混凝剂和助凝剂投加

混凝剂和助凝剂投加
混凝剂和助凝剂投加

供应信息

供应提供自动混凝剂加药装置,提供原…

当前位置:首页 > 供应信息 > 环保、水处理 > 污水处理设备 > 中和混凝、加药装置

本信息已经过期!可选择以下操作:

·点击查看最新 中和混凝、加药装置 信息

信息

加入慧聪网,开始网上贸易

联系方式 收藏此信息

提供自动混凝剂加药装置,提供原水预处理专业方案和设备

上海科域水处理技术有限公司遵循严谨科学的计算结果,在原水预处理环节做到经济有效,便接下来的电渗析、反渗透、离子交换等工艺得到最大的保护,保证整体设备长期安全运行。同时在这一环节中也尽量使用全自动无人值班加药工艺,实现整体设备全自动运行。

原水预处理工艺

水的预处理是在水的精制处理之前,预先进行的初步处理,以便在水的经处理时取得良好效果,提高水质。因为自然界的水都有大量杂质,如泥沙、粘土、有机物、微生物、机械杂质等,这些杂质的存在,严重影响精制水的水质与处理效果,因此必须在精处理之前将一些杂质降低或去除,这就需要预处理,有时也称前处理。作用和意义:对水质预处理的好坏,直接影响电渗析、反渗透、离子交换等主要处理工艺的技术经济效果和长期安全运行,它是工业水处理中非常重要的一环。

预处理的方法很多,主要有氧化、预沉、混凝、澄清、过滤、软化、消毒等。用这些方法预处理之后,可以使水的悬浮物(浑浊度)、色度、胶体物、有机物、铁、锰、暂时硬度、微生物、挥发性物质、溶解的气体等杂质去除或降低到一定的程度。

原水预处理工艺---混凝处理

混凝原理

化学混凝所处理的对象,主要是水中的微小悬浮物和胶体杂质。大颗的悬浮物由于受重力的作用而下沉,可以用沉淀等方法除去。但是,微小粒径的悬浮物和胶体,能在水中长期保持分散悬浮状态,即使静置数十小时以上,也不会自然沉降。这是由于胶体微粒及细微悬浮颗粒具有“稳定性”。1.胶体的稳定性

根据研究,胶体微粒都带有电荷。天然水中的粘土类胶体微粒以及污水中的胶态蛋白质和淀粉微粒等都带有负电荷,其结构示意图见(图8—1)。它的中心称为胶桉。其表面选择性地吸附了一层带有同号电荷的离子,这些离子可以是胶校的组成物直接电离而产生的,也可以是从水中选择吸附H+或OH-离子而造成的。这层离子称为胶体微粒的电位离子,它决定了胶粒电荷的大小和符号。由于电位离子的静电引力,在其周围又吸附了大量的异号离子.形成了所谓“双电层”。这些异号离子,其中紧靠电位离子的部分被牢固地吸引着.当胶核运

供应提供自动混凝剂加药装置,提供原水预处理专业方案和设备

普通会员

访问慧聪网首页 添加收藏| 出口服务 |行业加盟 |买卖通 |搜索推广 |慧聪发发 || 我的商务中心 |邮箱 |帮助 |网站导航

所有行业采购工具页码,1/5

中和混凝、加药装置-供应提供自动混凝剂加药装置,提供原水预处理专业方案...

行时,它也随着一起运动,形成固定的离子层。而其他的异号离子,离电位离子较远,受到的引力较弱,不随胶核一起运动,并有向水中扩散的趋势.形成了扩散层。固定的离子层与扩散层之间的交界面称为滑动面。滑动面以内的部分称为胶粒,胶粒与扩散层之间,有一个电位差。此电位称为胶体的电动电位,常称为∫电位。而胶核表面的电位离子与溶液之间的电位差称为总电位或∮电位。

胶粒在水中受几方面的影响:①由于上述的胶粒带电现象,带相同电荷的胶粒产生静电斥力,而且∫电位愈高,胶粒间的静电斥力愈大;②受水分子热运动的撞击,使微粒在水中作不规则的运动,即“布朗运动;”③胶粒之间还存在着相互引力——范德华引力。范德华引力的大小与胶粒间距的2次方成反比,当间距较大时,此引力略去不计。一般水中的胶粒∫电位较高。其互相间斥力不仅与∫电位有关,还与胶粒的间距有关,距离愈近,斥力愈大。而布朗运动的动能不足以将两颗胶粒推近到使范德华引力发挥作用的距离。因此,胶体微粒不能相互聚结而长期保持稳定的分散状态。

使胶体微粒不能相互聚结的另一个因素是水化作用。由于胶粒带电,将极性水分子吸引到它的周围形成一层水化膜。水化膜同样能阻止胶粒间相互接触。但是,水化膜是伴随胶粒带电而产生的,如果胶粒的电位消除或减弱,水化膜也就随之消失或减弱。2.混凝原理

化学混凝的机理至今仍未完全清楚。因为它涉及的因素很多,如水中杂质的成分和浓度、水温、水的pH 值、碱度,以及混凝剂的性质和混凝条件等。但归结起来,可以认为主要是三方面的作用:

(1)压缩双电层作用 如前所述,水中胶粒能维持稳定的分散悬浮状态,主要是由于胶粒的∫电位。如能消除或降低胶粒的∫电位,就有可能使微粒碰撞聚结,失去稳定性。在水中投加电解质——混凝剂可达此目的。例如天然水中带负电荷的粘土胶粒,在投入铁盐或铝盐等混凝剂后,混凝剂提供的大量正离子会涌入胶体扩散层甚至吸附层。因为胶核表面的总电位不变,增加扩散层及吸附层中的正离子浓度,就使扩散层减薄,图8—1中的∫电位降低。当大量正离子涌入吸附层以致扩散层完全消失时,∫电位为零,称为等电状态。在等电状态下,胶粒间静电斥力消失,胶粒最易发生聚结。实际上,∫电位只要降至某一程度而使胶粒间排斥的能量小于胶粒布朗运动的动能时,胶粒就开始产生明显的聚结,这时的∫电位称为临界电位。胶粒因电位降低或消除以致失去稳定性的过程,称为胶粒脱稳。脱稳的胶粒相互聚结,称为凝聚。

压缩双电层作用是阐明胶体凝聚的一个重要理论。它特别适用于无机盐混凝剂所提供的简单离子的情况。但是,如仅用双电层作用原理来解释水中的混凝现象,会产生一些矛盾。例如,三价铝盐或铁盐棍凝剂投量过多时效果反而下降,水中的胶粒又会重新获得稳定。又如在等电状态下,混凝效果似应最好,但生产实践却表明,混凝效果最佳时的∫电位常大于零。于是提出了第二种作用。

(2)吸附架桥作用 三价铝盐或铁盐以及其他高分子棍凝剂溶于水后,经水解和缩聚反应形成高分子聚合物,具有线性结构。这类高分子物质可被胶体微粒所强烈吸附。因其线性长度较大.当它的一端吸附某一胶粒后,另一端又吸附另一胶粒,在相距较远的两胶粒间进行吸附架桥,使颗粒逐渐结大,形成肉眼可见的粗大絮凝体。这种由高分子物质吸附架桥作用而使微粒相互粘结的过程,称为絮凝。

(3)网捕作用 三价铝盐或铁盐等水解而生成沉淀物。这些沉淀物在自身沉降过程中,能集卷、网捕水中的胶体等微粒,使胶体粘结。上述三种作用产生的微粒凝结理象——凝聚和絮凝总称为混凝。

对于不同类型的棍凝剂,压缩双电层作用和吸附架桥作用所起的作用程度并不相同。对高分子混凝剂特别是有机高分子混凝剂,吸附架桥可能起主要作用;对硫酸铝等无机混凝剂,压缩双电层作用和吸附架桥作用以及网捕作用都具有重要作用。

二、混凝剂和助凝剂

1、混凝剂

用于水处理中的混凝剂应符合如下要求:混凝效果良好,对人体健康无害,价廉易得,使用方便。混凝剂的种类较多,主要有以下两大类:

(1)无机盐类混凝剂 目前应用最广的是铝盐和铁盐。铝盐中主要有硫酸铝、明矾等。硫酸铝Al2(SO4)3·18H2O 的产品有精制和粗制两种。精制硫酸铝是白色结晶体。粗制硫酸铝的AL2O3含量不少于14.5%-16.5%,不溶杂质含量不大于24%~30%,价格较低,但质量不稳定,因含不溶杂质较多,增加了药液配制和排除废渣等方面的困难。明矾是硫酸铝和硫酸钾的复盐AL2(SO4)3K2-~Q4·24H20,AL2(SO4)3含量约10.6%,是天然矿物。硫酸铝混凝效果较好,使用方便,对处理后的水质没有任何不良影响。但水温低时,硫酸铝水解困难,形成的絮凝体较松散,效果不及铁盐。

铁盐中主要有三氯化铁、硫酸亚铁和硫酸铁等。三氯化铁是褐色结晶体,极易溶解,形成的絮凝体较紧密,易沉淀;但三氧化铁腐蚀性强.易吸水潮解,不易保管。硫酸亚铁F eSO4·7H20是半透明绿色结晶体,离解出的二价铁离子Fe2+不具有三价铁盐的良好混凝作用,使用时应将二价铁氧化成三价铁。同时,残留在水中的Fe2+会使处理后的水带色,Fe2+与水中某些有色物质作用后,会生成颜色更深的溶解物。

(2)高分子混凝剂 高分子混凝剂有无机和有机的两种。聚合氯化铝和聚合氧化铁是目前国内外研制和使用比较广泛的无机高分子混凝剂。聚合氯化铝的混凝作用与硫酸铝并无差别。硫酸铝投入水中后,主要是各种形态的水解聚合物发挥混凝作用。但由于影响硫酸铝化学反应的因素复杂,要想根据不同水质控制水解聚合物的形态是不可能的。人工合成的聚合氧化铝则是在人工控制的条件下预先制成最优形态的聚合物,投入水中后可发挥优良的混凝作用。它对各种水质适应性较强,适用的pH 值范围较广,对低温水效果也较好,形成的絮凝体粒大而重,所需的投量约为硅酸铝的1/2—1/3。

有机高分子混凝剂有天然的和人工合成的。这类混凝剂都具有巨大的线状分子。每—大分子有许多链节组成。链节间以共价健结合。我国当前使用较多的是人工合成的聚丙烯酰胺,分子结构为:聚丙烯酰胺的聚合度可多达2x104—9x104,相应的分子量高达150x104—600x104。凡有机高分子混凝剂链节上含有的可离解基团寓解后带正电的称为阳离子型,带负电的称为阴离子型;链节上不含可离解基团的称非离子型。聚丙烯酰胺即为非离子型高聚物。但它可以通过水解构成阴离子型,也可通过引入基团制成阳离子型。有机高分子混凝剂由于分子上的链节与水中胶体微粒有极强的吸附作用,混凝效果优异。即使是阴离子型高聚物,对负电胶体也有强的吸附作用;但对于未经脱稳的胶体,由于静电斥力有碍于吸附架桥作用,通常作助凝剂使用。阳离靶塑的吸附作用尤其强烈,且在吸附的同时,对负电胶体有电中和的脱稳作用。

有机高分子混疑剂虽然效果优异,但制造过程复杂,价格较贵。另外,由于聚丙烯酰胺的单体——丙烯酰胺有一定的毒性,因此它们的毒性问题引起人们的注意和研究。(3)助凝剂 当单用混凝剂不能取得良好效果时,可投加某些辅助药剂以提高混凝效果,这种辅助药剂称为助凝剂。助凝剂可用以调节或改善混凝的条件,例如当原水的碱度不足时可投加石灰或重碳酸钠等;当采用硫酸亚铁作混凝剂时可加氧气将亚铁Fe2+氧化成三价铁离子Fe3+等。助凝剂也可用以改善絮凝体的结构,利用高分子助凝剂的强烈吸附架桥作用.使细小松散的絮凝体变得粗大而紧密,常用的有聚丙烯酰胺、活化硅酸、骨胶、海藻酸钠、红花树等。

三、影响混凝效果的主要因素

影响混凝效果的因素较复杂,主要有水温、水质和水力条件等。1.水温

水温对混凝效果有明显的影响。无机盐类混凝剂的水解是吸热反应,水温低时,水解困难。特别是硫酸铝,当水温低于5℃时,水解速率非常缓慢。且水量低,粘度大,不利于脱氇胶粒相互絮凝,影响絮凝体的结大,进而影响后续的沉淀处理的效果。改善的办法是投加高分子助凝剂或是用气浮法代替沉淀法作为后续处理。2.pH 值

水的pH 值对混凝的影响程度视混凝剂的品种而异。用硫酸铝去除水中浊度时,景佳pH 值范围在6.5—7.5之间;用于除色时,pH 值在4.5~5之间。用三价铁盐时,最佳pH 值范围在6.O 一8.4之间,比硫酸钼为宽。如用硫酸亚铁,只有在pH>8.5和水中有足够溶解氧时,才能迅速形成Fe3+,这就使设备和操作较复杂。为此,常采用加氯氧化的方法。高分子混凝剂尤其是有机高分子混凝剂,混凝的效果受pH 值的影响较小。从铝盐和铁盐的水解反应式可以看出,水解过程中不断产生H+必将使水的pH 值下降。要使pH 值保持在最佳的范围内,应有碱性物质与其中和。当原水中碱度充分时还不致影响混凝效果;但当原水中碱度不足或混凝剂投量较大时,水的PH 值将大幅度下降,影响混凝效果。此时,应投加石灰或重碳酸钠等。3、水中杂质的成分性质和浓度

水中杂质的成分、性质和浓度都对混凝效果有明显的影响。例如,天然水中含粘土类杂质为主,需要投加的混凝剂的量较少;而圬水中含有大量有机物时,需要投加较多的混凝剂才有混凝效果,其投量可达10~103mg/L 但影响的因素比较复杂,理论上只限于作些定性推断和估计。在生产和实用上,主要靠混凝试验来选择合适的记凝凝品种和最佳投量。

在城市污水处理方面,过去很少采用化学混凝的方法。近年来.化学混凝剂的品种和质量都有较大的发展,使化学混凝法处理城市污水(特别在发展中国家)有一定的竞争力。实践表明,对某些浓度不高的城市污水,投加20—80mg/L 的聚合硫酸铁与0.3~0.5mg/L 左右的阴离子聚丙烯酰胺,就可去除COD70%左右,悬浮物和总磷90%以上。4.水力条件

混凝过程中的水力条件对絮凝体的形成影响极大。整个混凝过程可以分为两个阶段:混合和反应。水力条件的配合对这两个阶段非常重要。

混合阶段的要求是使药剂迅速均匀地扩散到全部水中以创造良好的水解和聚合条件,使胶体脱稳并借颗粒的布朗运动和紊动水流进行凝聚。在此阶段并不要求形成大的絮凝体。混合要求快速和剧烈搅拌,在几秒钟或一分钟内完成。对于高分子混凝剂,由于它们在水中的形态不象无机盐混凝剂那样受时间的影响,混合的作用主要是使药剂在水中均匀分散,混合反应可以在很短的时间内完成,而且不宜进行过份剧烈的搅拌。

反应阶段的要求是使混凝剂的微粒通过絮凝形成大的具有良好沉淀性能的絮凝体。反应阶段的搅拌强度或水流速度应随着絮凝体的结大而逐渐降低,以免结大的絮凝体被打碎。如果在化学混凝以后不经沉淀处理而直接进行接触过滤或是进行气浮处理,反应阶段可以省略。

目前常用的混凝剂

1 、硫酸铝 无水硫酸铝是无色结晶,易溶于水,常温下硫酸铝以含十八水合物最为稳定。Al2(SO4)3·18H2O 是具有光泽的无色颗粒或粉末晶体,极易溶于水,水溶液呈酸性(PH<=2.5)。操作液常用10%~20%的浓度。在水处理时加入量为l0-5~l0-3mol /L 。明矾[Al2(S04)3·K2S04·24H2O]的作用仍是Al2(S04)3成分。硫酸铝,腐蚀性小,使用方便,效果好,且对水质无不良影响。但水温低时,絮凝体形成慢而松散,效果不如铁盐;粗制品使用麻烦。

页码,2/5

中和混凝、加药装置-供应提供自动混凝剂加药装置,提供原水预处理专业方案...

工业品为白色或微带灰色的粉末或块状结晶,因可能存在少量的硫酸亚铁而使产品表面发黄。硫酸铝是使用最早的絮凝剂之一。硫酸铝对水中胶体微粒的絮凝过程分为吸附脱稳、沉淀絮凝、吸附沉淀混合区和再稳定四个区域。加入过量的硫酸铝,会形成胶体再稳定而影响絮凝效果。硫酸铝价格便宜,应用较广泛。

2 、聚合氯化铝(又称碱式氯化铝PAC ) 聚合氯化铝是应用最广泛的一种絮凝剂,它的固体呈无色至黄色树脂状,易潮解,溶液为无色至黄褐色透明状液体,聚合氯化铝易溶于水并易发生水解,水解过程中伴随有电化学、凝聚、吸附、沉淀等物理化学现象。聚合氯化铝一般是由铝矿土与酸经过酸溶、水解、缩聚等复杂的过程而制成的。 在硫酸铝的使用中,因水质条件复杂,不可能控制它的水解聚合物的形态。聚合氯化铝正是针对这一问题经研制而成的人工合成品。聚合氯化铝(包括碱式氯化铝)腐蚀性小,适应的pH 值范围较宽(5~9),絮凝体形成快而紧密,对低温、低浊以及高浊、高色水的效果均好,成本较低。

相对于硫酸铝而言,聚合氯化铝混凝效果随温度变化较小,形成絮体的速度较快,絮体颗粒和相对密度都较大,沉淀性能好,投加量较小。聚合氯化铝适宜的PH 值范围在5-9之间,过量投加一般不会出现胶体的再稳定现象。长期的实践证明,作为絮凝剂,聚合氯化铝优于硫酸铝,很多净水场的硫酸铝已经逐步被聚合氯化铝所替代。聚合氯化铝水溶液呈弱酸性,PH 值在5.5-6.0,对设备的腐蚀性很小。

3 、聚合硫酸铁(PFS ) 聚全硫酸铁有固体和液体两种形式,液体为红褐色粘稠液,固体为淡黄色或浅灰色的树脂状的颗粒。在产品的储存的使用过程中,聚合硫酸铁对设备基本无腐蚀作用。聚合硫酸铁投药量低,而且基本不用控制液体的PH 值。与铝盐相比,聚合硫酸铁絮凝速度更快,形成的矾花大,沉降速度更快;另外,它还具有脱色、除重金属离子、降低水中COD 、BOD 浓度的作用;但是其出水容易显黄色。

4 聚丙烯酰胺(PAM ) 按离子特殊性分类,可分为阳离子型、阴离子型、非离子型和两性酰胺四种。阳离子酰胺主要用于水处理,阴离子酰胺主要用于造纸、水处理,两性酰胺主要用于污泥脱水处理。聚丙烯酰胺易溶于冷水,分子量对溶解度影响不大,但高分子量的酰胺浓度超过质量分数10%以后,会形成凝胶状态。溶解温度超过50度,PAM 发生分子降解而失去助凝作用。因此溶解聚丙烯酰胺时要用45-50度的温水最为适宜。配制聚丙烯酰胺溶液一般配成质量浓度为0.05-2%,阳离子酰胺粘度较小,可配制成浓度较大的溶液,阴离子酰胺粘度较大,可适当配制成浓度较小的溶液。

聚丙烯酰胺常含有微量未聚合的单体,其毒性甚高。因而建议:饮水中丙烯酰胺的浓度,经常使用(每年l 月以上)时不应超过0.01mg /L ;非经常使用时,不应超过0.1mg /L 。配制溶液时不可浓度过大,否则不容易控制加药量,容易造成加药过量。聚丙烯酰胺的加入量很小,一般加药量在0.1-2ppm 。聚丙烯酰胺溶液用于处理废水时,加药后的絮凝效果与搅拌时间与搅拌有关。当已经形成大块絮凝时,就不要再继续搅拌,否则会使已经形成的较大矾花被打碎,变成细小的絮凝体,影响沉降效果。

自动混凝剂投加装置

混凝是水处理工艺中的关键环节,也是构成水处理成本的主要因素,混凝剂投加量是否准确直接影响到水处理的效果。在没有连续监测仪器的条件下,一般都是过量的使用凝聚剂以保证水处理效果。实际上,在水处理过程中,混凝剂的用量有一个最佳值,低于或超过这个最佳值都不能达到最佳处理效果。由于混凝剂投加量随源水流量、浊度、P H 、温度,混凝剂浓度、水质的波动而变化,如何精确控制混凝剂的投加,长期困扰着人们。十几年以来,我国各地水厂探索试用了各种自动加药方法,如数学模型法、模型滤池、模型斜管法、絮凝体成像等技术,也引进了不少国外自动控制系统,但调查表明,它们都存在投资大、可靠性低、建模难、程序量过大、精度差、操作复杂等难以克服的缺点,或者是对水质水量变化难以适应,滞后现象严重等不尽人意的地方,因而无法广泛应用。

混凝剂自动投加系统,以适应我国水质现状,满足加药自动化的要求。该系统仅仅检测与胶体电荷相关的流线电势这一项混凝本质参数,就可准确概括各项表观参数(源水流量、浊度、PH 、混凝剂浓度等)对混凝的影响。为投药自动化和全面普及应用创造了条件。

产品组成

由流线电势传感器(SPT1000) 、流线电势检测器(SPD1000)、流量仪(选配)、浊度仪(选配)、PLC 控制器、变频器、触摸屏等组成。适用于源水水量和浊度变化大、自动化程度要求高的混凝剂投加场合。

性能特点:

1、人机使用了高质量的触摸屏,具有直观动感的工艺流程图,可直接查阅历史数据(包括表格和曲线)、报警记录,可设置包括P 、I 、D 参数和加药量及上、下限在内的各项参数。中文显示,界面友好,操作简单方便。

2、具有过投药、欠投药、缺药报警、浊度报警、变频器故障(过流、过压、过载等)报警和记录功能。

3、具有强大的通信功能,支持多种通信协议,可方便地实现远程控制。

4、能迅速反应源水水质、水量和加药量变化,在很短时间内实现自动跟踪调节。

5、该系统灵活性好,可以根据使用的具体条件以多种方式运行。

6、在保证达到高质量水质的情况下,混凝剂的消耗量降低20%以上。

7、自动化程度高,减少生产人员对反应池、沉淀池巡检的频率,降低劳动强度,有利于水厂生产岗位的减员增效。 8、运行稳定可靠,故障率低,维护方便。

9、既适用于新建水厂,也适合老水厂的挖潜改造,对老水厂的挖潜改造基本不需改动原有工艺结构。

10、沉淀池出水水质受源水水质、水量的干扰小,提高了沉淀水浊度的合格率和稳定性,延长了滤池的反冲洗周期和滤料的使用寿命,提高了产水率,经济效益显著。

页码,3/5

中和混凝、加药装置-供应提供自动混凝剂加药装置,提供原水预处理专业方案...

点此询价当举报此信息联系方式

徐骥先生(市场营销部工程师)

找供应找求购找公司招聘资讯技术论坛博客

自动加药

免责声明:以上所展示的信息由企业自行提供,内容的真实性、准确性和合法性由发布企业负责,慧聪网对此不承担责任。风险防范建议:为保障您的利益,建议优先选择经过第三方机构认证的

浅谈影响混凝剂投加量的几个因素

浅谈影响药剂投加量的几个因素 据统计,城市净水厂的药剂消耗约占自来水制水成本的20-30%,若在保证供水水质的前提下,采取一定的节药措施,就能降低生产成本,提高水厂的经济效益,实现节能降耗。 影响混凝效果(药剂投加量)的因素比较复杂,其中包括水温、pH值和碱度、水中杂质性质和浓度、外部水利条件等。以下仅略述几项主要因素。 水温对药耗有明显影响,尤其是冬季低水温对药耗影响较大,通常絮凝体形成缓慢,颗粒细小、松散。原因主要有:一、无机盐混凝剂水解是吸热反应,低温水混凝剂水解困难;二、低温水的粘度大,使水中杂质颗粒的布朗运动强度减弱,碰撞机会减少,不利于胶体脱稳凝聚,同时还影响絮凝体的成长。三、水温低时,胶体颗粒的水化作用增强,妨碍胶体凝聚,还影响胶体颗粒之间的粘附强度。四、水温和水的pH值有关。水温低时,水的pH值提高,相应的混凝最佳pH值也将提高。所以在寒冷地区的冬季,尽管投加大量混凝剂也难获得良好的混凝效果。 pH值和碱度对混凝效果的影响:pH值是表示水是酸性还是碱性的指标,也就是说明水中H+浓度的指标。原水的pH值直接影响混凝剂的水解反应,即当原水的pH值处于一定范围时,才能保证混凝效果。当水中投加混凝剂后,因混凝剂发生水解使水中的H+浓度增加,从而导致水的pH值下降,阻碍了水解的进行。要使pH值保持在最佳范围以内,水中应有足够的碱性物质与H+中和。天然水中均含有一定碱度(通常是HCO3-),可以中和混凝剂水解过程产生的H+,对pH值有缓冲作用。当原水碱度不足或混凝剂投加过量时,水的pH 值将大幅下降,破坏混凝效果。 水中杂质成份的性质和浓度对混凝效果也有影响。天然水中的浊度是因为粘土杂质而引起的,粘土颗粒大小、带电性都会影响混凝效果。一般来说,粒径细小而均一,其混凝效果较差,水中颗粒浓度低,颗粒碰撞机率小,对混凝不利;当浊度很大时,为使水中胶体脱稳,所需药耗将大大增加。当水中存在大量有机物时,能被粘土颗粒吸附,从而改变了原有胶体颗粒的表面特性,使胶体颗粒更加稳定,将严重影响混凝效果,此时必须向水中投加氧化剂,破坏有机物的作用,提高混凝效果。水中溶解性盐类也能影响混凝效果,如天然水中存在大量钙、镁离子时,有利于混凝,而大量的Cl-,则不利于混凝。在汛期,

混凝剂和助凝剂投加

供应信息 供应提供自动混凝剂加药装置,提供原… 当前位置:首页 > 供应信息 > 环保、水处理 > 污水处理设备 > 中和混凝、加药装置 本信息已经过期!可选择以下操作: ·点击查看最新 中和混凝、加药装置 信息 信息 加入慧聪网,开始网上贸易 联系方式 收藏此信息 提供自动混凝剂加药装置,提供原水预处理专业方案和设备 上海科域水处理技术有限公司遵循严谨科学的计算结果,在原水预处理环节做到经济有效,便接下来的电渗析、反渗透、离子交换等工艺得到最大的保护,保证整体设备长期安全运行。同时在这一环节中也尽量使用全自动无人值班加药工艺,实现整体设备全自动运行。 原水预处理工艺 水的预处理是在水的精制处理之前,预先进行的初步处理,以便在水的经处理时取得良好效果,提高水质。因为自然界的水都有大量杂质,如泥沙、粘土、有机物、微生物、机械杂质等,这些杂质的存在,严重影响精制水的水质与处理效果,因此必须在精处理之前将一些杂质降低或去除,这就需要预处理,有时也称前处理。作用和意义:对水质预处理的好坏,直接影响电渗析、反渗透、离子交换等主要处理工艺的技术经济效果和长期安全运行,它是工业水处理中非常重要的一环。 预处理的方法很多,主要有氧化、预沉、混凝、澄清、过滤、软化、消毒等。用这些方法预处理之后,可以使水的悬浮物(浑浊度)、色度、胶体物、有机物、铁、锰、暂时硬度、微生物、挥发性物质、溶解的气体等杂质去除或降低到一定的程度。 原水预处理工艺---混凝处理 混凝原理 化学混凝所处理的对象,主要是水中的微小悬浮物和胶体杂质。大颗的悬浮物由于受重力的作用而下沉,可以用沉淀等方法除去。但是,微小粒径的悬浮物和胶体,能在水中长期保持分散悬浮状态,即使静置数十小时以上,也不会自然沉降。这是由于胶体微粒及细微悬浮颗粒具有“稳定性”。1.胶体的稳定性 根据研究,胶体微粒都带有电荷。天然水中的粘土类胶体微粒以及污水中的胶态蛋白质和淀粉微粒等都带有负电荷,其结构示意图见(图8—1)。它的中心称为胶桉。其表面选择性地吸附了一层带有同号电荷的离子,这些离子可以是胶校的组成物直接电离而产生的,也可以是从水中选择吸附H+或OH-离子而造成的。这层离子称为胶体微粒的电位离子,它决定了胶粒电荷的大小和符号。由于电位离子的静电引力,在其周围又吸附了大量的异号离子.形成了所谓“双电层”。这些异号离子,其中紧靠电位离子的部分被牢固地吸引着.当胶核运 供应提供自动混凝剂加药装置,提供原水预处理专业方案和设备 普通会员 访问慧聪网首页 添加收藏| 出口服务 |行业加盟 |买卖通 |搜索推广 |慧聪发发 || 我的商务中心 |邮箱 |帮助 |网站导航 所有行业采购工具页码,1/5 中和混凝、加药装置-供应提供自动混凝剂加药装置,提供原水预处理专业方案...

关于混凝剂用量试验的一些资料

只是,楼猪,好像聚铝配制成2%,这个浓度很少听说,药的流量要开到很大,我所知道的是配成10%的质量浓度 做实验的时候,可以配制低的浓度,但是在实际使用的过程中,还是要浓度高点,一般最适 宜的浓度在8% 实验室小试流程: 1. 用烧杯取适量废水(500ml左右),调节PH值到8左右; 2. 稀释所需的药剂,脱色剂稀释50倍(即2%的稀释浓度),聚铝(PAC)稀释50 倍,聚丙烯酰胺(PAM)稀释1000倍; 3. 滴加药剂,先加脱色剂,搅拌,再加聚铝,搅拌,最后加PAM,搅拌,静置; 4. 观察上清液的色度是否满足要求,如不满足,调整药剂投加量,重复第三步操作; 5. 根据试验数据计算每吨废水中脱色剂和其它药剂的用量。 试验注意事项: ★ 脱色剂稀释倍数最好在20倍以上,有利于脱色剂分子链的展开而发挥其性能, 并能有效控制投加量; ★ 脱色剂最好与聚铝配合使用,因脱色剂形成的絮体和密实度都比较小,和聚铝配合使用不仅能增大絮体的密实度和沉降性,还能通过协同增效的作用减少脱色剂 的用量; ★ 每次加药后应先快速搅拌1分钟再慢速搅拌30秒,这样有利于强化药剂的絮凝 效果; ★ 加药顺序不要颠倒,应先加脱色剂,再加聚铝,最后加聚丙烯酰胺,有试验数据表明投加顺序颠倒后脱色剂的用量可相差20%左右; ★ 若废水的上清液有发白现象或上清液的COD比滴加前高,都说明滴加脱色剂过 量,需减量滴加; ★

试验时用烧杯量取废水(水量要在200ML以上,这可减少与大试时药剂用量的误差),尽量不用比试管做小试,因废水在比色管的色度比在烧杯中的要小6-10 倍; ★ 废水若显酸性或强碱性,要先调节PH值到偏碱性,最好到8,因为脱色剂和聚铝都是酸性水溶液,有利于电性中和作用,有的废水调节PH值到碱性后还可以 析出絮体,可以减少药剂的用量。

混凝浑液面沉速与混凝剂投加量的关系

摘要:探讨了黄河高浊度水混凝沉淀浑液面沉迷与自然沉迷之间的相关性,经过对实验数据进行线性回归提出了混凝过程中浑液面沉速与自然沉速、含沙量、pam投加量之间的经验公式。运用该经验公式得出的浑液面沉速计算值与实测相对误差在0.43%-12.27%之间。 混凝沉淀是黄河高浊度水处理常用的方法。提高浑液面沉速,节约药剂(pam)的投加量达到多出清水是高浊度水处理的主要目标。然而混凝过程极其复杂,影响浑液面沉速的因素有高浊度水的性质、pam投加量、速度梯度c、搅拌时间t 等。因为高浊度水自然沉淀沉速与原水的性质密切相关。在实际处理一定组成的高浊度水时,可以借助实验得到的经验关系,根据浑液面的自然沉速以及所希望达到的浑液面沉速来确定pam的投加量。本文先采用正交实验的方法确定混凝 过程的混合、反应的最佳水力条件,然后在此基础上研究浑液面沉速与pam投 加量及高浊度自然沉速之间的关系。 1实验方法 1.1自然沉降实验 高浊度水采用郑州上街段黄河泥沙配制而成。试验过程中所有水样水温 15±1℃。用nsy-1光电颗分仪测泥沙粒度,其当量直径dm由下式计算:dm=1/(∑(△pi/di)) 式中di——颗粒粒径,pi——粒径di颗粒占所有颗粒质量百分数。选出dm 相近的几组水样用比重瓶测定其含沙量,以cw(kg/m3)表示。然后用直径62mm,高500mm,有效体积1500ml的自制沉降筒做静置沉降实验,根据沉降曲线求得等速沉降段混液面沉降速度作为自然沉速,以从(mm/s)表示。 试样的含沙量cw,浑液面自然沉速u0,当量直径dm, 1.2加药混凝实验 实验所选的药剂为江苏南天生产的阳离子型pam,阳离子度30%,配制成0.5%溶液。 取1.5l上述配制的水样置于2l的烧杯中,以600r/s的转速搅拌5min,然后投加pam,再调整转速和时间确定混凝的水力条件:笔者通过对搅拌速度。搅拌时间、pam投加量做正交实验得出具有最大浑液面沉速时的最佳的速度梯度与搅拌时间乘积,即(ct)umax为2180,这与崔俊华验证的(ct)umax为1900-2000[1]相

谈混凝实验条件下混凝剂最佳投加量的选择方法

谈混凝实验条件下混凝剂最佳投加量的选择方法 摘要:针对水厂运行过程中源水水质、水量变化容易引起混凝效果下降的情况,为了及时准确调节混凝剂的投加量,使出水水质达到最优,本文进行了一系列模拟实际水厂运行的混凝实验,考察了不同混凝剂投加量对源水浊度去除率的影响。并以净水厂常规水质实验中混凝实验数据结果、混凝曲线图为参考,提出净水厂生产运行中三种关于混凝剂投加量的选择方法,就如何高效地使用混凝剂,使它既能高效发挥作用,同时寻求允许条件下的最低使用量,达到节支降耗、经济运行目的,作出新的尝试。 关键词:混凝实验参考点去浊率拐点最佳效果点选择法质控点选择法经济点选择法 混凝技术在给水和污水处理工程中有着广泛的应用。给水处理工程中,凡地表水源的水厂,混凝技术几乎是不可缺少的处理技术之一,混凝过程的完善程度,直接影响后续处理如沉淀过滤的效果[1]。因为混凝剂是混凝技术的核心内容,所以在国家逐步提高饮用水水质标准的过程中,混凝剂在净水厂制水工艺中发挥的作用也越来越重要。如何高效地使用混凝剂,使它既能高效发挥作用,同时又能寻求允许条件下的最低使用量,达到节支降耗、经济运行目的,就成为所有制水企业需要解决的一个重要课题。 混凝剂最佳投加量是指能够达到、满足既定水质目标要求的最小混凝剂投加量。由于影响混凝效果的因素较复杂,而且水厂运行过程中水质水量不断的变化,因此要达到混凝剂最佳投加量,能及时调节准确投加是相当困难的。目前,我国大多数水厂是根据实验室混凝搅拌实验确定混凝剂最佳投加量,然后进行人工调节,虽然滞后1~3个小时,但因简单易行,还仍然为各水厂采用[2]。本文重点探求一种在该方法下,通过混凝效果比对、借助混凝曲线选择净水剂投量的方法。 1、试验方法 1.1 试验材料及设备 所需要试验材料及设备包括:(1)六联搅拌机;(2)pH计;(3)光电浊度仪; (4)1000mL烧杯、量筒;(5)1mL、2mL、5mL、50mL移液管;(6)混合器;(7)1%的PAFC(聚合氯化铝铁AL/Fe比为5/1,盐基度72%);(8)实验所需的玻璃仪器等。 本实验水源为黄河下游的引黄水库(济南鹊山水库)水,水质特点是:浊度低、高藻(叶绿素a含量17.1ug/L~36.9ug/L)处理难度大。取样地点为济南泓泉制水鹊华水厂1#源水取样点,时间是2010年7月8日早9:30。

混凝搅拌实验操作方法

混凝搅拌试验作业指导书 混凝搅拌实验是一种模拟混合、反应、沉淀三个工艺过程的实验手段,自来水厂可以通过混凝搅拌试验选择混凝剂的品种以及混凝剂最佳投量。 一、仪器及器皿 1、六联混凝实验搅拌机(带6个原水杯)1台、电子天平1台、散射光浊度仪1台、pH计1台; 2、100mL的容量瓶2个、100mL烧杯2个、收集瓶(250mL-300mL)6个、1升量筒1个、刻度吸管(1mL、2mL、5mL、10mL)各1支; 3、10升~15升的水桶1只、玻棒2根、洗耳球1个、定时器1个,温度计1支、蒸馏水洗瓶1个。 二、混凝剂溶液的配制 取固体混凝剂约10克备用(可装在磨口试剂瓶中以避免受潮)。混凝剂溶液的浓度单位实验室常用毫克/升(mg/L)表示,生产上用于投加量计算时往往采用公斤/千立方米(Kg/Km3),这两个浓度单位是等价的,即:1mg/L=1Kg/Km3。 配制混凝剂溶液浓度的高低取决于投药量的大小,混凝搅拌机投药试管的体积一般约10毫升,所以当投药量大时应提高混凝剂的配制浓度,以保证投药试管能容纳下所投加的混凝剂溶液(投加混凝剂溶液的体积不超过9mL)。 1、1 mL=1 mg(1 mg/L)混凝剂溶液的配制 用天平准确称取0.1g固体混凝剂之于100mL烧杯中,用少量蒸馏水溶解后移入00mL 容量瓶中,加蒸馏水至刻度,摇匀,即配成1mL=1mg(1mg/L)的混凝剂溶液。 2、1 mL=10 mg(10 mg/L)混凝剂溶液的配制

用天平准确称取1g固体混凝剂之于100mL烧杯中,用少量蒸馏水溶解后移入00mL 容量瓶中,加蒸馏水至刻度,摇匀,即配成1 mL=10 mg(10 mg/L)的混凝剂溶液。 表1 投药量与混凝剂溶液浓度的关系 三、混凝试验模拟投药量的确定 混凝试验6个原水杯中混凝剂的模拟投药量,一种方法是根据当时生产实际投药量来确定,另外一种方法是根据形成矾花所用的最小投加量来确定。 1、根据生产实际投药量来确定6个模拟投药量 假如当时原水浊度为20NTU、投药量为5mg/L,则可以5mg/L为中心点来确定6个原水杯的投药量,即1~6号杯的投药量分别为3mg/L、4mg/L、5mg/L(中心点)、6mg/L (或以此为中心点)、7mg/L、8mg/L。 2、根据形成矾花所用的最小投加量来确定6个模拟投药量 ①确定形成矾花所用的最小投加量,在烧杯中加入200mL原水,慢速搅拌,每次增加0.5mL混凝剂溶液投加量,直至出现矾花为止,这时的混凝剂溶液量作为形成矾花的最小投加量。 ②根据得出的形成矾花最小混凝剂投加量,来确定混凝实验6个原水杯的模拟投药量。假如形成矾花最小混凝剂投加量为3mg/L,则取其1/4(即约1mg/L)作为1号杯的混凝剂投药量,取其2倍(即6mg/L)作为6号杯的投药量,用依次增加投加量相等的方法求出2-5号烧杯混凝剂投药量,即2-5号原水杯的投加量分别为2mg/L、3mg/L、4mg/L、5mg/L。 四、搅拌试验步骤

一般城市污水处理药剂及投加量问题描述

一般城市污水处理药剂及投加量问题描述:1.污泥脱水剂分为哪几种? 2.污泥脱水该选哪些药剂?关键字:污泥脱水剂,聚丙烯酰胺,无机絮凝剂,城市污水处理城市污水厂的污泥中的固体物质主要是胶质微粒,与水的亲和力很强,若不作适当的预处理,脱水将非常困难。在污泥脱水前进行预处理,使污泥粒子改变物化性质,破坏污泥的胶体结构,减少其与水的亲和力,从而改善其脱水性能,这个过程称为污泥的调理或调质。污泥调理有多种方法,如加药,淘洗,加热,冷冻等,由于加药调理经济实用,简单方便,应用于最为广泛。加药调理是通过和向污泥中投加混凝剂,絮凝剂等,而使污泥凝聚,提高脱水性能的。污泥脱水剂一般分为有机絮凝剂和无机絮凝剂,一般无机的絮凝剂适用于真空过滤和板框过滤,而有机絮凝剂(聚丙烯酰胺)则较合适用于离心脱水和带式压滤脱水。无机絮凝剂主要分为两大类:铁盐和铝盐。铁盐主要包括:高分子铁盐,氯化铁,硫酸铁,聚合硫酸铁(PFS),三氯化铁FeCl3.6H2O),硫酸亚铁(FeSO4.7H2O)等.铝盐主要包括:硫酸铝,三氯化铝,碱式氯化铝,聚合氯化铝(PAC)等。有机絮凝剂的种类很多,按聚合度分为低聚合度(相对分子量约1千~几万)和高聚合度(相对分子量约几十万~几千万)两种,按离子型分为阳离子型,阴离子型,非离子型,和两性离子型。目前我国用于污泥脱水剂的有机絮凝剂主要是高聚合度的聚丙烯酰胺系列产品。与无机絮凝剂相比,有机絮凝剂的用量较少,一般为0.1%~0.5%,无腐包蚀性。污泥脱水剂的用量:污泥脱水剂的药剂抽加量,因污泥品种和性质,消化程度,固体浓度不同而异,没有一定的标准,因此,目前国内外确定污泥脱水剂的种类及投加量,多数是在现场或实验室直接试验确定。一般情况下,对于城市污水处理厂污泥,三氯化铁投加量为5%~10%,消石灰投加量为20%~40~,聚合氯化铝和聚合硫酸铁约为1%~3%,阳离子聚丙烯酰胺为0.1%~0.3%。 l. 絮凝力强,吸附活性度高,絮凝物的生成和沉降快; 2. 不需要碱等助剂,PH 范围广,使用容易;对于低水温、低浊度、低碱度的原水也有良好 的絮凝效果; 3. 以大幅度缩短搅拌、混合、沉淀等时间,并使絮凝池、沉淀池等小型化; 4. 除铁、除锰效果好,可以得到低电导率之水; 5. 设备简单、使用操作方便、腐蚀性小、劳动条件好、处理费用低。 阴离子聚丙烯酰胺 用途 工业废水处理 对于悬浮颗粒,较粗、浓度高、粒子带电阳电荷,水的PH值为中性或碱性的污水,钢铁厂废水,电镀厂废水,制金废水,洗煤废水等污水处理,效果最好, 饮用水处理 分子量一般选用RX-12为宜。我国很多来自水厂的水源来自江河,泥沙及矿物质含量高,比较浑浊,虽经过沉淀过滤,仍不能达到要求,需要投加絮凝剂。过去水厂多采用无机絮凝剂,但投加量大,造成二次污泥增加。现采用RX-12作絮凝剂,投加量是无机絮凝剂 的1/50,但效果是无机絮凝剂的几倍。对于有机物污染严重的江河水可采用我公司生产的无机絮凝剂和阳离子聚丙烯酰胺(RX-14或RX-15)配合使用效果更好。 淀粉厂及酒精厂的流失淀粉酒槽的回收

混凝反应计算

水与混凝剂的混合与絮凝反应 一、混凝剂的配制与投配 由于混凝剂配制过程中劳动强度较大,工作条件较差,因此在设计中必须考虑工人运转操作的方便,并保持一个良好的工作环境。 混凝剂的投配分干投法与湿投法,我国大都用湿投法。如混凝剂是块状或粒状,则需先加以溶解,配成一定浓度后再投入水中,因此需要一套溶药、配药及投药设备。 溶药池是把块状或粒状的药剂溶解成浓溶液,对难溶的药剂或在冬季水温低时,还可用蒸气或热水来加热,但一般只要适当搅拌即可溶解,药剂溶解后可流入溶液池,配成一定浓度,配制时也要适当搅拌,设计中每班配制溶液次数不宜过多。 药剂的溶解应视用药量大小,药剂的性质可采用水力,机械或压缩空气等搅拌方式。一般药量小时采用水力搅拌,药量大时采用机械搅绊。 溶液池应采用两个,交替使用。池子的出液管宜高出池底100毫米,保证药剂中的杂质不被带出。 溶药池、溶液池、搅拌设备、泵及管道都应考虑防腐。当采用FeCl3时,工作间的墙面和地面也要考虑防腐。 药剂的溶解、配液、投加过程可见下图 溶液池的容积W可按下式计算: (1.25) 式中a——混凝剂最大用量(毫克/升); Q——处理的水量(米3/小时); b——溶液浓度,按药剂固体重量百分数计算,一般用10-20; n——每昼夜配制溶液的次数,一般为2—6次,甩手工操作时不宜多于3次。 溶药池的容积W1可按下式估算: W1=(0.2~0.3)W(1.26) 下图所示为水力溶药池,水从切线方向进入溶药池溶解药剂,然后溢流入溶液池,其结构简单,使用方便,适宜于小水量。 当用石灰调节水的碱度时,还要考虑将石灰粉碎,用量大时,宜设粉碎机,可用生石灰(市售石灰含40—80%CaO)制成石灰饱和溶液或石灰乳(可按纯CaO含量的2~5%考虑)再行投配,石灰乳的配制要用机械或水泵搅拌,石灰溶液中杂质较多,易堵塞管嘴。图1.11为水泵搅拌系统示意图。 药液的投配应能准确计量、灵活调节、设备简单、便于操作。 采用计量泵最简便可靠,我国生产的计量泵型号较多,足以供给投药使用。 水射器也是常用的一种设备,它用于向压力管内投加药液,因一般水厂内的给水管都有较高压力,因此使用方便,见图1.12。

水厂混凝剂投加系统

LS-JY一体化药液投加装置 ?概述: LS-JY一体化药液投加装置主要是将药剂浓缩液或粉状药剂 配制成一定浓度的药液并将其准确投加至加药点的先进的加药 系统。 ?用途: 药液投加装置是是一种具投药、搅拌、输送液体、自动控制 与一体的成套设备,他被广泛应用于电厂的原水、锅炉给水、油 田地面集输脱水处理系统,石油化工各种加药系统和废水处理系统。如投加混凝剂、磷酸盐、氨液、石灰水、水质稳定剂(缓蚀剂)、阻垢剂、液体杀虫剂等。 ?工作结构原理: 加药装置主要由溶液池(箱)、搅拌池(箱)、计量泵、液位计、电控柜、管路、阀门、安全阀、止回阀、压力表、过滤器、底座、扶梯等组成(可根据用户实际要求配置)。 加药装置根据所需药剂浓度,在搅拌箱内配制,经搅拌器搅拌均匀后投入溶液箱、用计量泵(加药泵)向投药点或指定的系 统中输送所配制的溶液。成套加药装置具有结构紧凑、安全简单、操作使用简便等特点。该装置还可根据用户不同工艺流程的要求,进行有针对性的设计、配置必要的部件,实现功能适合(如自动远程控制)、经济实用。 ?加药装置选型注意事项: ?用户选用加药装置时,首先根据系统需要投加溶液量来确定选用规格(包括计量泵参数、搅拌箱容 积、溶液箱容积及现场条件),再根据投加情况、确定投加情况,确定投加方式(一般采用“一开一备”的方式); ?根据需要选取加药装置各部件的材质(不锈钢、碳钢、非金属材料)、计量泵型号(隔膜泵、柱塞泵) 或向我公司提供所加药剂的参数(名称、浓度、温度、密度、粘度、腐蚀性等); ?其他对加药装置的特殊要求。 ?安装、操作注意事项: ?检查加药装置的地脚平台是否在同一水平面上,泵出液口有丝扣连接,快速接头、法兰式接头、把 相应的接头接好,连接电源。 ?做好操作前的准备工作,计量泵箱体、减速机机箱内注入适量的和号机械油,以油位水平线为准, 关闭排污阀、管道阀,自动或手动加注药液,接通电源,电控柜电源指示灯亮表示电源已经接通。 按下搅拌电机按钮,搅拌机开始工作5~15分钟后打开管道阀门,按下半量泵启动按钮,计量泵开始工作。 ?定期检查计量泵进料口是否堵塞,对管线、过滤器定期清洗,以防堵塞。 ?定期检查搅拌装置,查看搅拌轴转动是否灵活,叶轮是否扭曲变形,连轴套是否松动,以免轴扭力 过大,损坏了应及时更换。 ?要定期对安全阀、安力表及各管线阀门旱灾行检查以免发生泄露。使用多泵加药应交替使用。

混凝试验加药量的测定

混凝试验加药量的测定 使用仪器:浊度仪、电炉、温度计、pH表、玻璃棒、1000ml烧杯(6个)、50ml移液管1.测定原水水样浊度、pH 值、温度。将原水温度加热到20℃。 2.确定形成矾花所用的最小混凝剂量。方法是通过慢速搅拌烧杯中200mL 原水,并每次增加0.05mL 混凝剂投加量,直至出现矾花为止。这时的混凝剂量作为形成矾花的最小投加量。 3.用6 个1000mL 的烧杯,分别放入1000mL 原水。 4.确定实验时的混凝剂投加量。根据步骤2 得出的形成矾花最小混凝剂投加量,用依次增加混凝剂投加量相等的方法烧杯混凝剂投加量、把混凝剂分别加入1—6 号烧杯中。5.用玻璃棒慢慢搅拌5分钟,静止沉淀5 分钟,用50mL 移液管抽出烧杯中的上清 液(共抽三次约100mL)放入200mL 烧杯内,立即用浊度仪测定浊度,(每杯水样测定三次),记入表1中。 6.确定助凝剂用量 取一组1000ml的水样,置于烧杯中,按最佳投药量加入凝聚剂,同时分别加入0.05、0.10、0.15、0.20、0.25、0.30mg/L助凝剂,用玻璃棒慢慢搅拌5分钟,静止沉淀5 分钟,用50mL 移液管抽出烧杯中的上清液(共抽三次约100mL)放入200mL 烧杯内,立即用浊度仪测定浊度,(每杯水样测定三次), 记入表2中。 7、上午下午药剂需重新更换。 附录:实验结果记录 实验日期: 混凝剂: 混凝剂浓度: 原水浊度: 原水pH: 原水温度: 表1: 水样编号 1 2 3 4 5 6 投药量mg/l 初矾花时间 矾花沉淀情况 上清液浊度 表2 水样编号 1 2 3 4 5 6 投药量mg/l 助凝剂量mg/l 初矾花时间 矾花沉淀情况 上清液浊度

混凝剂比较

混凝剂的比较 1.硫酸铝 硫酸铝含有不同数量的结晶水,Al2(SO4)3·18H2O,其中n=6、10、14、16,18和27,常用的是Al2(SO4)3·18H2O 其分子量为666.41,比重1.61,外观为白色,光泽结晶。 硫酸铝易溶于水,水溶液呈酸性,室温时溶解度大致是50%,pH值在2.5以下。沸水中溶解度提高至90%以上。 硫酸铝使用便利,混凝效果较好,不会给处理后的水质带来不良影响。当水温低时硫酸铝水解困难,形成的絮体较松散。 硫酸铝在我国使用最为普遍,大都使用块状或粒状硫酸铝。根据其中不溶于水的物质的含量,可分为精制和粗制两种。 硫酸铝易溶于水,可干式或湿式投加。湿式投加时一般

采用10—20%的浓度(按商品固体重量计算)。硫酸铝使用时水的有效pH值范围较窄,约在5.5—8之间,其有效pH值随原水的硬度含量而异:对于软水,pH值在 5.7— 6.6;中等硬度的水为6.6— 7.2;硬度较高的水则为7.2—7.8。在控制硫酸铝剂量时应考虑上述特性。有时加入过量硫酸铝,会使水的pH值降至铝盐混凝有效pH 值以下,既浪费了药剂,又使处理后的水发混。 粗制硫酸铝中有效氧化铝含量基本与精制相同,主要是不溶于水的物质含量高,废渣较多,最好用热水并拌以搅拌,才能完全溶解,因含有游离酸,酸度较高,腐蚀性强,溶解与投加设备应考虑防腐。 2.聚合氯化铝 聚合氯化铝是一种无机高分子混凝剂。六十年代,日本在制造与应用方面做了大量工作,有逐步取代硫酸铝的趋势。我国在1973年曾在成都召开全国新型混凝剂技术经验交流会,会上对聚合氯化铝的产品质量提出了要求,其中要求含氧化铝(Al2O8)10%以上,碱化度为50—80%,不溶物1%以下等。 我国某些地区仍将聚合氯化铝称为碱式氯化铝[A1n(OH)m Cl3n-m],这是由于对它的基本化学式的不同理解而造成的。聚合氯化铝的化学式应表示为 [Al2(OH)n C18-n]m,其中n可取1到5中间的任何整数,m

混凝剂加药量实验指导书

实验一混凝剂加药量实验指导书 1. 目的要求 (1)观察混凝现象,从而加深对混凝理论的理解; (2)确定水样的最佳投药量。 2. 方法原理 水中粒径小的悬浮物以及胶体物质,由于微粒的布朗运动,胶体颗粒间的静电斥力和胶体表面的水化作用,致使水中胶体颗粒稳定的分散在水中,不能采用自然沉降的方法去除。向水中投加混凝剂后,首先发生的是电离和水解反应。如以硫酸铝[Al2(SO4)3·18H2O]作混凝剂为例,则生成氢氧化铝。 电离: Al2(SO4)3→2Al3+ + 3SO42- 水解: Al3+ + 3H2O→Al(OH)3 + 3H+ 电离、水解过程很快,通常在30s内即可完成。氢氧化铝是溶解度很小的化合物,当水的pH值合适时,即从水中析出带正电胶体的A1(OH)3胶体。在一系列物理、化学作用下,析出的A1(OH)3胶体于水中的胶体颗粒结合,凝聚成粗大的絮状物(通常称为矾花),然后在重力的作用下沉降,使水中的胶体和悬浮物得到去除。 3. 实验仪器及药品 混凝搅拌器、浊度仪、温度计、烧杯、量筒、移液管、10g/L硫酸铝溶液 4. 实验步骤 (1)了解混凝搅拌器的使用方法。 (2) 测定原水的浊度和水温。 (3) 量取200mL水样至烧杯中,确定原水能够形成矾花的近似最小混凝剂量。方法是缓慢搅拌水样,用移液管每次增加0.5mL的混凝剂直至出现矾花为止。这时的混凝剂量作为形成矾花的最小投加量。 (4)量取6份1000mL水样至烧杯中。注意:所取水样要搅拌均匀,要一次量取,以尽量减少取样浓度上的误差。 (5) 以形成矾花的最小投加量的1/4为最小加药量,形成矾花的最小投加量的2倍为最大加药量,平均把混凝剂加入到6份水样中。 (6) 启动搅拌器。首先以150r/min的速度快速搅拌3-5min,再以50-80r/min的速度搅拌20min。搅拌过程中,注意观察并记录“矾花”形成的过程,“矾花”形成的快慢、外观、大小、密实程度、下沉快慢等。 (7) 搅拌过程完成后,水样静沉15min,用医用针筒在6个水样中依次取出约20mL的上清液,置于浊度仪的水样瓶中,用浊度仪测出其浊度。 (8) 以投药量为横座标,剩余浊度为纵座标,绘制混凝曲线图,从混凝曲线图对最佳

净水厂最佳混凝投药量试验

净水厂最佳混凝投药量试验 1.概述 2001年武汉市自来水公司拟定了“十五”水质规划,要求在短期内,提高水厂出厂水水质,将浊度控制在1NTU以下。为了提高水厂出厂水水质,同时控制混凝剂的投加量,达到优质、节能的目的,故采用混凝搅拌试验确定最佳混凝剂投加量,以指导生产实践。但由于试验设备和实际净水构筑物的水力条件相差很大,工作原理存在着较大的差异,所以选择最佳的搅拌试验条件是试验指导生产的重要前提。白鹤嘴水厂化验室在近大半年的搅拌试验工作中,较系统地对生产工艺进行了分析,提高了搅拌试验模拟生产实际的准确性,取得了较满意的效果。 白鹤嘴水厂于1992年投产,设计能力25万立方米/日,实际供水15万立方米/日,水源取自汉江。其源水经提升后,聚合铝混凝剂由管道投加到反应池;单口池长20米, 设计反应时间25分钟,源水经反应池后到平流沉淀池,单口平流池长97米,宽17米,高4米,沉淀时间为2小时,单口产水量6.1万立方米/日。由于白鹤嘴水厂源水取自汉江底层,含沙量较大,沉淀池积沙较严重,而且实际生产能力没有达到设计能力,所以在实际操作中搅拌试验的工艺参数的选取要切合生产实际来进行。 2.试验方法和材料 试验设备采用六杆搅拌机,混凝药剂聚合铝混凝剂,源水取自水厂一泵房。源水水质和混凝剂配比如表1所示。 表1 试验原水水质和混凝剂配比 源水浊度(NTU) 34.2~47.9 AI2O3含量(%) 9.0 源水总碱度(mg/l) 142 盐基度含量(%) 89.6

源水温度(oC) 0~15 矾液配制浓度(%) 1.0 源水pH值 8.01~8.17 稀释矾液水解时间(min) 30 根据水厂实际生产情况,计算试验各条件参数如下: 2.1 药剂混合管道的流速 根据公式:V=Q /T×S,其中:Q=15万立方米/日,T=24小时,S=2.0平方米(混合管道截面积),计算得混合管道流速V为0.83米/秒。 2.2 混合时间 根据公式:S=H/V,其中:H=18米(混合管长度),S=22秒,计算得混凝剂在管道中混合时间为22秒。 2.3 絮凝时间 用硝酸银滴定法,实测得絮凝时间为22分钟。 2.4 确定G值 白鹤嘴水厂采用池折板反应池,根据不同的水力条件分为a、b、c、d 四段,其折板和隔板的宽度比为0.8。在进水量不变的情况下,可以得出a、b、c、d每一段的宽度与流速成反比,流速与时间成正比,从而根据平均速度梯度G 可以推出a、b、c、d每一段的G值。 根据公式:G= , 其中:γ—水的容重,为9.81×103(N/m3 ), μ—水的运动粘度,为1.005×10-3(PaS), T—絮凝时间 h—总水头损失(0.22m) 求得平均速度梯度G为40S-1。 设a、b、c、d四段中b段G值为平均速度梯度,忽略排泥、积沙等因

铝铁复合混凝剂分类及投加量

【中国铝业网】铝和铁具有许多相似的性质,如原子共价半径。离子半径都比较相近,Fe3+,Al3+均具有相同的电荷,它们易水解,其盐具有共价性。因此,它们可通过交叉共聚,形成多核、更长。更稳定的分子链,得到混凝效果更好的无机高分子复合混凝剂——聚合铝铁。这类复合混凝剂兼有聚铝和聚铁的特点,既能克服铝盐处理的矾花生成慢、矾花轻。沉降慢的缺点,又能克服铁盐的出水不清、色度高的缺点。通常以铝盐为主,铁盐为辅,其价格比PAC略高一点点。近几年来,研制和应用这类混;凝剂已成为热点和发展的明显趋势。我国在这一领Z域内比较活跃,发表的论文和公布的专利较多。主要原材料是铝盐、铁盐和硅酸盐以及含铝铁等元素的矿物。矿渣废料,因而其原料来源广,同时生产工艺比较简单,有利于开发利用。我国已开发的铝限复合混凝剂种类较多,我们将它们分为3大类:只含两种阳离子的铝铁复合混凝剂,含有多种阴离子的铝铁复合混凝剂,以及含有其它阳离子的铝铁复合混凝剂。 1.只含两种阳离子的铝铁复台混凝剂 在这类复合混凝剂中,除铝、铁外,不含其它金属离子(即使有,也很少),阴离子则以一种为主。可以说,其组成相对比较简单,纯度较高。无疑这对原料有较高的要求。由于杂质少,特别是有害物质少,则它们适用于饮用水的处理。对这类混凝剂研究也比较深入,其中部分产品已进入国内水处理市场。这类混凝剂主要有以下几种: 1.1聚合氯化铝铁(PAFC) 通常采用PAC与FeCl3(或和FeCl2)反应,或者AlCl3或低聚氯化铝与铁反应,再进行羟基化聚合,就可制得聚合氯化铝铁。或将粉碎的铝土矿放入反应釜中与盐酸反应,然后将其倒入搅拌池中,并加入高铝灰和水,搅拌3-5h,沉淀即为产品。PAFC产品为淡黄色、暗黄色片状、粒状或粉状固体,易溶于水,在空气中易潮解。液体产品为淡黄色透明或悬浊液,相对密度>1.2,w(Al2O3)=6.0%-6.5%,w(Fe2O3)=4.0%-4.3%,盐基度为30%-50%,pH值(1%水溶液)为2-3。该产品用于生活饮用水。工业用水的净化和各种污水的化学处理。如某电子管厂用PAFC处理浊度为319NTU的废水,投加量为0.4或0.6mg/L,处理后的水无色透明,重金属达标。某厂最初用PAC和PFS处理电镀废水,钢总是不能达标,采用PAFC后各项指标均达标。用PAFC处理生产洗涤剂的废水,比用PAC,PFS和PFSC的效果要好得多。因此,PAFC是聚铝和聚铁的替代产品[1-7]。 1.2聚合硫酸铝铁(PAFS) 以铝土矿、高铝灰、硫酸为原料,接与PAFC相同的工艺过程制备PAFS。也可在反应器中,依次加入硫酸亚铁、硫酸铝、水、硫酸及硝酸铝,通入空气并进行搅拌,氧化、水解、

混凝剂的选择及投加点的确定

混凝剂的选择§投加点的确定 一、混凝剂的选择 正确选择混凝剂及其加注量,对污水处理工艺的有效运行,污泥产量的减少及运行成本的降低起到了重要的作用。 常规混凝剂有PAC、FeCl3、FeSO4、Al2(SO4)3·18H2O、聚铁铝等,以上药剂均为常规混凝剂,取材容易,价格低。通过投加铁盐产生的污泥比重大,易沉淀,价格也便宜;投加铝盐产生的污泥比重轻,但泥量也少,投加量小。对大型的污水厂药剂的投加量和污泥量都是运行成本的主要因素,而污泥的沉降性能的提高可通过改善水力条件来适合。城北污水处理厂宜采用PAC作为混凝剂,PAM作为助凝剂。 二、投加点的确定 混凝剂的投加点一般有以下三处: 1、预处理阶段:在预处理阶段投加混凝剂的目的是为了强化预处理效果,增加预处理的去除效率以及去除废水中妨碍微生物生长的有毒物质,以减轻后续生化处理构筑物的负担,保证生化处理效果。 2、生化处理阶段:在生化处理阶段投加混凝剂一般是为了增加微生物的絮凝性,使活性污泥能在后续泥水分离设施中分离得更彻底。 3、深度处理阶段:在生化处理后投加混凝剂主要是为了去除废水中剩余的、未被生物降解的污染物质,是为了处理后出水达标的一种保障措施。 上述三种混凝剂的投加方式在现有工程中均有使用实例,投加点

的选择主要是根据废水进水水质、出水要求以及所选用的工艺流程等因素综合确定。 根据有关试验结果,工业废水中的有毒物质通过混凝沉淀可以得到一定的效果,因此,本工程混凝剂投加点有2处:一是设置在生化处理前,即采用混凝沉淀预处理工艺;同时为保证出水水质稳定,在生化处理后深度处理投加混凝剂。 采用混凝沉淀预处理工艺虽然能去除废水中的有毒物质,但同时会产生一定量的化学污泥,根据试验,城北污水处理厂采用前置化学沉淀加生化处理工艺,所产生的总污泥量约为单纯采用生化处理多30%~40%,而在生化处理系统中或在生化处理后投加混凝剂,所产生的污泥量相对较少。因此,城北污水处理厂的加药点混凝剂的投加量、投加时间根据进水水质等条件随时进行调整,这样,既可以保证生化处理的效果不随进水水质波动的影响,又可以保证在不影响出水水质的基础上,减少加药量和污泥量。

混凝剂

混凝剂在污水处理中的应用:颗粒中较大的粗粒悬浮物可以利用自然沉淀去除,但是更微小的悬浮物,甚至是某些有害的化学离子,特别是胶体粒子沉降得很慢,甚至能在水中长期保持分散的悬浮状态而不能自然下沉,难以用自然沉淀的方法从水中分离除去。混凝剂的原理是破坏这些细小颗粒的稳定性,使其互相接触而凝聚在一起,形成絮状物,并下沉分离。 利用混凝剂治理污水综合了混合、反应、凝聚、絮凝等九个过程。由于混凝剂投入水中,大多可以提供大量的正离子。正离子能把胶体颗粒表面所带的负电中和掉,使其颗粒间排斥力减小,从而容易想和靠近并凝聚程絮状细粒,实现了使水中细小胶体颗粒脱稳并凝聚成微小细粒的过程。微小的细粒通过吸附、卷带和架桥形成更大的絮体沉淀下来,达到了可从水中分离出来的目的。 污水治理中常用的混凝剂大致可以分为三类:有机混凝剂、无机混凝剂和高分子混凝剂。有机混凝剂有阴阳离子型之分;无机混凝剂有无机类、碱类、固体细粉类等区别;高分子混凝剂根据聚合度的不同可分为高聚合度混凝剂和低聚合度混凝剂,不同聚合度下又有阳离子型、阴离子型和非离子型,高分子混凝剂也有有机与无机类之分。选用混凝剂的品种、数量应根据处理对象,即不同的废水的试验资料和条件而定,必须从价廉、易得、投用量少、处理效率高且生成的絮状物容易沉淀分离等方面考虑。当投加单个混凝剂处理效果不理想时,还可以投加助凝剂或者可以考虑两种混凝剂按比例混合投加。 一、混凝剂种类 按无机和有机类可分成以下几种: 1、硫酸铝 硫酸铝含有不同数量的结晶水,Al2(SO4)3·18H2O,其中n=6、10、14、16,18和27,常用的是Al2(SO4)3·18H2O其分子量为666.41,比重1.61,外观为白色,光泽结晶。 硫酸铝易溶于水,水溶液呈酸性,室温时溶解度大致是50%,pH值在2.5以下。沸水中溶解度提高至90%以上。 硫酸铝使用便利,混凝效果较好,不会给处理后的水质带来不良影响。当水温低时硫酸铝水解困难,形成的絮体较松散。

聚合氯化铝投加量的计算方法

水质决定了聚合氯化铝的用量,根据水质的不同,用量也会有所不同。要根据不同的水质,投放不同的用量,净水和污水也不一样. 聚合氯化铝的投加量要看处理的原水浊度,及什么样的水质还有其水处理用的反应池构造有关,不同构造的水池,反应时间,水流速度都不一样,最终聚合氯化铝投加量也不一样,第一,固体聚合氯化铝投加量聚合氯化铝固体一种无机高分子混凝剂,颜色为:金黄色、土黄色、褐色、红色颗粒状/片状的粉状固体,处理一般原水净化的其投加量为水的十万分之一左右(1公升水投加0.01克),净化后的水质优于硫酸铝絮凝剂,净水成本与之相比低15-30%,絮凝体形成快、沉降速度快,比硫酸铝等传统产品处理能力大,消耗水中碱度低于各种无机絮凝剂,因而可不投或少投碱剂,适应的源水PH5.0-9.0范围均可凝聚,腐蚀性小,操作条件好,溶解性优于硫酸铝,处理水中盐分增加少,有利于离子交换处理和高纯制水,对源水温度的适应性优于硫酸铝等无机絮凝剂。 第二,液体聚合氯化铝投加量聚合氯化铝液体的产品可适应PH值范围为5.0-9.0,最佳PH 值为6.5-7.6,产品可直接投加或稀释10倍后投加,固体产品稀释5-10%液体投加,有利均匀混合,效果好,稀释后的溶液最好在4-8小时内用完。含量30%的,一般为1:1000用量. 第三,原水浊100-500mg/I时,投加量为3-6mg/I。固体聚合氯化铝(固体)与常温水按1/3的重量比边搅拌边投加,至完全溶解后,再加水稀释到所需要浓度,原水浓度100~500mg/时投加量为3~6mg/L.具体投加时,应根据水质情况进行水试,选出最佳投加量而后投用。铭海环保一直坚持:用户至上,信誉第一。以先进的科学技术,完备的检测手段,可靠的产品质量,优良的售后服务,灵活的经营方式,热诚欢迎新老朋友前来考察洽谈业务,共铸辉煌!

加药系统的计算

加药系统的计算 1、溶液池容积 计算公式:1417aQ w cn = 式中W 1——溶液池的容积(m 3 ); Q ——设计处理水量(m 3/h ); a ——混凝剂最大投加量(mg/L ) c ——混凝剂的浓度,一般采用5%~20%; n ——每日调制次数,一般不超过3次。 例:Q=1500 m 3 /h 混凝剂为聚丙稀酰胺,最大投药量为30mg/L ,药溶液浓度为c=10%,混凝剂每日配置次数为2次。 1417aQ w cn ==30150041715n ××=3.6 m 3 a =30 mg/L ,Q=1500 m 3 /h , c=10%(注意:在带入上式计算时,c 值为百分数的份数值), n=2次 溶液池采用钢混结构 ,溶液池设置2个,每个容积W 1。 单池尺寸:B ×L ×H=5.5×3.0×(1.3+0.3+0.3)m 高度中包括超高0.3m,沉渣0.3米。 溶液池实际有效容积: W 1′=5.5×3.0×1.3=21.44 m 3(满足要求)。 池旁设工作台,宽1,0~1.5米,池底坡度为0.02。底部设置DN100mm 的放空管,采用硬聚氯乙烯管,池内壁用环氧树脂进行防腐处理。沿池面接入药剂稀释用给水管DN80mm 一条,于两池分设放水阀门,按1h 放满考虑。 2、溶解池容积 计算公式:W 2=(0.2~0.3) W 1 式中:W 2——溶解池容积(m 3);一般采用(0.2~0.3) W 1; W 1——溶液池容积(m 3)。 例: 溶解池的容积W 2 =0.28 W 1=0.28×21.44=6.0 m 3 溶解池的尺寸:B ×L ×H=2.0m ×2.0m ×(1.5+0.3+0.2)m

常用混凝剂(絮凝剂)的溶解与使用方法

常用混凝剂(絮凝剂)的溶解与使用方法 1、PAC(聚合氯化铝)的溶解与使用 1) PAC为无机高分子化合物,易溶于水,有一定的腐蚀性; 2) 根据原水水质情况不同,使用前应先做小试求得最佳用药量(具体方法可参见第2条:聚合硫酸铁的溶解与使用-加药量的确定);(参考用量范围:20-800ppm) 3) 为便于计算,实验小试溶液配置按重量体积比(W/V),一般2~5%配为好.如配3%溶液:称PAC3g,盛入洗净的200ml量筒中,加清水约50ml,待溶解后再加水稀释至100ml刻度,摇匀即可; 4) 使用时液体产品配成5-10%的水液,固体产品配成3-5%的水液(按商品重量计算); 5) 使用配制时按固体:清水=1:5(W/V)左右先混合溶解后,再加水稀释至上述浓度即可; 6) 低于1%溶液易水解,会降低使用效果;浓度太高易造成浪费,不容易控制加药量; 7) 加药按求得的最佳投加量投加; 8) 运行中注意观察调整,如见沉淀池矾花少,余浊大,则投加量过少,如见沉淀矾花大且上翻,余浊高,则加药量过大,应适当调整; 9) 加药设施应防腐. 2、聚合硫酸铁(PFS)的溶解与使用 1) PFS溶液配制 a, 使用时一般将其配制成5%-20%的浓度. b, 一般情况下当日配制当日使用,配药如用自来水,稍有沉淀物属正常现象. 2) 加药量的确定 因原水性质各异,应根据不同情况,现场调试或作烧杯混凝试验,取得最佳使用条件和最佳投药量以达到最好的处理效果. a, 取原水1L,测定其PH值; b, 调整其PH值为6-9; c, 用2ml注射器抽取配制好的PFS溶液,在强力搅拌下加入水样中,直至观察到有大量矾花形成,然后缓慢搅拌,观察沉淀情况.记下所加的PFS量,以此初步确定PFS的用量; d, 按照上述方法,将废水调成不同PH值后做烧杯混凝试验,以确定最佳用药PH值; e, 若有条件,做不同搅拌条件下用药量,以确定最佳的混凝搅拌条件; f, 根据以上步骤所做试验,可确定最佳加药量,混凝搅拌条件等. 注意混凝过程三个阶段的水力条件和形成矾花状况. a) 凝聚阶段:是药剂注入混凝池与原水快速混凝在极短时间内形成微细矾花的过程,此时水体变得更加浑浊,它要求水流能产生激烈的湍流.烧杯实验中宜快速(250-300转/分)搅拌10-30S,一般不超过2min.

相关文档
最新文档