作业的运行情况

{

printf("\n作业%s正在运行,估计其运行情况:\n",q->name);

printf("\n 开始运行时刻 \t 完成时刻 \t 周转时间 \t 带权周转时间 \n");

printf(" %d \t",q->starttime);

printf(" %d \t",q->finishtime);

printf(" %f \t",q->cycletime);

printf(" %f\t",q->cltime);

getch();

}

}

void running(JCB *p,int m) //运行作业

{

if(p==ready) //先将要运行的作业从队列中分离出来

{

ready=p->next;

p->next=NULL;

}

else

{

q=ready;

while(q->next!=p) q=q->next;

q->next=p->next;

}

p->starttime=times;//计算作业运行后的完成时间,周转时间等等 p->state='R';

p->finishtime=p->starttime+p->needtime;

p->cycletime=(float)(p->finishtime-p->reachtime);

p->cltime=(float)(p->cycletime/p->needtime);

T1+=p->cycletime;

T2+=p->cltime;

disp(p,m); //调用disp()函数,显示作业运行情况 times+=p->needtime;

p->state='F';

printf("\n%s 作业已完成!\n请按任意键继续...\n",p->name);

free(p); //释放运行后的作业

getch();

}

void super() //计算队列中作业的高响应比

{

JCB *padv;

padv=ready;

do{

if(padv->state=='W'&&padv->reachtime<=times)

padv->super=(float)(times-padv->reachtime+padv->needtime)/padv->n eedtime;

padv=padv->next;

}while(padv!=NULL);

}

void final() //最后打印作业的平均周转时间,平均带权周转时间{

float s,t;

t=T1/n;

s=T2/n;

getch();

printf("\n\n作业已经全部完成!");

printf("\n%d个作业的平均周转时间是:%f",n,t);

printf("\n%d个作业的平均带权周转时间是:%f\n\n\n",n,s);

}

void hrn(int m) //高响应比算法

{

JCB *min;

int i,iden;

system("cls");

inital();

for(i=0;i

{

p=min=ready;iden=1;

super();

do{

if(p->state=='W'&&p->reachtime<=times)

if(iden)

{

min=p;iden=0;

}

else if(p->super>min->super) min=p; p=p->next;

}while(p!=NULL);

if(iden)

{

i--;times++;

if(times>1000)

{printf("\nruntime is too long...error...");getch();} }

else

{

running(min,m); //调用running()函数 }

} //for

final(); //调用running()函数

}

void sjf(int m) // 最短作业优先算法

{

JCB *min;

int i,iden;

system("cls");

inital();

for(i=0;i

{

p=min=ready;iden=1;

do{

if(p->state=='W'&&p->reachtime<=times)

if(iden){

min=p;iden=0;

}

else if(p->needtimeneedtime) min=p;

p=p->next;

}while(p!=NULL) ;

if(iden) {

i--;

times++;

if(times>100){printf("\nruntime is too long...error");getch();} }

else{

running(min,m); //调用running()函数

}

} //for

final(); //调用running()函数

}

void fcfs(int m) //先来先服务算法

{

int i,iden;

system("cls");

inital();

for(i=0;i

{

p=ready;iden=1;

do{

if(p->state=='W'&&p->reachtime<=times) iden=0;

if(iden)p=p->next;

}while(p!=NULL&&iden) ;

if(iden)

{

i--;

printf("\n没有满足要求的进程,需等待");

times++;

if(times>100){printf("\n时间过长");getch();}

}

else{

running(p,m); //调用running()函数

}

}

final(); //调用running()函数

}

void mune()

{

int m;

system("cls");

printf("\n\n\t\t*********************************************\t\t\n"); printf("\t\t\t\t作业调度主菜单\n");

printf("\t\t*********************************************\t\t\n");

printf("\n\n\n\t\t\t1.先来先服务算法");

printf("\n\t\t\t2.最短作业优先算法");

printf("\n\t\t\t3.响应比高者优先算法");

printf("\n\t\t\t0.退出程序");

printf("\n\n\t\t\t\t选择算法:");

scanf("%d",&m);

switch(m)

{

case 1:

fcfs(m);

getch();

system("cls");

mune();

break;

case 2:

sjf(m);

getch();

system("cls");

mune();

break;

case 3:

hrn(m);

getch();

system("cls");

mune();

break;

case 0:

system("cls");

break;

default:

printf("选择错误,重新选择.");

getch();

system("cls");

mune();

}

}

main() //主函数

{

inize();

mune();

}

选择1进入“先来先服务算法”作业调度:

选择2进入“最短作业优先算法”作业调度:

选择3进入“响应比高者优先算法”作业调度:

进程调度程序设计报告(源代码)资料

课程设计报告 题 目 进程调度程序设计 课 程 名 称 操作系统课程设计 院 部 名 称 计算机工程学院 专 业 计算机科学与技术 班 级 13计算机科学与技术(单)(1) 学 生 姓 名 周敏健 学 号 1305201013 课程设计地点 A104 课程设计学时 20学时 指 导 教 师 何 健 金陵科技学院教务处制 成绩

目录 摘要 (3) 一、课程设计的目的和要求 (4) 二、系统需求分析 (4) 三、总体设计 (5) 四、详细设计 (6) 五、测试、调试过程 (9) 六、结论与体会 (11) 七、参考文献 (12) 附录:源程序 (12)

课程设计课题 进程调度程序设计 摘要 在多道系统中,对批处理作业需要进行作业调度。作业调度是在资源满足的条件下,将处于就绪状态的作业调入内存,同时生成与作业相对应的进程,并未这些进程提供所需要的资源。进程调度需要根据进程控制块(PCB)中的信息,检查系统是否满足进程的资源需求。只有在满足进程的资源需求的情况下,系统才能进行进程调度。下面是几种常见的作业调度算法:先来先服务(FCFS)、优先算法、轮换算法、短作业优先算法以及最高响应比优先法等,本文将对前两种算法进行详细的介绍。 关键词:进程调度,优先级,FCFS,PCB,作业,资源

一、课程设计的目的和要求 1、目的 进程调度是处理机管理的核心内容。本设计要求用C语言编写和调试一个简单的进程调度程序。通过设计本可以加深理解有关进程控制块、进程队列的概念,并体会和了解最高优先数优先的调度算法(即把处理机分配给优先数最高的进程)和先来先服务算法的具体实施办法。 2、要求 1)进程调度算法:采用最高优先数优先的调度算法(即把处理机分配给优先数最高的进程)和先来先服务算法。 2)每个进程有一个进程控制块(PCB)表示。进程控制块可以包含如下信息:进程名、优先数、到达时间、需要运行时间、已用CPU时间、进程状态等等。 3)进程的优先数及需要的运行时间可以事先人为地指定(也可以由随机数产生)。进程的到达时间为进程输入的时间。进程的运行时间以时间片为单位进行计算。 4)每个进程的状态可以是就绪W(Wait)、运行R(Run)、或完成F(Finish)三种状态之一。 5)就绪进程获得CPU后都只能运行一个时间片。用已占用CPU时间加1来表示。如果运行一个时间片后,进程的已占用CPU时间已达到所需要的运行时间,则撤消该进程,如果运行一个时间片后进程的已占用CPU时间还未达所需要的运行时间,也就是进程还需要继续运行,此时应将进程的优先数减1(即降低一级),然后把它插入就绪队列等待CPU。 6)每进行一次调度程序都打印一次运行进程、就绪队列、以及各个进程的PCB,以便进行检查。 7)重复以上过程,直到所要进程都完成为止。 二、系统需求分析 编写一个模拟进程调度的程序,将每个进程抽象成一个进程控制块PCB,PCB 用一个结构体描述。 采用两种不同的调度算法来实现功能,主要有如下几大功能模块组成。 (1)创建优先数PCB模块

实验二--单处理器系统的进程调度

实验二单处理器系统的进程调度 (附实验报告) 1.实验目的 加深对进程概念的理解,明确进程和程序的区别; 深入了解系统如何组织进程、创建进程; 进一步认识如何实现处理器调度。 2.实验预备知识 进程的概念; 进程的组织方式; 进程的创建; 进程的调度。 3.实验内容

编写程序完成单处理机系统中的进程调度,要求采用时间片轮转调度算法。实验具体包括:首先确定进程控制块的内容,进程控制块的组成方式;然后完成进程创建原语和进程调度原语;最后编写主函数对所作工作进程测试。 4.提示与讲解 这个实验主要要考虑三个问题:如何组织进程、如何创建进程和如何实现处理器调度。 考虑如何组织进程,首先就要设定进程控制块的内容。进程控制块PCB 记录各个进程执行时的情况。不同的操作系统,进程控制块记录的信息内容不一样。操作系统功能越强,软件也越庞大,进程控制块记录的内容也就越多。这里的实验只使用了必不可少的信息。一般操作系统中,无论进程控制块中信息量多少,信息都可以大致分为以下四类: ①标识信息 每个进程都要有一个惟一的标识符,用来标识进程的存在和区别于其他进程。这个标识符是必不可少的,可以用符号或编号实现,它必须是操作系统分配的。在后面给出的参考程序中,采用编号方式,也就是为每个进程依次分配一个不相同的正整数。 ②说明信息

用于记录进程的基本情况,例如进程的状态、等待原因、进程程序存放位置、进程数据存放位置等等。实验中,因为进程没有数据和程序,仅使用进程控制块模拟进程,所以这部分内容仅包括进程状态。 ③现场信息 现场信息记录各个寄存器的内容。当进程由于某种原因让出处理器时,需要将现场信息记录在进程控制块中,当进行进程调度时,从选中进程的进程控制块中读取现场信息进行现场恢复。现场信息就是处理器的相关寄存器内容,包括通用寄存器、程序计数器和程序状态字寄存器等。在实验中,可选取几个寄存器作为代表。用大写的全局变量AX、BX、CX、DX模拟通用寄存器、大写的全局变量PC模拟程序计数器、大写的全局变量PSW模拟程序状态字寄存器。 ④管理信息 管理信息记录进程管理和调度的信息。例如进程优先数、进程队列指针等。实验中,仅包括队列指针。 因此可将进程控制块结构定义如下: struct pcb {int name; int status;

处理器调度习题

处理器调度 选择题 当CPU执行操作系统代码时,则处理机处于( )。 A.执行态 B.目态 C.管态 D.就绪态 ( )是机器指令的扩充,是硬件的首次延伸,是加在硬件上的第一层软件。 A.系统调用 B.操作系统 C.内核 D.特权指令 操作系统提供给程序员的接口是( )。 A.进程 B.系统调用 C.库函数 D.B和C 用户程序向系统提出使用外设的请求方式是( )。 A.作业申请 B.原语 C.系统调用 D.I/O指令 当作业正常完成进入完成状态时,操作系统( )。 A.将输出该作业的结果并删除内存中的作业 B.将收回该作业的所占资源并输出结果 C.将收回该作业的所占资源及输出结果,并删除该作业 D.将收回该作业的所占资源及输出结果,并将它的控制块从当前的队列中删除 下列选项是关于作业和进程关系的描述,其中哪一个是不正确的( )。 A.作业的概念主要用在批处理系统中,而进程的概念则用在几乎所有的OS中。 B.作业是比进程低一级的概念。 C.一个作业至少由一个进程组成。 D.作业是用户向计算机提交任务的实体,而进程是完成用户任务的执行实体以及向系统申请分配资源的基本单位。 作业从后备作业到被调度程序选中的时间称为( )。 周转时间B.响应时间C.等待调度时间D.运行时间 设有三个作业J1,J2,J3,它们同时到达,运行时间分别为T1,T2,T3,且T1≤T2≤T3,若它们在一台处理机上按单道运行,采用短作业优先算法,则平均周转时间为( )。 A.T1+T2+T3 B.1/3(T1+T2+T3) C.T1+2/3T2+1/3T3 D.T1+1/3T2+2/3T3 从作业提交给系统到作业完成的时间间隔称为作业的( )。 A.中断时间 B.等待时间 C.周转时间 D.响应时间 设有四个作业同时到达,每个作业执行时间均为2 h,它们在一台处理机上按单道方式运行,则平均周转时间为( )。 A.1 h B.5 h C.2.5 h D.8 h FCFS调度算法有利于( )。 A.长作业和CPU繁忙型作业 B.长作业和I/O繁忙型作业 C.短作业和CPU繁忙型作业 D.短作业和I/O繁忙型作业 下列哪种说法不是SJ(P)F调度算法的缺点( )。 A.对于长作业(进程)不利 B.未考虑作业(进程)的紧迫程度 C.不能有效降低作业(进程)的平均等待时间 D.由于根据的是用户提供的估计执行时间,因此不一定真正做到短而优先。 选择排队进程中等待时间最长的进程被优先调度,该调度算法是( )。 A.先来先服务调度算法B.短进程优先调度算法 C.优先权调度算法D.高响应比优先调度算法 在采用动态优先权的优先权调度算法中,如果所有进程都具有相同优先权初值,则此时的优先权调度算法实际上和( )相同。

3-2 作业调度算法

第二讲作业调度算法主讲教师:张新彩

3.2 作业调度算法 3.2.1 先来先服务算法 3.2.2 短作业 / 进程优先算法 3.2.3 优先级调度算法 3.2.4 高响应比优先调度算法

3.2.1 先来先服务算法 ?适用于作业调度 ?从后备作业队列中选择一个或多个最先进入的作业,将 它们调入内存,为它们分配资源、创建进程,然后放入 就绪队列。 ?适用于进程调度 ?从就绪进程队列中选择一个最先进入的进程,为之分配 处理机,使之投入运行;直到运行完成或阻塞,才会让 出处理机。

3.2.1 先来先服务算法 4 平均周转时间为(4+6+10+11+14)/5=9 作业A 、B 、C 、D 、E 分别在0、1、2、3、4时刻到达,需要的服务时间分别为4、3、5、2、4。请用先来先服务算法计算它们的完成时间、周转时间、带权周转时间和平均周转时间。 作业 名 到达 时间 服务 时间 开始执 行时间 完成 时间 周转 时间 带权周 转时间 A 4 B 1 3 C 2 5 D 3 2 E 4 4 4 7 12 14 1 2 2 5.5 0 4 7 12 4 6 10 11 18 3.5 14 14 简单易实现,有利于长作业,不利于短作业

3.2.2 短作业 / 进程优先算法 ?短作业优先(SJF) ?从后备队列中选择一个或多个估计运行时间最短的作业 调入内存。 ?短进程优先(SPF) ?从就绪队列中选出一个估计运行时间最短的进程,将处 理机分配给它,使它立即执行。

3.2.2 短作业 / 进程优先算法 6 平均周转时间为(4+3+8+9+16)/5=8 作业 名 到达 时间 服务 时间 开始执 行时间 完成 时间 周转 时间 带权周 转时间 作业A 、B 、C 、D 、E 分别在0、1、2、3、4时刻到达,需要的服务时间分别为4、3、5、2、4。请用短作业优先算法计算它们的完成时间、周转时间、带权周转时间和平均周转时间。 4 1 0 4 6 1. 5 4 3 9 8/3 6 8 13 9/4 9 9 18 16/5 13 16 D 3 2 B 1 3 E 4 4 C 2 5 A 0 4

处理器调度习题教学内容

处理器调度习题

处理器调度 选择题 ?当CPU执行操作系统代码时,则处理机处于( )。 ?A.执行态 B.目态 C.管态 D.就绪态 ?( )是机器指令的扩充,是硬件的首次延伸,是加在硬件上的第一层软件。 ?A.系统调用 B.操作系统 C.内核 D.特权指令 ?操作系统提供给程序员的接口是( )。 ?A.进程 B.系统调用 C.库函数 D.B和C ?用户程序向系统提出使用外设的请求方式是( )。 ?A.作业申请 B.原语 C.系统调用 D.I/O指令 ?当作业正常完成进入完成状态时,操作系统( )。 ?A.将输出该作业的结果并删除内存中的作业 ?B.将收回该作业的所占资源并输出结果 ?C.将收回该作业的所占资源及输出结果,并删除该作业 ?D.将收回该作业的所占资源及输出结果,并将它的控制块从当前的队列中删除 ?下列选项是关于作业和进程关系的描述,其中哪一个是不正确的( )。 ?A.作业的概念主要用在批处理系统中,而进程的概念则用在几乎所有的OS中。 ?B.作业是比进程低一级的概念。 ?C.一个作业至少由一个进程组成。 ?D.作业是用户向计算机提交任务的实体,而进程是完成用户任务的执行实体以及向系统申请分配资源的基本单位。 ?作业从后备作业到被调度程序选中的时间称为( )。 ?周转时间B.响应时间C.等待调度时间D.运行时间 ?设有三个作业J1,J2,J3,它们同时到达,运行时间分别为T1,T2,T3,且T1≤T2≤T3,若它们在一台处理机上按单道运行,采用短作业优先算法,则平均周转时间为( )。 ?A.T1+T2+T3 B.1/3(T1+T2+T3) ?C.T1+2/3T2+1/3T3 D.T1+1/3T2+2/3T3 ?从作业提交给系统到作业完成的时间间隔称为作业的( )。 ?A.中断时间 B.等待时间 C.周转时间 D.响应时间 ?设有四个作业同时到达,每个作业执行时间均为2 h,它们在一台处理机上按单道方式运行,则平均周转时间为( )。 ?A.1 h B.5 h C.2.5 h D.8 h ?FCFS调度算法有利于( )。 ?A.长作业和CPU繁忙型作业 B.长作业和I/O繁忙型作业 ?C.短作业和CPU繁忙型作业 D.短作业和I/O繁忙型作业 ?下列哪种说法不是SJ(P)F调度算法的缺点( )。 ?A.对于长作业(进程)不利 ?B.未考虑作业(进程)的紧迫程度 ?C.不能有效降低作业(进程)的平均等待时间 ?D.由于根据的是用户提供的估计执行时间,因此不一定真正做到短而优先。 ?选择排队进程中等待时间最长的进程被优先调度,该调度算法是( )。 ?A.先来先服务调度算法B.短进程优先调度算法 ?C.优先权调度算法D.高响应比优先调度算法 ?在采用动态优先权的优先权调度算法中,如果所有进程都具有相同优先权初值,则此时的优先权调度算法实际上和( )相同。 ?A.先来先服务调度算法B.短进程优先调度算法

调度命令用语

一、封锁、开通区间及向封锁区间开行救援(路用)列车 l._站至_站间_行线,因_,自_时_分(_次列车到_站)起,至_时_分(到另有通知时)止,区间封锁。 ⒉准_站开_次列车,进入_站至_站封锁区间_km_m至_km_m处,区间限速_km/h,返回开_次,凭引导(手)信号进站,限_时_分到站。 二、开通封锁区间 ⒈根据_报告,_站至_站间__行线_完毕(_次列车已到达_站),自_时_分起开通区间。 ⒉_次列车在_站至_站间_km_m至_km_m处,限速_km/h运行。 三、临时变更或恢复原行车闭塞法及反方向行车 1._站至_站间_行线因_,自_时_分(_次列车到_站)起基本闭塞法停用,改用电话闭塞法行车。 2.准_次列车在_站至_站间利用_行线反方向运行,_次列车到_站后,恢复基本闭塞法行车。 四、恢复原行车闭塞法 _站至_站间_行线自接令时(_次列车到_站)起,恢复基本闭塞法行车。 五、双线改单线行车 _站至_站间_行线因_,自_时_分(_次列车到_站)起区间封锁,_站至_站间改按单线行车,基本闭塞法停用,改用电话闭塞法行车。 六、恢复双线行车 根据_报告,_站至_站间_行线_完毕(_次列车已到达_站),自_时_分起区间开通,同时恢复_站至_站间基本闭塞法及双线行车。 七、变更列车经路 准_次列车由原_径路,改经_运行。 八、列车在区间内停车或返回 1.自接令时(_次列车到_站)起,_站至_站间基本闭塞法停用,改用电话闭塞法行车。_站开_次列车去_站至_站间_行线_km_m处,返回_次,限_时_分到_站,凭引导(手)信号进站,到后恢复基本闭塞法行车。 2._站开_次列车去_站至_站间_行线_km_m至km_m处,限_时_分到_站。3.自接令时(_次列车到_站)起,_站至_站间_行线基本闭塞法停用,改用电话闭塞法行车。准_站开_次列车反方向运行到_站至_站间_行线_km_m至_km_m;返回__次,限_时_分到_站,凭引导(手)信号进站,到后恢复基本闭塞法行车。 九、临时由区间内返回后部补机的列车 自接令时(_次列车到_站)起,_站至_站间_行线基本闭塞法停用,改用电话闭塞法行车。_次列车补机加补到_公里_米处,折返_次返回_站,凭引导(手)信号进站,列车到达_站及补机返回_站后,该线恢复基本闭塞法行车。 十、发生行车设备故障、灾害或列车中挂有限速的机车、车辆等,需要使列车临时减速运行,一停再开或特别注意运行 1.因_站至_站间_行线_km_m至km_m处,_次列车运行至该处需一停再开,限速_km/h运行。 2._次列车在_站挂有_辆(台),_站至_站间限速_km/h运行。 十一、半自动闭塞区段使用故障按钮 1.根据_站请求,现查明_站至_站间_行线区间空闲,准_站使用故障按钮办理闭塞机复原。

实验21 进程调度

实验2、1 进程调度 一、 实验目的 多道程序设计中,经常就是若干个进程同时处于就绪状态,必须依照某种策略来决定那个进程优先占有处理机。因而引起进程调度。本实验模拟在单处理机情况下的处理机调度问题,加深对进程调度的理解。 二、 实验要求 1. 设计进程调度算法,进程数不定 2. 包含几种调度算法,并加以实现 3. 输出进程的调度过程——进程的状态、链表等。 三、 参考例 1.题目——优先权法、轮转法 简化假设 1) 进程为计算型的(无I/O) 2) 进程状态:ready 、running 、finish 3) 进程需要的CPU 时间以时间片为单位确定 2.算法描述 1) 优先权法——动态优先权 当前运行进程用完时间片后,其优先权减去一个常数。 2) 轮转法 四、 实验流程图 开始 键盘输入进程数n,与调度方法的选择 优先权法? 轮转法 产生n 个进程,对每个进程产生一个PCB,并用随机数产生进程的优先权及进程所需的CPU 时间 按优先权大小,把n 个进程拉成一个就绪队列 撤销进程就绪队列为空? 结束 N Y Y

注意: 1.产生的各种随机数的取值范围加以限制,如所需的CPU 时间限制在1~20之间。 2.进程数n 不要太大通常取4~8个 3.使用动态数据结构 4.独立编程 5.至少三种调度算法 6.若有可能请在图形方式下,将PCB 的调度用图形成动画显示。 五.实验过程: (1)输入:进程流文件(1、txt),其中存储的就是一系列要执行的进程, 每个作业包括四个数据项: 进程名 进程状态(1就绪 2等待 3运行) 所需时间 优先数(0级最高) 进程0 1 50 2 进程1 2 10 4 进程2 1 15 0 进程3 3 28 5 进程4 2 19 1 进程5 3 8 7 输出: 进程执行流等待时间,平均等待时间 本程序包括:FIFO 算法,优先数调度算法,时间片轮转调度算法 产生n 个进程, 的时间片数,已占用CPU 的时间片数置为0 按进程产生的先后次序拉成就绪队列链 =0? 撤销该进程 就绪队列为空不? =轮转时间片数? N Y Y Y 结束 N

调度命令管理模块维护手册

调度命令管理模块 维护手册 卡斯柯信号有限公司 2010年3月5日

目录 1概述 (3) 2系统维护说明 (4) 2.1 安装说明 (4) 2.1.1 一键完成运行环境的安装 (4) 2.1.2 ORACLE 客户端的安装 (6) 2.1.3 调度命令管理系统的安装 (10) 2.2 启动参数的配置 (13) 2.3 调度命令号范围设置 (14) 2.4 调度命令模板的配置 (16) 2.5 “根据施工标记自动生成调度命令”的模板的制做 (19) 2.6 调度台与命令模板关联功能的配置 (22) 2.7 数据字典的配置 (25) 3常见故障及处理方法 (26) 3.1 数据库故障 (26) 3.2 网络通信中断 (27) 3.3 启动时出现错误提示 (27) 3.4 列控初始化出错 (28) 3.5 程序一启动就出错 (29) 3.6 日志系统 (30) 3.7 Unicomm.ocx 返回值的含义 (30)

1 概述 《调度命令管理模块》是FZk_CTC 分散自律调度集中系统中重要的一部分,负责调度命令的生成、发送、签收、打印、查询等一系列操作。提供了方便的操作模式和强大功能。为了尽量减少操作人员的工作量,采用了数据字典选项方式来解决大部分的字段输入,在命令正文方面也提供了方便、可分级的命令内容模板以及常用词汇的选填功能,以不同的色彩区分用户输入的内容,大大方便了操作人员的使用。 本系统的良好运行,要求正确配置网络环境,以及正确安装后台数据库服务器。 本系统与原有版本的CTC 的各子系统之间通过原有的通信协议进行通信,可以良好地兼容原有的CTC 版本。具体的子系统之间协作关系如下: 调度命令管理终端 (XXX 台)通信服务器CommSvr 通信前置机BaseLevel 数据库服务器DB2或是Oracle 车务终端STPC 调度命令管理终端(值班主任台)调度命令管理终端(XX 邻台) 车务终端STPC 车务终端STPC TD 结合通信机分界口通信机 TMIS 计划台 外局邻台或其它厂商邻台 与车站间的通信 通过接口机完成与其它系统的通信 本局内各调度台 间的通信

实验二

进程调度 (1)目的和要求 进程调度是处理机管理的核心内容。本实验要求用C语言编写和调试一个简单的进程调度程序。通过本实验可以加深理解有关进程控制块、进程队列的概念,并体会和了解优先数和时间片轮转调度算法的具体实施办法。 (2)实验内容 1) 设计进程进程控制块PCB表结构,分别适用于优先数调度算法和循环轮转调度算法。 PCB结构通常包括以下信息:进程名,进程优先数(或轮转时间片),进程所占用的CPU时间,进程的状态,当前队列指针等。根据调度算法的不同,PCB结构的内容可以作适当的增删。 2) 建立进程就绪队列。对两种不同算法编制入链子程序。 3) 编制两种进程调度算法: 1)优先度调度; 2)循环轮转调度。 (3)实验环境 1) P4 2) windows系统 3) VC++语言 (4)实验提示 1) 本程序用两种算法对五个进程进行调度,每个进程可有三个状态,并假设初始状态为就绪状态。 2) 为了便于处理,程序中的运行时间以时间片为单位计算,各进程的优先数或轮转时间数以及进程需要运行的时间片数的初值均由用户给定。 3) 在优先数算法中,初始优先数为50-NEEDTIME,进程每执行一次,优先数减3,CPU时间片数加1,进程还需要的时间片数减1,在轮转算法中,采用固定时间片,时间片数为2,进程每执行1次,CPU时间片数加2,进程还需要的时间数减2,并排列到就绪队列的尾上。 (5)实验运行结果 优先数算法TYPE THE ALGORITHM:(PRIORITY/ROUNDROBIN) PRIORITY

INPUT NAME AND NEEDTIME A1 2 A2 3 A3 4 A4 2 A5 4 OUTPUT OF PRIORITY: NAME CPUTIME NEEDTIME PRIORITY STATE … … … … … NAME CPUTIME NEEDTIME PRIORITY STATE … … … … … 时间片轮转算法TYPE THE ALGORITHM:(PRIORITY/ROUNDROBIN) ROUNDROBIN INPUT NAME AND NEEDTIME A1 3 A2 2 A3 4 A4 2 A5 1 OUTPUT OF ROUNDROBIN: NAME CPUTIME NEEDTIME COUNT ROUND STATE … … … … … … NAME CPUTIME NEEDTIME COUNT ROUND STATE … … … … … …

操作系统实验 FCFS和短作业优先SJF调度算法模拟

. 题目先来先服务FCFS和短作业优先SJF进程调度算法 姓名: 学号: 专业: 学院: 指导教师:林若宁 二零一八年十一月

一、实验目的 模拟单处理器系统的进程调度,分别采用短作业优先和先来先服务的进程调度算法作为进程设计算法,以加深对进程的概念及进程调度算法的理解. 二、实验内容 1. 短作业优先调度算法原理 短作业优先调度算法,是指对短作业或断进程优先调度的算法。它们可以分别可以用于作业调度和进程调度。短作业优先调度算法,是从后备队列中选择一个或若干个运行时间最短的作业,将它们调入内存运行。短进程优先调度算法,是从就绪队列中选出一个估计运行时间最短的进程,将处理机分配给它使它立即执行并一直执行到完成,或发生某事件而被阻塞放弃处理机时再重新调度。 2. 先来先服务调度算法原理 先来先服务(FCFS)调度算法是一种最简单的调度算法,该算法既可用于作业调度,也可用于进程调度。当在作业调度中采用该算法时,每次调度都是从后备作业队列中选择一个或多个最先进入该队列的作业,将它们调入内存,为它们分配资源、创建进程,然后放入就绪队列。在进程调度中采用FCFS算法时,则每次调度是从就绪队列中选择一个最先进入该队列的进程,为之分配处理机,使之投入运行。该进程一直运行到完成或发生某事件而阻塞后才放弃处理机。 三、程序设计 1.概要设计 程序包括主函数、FCFS算法函数、SJF算法函数、输出函数;主函数流程:输入文件中的数据—显示各进程数据—选择算法—调用相应算法的函数—输出结果 2.算法流程

SJF算法流程图:

3.详细设计 (1)定义一个结构体 typedef struct PCB { char job_id[10]; //作业ID float Arr_time; //到达时刻 float Fun_time; //估计运行时间 float Wait_time; //等待时间 float Start_time; //开始时刻 float Fin_time; //完成时刻 float Tur_time; //周转时间 float WTur_time; //带权周转时间 int Order; //优先标记 }list; (2)先来先服务算法函数 void fcfs(list *p,int count) //先来先服务算法{ list temp; //临时结构体变量int i; int j;

调度命令规范格式

调度命令规范格式 一、发布行车调度命令的原则1.指挥列车运行的命令和口头指示,只能由列车调 度员发布。旅客列车的加开、停运、折返、变更径路及车辆甩挂的命令,经铁道部、铁路局客运调度分别报告值班处长、值班主任同意签字后,由客运调度员发布。 2.调度命令发布前,应详细了解现场情况,听取有关人员的意见,书写命令内容、 受令处所必须正确、完整、清晰。 3.采用计算机发布调度命令时,必须严格遵守一拟、二签(按规定需领导、值班主 任签发)、三下达、四确认签收的发布程序。受令人必须认真核对命令内容并及时签收。 4.采用电话发布调度命令时,必须严格遵守一拟、二签(按规定需领导、值班主任 签发)、三发布、四复诵核对、五下达命令号码和时间的发布程序办理。发布、接收调度命令时,应填记《调度命令登记簿》(《技规》附件七),并记明发收人员姓名及时刻。 5.铁路局列车调度员发布行车命令,要一事一令,不得填写其他内容。遇有不正确 的文字不准涂改,应圈掉后重新书写。使用常用行车调度命令用语(见附件2)时,不用字句圈掉,不用项圈掉项号。已发布的调度命令,遇有错、漏时,必须取消前发命令,重新发布。 6.铁道部发布的常用行车调度命令用语未涉及的项目,铁路局确需发布行车调度命令,由铁路局制定调度命令用语。 7.设有双线双向闭塞设备的区间且作用良好,需要连续反方向行车时,可一次发布 调度命令。 8.不准以月度施工方案代替施工调度命令。施工主管部门(单位)要将次日施工计划,提前上报施工调度员。施工调度员应提前向行车有关单位发布施工计划调度命令,发布施工计划调度命令,不准夹带与受令处所无关的内容和命令。实际施工调度命令由列车调度员发布。 9.施工封锁或开通的调度命令,列车调度员必须得到车站值班员的请求(ctc区段 无车站值班员的车站,由施工单位负责人请求)后,方可发布。 10.发布有关线路、道岔限速的调度命令,必须注明起止里程(包括站内线别、道 岔号码)及时间。发布事故救援命令、月度施工计划或施工电报涉及限速的有关线路、道岔必须注明里程。 11.指定时间段内的维修作业,车站值班员在维修作业完毕销记后应立即报告列车 调度员,列车调度员不再发布维修作业结束恢复行车的命令。如需延长作业时间须列车调度员发布调度命令批准。

操作系统的进程调度 实验报告

《计算机操作系统2》实验报告 实验一题目:操作系统的进程调度 姓名:学号:12125807 实验日期:2014.12 实验要求: 1.设计一个有n个进程工行的进程调度程序。每个进程由一个进程控制块(PCB)表示。 进程控制块通常应包含下述信息:进程名、进程优先数、进程需要运行的时间、占用CPU的时间以及进程的状态等,且可按调度算法的不同而增删。 2.调度程序应包含2~3种不同的调度算法,运行时可任意选一种,以利于各种算法的分 析比较。 3.系统应能显示或打印各进程状态和参数的变化情况,便于观察诸进程的调度过程 实验目的: 1.进程是操作系统最重要的概念之一,进程调度又是操作系统核心的主要内容。本实习要 求学生独立地用高级语言编写和调试一个简单的进程调度程序。调度算法可任意选择或自行设计。例如,简单轮转法和优先数法等。本实习可加深对于进程调度和各种调度算法的理解。 实验内容: 1.编制和调试示例给出的进程调度程序,并使其投入运行。 2.自行设计或改写一个进程调度程序,在相应机器上调试和运行该程序,其功能应该不亚 于示例。 3.直观地评测各种调度算法的性能。 示例: 1.题目 本程序可选用优先数法或简单轮转法对五个进程进行调度。每个进程处于运行R(run)、就绪W(wait)和完成F(finish)三种状态之一,并假设起始状态都是就绪状态W。为了便于处理,程序进程的运行时间以时间片为单位计算。各进程的优先数或轮转时间片数、以及进程需要运行的时间片数,均由伪随机数发生器产生。 进程控制块结构如下:

PCB 进程标识数 链指针 优先数/轮转时间片数 占用CPU时间片数 进程所需时间片数 进程状态 进程控制块链结构如下: 其中:RUN—当前运行进程指针; HEAD—进程就绪链链首指针; TAID—进程就绪链链尾指针。 2.算法与框图 (1) 优先数法。 进程就绪链按优先数大小从高到低排列,链首进程首先投入运行。每过一个时间片,运行进程所需运行的时间片数减1,说明它已运行了一个时间片,优先数也减3,理由是该进程如果在一个时间片中完成不了,优先级应该降低一级。接着比较现行进程和就绪链链首进程的优先数,如果仍是现行进程高或者相同,就让现行进程继续进行,否则,调度就绪链链首进程投入运行。原运行进程再按其优先数大小插入就绪链,且改变它们对应的进程状态,直至所有进程都运行完各自的时间片数。 (2) 简单轮转法。 进程就绪链按各进程进入的先后次序排列,进程每次占用处理机的轮转时间按其重要程度登入进程控制块中的轮转时间片数记录项(相当于优先数法的优先数记录项位置)。每过一个时间片,运行进程占用处理机的时间片数加1,然后比较占用处理机的时间片数是否与该进程的轮转时间片数相等,若相等说明已到达轮转时间,应将现运行进程排到就绪链末尾,调度链首进程占用处理机,且改变它们的进程状态,直至所有进程完成各自的时间片。(3) 程序框图如下图所示。

进程调度算法实验报告

操作系统实验报告(二) 实验题目:进程调度算法 实验环境:C++ 实验目的:编程模拟实现几种常见的进程调度算法,通过对几组进程分别使用不同的调度算法,计算进程的平均周转时间和平均带权周转时间,比较 各种算法的性能优劣。 实验内容:编程实现如下算法: 1.先来先服务算法; 2.短进程优先算法; 3.时间片轮转调度算法。 设计分析: 程序流程图: 1.先来先服务算法 开始 初始化PCB,输入进程信息 各进程按先来先到的顺序进入就绪队列 结束 就绪队列? 运行 运行进程所需CPU时间 取消该进程 2.短进程优先算法

3.时间片轮转调度算法 实验代码: 1.先来先服务算法 #include #define n 20 typedef struct { int id; //进程名

int atime; //进程到达时间 int runtime; //进程运行时间 }fcs; void main() { int amount,i,j,diao,huan; fcs f[n]; cout<<"请输入进程个数:"<>amount; for(i=0;i>f[i].id; cin>>f[i].atime; cin>>f[i].runtime; } for(i=0;if[j+1].atime) {diao=f[j].atime; f[j].atime=f[j+1].atime; f[j+1].atime=diao; huan=f[j].id; f[j].id=f[j+1].id; f[j+1].id=huan; } } } for(i=0;i #define n 5 #define num 5 #define max 65535 typedef struct pro { int PRO_ID; int arrive_time;

各类作业调度算法

实验二作业调度实验 一. 目的要求: 用高级语言编写和调试一个或多个作业调度的模拟程序,以加深对作业调度算法的理解。 二. 例题:为单道批处理系统设计一个作业调度程序。 由于在单道批处理系统中,作业一投入运行,它就占有计算机的一切资源直到作业完成为止,因此调度作业时不必考虑它所需要的资源是否得到满足,它所占用的 CPU时限等因素。 作业调度算法:采用先来先服务(FCFS)调度算法,即按作业提交的先后次序进行调度。总是首先调度在系统中等待时间最长的作业。 每个作业由一个作业控制块JCB表示,JCB可以包含如下信息:作业名、提交时间、所需的运行时间、所需的资源、作业状态、链指针等等。 作业的状态可以是等待W(Wait)、运行R(Run)和完成F(Finish)三种状态之一。每个作业的最初状态总是等待W。 各个等待的作业按照提交时刻的先后次序排队,总是首先调度等待队列中队首的作业。 每个作业完成后要打印该作业的开始运行时刻、完成时刻、周转时间和带权周转时间,这一组作业完成后要计算并打印这组作业的平均周转时间、带权平均周转时间。 调度算法的流程图如下图所示。

三 . 实习题: 1、编写并调试一个单道处理系统的作业等待模拟程序。 作业等待算法:分别采用先来先服务(FCFS),最短作业优先(SJF)、响应比高者优先(HRN)的调度算法。 对每种调度算法都要求打印每个作业开始运行时刻、完成时刻、周转时间、带权周转时间,以及这组作业的平均周转时间及带权平均周转时间,以比较各种算法的优缺点。 2、编写并调度一个多道程序系统的作业调度模拟程序。

作业调度算法:采用基于先来先服务的调度算法。可以参考课本中的方法进行设计。 对于多道程序系统,要假定系统中具有的各种资源及数量、调度作业时必须考虑到每个作业的资源要求。 3、编写并调试一个多道程序系统的作业调度模拟程序。 作业调度算法:采用基于优先级的作业调度。 可以参考课本中的例子自行设计。 三 . 实验过程: 1、编写并调试一个单道处理系统的作业等待模拟程序。 先来先服务(FCFS): main.cpp: /* **先来先服作业调度算法模拟 */ #include #include #define MAX_SOURCE 1000 //资源总数(对于单通道的作业调度可以忽略系统资源问题) using namespace std; struct jobCB { string name; double subtime;//提交时间 double runtime;//运行时间 double source;//资源 char state;//进程状态 struct jobCB *next; //链指针 }*ready,*rail,*p; int length; double maxsource; double now_source; double allTi;//总周转时间 double allWi;//总带权周转时间 double time;//时钟 void init()

调度命令模板及受令处所113

常用行车调度命令用语 一、封锁及开通区间 1.封锁区间(1)受令处所:区间两端站(2)格式用语: 站至站间行线因,自接令时(次列车到站)起(至时分止),区间封锁。 2.开通封锁区间(1)受令处所:区间两端站(2)格式用语: 根据站报告,站至站间行线完毕,区间已空闲,自接令时起区间开通。 二、向封锁区间开行救援列车 3.救援列车(救援队)出动(1)受令处所:救援列车(救援队)(2)格式用语 因站至站间行线(站)发生事故,救援列车(救援队)立即出动。 4.救援列车开行(1)受令处所:沿途各站、救援列车司机(2)格式用语: 站至站间加开次列车, 站时分开,按现时分办理。 5.向封锁区间开行救援列车(1)受令处所:两端站、救援列车司机(2)格式用语: 准许站开次列车,进入站至站间行线封锁区间 km m处进行事故救援,将次列车返回开次列车至站(按事故救援指挥人的指挥办理)。 6.救援单机开行(1)受令处所:两端站、救援单机司机(2)格式用语: 自接令时起,站至站间行线区间封锁。准许站利用机车开行次列车进入 km m处救援,将次列车返回开次列车牵引至站。 7.列车分部运行(1)受令处所:两端站、救援单机司机(2)格式用语: 根据站报告,次列车因,自接令时起站至站间行线区间封锁。

准许站利用机车开行次列车进入封锁区间 km m处挂取遗留车辆,将次列车返回开次列车至站。 三、临时变更行车闭塞法或恢复原行车闭塞法 8.停用基本闭塞法,改用电话闭塞法(1)受令处所:两端站、列车司机、运转车长(2)格式用语: 因,自接令时( 次列车到站)起,站至站间行线停用基本闭塞法,改用电话闭塞法行车。 9.恢复原行车闭塞法(1)受令处所:两端站(2)格式用语: 自接令时(次列车到站)起,站至站间行线,恢复基本闭塞法行车。 10.双线反方向行车(未设双线双向闭塞设备或双线双向闭塞设备故障)(1)受令处所:两端站、列车司机、运转车长(2)格式用语: 自接令时( 次列车到站)起,站至站间行线停用基本闭塞法,改用电话闭塞法行车。准许次列车在站至站间利用行线反方向运行, 次列车到站后,恢复行线基本闭塞法行车。 11.双线改单线行车(未设双线双向闭塞设备或双线双向闭塞设备故障)(1)受令处所:两端站、列车司机、运转车长(2)格式用语: 因 ,自接令时( 次列车到站)起,站至站间行线停用基本闭塞法,改用电话闭塞法,按单线行车。 12.恢复双线行车(未设双线双向闭塞设备或双线双向闭塞设备故障)(1)受令处所:两端站(2)格式用语: 自接令时(次列车到站后)起,恢复站至站行线基本闭塞法,站至站间恢复双线行车。 13.列车反方向进入区间并运行至前方站(未设双线双向闭塞设备或双线双向闭塞设备故障)或自动、半自动闭塞发出由区间返回的列车(1)受令处所:两端站、列车司机、运转车长(2)格式用语:

实验一 单处理器系统进程调度(正确)

实验一单处理器系统进程调度 一、实验目的 1.加深对进程概念的理解,明确进程和程序的区别。 2.深入了解系统如何组织进程、创建进程。 3.进一步认识如何实现处理器调度。 二、实验预备知识 1.进程的概念。 2.进程的组织方式。 3.进程的创建。 4.进程的调度。 三、实验内容 编写程序完成单处理机系统中的进程调度,要求采取用时间片轮转调度算法。试验具体包括:首先确定进程控制块的内容,进程控制块的组成方式;然后完成进程创建、调度原语;最后编写主函数对所做工作进行测试。 四、提示 这个实验主要要考虑三个问题:如何组织进程、如何创建进程和如何实现处理器调度。 考虑如何组织进程,首先就要设定进程控制块的内容。进程控制块PCB,记录各个进程执时的情况。不同的操作系统,进程控制块记录的信息内容不_样。操作系统功能越强,软件也越庞大,进程控制块记录的内容也就越多。这里的实验只使用了必不可少~信息。一般操作系统中,无论进程控制块中信息量多少,信息都可以大致分为以下四类: (1)标识信息 每个进程都要有一个惟一的标识符,用来标识进程的存在和区别于其他进程。这个标识符是必不可少的,可以用符号或编号实现,它必须是操作系统分配的。在后面给出的参考程序中,采用编号方式,也就是为每个进程依次分配一个不相同的正整数。 (2)说明信息 用于记录进程的基本情况,例如进程的状态、等待原因、进程程序存放位置、进程数据存放位置等等。实验中,因为进程没有数据和程序,仅使用进程控制块模拟进程,。所以这部分内容仅包括进程状态。 {int head; int tail; }ready;//定义指向就绪队列的头指针head和尾指针tail int pfree;//定义指向空闲进程控制块队列的指针 进程创建是一个原语,因此在实验中应该用一个函数实现,进程创建的过程应该包括: (1)申请进程控制块:进程控制块的数量是有限的,如果没有空闲进程控制块,则进程 不能创建,如果申请成功才可以执行第二步; (2)申请资源:除了进程控制块外,还需要有必要的资源才能创建进程,如果申请资 源不成功,则不能创建进程,并且归还已申请的进程控制块:如果申请成功,则执行第三步,实验无法申请资源,所以模拟进程忽略了申请资源这一步 (3)填写进程控制块:将该进程信息写入进程控制块内,实验中只有进程标识符、进 程状态可以填写,每个进程现场信息中的寄存器内容由于没有具体数据而使用进程(模拟进程创建时,需输入进程标识符字,进程标识符本应系统建立,并且是惟一一的,输入时注

处理器调度习题

处理器调度 选择题 ?当CPU执行操作系统代码时,则处理机处于( )。 ?A.执行态B.目态C.管态D.就绪态 ?( )是机器指令的扩充,是硬件的首次延伸,是加在硬件上的第一层软件。 ?A.系统调用B.操作系统C.内核D.特权指令 ?操作系统提供给程序员的接口是( )。 ?A.进程B.系统调用C.库函数D.B和C ?用户程序向系统提出使用外设的请求方式是( )。 ?A.作业申请B.原语C.系统调用D.I/O指令 ?当作业正常完成进入完成状态时,操作系统( )。 ?A.将输出该作业的结果并删除内存中的作业 ?B.将收回该作业的所占资源并输出结果 ?C.将收回该作业的所占资源及输出结果,并删除该作业 ?D.将收回该作业的所占资源及输出结果,并将它的控制块从当前的队列中删除 ?下列选项是关于作业和进程关系的描述,其中哪一个是不正确的( )。 ?A.作业的概念主要用在批处理系统中,而进程的概念则用在几乎所有的OS中。 ?B.作业是比进程低一级的概念。 ?C.一个作业至少由一个进程组成。 ?D.作业是用户向计算机提交任务的实体,而进程是完成用户任务的执行实体以及向系统申请分配资源的基本单位。 ?作业从后备作业到被调度程序选中的时间称为( )。 ?周转时间B.响应时间C.等待调度时间D.运行时间 ?设有三个作业J1,J2,J3,它们同时到达,运行时间分别为T1,T2,T3,且T1≤T2≤T3,若它们在一台处理机上按单道运行,采用短作业优先算法,则平均周转时间为( )。 ?A.T1+T2+T3 B.1/3(T1+T2+T3) ?C.T1+2/3T2+1/3T3 D.T1+1/3T2+2/3T3 ?从作业提交给系统到作业完成的时间间隔称为作业的( )。 ?A.中断时间B.等待时间C.周转时间D.响应时间 ?设有四个作业同时到达,每个作业执行时间均为2 h,它们在一台处理机上按单道方式运行,则平均周转时间为( )。 ?A.1 h B.5 h C.2.5 h D.8 h ?FCFS调度算法有利于( )。 ?A.长作业和CPU繁忙型作业B.长作业和I/O繁忙型作业 ?C.短作业和CPU繁忙型作业D.短作业和I/O繁忙型作业 ?下列哪种说法不是SJ(P)F调度算法的缺点( )。 ?A.对于长作业(进程)不利 ?B.未考虑作业(进程)的紧迫程度 ?C.不能有效降低作业(进程)的平均等待时间 ?D.由于根据的是用户提供的估计执行时间,因此不一定真正做到短而优先。 ?选择排队进程中等待时间最长的进程被优先调度,该调度算法是( )。 ?A.先来先服务调度算法B.短进程优先调度算法 ?C.优先权调度算法D.高响应比优先调度算法 ?在采用动态优先权的优先权调度算法中,如果所有进程都具有相同优先权初值,则此时的优先权调度算法实际上和( )相同。 ?A.先来先服务调度算法B.短进程优先调度算法 ?C.时间片轮转调度算法D.长进程优先调度算法

相关文档
最新文档