矩阵理论中的矩阵分析的实际应用论文

矩阵理论中的矩阵分析的实际应用论文
矩阵理论中的矩阵分析的实际应用论文

矩阵分析在同步捕获性能研究新应用

摘要:该文提出了一种利用概率转移矩阵计算捕获传输函数的方法,通过将以往分析方法中的流程图转换为概率转移矩阵,仅需知道一步转移概率矩阵,利用现代计算机编程语言(如MAPLE,MATLAB等)的符号运算功能,即可得到捕获系统的传输函数:通过对传输函数求导,可计算平均捕获时间。矩阵分析方法可完整地计算出捕获系统的传输函数,可弥补流程图方法在分析传统连续搜索捕获方案的传输函数时所忽略的项;可纠正流程图方法在分

析非连续搜索捕获方案的传输函数时所引起的误差。

关键词:CDMA;矩阵分析;传输函数;流程图;捕获

A Novel Acquisition Performance Evaluation Approach Based on Matrix Analysis

Abstract:A novel acquisition performance analysis approach is proposed based on matrix analysis.Given the first step transition probability matrix,the transfer function of acquisition system can be obtained by utilizing the symbol operation function of computer programming such as MAPLE,MATLAB and so on,and the mean acquisition time can be computed by differentiating the transfer function.The transfer function of acquisition system can be computed perfectly by matrix analysis,it not only complements the items neglected in that of conventional serial acquisition scheme but also corrects the error items in that of nonconsecutive acquisition scheme.

Key words:CDMA;Matrix analysis ;Transfer function;Flow diagram ;Acquisition

1 引言

同步是直接序列扩频码分多址(DS- CDMA1)系统接收的第一步,因为数据解调只能在同步成功后进行。码同步通常分为两步:捕获和跟踪。捕获是将接收到的PN码相位与本地PN码相位对应到跟踪误差范围内的过程。跟踪则将信号锁定到最准确的相位。文献[1]表明捕获会限制系统容量并严重影响DS CDMA系统接收机的性能。

通常将码周期中的不确定时区离散化,称为不确定相位区。捕获即是通过对不确定相位区中的有限相位进行搜索探测来完成的。在不确定相位区中,同相相位称为H1相位,其他相位称为H0相位。目前大部分文献所考虑的平均捕获时间(MAT)均基于只有一个日相位的假设。在实际的PN码捕获系统中,由于搜索步进值通常小于PN码的切普周期,而衰落延迟扩展大于码片(chip)周期,因此通常在不确定相位中存在多个且相位。早在1977年,Holmes和Chen首先提出用流程图方法分析串行捕获问题,这是因为固定驻留时间的串行搜索过程具有马尔可夫链的性能。但其提出的流程图很复杂不易于推广。Polydoros和Weber[2]分析了在静态信道中串行搜索方案的平均捕获时间性能,其中不确定相位被一个相位一个相位地连续探测,通过用转换域简化流程图,从而简化了平均捕获时间的分析方法。Ibrahi和Aghvami将其推广到了频率选择性瑞利衰落信道中,传统的一个相位一个相位连续探测的串行捕获方案不适合于存在多个H1相位的频率

选择性衰落信道中的捕获系统(事实上实际捕获系统正是如此),因此Shin 和Lee 提出了一种非连续搜索方案,该方案通过以非连续的搜索顺序及大于一个切普的搜索阶来减少搜索时间。非连续搜索方案可通过搜索阶进行描述:

假定有 q 个不确定相位待探测 ,定义集合U 为U={l ,2,…,q}。搜索阶可描述为集合U 上的转换函数π,所有可能的搜索阶为

}1)1(,:|{=→=πππU U p 。

将搜索阶描述成转换函数,必须是双向单射,如果椭映射不等于硼 U 接收机可能在搜索过程中漏掉某些正确相位。搜索阶已被大量的文献所应用,传统的串行搜索(CSS)可认为搜索阶为l ,固定搜索步进串行搜索 (FSSS)可认为搜索阶为常数。通常搜索阶会影响MAT 性能,给定一个可通过流程图方法评估MAT [5]。在 已有的对捕获传输函数的分析中,均假定有一个日相位或多个连续的旦相位,采用流程图方法,对具有常数搜索阶的捕获方案,需详细分析各个状态间的传递关系,过程繁复且易出错,尤其是在多个连续且相位的条件下。在实际的信道环境中,多个且相位未必都连续,对此种信 道条件下的捕获传输函数的分析将更为复杂f 就作者所知,目前尚未有文献对此进行分析1。若利用矩阵分析方法,则所有的关于捕获传输函数的分析将非常简便,根据矩阵的 收敛特性及级数求和特性仅需知道系统的一步转移概率 矩阵,用现代计算机编程语言MATLAB 的符号运算功能,即可得到捕获系统的传输函数,再对传输函数求导,从而计算平均捕获时间。

2 流程图分析方法

假定共有q个待测相位,其中V个H1相位,q-v个相位,通过对连续搜索(即搜索阶为1)捕获方案的流程图进行分析,得到传输函数式(1):当v=l,2时,式(1)即为传统的1个H1相位连续搜索方案[2].当v>2时,即为多个H1相位连续搜索方案[3]。

式(1)

其中Z为单位延迟

P 为第j个相位的漏警概率PlFA为相位的虚警概率,为虚警情况下的惩罚因子。假定共有q个待测相位,其中V个相位,q-v个相位,搜索阶为V,通过对非连续搜索(即搜索阶为大于1的常数1捕获方案的流程图进行分析,得到传输函数式(2)。

式(2)

其中下标中的((·))是模v运算,H0(Z) ,H M(Z),H DJ和H MJ与式(1)中定义相同,

[ q]表示取q的整数部分。

3 矩阵分析方法

首先给出几个矩阵收敛的定理[4].

定理1 n阶矩阵A 的k次幂趋于零的充分必要条件是A的一切特征值iλ的模小于1。

定理2 方阵级数I+ A+A2+…+A K+…收敛的充分必要条件是A 的k

次幂趋于零且有,其中A0=I

根据第2部分中的分析,可得出一步转移矩阵如式(3)所示。当π时,即为连续搜索捕获方案的一步转移矩阵当刀为大于1的常数=

1

时,即为非连续搜索捕获方案的一步转移矩阵。

式(3)

假定A的特征值为λ,对式(3)进行运算后,计算行列式

根据式(1)中对H0(Z) ,H M(Z)的定义,当Z=1时,H0=1,H M

进行计算(可利用计算机编程语言MATLAB 快速方便地进行运算1。

B 中的前V 列即为从不同起始相位j(j=1,2,…,v)进行搜索到达第j(j=l,2,…)个相位的概率。假定在各个相位进入搜索过程的概率为P i( 1,2,…,q),则捕获系统的传输函数可通过式(4)计算得到。

式(4)

矩阵方法是一种通用的分析捕获传输函数的方法,给定搜索阶(不同的搜索方式可用不同的搜索阶来描述),即可通过设置不同的初始矩阵来计算捕获方案的传输函数。利用矩阵方法不仅可方便地计算目前已有的利用流程图方法分析的捕获传输函数,而且可方便地计算流程图方法难以分析的一些情况,如:当V个H1相位不连续时,利用流程图很难分析其传输函数;当初始相位概率P ( 1,2,…,q)不均匀时,利用流程图难以描述其表达式,因此难以计算平均捕获时间等。4比较分析

流程图方法与矩阵方法的步骤比较如表1所示。

表1

在已有的对连续搜索捕获方案的流程图分析中,将多个H1相位视为一个H1相位,得到式(1),该式忽略了起始相位从其他H1相位(从第2个到第V个)开始进行搜索,到达所有H1相位的情况。H1相位越多,误差越大。用矩阵分析方法则可避免这个误差。

在非连续搜索捕获方案中,利用流程图方法得到式(2)的结果,流程图的分析非常复杂,且在分组时,由于搜索阶的存在,所分组中的研相位顺序是反序的,例举如下:假定共有5个待测相位,前两个为研相位,其他为相位,根据矩阵分析方法计算得传输函数为

式(5)

式(6)

由式(5)和式(6)可见,由于在分组过程中,将H1相位反序排列(即将第V个相位当作第1个H1相位,第v-1个H1相位当作第2个H1相位,如此类推,因此用流程图方法和矩阵分析方法所得结果不一致。当多径强度系数为零时,所有路径的漏警概率及探测概率相同,H1相位反序对系统性能无影响;但当多径强度系数不为零时,由于各条路径的漏警概率及探测概率不同,H1相位反序会影响系统性能。

5 结束语

论文提出了一种利用概率转移矩阵计算捕获传输函数的方法,通过将以往分析方法中的流程图转换为概率转移矩阵,根据矩阵收敛及级数求和特性,仅需知道一步转移概率矩阵,即可得到捕获系统的传输函数。矩阵操作可利用现代计算机编程语言MATLAB的符号运算功能来实现,方便快捷,最后对传输函数求导,从而计算平均捕获时

间。

矩阵分析方法可完整地计算出捕获系统的传输函数,分析表明,在传统的连续搜索捕获方案中,流程图分析方法忽略了起始相位从其他H1相位到达所有H1相位的项,当H1相位数目越多,误差就越大,利用矩阵分析方法可得到完整的传输函数,与实际情况更为接近;在非连续搜索捕获方案中,流程图分析方法在分组时将H1相位反序,当多径强度系数不为零时,会引起误差,利用矩阵分析方法不需作复杂的流程分析即可得到准确的结果。本文分析比较了流程图方法与矩阵方法的步骤,指出利用矩阵方法不仅可方便地计算目前已有的利用流程图方法。

参考文献

[1] Madhow U and Pursley M B.Acquisition in direct sequence spread-spectrum communication networks:An asymptotic analysis,IEEE Trans.on Inform.Theory,1993,39(3):903—913.

[2] Polydoros A and Weber C L.A unified approach to serial search spread -spectrum code acquisition-- Parts I and Ⅱ.IEEE Trans.on Commun.,1984,COM一32(5):542—561.

[3] signals in multipath fading mobile channels.IEEE Tran~ on Vehicular Technology,2001,50(2):617—628.Polydoros A an d Simon M.Generalized serial search code ac quisition:The equivalent circular state diagram approach.IEEE Trans.on Commun.,1984,COM一32(12):1260—1268.

[4] Horn R A an d Johnson C R.Matrix Analysis,Cam bridge:Cam bridge University Press.1985,Chapter 7.

[5] spread -spectrum code acquisition in freq uency-selective Rayleigh fading channels.IEEE Trans.on Commun.,2001,49(4):734-743.Yang Lie-Lian g an d Han zo L.Serial ac quisition of DS—CDMA

[6]王永茂矩阵分析机械工业出版社2005.8

分块矩阵的应用论文

分块矩阵的应用 引言 矩阵作为数学工具之一有其重要的实用价值,它常见于很多学科中,如:线性代数、线性规划、统计分析,以及组合数学等,在实际生活中,很多问题都可以借用矩阵抽象出来进行表述并进行运算,如在各循环赛中常用的赛格表格等,矩阵的概念和性质相对矩阵的运算较容易理解和掌握,对于矩阵的运算和应用,则有很多的问题值得我们去研究,其中当矩阵的行数和列数都相当大时,矩阵的计算和证明中会是很烦琐的过程,因此这时我们得有一个新的矩阵处理工具,来使这些问题得到更好的解释,矩阵分块的思想由此产生矩阵分块,就是把一个大矩阵看成是由一些小矩阵组成的?就如矩阵的元素(数)一样,特别是在运算中,把这些小矩阵当作数一样来处理.把矩阵分块运算有许多方便之处因为在分块之后,矩阵间的相互关系可以看得更清楚,在实际操作中与其他方法相比,- 般来说,不仅非常简洁,而且方法也很统一,具有较大的优越性,是在处理级数较高的矩阵时常用的方法?比如,从行列式的性质出发,可以推导出分块矩阵的若干性质,并可以利用这些性质在行列式计算和证明中的应用分块矩阵;也可以借助分块矩阵的初等变换求逆矩阵及矩阵的秩等;再如利用分块矩阵求高阶行列式,如设A、C都是n阶矩阵, A B 其中A 0,并且AC CA,则可求得AD BC ;分块矩阵也可以在求解线性 C D 方程组应用? 本文将通过对分块矩阵性质的研究,比较系统的总结讨论分块矩阵在计算和证明方面的应用,从而确认分块矩阵为处理很多代数问题带来很大的便利

1 分块矩阵的定义及相关运算性质 1.1 分块矩阵的定义 矩阵分块 , 就是把一个大矩阵看成是由一些小矩阵组成的 . 就如矩阵的元素 ( 数) 一 样,特别是在运算中 , 把这些小矩阵当作数一样来处理 . 定义1设A 是一个m n 矩阵,若用若干横线条将它分成r 块,再用若干纵线条将它 A 11 ... 分成s 块,于是有rs 块的分块矩阵,即A .... A r1 . 1.2 分块矩阵的相关运算性质 1. 2.1 加法 A A ij r s , B B ij r s , 其中 A ij , B ij 的级数相同, A B A ij B ij r s 1.2.2 数乘 kA 1.2.3 乘法 1.2.4 转置 A A ji s r 1.2.5 分块矩阵的初等变换 分块矩阵A 的下列三种变换称为初等行变换: A 1s ... ,其中 A ij 表示的是一个矩阵 . A rs 设 A a ij B mn b ij m n ,用同样的方法对 A,B 进行分块 设是任 A a ij mn A ij r s ,k 为任意数, 定义分块矩阵 A A ij r s 与 k 的数乘为 设 A a ij ,B sn n m 分块为 A A ij nm r l ,B B ij l r ,其中 A ij 是 s i n j 矩阵, B ij 是 n i m j 矩阵, 定义分块矩阵A A j rl 和B B ij l r 的乘积为 r C ij A i1 B 1j A i2 B 2j ... A il B lj , i 1,2,...t; j 1,2,3,..., l a ij s n 分块为 A sn A ij r s ,定义分块矩阵 A A ij r s 的转置为 rs

数据分析论文

成绩评定表 课程设计任务书

摘要 汇率是在商品交易和货币运动越出国界时产生的,是一国货币价值在国际的又一表现。因为一国货币汇率受制于经济、政治、军事和心理等因素的影响,这些因素彼此之间既相互联系又相互制约,而且在不同时间,各因素产生作用的强度也会出现交替变化,所以很难准确地找出究竟哪些因素影响着一国货币汇率的变化,在开放经济中,汇率是一种重要的资源配置价格。汇率的失衡或错估,不仅会破坏经济的外部平衡,而且会给国内宏观经济稳定和经济可持续增长带来一系列不利影响。 另外,汇率的变化还能对人们的日常生活和企业的生产销售生产较大的影响。所以,对影响汇率的因素进行分析和探讨,对于指导汇率政策的制定、预测汇率变化趋势、优化投资策略,以及研究与汇率有关的生活消费等问题都有重要的应用价值。spss在经济、管理、医学及心理学等方面的研究起着很重要的作用,在我国的国民经济问题中,增加农民收入是我国扩大内需的关键,通过运用SPSS分析方法对我国人民币及其影响因素的相关分析以便能够更好地了解我国的汇率的情况。 关键词:spss;汇率;影响因素;回归

目录 1问题分析 (1) 2数据来源 (1) 3数据定义 (2) 4数据输入 (2) 5变量的标准化处理 (2) 5.1描述性分析选入变量及参数设置 (2) 5.2描述性分析 (2) 5.3描述性分析结果输出 (2) 6.1描述性分析选入变量及参数设置 (3) 6.2线性回归分析 (4) 7进一步的分析和应用 (11) 总结 (14) 参考文献 (14)

汇率影响因素分析 1问题分析 汇率是在商品交易和货币运动越出国界时产生的,是一国货币价值在国际上的又一表现。因为一国货币汇率受制于经济、政治、军事和心理等因素的影响,这些因素彼此之间既相互联系又相互制约,而且在不同时间,各种因素产生作用的强度也会出现交替变化,所以很准确地找出究竟哪些因素影响着一国货币汇率的变化。 在开放经济中,汇率是一种重要的资源配置价格。汇率的失衡或错估,不仅会破坏经济的外部平衡,而且会给国内宏观经济稳定和经济可持续增长带来一系列不利影响。另外,汇率的变化还能对人们的日常生活和企业的生产销售产生较大的影响。所以,对影响汇率的因素进行分析和探讨,对于指导汇率政策的制定、预测汇率变化趋势、优化投资策略,以及研究与汇率有关的生产消费等问题都有重要的应用价值。 2数据来源 所用数据参考自“人民币汇率研究”(陈瑨,CENET网刊,2005)、“汇率决定模型与中国汇率总分析”(孙煜,复旦大学<经济学人>,2004)和“人民币汇率的影响因素与走势分析”(徐晨,对外经济贸易大学硕士论文,2002),其中通货膨胀率、一年期名义利率、美元利率和汇率4个指标的数据来自于<中国统计年鉴>(2001,中国统计出版社);2000年的部分数据来自于国家统计局官方网站。

线性代数结课论文

华北水利水电大学 线性代数发展简史 课程名称:线性代数 专业班级: 成员组成:姓名 学号 联系方式: 年月日

摘要:一次方程也叫线性方程,讨论线性方程及线性运算的代数就是线性代数,它是高等代数的一大分支,同时也是大学数学教育中一门主要基础课程。线性代数的主要内容有行列式、矩阵、向量、线性方程组、线性空间、线性变换、欧式空间和二次型等。 关键词:线性代数行列式矩阵向量线性方程组二次型群论 正文: 1.引言:线性代数是大学数学教育中一门主要基础课程,对于培养面向21世纪人才起着重要作用。通过了解线性代数的发展简史可以让我们更好地理解数学,从而更好地学习并应用它。 2.1 行列式 我们知道,在线性代数中最重要的内容之一就是行列式,它不仅是一种语言和速记,而且他的大多数生动的概念能对新的思想领域提供钥匙,同时人们已经证明了这个概念是数学、物理中非常有用的工具。 行列式出现于线性方程组的求解,它的概念最早是由十七世纪日本数学家关孝和在其著作《解伏题之法》中提出的。他于1683年写

了这本书,书里对行列式的概念和它的算法进行了清除的叙述。同时代的德国数学家莱布尼茨是欧洲提出行列式的第一人,也是微积分学的奠基人之一,他于1693年4月在写给洛比达的一封信中使用并给出了行列式,而且给出方程组的系数行列式为零的条件。 1750年,瑞士数学家克莱姆在其著作《线性带分析导引》中,比较完整、明确地阐述了行列式的定义与展开法,并且发表了求解线性系统方程的重要公式,即我们现在所称的解线性方程组的克莱姆法则。 1764年,数学家贝祖将确定行列式每一项符号的方法进行了系统化,利用系数行列式等于零这一条件判断对给定了含n个未知量的n 个齐次线性方程是否有非零解。 尽管上述几位数学家对行列式的提出与应用做出了很大的贡献,但仍在很长一段时间内,行列式只是作为解线性方程组的一种工具使用,并没有人意识到它可以独立于线性方程组之外,单独形成一门理论加以研究。 可喜的是,法国数学家范德蒙给出了一条法则,用二阶余子式和它们的余子式来展开行列式,从而把行列式理论与线性方程组求解相分离,他也因此成为了第一个对行列式理论做出连贯的系统的阐述的人。范德蒙自幼在父亲的指导下学习音乐,但他对数学却有浓厚的兴趣,后来终于成为了法兰西科学院院士,就对行列式本身这一点来说,他是这门理论的奠基人。 1772年,拉普拉斯在论文《对积分和世界体系的探讨》中证明了范德蒙的一些规则,并推广了他的展开行列式的方法。

矩阵的分块及应用

矩阵的分块及应用 武夷学院毕业设计(论文) 矩阵的分块及应用院系:专业:姓名:学号: 指导教师:职称:完成日期:数学与计算机系计算机科学与技术陈航20073011014 魏耀华教授年月日武夷学院教务处制摘要矩阵分块,就是把一个大矩阵按照一定规则分成小矩阵,它是矩阵运算的一种常用技巧与方法。分块矩阵的理论不但在工程技术和实际生产中有着广泛的应用,而且在线性代数中求矩阵乘积、行列式的值、逆矩阵、矩阵的秩和矩阵的特征根的过程中也起到重要作用。分块矩阵的初等变换则是处理分块矩阵有关问题的重要工具,它在线性代数中有非常广泛的应用。讨论了分块矩阵的概念、分块矩阵的运算、分块矩阵的性质以及分块矩阵的广义初等矩

阵,归纳并提出了分块矩阵的一些应用,这些应用主要涉及到矩阵的秩,逆矩阵,行列式以及矩阵正定和半正定等方面。通过引用了大量的实例说明了对矩阵进行适当分块可以使高等代数中的许多计算与证明问题迎刃而解。关键词: 分块矩阵;初等变换;计算;逆矩阵;证明。I Abstract Partitioned matrices mean dividing a big matrix into the small matrices according to the certain rule. It is a common technique and method in matrix operation. The theories of partitioned matrices have not only a wide range of applications in engineering and production, but also play an important role to the process for seeking matrix product and the value of determinant and inverse matrix and rank of matrix and the characteristic in linear algebra. Elementary transformation of partitioned matrices is an important tool to deal with the partition matrix. Also, it is

【最新】python数据分析课程报告论文(附代码数据)

用python进行数据分析 一、样本集 本样本集来源于某高中某班78位同学的一次月考的语文成绩。因为每位同学的成绩都是独立的随机变量,遂可以保证得到的观测值也是独立且随机的 样本如下: grades=[131,131,127,123,126,129,116,114,115,116,123,122,118, 121,126,121,126,121,111,119,124,124,121,116,114,116, 116,118,112,109,114,116,116,118,112,109,114,110,114, 110,113,117,113,121,105,127,110,105,111,112,104,103, 130,102,118,101,112,109,107,94,107,106,105,101,85,95, 97,99,83,87,82,79,99,90,78,86,75,66]; 二、数据分析 1.中心位置(均值、中位数、众数) 数据的中心位置是我们最容易想到的数据特征。借由中心位置,我们可以知道数据的一个平均情况,如果要对新数据进行预测,那么平均情况是非常直观地选择。数据的中心位置可分为均值(Mean),中位数(Median),众数(Mode)。其中均值和中位数用于定量的数据,众数用于定性的数据。 均值:利用python编写求平均值的函数很容易得到本次样本的平均值 得到本次样本均值为109.9 中位数:113 众数:116 2.频数分析 2.1频数分布直方图 柱状图是以柱的高度来指代某种类型的频数,使用Matplotlib对成绩这一定性变量绘制柱状图的代码如下:

矩阵理论中的矩阵分析的实际应用论文

矩阵分析在同步捕获性能研究新应用 摘要:该文提出了一种利用概率转移矩阵计算捕获传输函数的方法,通过将以往分析方法中的流程图转换为概率转移矩阵,仅需知道一步转移概率矩阵,利用现代计算机编程语言(如MAPLE,MATLAB等)的符号运算功能,即可得到捕获系统的传输函数:通过对传输函数求导,可计算平均捕获时间。矩阵分析方法可完整地计算出捕获系统的传输函数,可弥补流程图方法在分析传统连续搜索捕获方案的传输函数时所忽略的项;可纠正流程图方法在分 析非连续搜索捕获方案的传输函数时所引起的误差。 关键词:CDMA;矩阵分析;传输函数;流程图;捕获 A Novel Acquisition Performance Evaluation Approach Based on Matrix Analysis Abstract:A novel acquisition performance analysis approach is proposed based on matrix analysis.Given the first step transition probability matrix,the transfer function of acquisition system can be obtained by utilizing the symbol operation function of computer programming such as MAPLE,MATLAB and so on,and the mean acquisition time can be computed by differentiating the transfer function.The transfer function of acquisition system can be computed perfectly by matrix analysis,it not only complements the items neglected in that of conventional serial acquisition scheme but also corrects the error items in that of nonconsecutive acquisition scheme.

分块矩阵的应用研究文献综述

毕业论文文献综述 数学与应用数学 分块矩阵的应用研究 一、前言部分(说明写作的目的,介绍有关概念、综述范围,扼要说明有关 主题争论焦点) 本论文的重要目的是通过查阅各种相关文献,寻找各种相关信息,来研究分块矩阵的计算方法和分块矩阵在化简行列式、行列式运算、求矩阵的特征值等方面的应用,首先我们先来介绍一些概念: 分块矩阵的概念[] 1: 当矩阵的行数与列数较大时, 为便于运算, 有时把它分成若干个小块, 每个小块是行数与列数较小的矩阵.把一个矩阵看作是由一些小块矩阵所构成, 这就是矩阵的分块.构成分块矩阵的每个小矩阵, 称为子块. 如对矩阵A 分块如下 ? ? ??? ???? ???-=1011 012100100001A 其中记? ? ? ???-=??????=???? ??=1121,0000,10011A O E ,则A 可表示为分块矩阵??????=E A O E A 1 矩阵的分块可以有各种不同的分法.如矩阵A 也可分块如下: ? ? ??? ???? ???-=1011012100100001 A 通过分块矩阵的定义和概念,我们将探讨分块矩阵的计算,并利用分块矩阵的思想把分块矩阵的应用联系到其它问题中.

二、主题部分(阐明有关主题的历史背景、现状和发展方向,以及对这些问 题的评述) 作为解决线性方程的工具,矩阵已有不短的历史.拉丁方阵和幻方在史前年代已有人研究.矩阵这一具体概念是由19世纪英国数学家凯利首先提出并形成矩阵代数这一系统理论的. 但是追根溯源,矩阵最早出现在我国的<九章算术>中,在<九章算术>方程一章中,就提出了解线性方程各项的系数、常数按顺序排列成一个长方形的形状.随后移动处筹,就可以求出这个方程的解.在欧洲,运用这种方法来解线性方程组,比我国要晚2000多年. 1693年,微积分的发现者之一戈特弗里德?威廉?莱布尼茨建立了行列式论(theory of determinants).1750年,加布里尔?克拉默其后又定下了克拉默法则.1800年,高斯和威廉?若尔当建立了高斯—若尔当消去法. 1848年詹姆斯?约瑟夫?西尔维斯特首先创出matrix 一词.研究过矩阵论的著名数学家有凯莱、威廉?卢云?哈密顿、格拉斯曼、弗罗贝尼乌斯和冯?诺伊曼. 分块矩阵的引进使得矩阵这一工具的使用更加便利,解决问题的作用更强有力,其应用也就更广泛.在矩阵的某些运算中,对于级数比较高的矩阵,常采用分块的方法将一个矩阵分割成若干个小矩阵,在运算过程中将小矩阵看成元素来处理,对问题的解决往往起到简化的作用.本文通过一些例子来说明分块矩阵的一些应用. 预备知识[][]32- 分块矩阵的运算: 矩阵的分块技巧性较强,要根据不通的问题进行不同的分块,常见的方法有四种: (1)列向量分法 ),,2,1(),,,,(21n i a a a a A i n ΛΛ==为A 的列向量. (2)行向量分发 ),,2,1(21n i A i n ΛM =???? ? ? ??????=ββββ为A 的行向量. (3)分成两块 ),,(21A A A =其中21,A A 分别为B 的若干行.

Excel与数据处理-结课论文

毕业设计-文献翻译 姓名:樊世克 专业:金属12-1 学院:材料学院 指导老师:许磊

EXCEL与数据处理结课论文 1.摘要 Office Excel的功能非常强大,也非常好用,一般的文字排版、表格、计算、函数的应用等都用EXCEL来解决,它能够方便的制作出各种电子表格,使用公式和函数对数据进行复杂的运算;用各种图表来表示数据直观明了;利用超级链接功能,用户可以快速打开局域网或Internet上的文件,与世界上任何位置的互联网用户共享工作薄文件。本文为学习完excel课程后的相关心得体会。 2.关键词 Excel 数据处理心得体会 3.背景 在知识大爆炸,数据日益庞大的当今时代;在会计电算化日益普及,企业日益发展;交易日益扩大和复杂的今天,传统的手工审计已越来越不能适应现代审计的需要;会计电算化对传统的会计理论和实务产生了重大影响,当然也会影响到为达到有效的内部控制而采取的组织结构和业务程序,必然对传统的审计产生很大的影响。所以,必须制定与新情况相适应的计算机审计准则以及计算机审计方法,以利开展计算机审计工作。与此同时,计算机审计准则的制定和计算机审计工作的开展将会对会计电算化的发展产生积极的推动作用。会计师事务所借助计算机技术来解决会计电算化所出现的问题,已成为审计发展的方向。会计电算化给审计提出了许多新问题和新要求,传统的手工审计已不能适应电算化的新情况和新要求。 因此,开展计算机审计势在必行。Excel作为电算化审计的重要部分,excel在审计中的应用将越来越多。它能够方便的制作出各种电子表格,使用公式和函数对数据进行复杂的运算;用各种图表来表示数据直观明了;利用超级链接功能,用户可以快速打开局域网或Internet上的文件,与世界上任何位置的互联网用户共享工作薄文件 EXCEL具备强大的数据分析工具和数据处理功能,基于EXCEL的财务分析数据库具有灵活、简便的特性,可以满足个性化、多层次、多维度的财务分析需求,从而弥补通用财务软件和管理信息系统财务分析功能薄弱的现状,提高财务分析的作用和效率。 的作用及优势 Excel是个人电脑普及以来用途最广泛的办公软件之一,也是Microsoft Windows平台下最成功的应用软件之一。说它是普通的软件可能已经不足以形容它的威力,事实上,在很多公司,Excel 已经完全成为了一种生产工具,在各个部门的核心工作中发挥着重要的作用。无论用户身处哪个行业、所在公司有没有实施信息系统,只要需要和数据打交道,Excel几乎是不二的选择。 Excel之所以有这样的普及性,是因为它被设计成为一个数据计算与分析的平台,集成了最优秀的数据计算与分析功能,用户完全可以按照自己的思路来创建电子表格,并在Excel的帮助

矩阵论论文

西安理工大学 研究生课程论文 课程名称:矩阵论 任课教师:XXX 论文/研究报告题目:线性变换在 电路方程中的应用 完成日期:2014年11月5日学科:Xxxx 学号:XXXXXXX 姓名:XXX 成绩:

线性变换在电路方程中的应用 摘要:电路分析中的坐标变换和复杂绕组变压器分析中所用的变压器变换都是电路方程的线性变换。根据矩阵理论,对坐标变换和变压器变换进行了统一阐释。坐标变换本质是一个方阵和对角阵的相似变换,变压器变换的本质是新变量对旧变量的表示,当变换矩阵的逆阵等于它的转置(共轭转置)阵时,坐标变换和变压器变换数学表示是相同的。通过对电路方程系数矩阵和三角阵的相似变换,同时得到了三相 abc 坐标系和任意速度旋转两相 dq0 坐标系、瞬时值复数分量 120 坐标系、前进 - 后退 FB0 坐标系之间的变换矩阵。这有助于在更加基础的理论层面上揭示和理解电路方程线性变换的本质,也为提出电路方程线性变换的新类型提供了思路。 关键词:电路方程;线性变换;坐标变换;变压器变换 引言 在交流电机等电路分析中,常用的坐标变换是指三相静止 abc 坐标系任意速度旋转两相 d q坐标系、瞬时值复数分量 120 坐标系、 前进 - 后退 F B坐标系,以及它们对应的特殊坐标系的变量之间的 相互转换。电路方程坐标变换的主要目的是使电压、电流、磁链方程系数矩阵对角化和非时变化,从而简化数学模型,使分析和控制变得简单、准确、易行。还有一类电路方程变换,其目的是用旧变量表示出新变量,例如变压器中由原边变量利用变比变换而来的副边变量,把这类电路方程变换称为变压器变换。坐标变换已有很多文献进行了阐述,但这些阐述大都是基于物理概念的。变压器变换在复杂绕组变

分块矩阵的应用论文

分块矩阵的应用 引言 矩阵作为数学工具之一有其重要的实用价值,它常见于很多学科中,如:线性代数、线性规划、统计分析,以及组合数学等,在实际生活中,很多问题都可以借用矩阵抽象出来进行表述并进行运算,如在各循环赛中常用的赛格表格等,矩阵的概念和性质相对矩阵的运算较容易理解和掌握,对于矩阵的运算和应用,则有很多的问题值得我们去研究,其中当矩阵的行数和列数都相当大时,矩阵的计算和证明中会是很烦琐的过程,因此这时我们得有一个新的矩阵处理工具,来使这些问题得到更好的解释,矩阵分块的思想由此产生. 矩阵分块,就是把一个大矩阵看成是由一些小矩阵组成的.就如矩阵的元素(数) 一样,特别是在运算中,把这些小矩阵当作数一样来处理.把矩阵分块运算有许多方便之处.因为在分块之后,矩阵间的相互关系可以看得更清楚,在实际操作中与其他方法相比,一般来说,不仅非常简洁,而且方法也很统一,具有较大的优越性,是在处理级数较高的矩阵时常用的方法.比如,从行列式的性质出发,可以推导出分块矩阵的若干性质,并可以利用这些性质在行列式计算和证明中的应用分块矩阵;也可以借助分块矩阵的初等变换求逆矩阵及矩阵的秩等;再如利用分块矩阵求高阶行列式,如设A 、C 都是n 阶矩阵,其中0A ≠,并且AC CA =,则可求得A B AD BC C D =-;分块矩阵也可以在求解线性 方程组应用. 本文将通过对分块矩阵性质的研究,比较系统的总结讨论分块矩阵在计算和证明方面的应用,从而确认分块矩阵为处理很多代数问题带来很大的便利.

1 分块矩阵的定义及相关运算性质 1.1分块矩阵的定义 矩阵分块,就是把一个大矩阵看成是由一些小矩阵组成的.就如矩阵的元素(数) 一样,特别是在运算中,把这些小矩阵当作数一样来处理. 定义1设A 是一个m n ?矩阵,若用若干横线条将它分成r 块,再用若干纵线条将它 分成s 块,于是有rs 块的分块矩阵,即1111...............s r rs A A A A A ???? =?????? ,其中ij A 表示的是一个矩阵. 1.2分块矩阵的相关运算性质 1. 2.1加法 设() ij m n A a ?=() ij m n B b ?=,用同样的方法对,A B 进行分块 () ij r s A A ?=,() ij r s B B ?=, 其中ij A ,ij B 的级数相同, 则 ()ij ij r s A B A B ?+=+. 1.2.2数乘 设是任() () ,ij ij m n r s A a A k ??==为任意数,定义分块矩阵() ij r s A A ?=与k 的数乘为 () ij r s kA kA ?= 1.2.3乘法 设() () ,ij ij s n n m A a B b ??==分块为()(),ij ij r l l r A A B B ??==,其中ij A 是i j s n ?矩阵,ij B 是 i j n m ?矩阵,定义分块矩阵() ij r l A A ?=和()ij l r B B ?=的乘积为 () 1122...,1,2,...;1,2,3,...,ij i j i j il lj C A B A B A B i t j l =+++==.、 1.2.4转置 设() ij s n A a ?=分块为() ij r s A A ?=,定义分块矩阵() ij r s A A ?=的转置为 () ji s r A A ?''= 1.2.5分块矩阵的初等变换 分块矩阵A 的下列三种变换称为初等行变换:

《空间数据分析》课程论文

南京市银行网点的空间分布特征及影响因素研究 (测绘工程学院地理信息系统专业地信2012班) 摘要:伴随着互联网技术在经济领域的全面渗透,银行业金融电子化改造来临了。许多银行网点的分布多以行政层级制来决定网点的建设,忽视市场规律的作用,对市场的分析不够,进而导致有些银行网点经营状况不佳。随着市场经济的深化,银行间的竞争日趋激烈,如何科学的布局银行网点,无疑已成为一个迫切需要解决的问题。本文选取南京市城区为研究区域,以南京市地理基础数据,借助GIS空间分析技术、统计分析、核密度分析、主成分分析等研究方法,进行银行网点布局特征研究。 结果表明:南京市各个城区的银行网点数量存在较大差异,鼓楼区最多,雨花台区最少,银行网点主要积聚在城市的中心区以及各城区的中心,同时具有商业繁华区聚集性;高校区聚集性;交通便利区指向性;相对于以鼓楼区、白下区、玄武区为中心的区域,外围城区银行网点聚集程度较低。随着空间尺度不同,银行集聚区形成机制差异较大,小尺度集聚区形成主要受到交通便利性的影响,比如典型的有浦口区和六合区。较大尺度银行集聚区则更加关注服务对象。通过分析可知城区面积、人口、GDP 总量、交通等是影响银行网点布局的重要区位因子。最后给出改善南京市城区银行网点分布的建议。 关键词:南京市;银行网点;布局;影响因素 1引言 1.1研究意义 在江苏省经济快速发展的背景下,作为经济发展中心的南京,分析其银行网点的空间分布特征,研究其影响因素,这对于了解南京市第三产业的发展格局,促进南京市金融产业的发展,进而推动南京市经济的快速发展具有重要意义。从GIS空间分析视角,对银行网点的空间分布进行研究,具有一定现实意义。首先其能够指导金融业的发展规划,尤其是空间布局方面;其次随着南京市城市规模不断的扩大,能够为今后银行选址及分布提供指导。 1.2国内外相关研究进展 1.2.1 国外研究现状 自20世纪50年代以来,国内外学者对金融地理学展开了一些的研究。Hepworth(1981)探讨了国际金融中心形成的主要影响因素和简单的发展历程;E.P.Davis(1988)则将企业选址理论运用到国际金融中心形成的研究中去[1]。 20世纪年代以来研究主要集中在城市中心商务区,学术界普遍存在这样一种共识:集聚在市中心能使金融业更方便地获得外部效益和信息资源[2]。尽管城市空间格局不断重组,但对于一个城市的高端服务业(如金融、保险、证劵)的布局来说,集聚经济发挥的作用始终没有减弱,它们总倾向于布局在CBD[3]。学者们对影响金融业布局因素的研究较多,有学者强调集聚作用,有学者强调文化根植[4],还有学者认为信息的共享性和易获得性至关重要。大体可以分为4个因素:经济因素、空间因素、信息因素、人文因素。随着研究的进一步深入,银行业空间布局作为金融地理学的重要研究内容,逐渐受到学者重视,金融行业也被细分为银行业、基金业、保险业和证劵业等分支行业,每种行业都具备独特的功能和特定的布局形式。将不同类型的金融机构的区位进行比较研究,通常会得到明显的差别。从单一类别来看,国外学者对银行业布局的理论和实证研究都比较成熟,早在20世纪80年代就进行了大量案例研究。例如Yamori 究利用多元离散模型研究了日本跨国银行在其国际化过程中选址的考虑因素,研究发现人均国内生产总值与其海外银行的投资规模关系密切[5]。 可以看出,国外学者的研究视角多是国家或区域层面上的,更多的是关注跨国银行与政治、经济和社会发展的关系,在研究方法上通常是建立数学模型,借助软件进行求解。 1.2.2 国内研究现状 国内有关金融及银行网点空间分布研究的主体是银行的从业人员,主要从金融网络及金融网点经营与管理的角度探讨。改革开放以来银行网点的研究首先集中在不同类银行的发展形势。各大银行的功能定位,一些学者则从研究方法入

分块矩阵在高等代数中的应用

本科生毕业设计(论文) 题目:分块矩阵在高等代数中的应用 Title: Block Matrix Of Application in Advanced Algebra 学号 0508060357 姓名邹维喜 学院数信学院 专业数学与应用数学 指导教师甘爱萍 完成时间 2008.4.15

分块矩阵在高等代数中的应用 【摘要】高等代数以其独特的理论体系而引人入胜,其基础知识抽象,解题方法技巧性强,稍有不慎就会陷入困境。作为高等代数中的一个工具——分块矩阵,分块矩阵是高等代数中的一个重要内容,在高等代数中有着很重要的应用,本文详细且全面论述了分块矩阵阵的概念和其的初等变换以及证明了矩阵的分块在高等代数中的应用,包括用分块矩阵来算矩阵的乘积,利用分块矩阵求逆矩阵的问题,用分块矩阵求矩阵的行列式问题. 【关键词】:分块矩阵;矩阵乘积得秩;逆矩阵;行列式

Block Matrix in Advanced Algebra Application 【Abstract】 Higher Algebra for its unique and fascinating theoretical system based on abstract knowledge, skills and strong problem-solving approach, a little carelessness will be in trouble. Advanced Algebra as a tool - sub-block matrix, block matrix is of higher algebra an important share in higher algebra very important applications, this paper discusses the detailed and comprehensive array block matrix of the concept and its elementary transformation matrix, as well as the sub-block in the application of higher algebra, including matrices to count the product matrix, the use of sub-block matrix inverse matrix problem, with sub-block matrix of the determinant of the matrix problem. 【Key words】: sub-block matrix; matrix product of a rank; inverse matrix; determinant

091099179 周志浩 《经济管理数据分析》课程论文

《经济管理数据分析》课程论文 ——中国投资者心理和行为特征分析 工商管理系 周志浩 091099179 一、引言 在传统经典金融理论中,“人”通常都被外生地假定为“理性人”,对人行为的描述也往往采用理性的行为模型。然而,在现实的金融投资活动中,大量有悖于经典金融理论的“异常现象”引发了经济学家、金融学家、心理学家、社会学家和其他行为科学家的关注和探索,关于人的“非理性”问题的各种探讨也逐渐呈现在人们面前。有关的金融学者在以心理学对人们实际决策行为的研究、观察和实验结果基础上,对投资者投资行为的发生、发展和演化的内在机制及其中深层次的因素进行了卓有成效的研究,大批研究成果相继问世。同时,一个当代金融学研究的重要分支——行为金融学也应运而生。 与经典金融理论不同,行为金融学并不试图定义什么是合理的行为,什么是不合理的行为,它以心理学对人类决策心理的研究成果为依据,以人们的实际决策心理为出发点,来研究和理解人类决策心理所导致的“正常”行为以及这些行为对金融市场的影响。由于它注重投资者决策心理的多样性,突破了经典金融理论简单地认为投资者理性决策模型就是决定金融市场价格变化的实际投资决策模型的假设,使人们对金融市场投资者行为的研究由“应该怎样做投资决策”转变到“实际是怎样进行投资决策的”,从而使这方面的研究更加多样化,更加接近实际,进而也更能解释那些无法为经典金融理论所解释的各种异常现象。可以说,行为金融理论对投资者个体和群体行为的研究促成了传统分析范式的转变,在行为金融分析框架下去研究投资者的投资行为,无疑能更加贴近现实,更加准确地发现投资者实际的投资决策心理和行为特征。 众所周知,中国证券市场的发展历史较短,投资者的投资理念尚未形成比较成熟的风格,机构投资者所占的比重又较小,而中国证券市场的各种过度投机和违规现象又极易对广大投资者,特别是占较大比重的中小投资者造成侵害,故在当前的市场环境下加强对投资者心理和行为的研究就更具有重要的现实意义。在国外发达的证券市场上,投资者都还存在着各种各样的心理和行为偏差,对仅有十余年历史的中国证券市场的广大投资者而言,其投资行为

矩阵论论文

利用蚁群算法分析TSP问题 “旅行商问题”(Traveling Salesman Problem,TSP)可简单描述为:一位销售商从n个城市中的某一城市出发,不重复地走完其余n-1个城市并回到原出发点,在所有可能路径中求出路径长度最短的一条。旅行商的路线可以看作是对n城市所设计的一个环形,或者是对一列n个城市的排列。由于对n个城市所有可能的遍历数目可达(n-1)!个,因此解决这个问题需要O(n!)的计算时间。而由美国密执根大学的Holland教授发展起来的遗传算法,是一种求解问题的高效并行全局搜索方法,能够解决复杂的全局优化问题,解决TSP问题也成为遗传算法界的一个目标。 与粒子群算法相似,蚁群算法也是通过对生物的群体进行观察研究得来的。在研究蚂蚁的行为时发现,一只蚂蚁,不论是工蚁还是蚁后,都只能完成很简单的任务,没有任何一只蚂蚁能够指挥其他蚂蚁完成筑巢等各种复杂的行为。蚂蚁是如何分工,如何完成这些复杂的行为的这一问题引起了科学及的兴趣。 生物学家发现,蚁群具有高度的社会性。在蚂蚁的行动过程中,蚂蚁之间不只是通过视觉和触觉进行沟通,蚂蚁之间的信息传递还可以通过释放出一种挥发性的分泌物,这是一种信息素之类的生物信息介质。一只蚂蚁的行为极其简单,但是一个蚁群的行为则是复杂而又神奇的。蚂蚁在觅食的过程中,如果没有发现信息素,会随机选择一个方向前进,遇见障碍物也会绕开,直到遇见食物,若果遇见的食物比较小,就即刻搬回巢穴,假如食物很大,则会释放信息素之后回去搬救兵。在一只蚂蚁发现食物并留下信息素之后,其它的蚂蚁会跟着信息素很快找到食物。 虽然对蚂蚁的行为有了一定的了解,在实际模拟蚁群的时候仍然存在不少问题。蚂蚁觅食过程中在没有信息素的情况下,蚂蚁会随机向一个方向前进,不能转圈或者震动。虽然有了一个方向,蚂蚁也不能一直只向着同样方向做直线运动,这一运动需要有点随机性,由此,蚂蚁的运动在保持原有的方向的同时对外界的干扰能够做出反应,也有了新的试探。这一点在遇到障碍物时是非常重要的。在有了信息素之后,大多数的蚂蚁都会沿着信息素去找食物,这条路上的信息素会越来越多,但这并不一定会是最优的路径,所以还需要找到最优的路径。好在蚂

试验设计与数据处理课程论文

课 程 论 文 课程名称试验设计与数据处理 专业2012级网络工程 学生姓名孙贵凡 学号201210420136 指导教师潘声旺职称副教授

成绩 科学研究与数据处理 学院信息科学与技术学院专业网络工程姓名孙贵凡学号:201210420136 摘要:《实验设计与数据处理》这门课程列举典型实例介绍了一些常用的实验设计及实验数据处理方法在科学研究和工业生产中的实际应用,重点介绍了多因素优化实验设计——正交设计、回归分析方法以对目标函数进行模型化处理。其适于工艺、工程类本科生使用,尤其适用于化学化工、矿物加工、医学和环境学等学科的本科生使用。其对行实验设计可提供很大的帮助,也可供广大分析化学工作者应用。关键字:优化实验设计; 标函数进行模型化处理; 正交设计; 回归分析方法 1 引言 实验是一切自然科学的基础,科学界中大多数公式定理是由试验反复验证而推导出来的。只有经得起试验验证的定理规律才具有普遍实用性。而科学的试验设计是利用自己已有的专业学科知识,以大量的实践经验为基础而得出的既能减少试验次数,又能缩短试验周期,从而迅速找到优化方案的一种科学计算方法,就必然涉及到数据处理,也只有对试验得出的数据做出科学合理的选择,才能使实验结果更具说服力。实验设计与数据处理在水处理中发挥着不可估量的作用,通过科学合理的实验设计过程加上严谨规范的数据处理方法,可以使水处理原理,内在规律性被很好的发现,从而更好的应用于生产实践。 2 材料与方法 2.1 供试材料 1. 论文所围绕的目标和假设 研究的目标就是实验的目的,我们设计了这个实验是想来做什么以及想得到什么样的结论。要正确的识别问题和陈述问题,这些需要专业知识和大量的阅读文献综述等方法来获得我们所要提出的问题。需要对某一个具体的问题,并且对这个具体的问题提出假设。如水处理中混凝剂的最佳投加量,混凝剂的最佳投加量有一个适宜的PH值范围。

分块矩阵及其应用

分块矩阵及其应用 徐健,数学计算机科学学院 摘要:在高等代数中,分块矩阵是矩阵内容的推广. 一般矩阵元素是数量, 而分块矩阵则是将大矩阵分割成小矩形矩阵,它的元素是每个矩阵块.分块矩阵的引进使得矩阵工具的利用更加便利,解决相关问题更加强有力,所以其应用也更广泛. 本文主要研究分块矩阵及其应用,主要应用于计算行列式、解决线性方程组、求矩阵的逆、证明与矩阵秩有关的定理. 关键词:分块矩阵;行列式;方程组;矩阵的秩 On Block Matrixes and its Applications Xu Jian, School of Mathematics and Computer Science Abstract In the higher algebra, block matrix is a generalization of matrix content. In general, matrix elements are numbers. However, the block matrix is a large matrix which is divided into some small rectangular matricies, whose elements are matrix blocks. The introduction of the block matrix makes it more convenient to use matrix, and more powerful to solve relevant problems. So the application of the block matrix is much wider. This paper mainly studies the block matrix and its application in the calculation of determinant, such as solving linear equations, calculating inverse matrix, proving theorem related to the rank of matrix , etc. Keywords Block matrix; Determinant; System of equations; Rank of a matrix

矩阵论课程教学大纲

《矩阵论》课程教学大纲 一、课程基本信息 课程编号: xxxxx 课程中文名称:矩阵论 课程英文名称:Matrix Theory 课程性质:学位课 考核方式:考试 开课专业:工科各专业 开课学期:1 总学时:36学时 总学分: 2学分 二、课程目的和任务 矩阵论是线性代数的后继课程。在线性代数的基础上,进一步介绍线性空间与线性变换、欧氏空间与酉空间以及在此空间上的线性变换,深刻地揭示有限维空间上的线性变换的本质与思想。为了拓展高等数学的分析领域,通过引入向量范数和矩阵范数在有限维空间上构建了矩阵分析理论。 从应用的角度,矩阵代数是数值分析的重要基础,矩阵分析是研究线性动力系统的重要工具。为了矩阵理论的实用性,对于矩阵代数与分析的计算问题,利用Matlab计算软件实现快捷的计算分析。 三、教学基本要求(含素质教育与创新能力培养的要求) 通过本课程的学习,使学生在已掌握本科阶段线性代数知识的基础上,进一步深化和提高矩阵理论的相关知识。并着重培养学生将所学的理论知识应用于本专业的实际问题和解决实际问题的能力。 本课程还要求学生从理论上掌握矩阵的相关理论,会证明简单的一些命题和结论,从而培养逻辑思维能力。要求掌握一些有关矩阵计算的方法,如各种标准型、矩阵函数等,为今后在相关专业中实际应用打好基础。 四、教学内容与学时分配 (一) 线性空间与线性变换 8学时 1. 理解线性空间的概念,掌握基变换与坐标变换的公式;

2. 掌握子空间与维数定理,了解线性空间同构的含义; 3. 理解线性变换的概念,掌握线性变换的矩阵表示。 (二) 内积空间 6学时 1. 理解内积空间的概念,掌握正交基及子空间的正交关系; 2. 了解内积空间的同构的含义,掌握判断正交变换的方法; 3. 理解酉空间的概念,会判定一个空间是否为酉空间 4. 掌握酉空间与实内积空间的异同; 5. 掌握正规矩阵的概念及判定定理和性质。 (三) 矩阵的对角化与若当标准形 6学时 1. 掌握矩阵相似对角化的判别方法; 2. 理解埃尔米特二次型的含义; 3. 会求史密斯标准形; 4. 会求若当标准型。 (四) 矩阵分解4学时 1. 会求矩阵的三角分解和UR分解; 2. 会求矩阵的满秩分解和单纯矩阵的谱分解; 3. 了解矩阵的奇异值和极分解。 (五) 向量与矩阵的重要数字特征4学时 1. 理解向量范数、矩阵范数; 2. 有限维线性空间上向量范数的等价性; 3. 向量范数与矩阵范数的相容性。 (六) 矩阵分析 4学时 1. 理解向量和矩阵的极限的概念; 2. 掌握矩阵幂级数收敛的判定方法; 3. 理解矩阵的克罗内克积; 4. 会求矩阵的微分与积分。 (七) 矩阵函数 4学时 1. 理解矩阵多项式的概念; 2. 掌握由解析函数确定的矩阵函数; 3. 掌握矩阵函数的计算方法。 五、教学方法及手段(含现代化教学手段) 本课程的所有授课内容,均使用多媒体教学方式,教案采用PowerPoint编写,教师使

相关文档
最新文档