脉宽调制(PWM)集成电路SG3525原理及应用

脉宽调制(PWM)集成电路SG3525原理及应用
脉宽调制(PWM)集成电路SG3525原理及应用

麻省理工大学

集成电路应用课程论文

论文题目:脉宽调制(PWM)集成电路SG3525

原理及应用

学院、系:电信学院电气系

专业班级:电气11

学生姓名:葉晓龍

任课教师:***

2014 年 6 月8日

脉宽调制(PWM)集成电路SG3525的工作原理及应用

摘要:随着电能变换技术的发展,功率MOSFET在开关变换器中开始广泛使用,为此美国硅通用半导体公司(Silicon General)推出SG3525。SG3525是用于驱动N沟道功率MOSFET。其产品一推出就受到广泛好评。SG3525系列PWM控制器分军品、工业品、民品三个等级。下面就SG3525的工作原理、管脚排列、主要特点以及应用领域等进行介绍。

关键词:PWM控制器MOSFET SG3525 开关变换器

一、概述

SG3525是电流控制型PWM控制器,所谓电流控制型脉宽调制器是按照接反馈电流来调节脉宽的。在脉宽比较器的输入端直接用流过输出电感线圈的信号与误差放大器输出信号进行比较,从而调节占空比使输出的电感峰值电流跟随误差电压变化而变化。由于结构上有电压环和电流环双环系统,因此,无论开关电源的电压调整率、负载调整率和瞬态响应特性都有提高,是目前比较理想的新型控制器。

二、管教排列及定义

SG3525芯片引脚排列如下图所示:

引脚的功能及含义如下:

引脚1:误差放大器反向输入端。在闭环系统中,该引脚接反馈信号。在开环系统中,该端与补偿信号输入端(引脚9)相连,可构成跟随器。

引脚2:误差放大器同向输入端。在闭环系统和开环系统中,该端接给定信

号。根据需要,在该端与补偿信号输入端(引脚9)之间接入不同类型的反馈网络,可以构成比例、比例积分和积分等类型的调节器。

引脚3:振荡器外接同步信号输入端。该端接外部同步脉冲信号可实现与外电路同步。

引脚4:振荡器输出端。

引脚5:振荡器定时电容接入端。

引脚6:振荡器定时电阻接入端。

引脚7:振荡器放电端。该端与引脚5之间外接一只放电电阻,构成放电回路。

引脚8:软启动电容接入端。该端通常接一只5 的软启动电容。

引脚9:PWM比较器补偿信号输入端。在该端与引脚2之间接入不同类型的反馈网络,可以构成比例、比例积分和积分等类型调节器。

引脚10:外部关断信号输入端。该端接高电平时控制器输出被禁止。该端可与保护电路相连,以实现故障保护。

引脚11:输出端A。引脚11和引脚14是两路互补输出端。

引脚12:信号地。

引脚13:输出级偏置电压接入端。

引脚14:输出端B。引脚14和引脚11是两路互补输出端。

引脚15:偏置电源接入端。

引脚16:基准电源输出端。该端可输出一温度稳定性极好的基准电压。

三、主要特点及应用领域

主要特点

(1)外围电路简单,使用方便

(2)保护功能齐全

(3)软启动特性

(4)死区可调

应用领域

(1)开关电源电路

(2)随动系统直流电机调速电路

四、工作原理

SG3525的功能原理图如下图所示:

SG3525内置了5.1V精密基准电源,微调至1.0%,在误差放大器共模输入电压范围内,无须外接分压电组。SG3525还增加了同步功能,可以工作在主从模式,也可以与外部系统时钟信号同步,为设计提供了极大的灵活性。在CT引脚和Discharge引脚之间加入一个电阻就可以实现对死区时间的调节功能。由于SG3525内部集成了软启动电路,因此只需要一个外接定时电容。

只有软启动电容充电至其上的电压使引脚8处于高电平时,SG3525才开始工作。由于实际中,基准电压通常是接在误差放大器的同相输入端上,而输出电压的采样电压则加在误差放大器的反相输入端上。当输出电压因输入电压的升高或负载的变化而升高时,误差放大器的输出将减小,这将导致PWM比较器输出为正的时间变长,PWM琐存器输出高电平的时间也变长,因此输出晶体管的导通时间将最终变短,从而使输出电压回落到额定值,实现了稳态。反之亦然。

外接关断信号对输出级和软启动电路都起作用。当Shutdown(引脚10)上的信号为高电平时,PWM琐存器将立即动作,禁止SG3525的输出,同时,软启动电容将开始放电。如果该高电平持续,软启动电容将充分放电,直到关断信号结束,才重新进入软启动过程。注意,Shutdown引脚不能悬空,应通过接地电阻可靠接地,以防止外部干扰信号耦合而影响SG3525的正常工作。

欠电压锁定功能同样作用于输出级和软启动电路。如果输入电压过低,在

SG3525的输出被关断同时,软启动电容将开始放电。

此外,SG3525还具有以下功能,即无论因为什么原因造成PWM脉冲中止,输出都将被中止,直到下一个时钟信号到来,PWM琐存器才被复位。

五、典型应用

一、直接驱动MOSFET,原理图如下

二、直接驱动小功率变压器,原理图如下

三、单端变压器输出原理图如下

参考文献:

【1】倪海东,蒋玉萍编著,高频开关电源集成控制器,机械工业出版社,2004-53-68

【2】韩广兴主编,开关电源电路识图,电子工业出版社,2009-215-236 【3】赵文博等编著,常用集成电路速查手册,机械工业出版社2010-03-01

【4】杨红国,徐崇颖编著,浅谈集成电路应用[J].电子世界,2012:87-88 【5】陈星弼编著,功率MOSFET与高压集成电路. 南京:东南大学出版社, 1990:168

脉宽调制(PWM)技术在电力电子电路的应用

摘要 【摘要】脉冲调制(PWM)技术最早起源于通信技术的调制、解调的思想,并将这种思想推广到测量、电力电子领域。随着全控型器件的发展与微处理器的出现,PWM技术已经变成为了电力电子领域中的重要技术,特别是在斩波电路、逆变电路。本文主要研究了PWM技术的理论基础(面积等效原理)及其控制原理;分析了在PWM控制下降压斩波电路的工作情况,并用matlab建模;分析了在180°方波控制与SPWM控制两种方法下三相桥式逆变电路的工作状态,对比两种方法的优劣,并考虑了加入死区时间对SPWM的影响。结合异步电机变频调速的相关原理,对SPWM技术控制下的逆变电路进行变化,通过控制输出电压的变化来实现变频调速。选择具体的电路,根据理论分析计算相关的参数。使用Matlab软件进行搭建仿真电路,将仿真得到的数据、波形与理论分析相互分析对照,总结其特点。 【关键词】PWM;DC–DC;DC-AC;MATLAB仿真 I

Abstract 【ABSTRACT】Pulse modulation (PWM) technology originated in the communication technology modulation, demodulation of the idea, and this idea extended to the field of measurement, power electronics. With the development of full-controlled devices with the advent of microprocessors, PWM technology has become an important technology in the field of power electronics, especially in chopping circuits, inverting circuits. This paper mainly studies the theoretical basis of the PWM technology (area equivalent principle) and its control principle. The work of the step-down chopper circuit under PWM control is analyzed and modeled by matlab. The analysis of the 180 ° square wave control and SPWM Control the working state of the three-phase bridge inverter circuit under the two methods, compare the advantages and disadvantages of the two methods, and consider the influence of adding dead time to SPWM. Combined with the principle of asynchronous motor frequency control, SPWM technology under the control of the inverter circuit changes, by controlling the output voltage changes to achieve frequency control. Select the specific circuit, according to the theoretical analysis of the relevant parameters. Using Matlab software to build simulation circuit, the simulation of the data, waveform and theoretical analysis of each other analysis, summed up its characteristics. 【KEYWORDS】PWM ;DC –DC ;DC-AC ; MATLAB simulation

PWM功能原理

PWM功能原理 出现了多种PWM技术,其中包括:相电压控制PWM、脉宽PWM法、随机PWM、SPWM 法、线电压控制PWM等,PWM 码是一种脉宽调制码,它的组成为9MS 高电平和4MS 低电平引导脉冲,16 位系统识别码,8 位数据正码和8 位数据反码。我要解的就数据码。一个PWM 码的0是由一个0.58ms的低电平和一个0.58ms的高电平组成,1 是由一个0.58ms 的低电平地和一个1.58ms 的高电平组成。 首先通过延时来丢开引导码,然后通过解码丢掉16 位系统识别码,最后解系统正码和反码。解开后将正码取反看是否与反码相同,如果相同,即解开保存其值。解码0 或1是这样的。在低电平的时候等待,直到为高了后,用一个0.882ms 的延时去量,量完后,如果为低了,证明前面是一个0.58ms 低电平和一个0.58ms 高电平地组成,即保存一个0.如果为高,则证明是由一个0.58ms 低电平地和一个1.58ms 高电平组成,即保存一个1 .为1则再调一个延时,让它延到低电平。等待到高电平后重复上述过程解码。遥控器解码程序介绍:通过上述的解码原理,利用单片机的中断口来测PWM码的宽度,通过本实验仪配备的遥控,单片机解码在数码管上显示。实际应用例如:红外遥控。 PWM脉宽调制,是靠改变脉冲宽度来控制输出电压,通过改变周期来控制其输出频率。而输出频率的变化可通过改变此脉冲的调制周期来实现。这样,使调压和调频两个作用配合一致,且于中间直流环节无关,因而加快了调节速度,改善了动态性能。由于输出等幅脉冲只需恒定直流电源供电,可用不可控整流器取代相控整流器,使电网侧的功率因数大大改善。利用PWM逆变器能够抑制或消除低次谐波。加上使用自关断器件,开关频率大幅度提高,输出波形可以非常接近正弦波。 PWM变频电路具有以下特点: 1. 可以得到相当接近正弦波的输出电压 2. 整流电路采用二极管,可获得接近1的功率因数 3. 电路结构简单 4. 通过对输出脉冲宽度的控制可改变输出电压,加快了变频过程的动态响应 现在通用变频器基本都再用PWM控制方式,所以介绍一下PWM控制的原理 PWM基本原理 脉宽调制(PWM)。控制方式就是对逆变电路开关器件的通断进行控制,使输出端得到一系列幅值相等的脉冲,用这些脉冲来代替正弦波或所需要的波形。也就是在输出波形的

PWM波形生成基础学习知识原理

脉宽调制(Pulse-Width Modulation,PWM)技术在电力电子领域的应用极其广泛。PWM模式是决定逆变器输出电压特性的根本。性能优越的PWM模式可以使逆变器具有良好的输出特性。由傅里叶分析可知,不对称波形会带来大量低次谐波、偶次谐波以及余弦项。因此PWM脉冲波形的对称性对输出特性有很大影响。 PWM的实现方法一般有两种:比较法和计算法。随着数字技术的迅速发展和计算机功能的提高,计算法以其方便灵活的特点成为PWM实现方法的主流。采用计算法实现PWM时,按照每个载波周期内调制波的取法,可以分为规则采样PWM和自然采样PWM。其中,采用规则采样法,计算简单,占用系统软件资源较少,因而应用比较广泛;但是由规则采样法计算出的PWM 波形,在系统载波频率较低时,输出精度差,并且在计算时需要通过查表确定计算结果,所以并不能保证其波形的对称性,谐波含量也会因为波形的不对称而增加。 对于调制类PWM,有三种方式:同步调制,异步调制,分段同步调制三种方式。同步调制虽然可以在调制波频率变化的所有范围内,载波与调制波的相位相同, PWM波形一直保持对称,输出谐波的低次谐波可以得到消除。但是在载波频率变化范围大时,电力

电子器件的开关频率变化范围大,在低频时,将给系统引入大量较低频率的谐波。异步调制的优点在于载波频率在调速过程中载波不变,高次谐波对系统的影响基本固定,可以弥补同步调制的缺点。但是异步调制无法在大部分频率点上都保证调制波与载波相位相对的固定,出现不对称波形,会给系统引入大量的低次谐波、偶次谐波和余弦项。分段同步调制可以综合以上两种方式的优点,但在波比切换时可能出现电压突变,甚至震荡。基于以上理论,本文提出一种新的PWM算法,可以在异步调制下,使PWM波形在T/2周期内始终保持关于T/4 周期的完全对称。 1 PWM算法原理 在用数字化控制技术产生PWM脉冲时,三角载波实际上是不存在的,完全由软件及硬件定时器代替,图1为三角载波的产生原理(Ttimer为定时器的值)用阶梯波代替模拟三角波。PWM脉冲的产生机理为:定时器重复按照PWM周期进行计数。比较寄存器用于保持调制值,比较寄存器中的值与定时器计数器的值相比较,当两个值匹配时, PWM输出就会跳变;当两个值产生二次匹配或者一个定时器的周期结束时,就会产生第二次输出跳变。通过这种方式就会产生一个周期与比较寄存器值成比例的脉冲信号。在比较单元中

脉宽调制(PWM)的基本原理及其应用实例

脉宽调制(PWM)的基本原理及其应用实例 脉宽调制(PWM)是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术,广泛应用在从测量、通信到功率控制与变换的许多领域中。 模拟电路 模拟信号的值可以连续变化,其时间和幅度的分辨率都没有限制。9V电池就是一种模拟器件,因为它的输出电压并不精确地等于9V,而是随时间发生变化,并可取任何实数值。与此类似,从电池吸收的电流也不限定在一组可能的取值范围之内。模拟信号与数字信号的区别在于后者的取值通常只能属于预先确定的可能取值集合之内,例如在{0V, 5V}这一集合中取值。 模拟电压和电流可直接用来进行控制,如对汽车收音机的音量进行控制。在简单的模拟收音机中,音量旋钮被连接到一个可变电阻。拧动旋钮时,电阻值变大或变小;流经这个电阻的电流也随之增加或减少,从而改变了驱动扬声器的电流值,使音量相应变大或变小。与收音机一样,模拟电路的输出与输入成线性比例。 尽管模拟控制看起来可能直观而简单,但它并不总是非常经济或可行的。其中一点就是,模拟电路容易随时间漂移,因而难以调节。能够解决这个问题的精密模拟电路可能非常庞大、笨重(如老式的家庭立体声设备)和昂贵。模拟电路还有可能严重发热,其功耗相对于工作元件两端电压与电流的乘积成正比。模拟电路还可能对噪声很敏感,任何扰动或噪声都肯定会改变电流值的大小。 数字控制 通过以数字方式控制模拟电路,可以大幅度降低系统的成本和功耗。此外,许多微控制器和DSP已经在芯片上包含了PWM控制器,这使数字控制的实现变得更加容易了。 简而言之,PWM是一种对模拟信号电平进行数字编码的方法。通过高分辨率计数器的使用,方波的占空比被调制用来对一个具体模拟信号的电平进行编码。PWM信号仍然是数字的,因为在给定的任何时刻,满幅值的直流供电要么完全有(ON),要么完全无(OFF)。电压或电流源是以一种通(ON)或断(OFF)的重复脉冲序列被加到模拟负载上去的。通的时候即是直流供电被加到负载上的时候,断的时候即是供电被断开的时候。只要带宽足够,任何模拟值都可以使用PWM进行编码。 图1显示了三种不同的PWM信号。图1a是一个占空比为10%的PWM输出,即在信号周期中,10%的时间通,其余90%的时间断。图1b和图1c显示的分别是占空比为50%和90%的PWM 输出。这三种PWM输出编码的分别是强度为满度值的10%、50%和90%的三种不同模拟信号值。例如,假设供电电源为9V,占空比为10%,则对应的是一个幅度为0.9V的模拟信号。 图2是一个可以使用PWM进行驱动的简单电路。图中使用9V电池来给一个白炽灯泡供电。如果将连接电池和灯泡的开关闭合50ms,灯泡在这段时间中将得到9V供电。如果在下一个50ms中将开关断开,灯泡得到的供电将为0V。如果在1秒钟内将此过程重复10次,灯泡将会点亮并象连接到了一个4.5V电池(9V的50%)上一样。这种情况下,占空比为50%,调制频率为10Hz。 大多数负载(无论是电感性负载还是电容性负载)需要的调制频率高于10Hz。设想一下如果灯泡先接通5秒再断开5秒,然后再接通、再断开……。占空比仍然是50%,但灯泡在头5秒钟内将点亮,在下一个5秒钟内将熄灭。要让灯泡取得4.5V电压的供电效果,通断循环周期与负载对开关状态变化的响应时间相比必须足够短。要想取得调光灯(但保持点亮)的效果,必须提高调制频率。在其他PWM应用场合也有同样的要求。通常调制频率为1kHz到200kHz之间。

PWM控制技术

主要内容:PWM 控制的基本原理、控制方式与 PWM 波形的生成方法,PW 逆 变电路的谐波分析,PW 整流电路。 重点:PWM 控制的基本原理、控制方式与PWM 波形的生成方法。 难点:PWM 波形的生成方法,PWM e 变电路的谐波分析。 基本要求:掌握PW 控制的基本原理、控制方式与 PW 波形的生成方法,了 解PWM 逆变电路的谐波分析,了解跟踪型 PWM K 变电路,了解PWM6流电路。 PWM(Pulse Width Modulation )控制——脉冲宽度调制技术,通过对一系 列脉冲的宽度进行调制,来等效地获得所需要波形(含形状和幅值)。第 章已涉及这方面内 容 : 第 3 章:直流斩波电路采用,第 4 章有两处: 节斩控式交流调压电路, 式变频电路。 本章内容 PWMI 制技术在逆变电路中应用最广,应用的逆变 电路绝大部分是 PWM 控制技术正是有赖于在逆变电路中的应用, 重要 地位。 本章主要以逆变电路为控制对象来介绍 PW 控制技术,也介绍PWM S 流电路 1 PWM 控制的基本原理 理论基础: 冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。 冲量指窄脉冲的面积。 效果基本相同, 是指环节的输出响应波形基本相同。 低频 段非常接近,仅在高频段略有差异。 图 6-1 形状不同而冲量相同的各种窄脉冲 面积等效原理: 分别将如图 6-1 所示的电压窄脉冲加在一阶惯性环节( R-L 电路)上,如图 6-2a 所示。其输出电流 i(t) 对不同窄脉冲时的响应波形如图 6-2b 所示。从波形 可以看出,在 i(t) 的上升段, i(t) 的形状也略有不同,但其下降段则几乎完全 相同。脉冲越窄,各 i(t) 响应波形的差异也越小。如果周期性地施加上述脉冲, 则响应 i(t) 也是周期性的。用傅里叶级数分解后将可看出,各 i(t) 在低频段的 特性将非常接近,仅在高频段有所不同。 3、4 节矩阵 PWI 型, 才确定了它在电力电子技术中的

PWM的工作原理

PWM得工作原理 脉宽调制PWM就是开关型稳压电源中得术语。这就是按稳压得控制方式分类得,除了PWM型,还有PFM型与PWM、PFM混合型。脉宽宽度调制式(PWM)开关型稳压电路就是在控制电路输出频率不变得情况下,通过电压反馈调整其占空比,从而达到稳定输出电压得目得。 随着电子技术得发展,出现了多种PWM技术,其中包括:相电压控制PWM、脉宽PWM法、随机PWM、SPWM法、线电压控制PWM等,而在镍氢电池智能充电器中采用得脉宽PWM法,它就是把每一脉冲宽度均相等得脉冲列作为PWM波形,通过改变脉冲列得周期可以调频,改变脉冲得宽度或占空比可以调压,采用适当控制方法即可使电压与频率协调变化。可以通过调整PWM得周期、PWM 得占空比而达到控制充电电流得目得。 pwm得定义 脉宽调制(PWM)就是利用微处理器得数字输出来对模拟电路进行控制得一种非常有效得技术,广泛应用在从测量、通信到功率控制与变换得许多领域中. 模拟信号得值可以连续变化,其时间与幅度得分辨率都没有限制.9V电池就就是一种模拟器件,因为它得输出电压并不精确地等于9V,而就是随时间发生变化,并可取任何实数值。与此类似,从电池吸

收得电流也不限定在一组可能得取值范围之内。模拟信号与数字信号得区别在于后者得取值通常只能属于预先确定得可能取值集合之内,例如在{0V,5V}这一集合中取值. 模拟电压与电流可直接用来进行控制,如对汽车收音机得音量进行控制。在简单得模拟收音机中,音量旋钮被连接到一个可变电阻。拧动旋钮时,电阻值变大或变小;流经这个电阻得电流也随之增加或减少,从而改变了驱动扬声器得电流值,使音量相应变大或变小。与收音机一样,模拟电路得输出与输入成线性比例. 尽管模拟控制瞧起来可能直观而简单,但它并不总就是非常经济或可行得。其中一点就就是,模拟电路容易随时间漂移,因而难以调节。能够解决这个问题得精密模拟电路可能非常庞大、笨重(如老式得家庭立体声设备)与昂贵。模拟电路还有可能严重发热,其功耗相对于工作元件两端电压与电流得乘积成正比。模拟电路还可能对噪声很敏感,任何扰动或噪声都肯定会改变电流值得大小。 通过以数字方式控制模拟电路,可以大幅度降低系统得成本与功耗.此外,许多微控制器与DSP已经在芯片上包含了PWM控制器,这使数字控制得实现变得更加容易了。 pwm得工作原理 脉冲宽度调制波通常由一列占空比不同得矩形脉冲构成,其占空比与信号得瞬时采样值成比例.图1所示为脉冲宽度调制系统得原理

脉冲宽度调制(PWM)技术

脉冲宽度调制(PWM)技术 在电力电子变流器控制系统中,对于控制电路的要求往往是除能够控制负载的加电与断电外,还应该能够控制加载到负载上的电压高低及功率大小。在大功率电力电子电路中,控制加载至负载上电压及功率的实用方法就是脉冲宽度调制(pulse width modulation, PWM)。 1. 面积等效原理 在控制理论中,有一个重要的原理,即冲量等效原理:大小、波形不相同的窄脉冲变量(冲量)作用在具有惯性的环节上时,只要这些变量对时间的积分相等,其作用的效果将基本相同。这里所说的效果基本相同是指惯性环节的输出响应波形基本相同。例如,下图1示出的三个窄脉冲电压波形分别为矩形波、三角波和正弦波,但这二个窄脉冲电压对时间的积分相等,或者说它们的面积相等。当这三个窄脉冲分别作用在只有惯性的同一环节上时,其输出响应基本相同。因此,冲量等效原理也可以称为面积等效原理。 从数学角度进行分析,对上图1所示的三个窄脉冲电压波形进行傅里叶变换,则其低频段的特性非常相近,仅在高频段有所不同,而高频段对于具有惯性负载的电路影响非常小。由此进一步证明了面积等效原理的正确性。 2. 脉冲宽度调制技术

依据面积等效原理,在电路中可以利用低端电源开关或高端电源开关,以一定频率的导通和截止连续切换,使电源电压U i以一系列等幅脉冲(或称为矩形波)的形式加载到负载上,加载在负载上的电源电压Uo波形如图2所示。 图2所示的矩形波的电压平均值: 此式表明在一个脉冲周期内,电压的平均值与脉冲的占空比是成正比的,于是,可以通过改变脉冲的占空比来调整加载到负载上的电压大小。当占空比小时,加载到负载上的平均电压就低,即加载到负载上的功率小;而占空比大时,加载到负载上的平均电压就高,加载到负载上的功率大。这种通过等幅脉冲调节负载平均电压及功率的方法称为脉冲宽度调制,也称为斩波控制。 采用脉冲宽度调制方式为负载供电,由于供电电压是脉动的,势必会产生出各种谐波。为了明确脉冲宽度调制技术对负载产生的影响,且考虑此分析结果便于以后章节引用,可将图2所示的等幅脉冲序列描述为 式中,G(t)为开关函数,其波形如图3所示。 在此式中,第一项DUi是等幅脉冲序列的直流成分,也即输出电压的平均值。可见,输出电

PWM控制的基本原理

PWM控制的基本原理 PWM(Pulse Width Modulation)控制——脉冲宽度调制技术,通过对一系列脉冲的宽度进行调制,来等效地获得所需要波形(含形状和幅值)。 PWM控制技术在逆变电路中应用最广,应用的逆变电路绝大部分是PWM型,PWM 控制技术正是有赖于在逆变电路中的应用,才确定了它在电力电子技术中的重要地位。理论基础: 冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。冲量指窄脉冲的面积。效果基本相同,是指环节的输出响应波形基本相同。低频段非常接近,仅在高频段略有差异。 图1形状不同而冲量相同的各种窄脉冲 面积等效原理: 分别将如图1所示的电压窄脉冲加在一阶惯性环节(R-L电路)上,如图2a所示。其输出电流i(t)对不同窄脉冲时的响应波形如图2b所示。从波形可以看出,在i(t)的上升段,i(t)的形状也略有不同,但其下降段则几乎完全相同。脉冲越窄,各i(t)响应波形的差异也越小。如果周期性地施加上述脉冲,则响应i(t)也是周期性的。用傅里叶级数分解后将可看出,各i(t)在低频段的特性将非常接近,仅在高频段有所不同。 图2 冲量相同的各种窄脉冲的响应波形 用一系列等幅不等宽的脉冲来代替一个正弦半波,正弦半波N等分,看成N个相连的脉冲序列,宽度相等,但幅值不等;用矩形脉冲代替,等幅,不等宽,中点重合,面积(冲量)相等,宽度按正弦规律变化。 SPWM波形——脉冲宽度按正弦规律变化而和正弦波等效的PWM波形。 图3 用PWM波代替正弦半波 要改变等效输出正弦波幅值,按同一比例改变各脉冲宽度即可。 PWM电流波:电流型逆变电路进行PWM控制,得到的就是PWM电流波。 PWM波形可等效的各种波形: 直流斩波电路:等效直流波形 SPWM波:等效正弦波形,还可以等效成其他所需波形,如等效所需非正弦交流波形等,其基本原理和SPWM控制相同,也基于等效面积原理。 随着电子技术的发展,出现了多种PWM技术,其中包括:相电压控制PWM、脉宽PWM 法、随机PWM、SPWM法、线电压控制PWM等,而本文介绍的是在镍氢电池智能充电器中采用的脉宽PWM法。它是把每一脉冲宽度均相等的脉冲列作为PWM波形,通过改变脉冲列的周期可以调频,改变脉冲的宽度或占空比可以调压,采用适当控制方法即可使电压与频率协调变化。可以通过调整PWM的周期、PWM的占空比而达到控制充电电流的目的。 PWM技术的具体应用

PWM基本原理

脉冲宽度调制(PWM),是英文“Pulse Width Modulation”的缩写,简称脉宽调制,是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术,广泛应用在从测量、通信到功率控制与变换的许多领域中。PWM就是脉冲宽度调制,也就是占空比可变的脉冲波形. PWM控制技术就是以该结论为理论基础,对半导体开关器件的导通和关断进行控制,使输出端得到一系列幅值相等而宽度不相等的脉冲,用这些脉冲来代替正弦波或其他所需要的波形。按一定的规则对各脉冲的宽度进行调制,既可改变逆变电路输出电压的大小,也可改变输出频率 基本原理 随着电子技术的发展,出现了多种PWM技术,其中包括:相电压控制PWM、脉宽PWM法、随机PWM、SPWM法、线电压控制PWM等,而在镍氢电池智能充电器中采用的脉宽PWM法,它是把每一脉冲宽度均相等的脉冲列作为PWM波形,通过改变脉冲列的周期可以调频,改变脉冲的宽度或占空比可以调压,采用适当控制方法即可使电压与频率协调变化。可以通过调整PWM的周期、PWM的占空比而达到控制充电电流的目的。 尽管模拟控制看起来可能直观而简单,但它并不总是非常经济或可行的。其中一点就是,模拟电路容易随时间漂移,因而难以调节。能够解决这个问题的精密模拟电路可能非常庞大、笨重(如老式的家庭立体声设备)和昂贵。模拟电路还有可能严重发热,其功耗相对于工作元件两端电压与电流的乘积成正比。模拟电路还可能对噪声很敏感,任何扰动或噪声都肯定会改变电流值的大小。通过以数字方式控制模拟电路,可以大幅度降低系统的成本和功耗。此外,许多微控制器和DSP已经在芯片上包含了PWM控制器,这使数字控制的实现变得更加容易了。 具体过程 脉冲宽度调制(PWM)是一种对模拟信号电平进行数字编码的方法。通过高分辨率计数器的使用,方波的占空比被调制用来对一个具体模拟信号的电平进行编码。PWM信号仍然是数字的,因为在给定的任何时刻,满幅值的直流供电要么完全有(ON),要么完全无(OFF)。电压或电流源是以一种通(ON)或断(OFF)的重复脉冲序列被加到模拟负载上去的。通的时候即是直流供电被加到负载上的时候,断的时候即是供电被断开的时候。只要带宽足够,任何模拟值都可以使用PWM进行编码。 多数负载(无论是电感性负载还是电容性负载)需要的调制频率高于 10Hz,通常调制频率为1kHz到200kHz之间。 许多微控制器内部都包含有PWM控制器。占空比是接通时间与周期之比;调制频率为周期的倒数。执行PWM操作之前,这种微处理器要求在软件中完成以下工作:

PWM控制原理

PWM控制技术 主要内容:PWM控制的基本原理、控制方式与PWM波形的生成方法,PWM逆变电路的谐波分析,PWM整流电路。 重点:PWM控制的基本原理、控制方式与PWM波形的生成方法。 难点:PWM波形的生成方法,PWM逆变电路的谐波分析。 基本要求:掌握PWM控制的基本原理、控制方式与PWM波形的生成方法,了解PWM 逆变电路的谐波分析,了解跟踪型PWM逆变电路,了解PWM整流电路。 PWM(Pulse Width Modulation)控制——脉冲宽度调制技术,通过对一系列脉冲的宽度进行调制,来等效地获得所需要波形(含形状和幅值)。第3、4章已涉及这方面内容: 第3章:直流斩波电路采用,第4章有两处:4.1节斩控式交流调压电路,4.4节矩阵式变频电路。 本章内容 PWM控制技术在逆变电路中应用最广,应用的逆变电路绝大部分是PWM型,PWM 控制技术正是有赖于在逆变电路中的应用,才确定了它在电力电子技术中的重要地位。 本章主要以逆变电路为控制对象来介绍PWM控制技术,也介绍PWM整流电路 1 PWM控制的基本原理 理论基础: 冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。冲量指窄脉冲的面积。效果基本相同,是指环节的输出响应波形基本相同。低频段非常接近,仅在高频段略有差异。 图6-1 形状不同而冲量相同的各种窄脉冲 面积等效原理: 分别将如图6-1所示的电压窄脉冲加在一阶惯性环节(R-L电路)上,如图6-2a所示。其输出电流i(t)对不同窄脉冲时的响应波形如图6-2b所示。从波形可以看出,在i(t)的上升段,i(t)的形状也略有不同,但其下降段则几乎完全相同。脉冲越窄,各i(t)响应波形的差异

各种PWM控制方法的原理及优缺点

引言 采样控制理论中有一个重要结论:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。PWM控制技术就是以该结论为理论基础,对半导体开关器件的导通和关断进行控制,使输出端得到一系列幅值相等而宽度不相等的脉冲,用这些脉冲来代替正弦波或其他所需要的波形。按一定的规则对各脉冲的宽度进行调制,既可改变逆变电路输出电压的大小,也可改变输出频率。 PWM控制的基本原理很早就已经提出,但是受电力电子器件发展水平的制约,在上世纪80年代以前一直未能实现。直到进入上世纪80年代,随着全控型电力电子器件的出现和迅速发展,PWM控制技术才真正得到应用。随着电力电子技术、微电子技术和自动控制技术的发展以及各种新的理论方法,如现代控制理论、非线性系统控制思想的应用,PWM控制技术获得了空前的发展。到目前为止,已出现了多种PWM控制技术,根据PWM控制技术的特点,到目前为止主要有以下8类方法。 1相电压控制PWM 1.1等脉宽PWM法[1] VVVF(Variable Voltage Variable Frequency)装置在早期是采用PAM(Pulse Amplitude Modulation)控制技术来实现的,其逆变器部分只能输出频率可调的方波电压而不能调压。等脉宽PWM法正是为了克服PAM法的这个缺点发展而来的,是PWM法中最为简单的一种。它是把每一脉冲的宽度均相等的脉冲列作为PWM波,通过改变脉冲列的周期可以调频,改变脉冲的宽度或占空比可以调压,采用适当控制方法即可使电压与频率协调变化。相对于PAM法,该方法的优点是简化了电路结构,提高了输入端的功率因数,但同时也存在输出电压中除基波外,还包含较大的谐波分量。 1.2随机PWM 在上世纪70年代开始至上世纪80年代初,由于当时大功率晶体管主要为双极性达林顿三极管,载波频率一般不超过5kHz,电机绕组的电磁噪音及谐波造成的振动引起了人们的关注。为求得改善,随机PWM方法应运而生。其原理是随机改变开关频率使电机电磁噪音近似为限带白噪声(在线性频率坐标系中,各频率能量分布是均匀的),尽管噪音的总分贝数未变,但以固定开关频率为特征的有色噪音强度大大削弱。正因为如此,即使在IGBT已被广泛应用的今天,对于载波频率必须限制在较低频率的场合,随机PWM仍然有其特殊的价值;另一方面则说明了消除机械和电磁噪音的最佳方法不是盲目地提高工作频率,随机PWM技术正是提供了一个分析、解决这种问题的全新思路。 1.3SPWM法

PWM脉宽调制方法介绍

脉冲宽度调制 脉冲宽度调制(PWM)是英文“Pulse Width Modulation”的缩写,简称脉宽调制。它是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术,广泛应用于测量,通信,功率控制与变换等许多领域。一种模拟控制方式,根据相应载荷的变化来调制晶体管栅极或基极的偏置,来实现开关稳压电源输出晶体管或晶体管导通时间的改变,这种方式能使电源的输出电压在工作条件变化时保持恒定。 脉冲宽度调制(PWM)是一种对模拟信号电平进行数字编码的方法。通过高分辨率计数器的使用,方波的占空比被调制用来对一个具体模拟信号的电平进行编码。PWM信号仍然是数字的,因为在给定的任何时刻,满幅值的直流供电要么完全有(ON),要么完全无(OFF)。电压或电流源是以一种通(ON)或断(OFF)的重复脉冲序列被加到模拟负载上去的。通的时候即是直流供电被加到负载上的时候,断的时候即是供电被断开的时候。只要带宽足够,任何模拟值都可以使用PWM进行编码。 多数负载(无论是电感性负载还是电容性负载)需要的调制频率高于10Hz,通常调制频率为1kHz到200kHz之间。 许多微控制器内部都包含有PWM控制器。例如,Microchip公司的PIC16C67内含两个PWM控制器,每一个都可以选择接通时间和周期。占空比是接通时间与周期之比;调制频率为周期的倒数。执行PWM操作之前,这种微处理器要求在软件中完成以下工作: * 设置提供调制方波的片上定时器/计数器的周期 * 在PWM控制寄存器中设置接通时间 * 设置PWM输出的方向,这个输出是一个通用I/O管脚 * 启动定时器 * 使能PWM控制器 PWM的一个优点是从处理器到被控系统信号都是数字形式的,无需进行数模转换。让信号保持为数字形式可将噪声影响降到最小。噪声只有在强到足以将逻辑1改变为逻辑0或将逻辑0改变为逻辑1时,也才能对数字信号产生影响。 对噪声抵抗能力的增强是PWM相对于模拟控制的另外一个优点,而且这也是在某些时候将PWM用于通信的主要原因。从模拟信号转向PWM可以极大地延长通信距离。在接收端,通过适当的RC或LC网络可以滤除调制高频方波并将信号还原为模拟形式。 总之,PWM既经济、节约空间、抗噪性能强,是一种值得广大工程师在许多设计应用中使用的有效技术。 几种PWM控制方法 采样控制理论中有一个重要结论:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同.PWM控制技术就是以该结论为理论基础,对半导体开关器件的导通和关断进行控制,使输出端得到一系列幅值相等而宽度不相等的脉冲,用这些

脉冲宽度调制(PWM)技术原理

一、PWM技术原理 由于全控型电力半导体器件的出现,不仅使得逆变电路的结构大为简化,而且在控制策略上与晶闸管类的半控型器件相比,也有着根本的不同,由原来的相位控制技术改变为脉冲宽度控制技术,简称PwM技术。PwM技术可以极其有效地进行谐波抑制,在频率、效率各方面有着明显的优点使逆变电路的技术性能与可靠性得到了明显的提高。采用PwM方式构成的逆变器,其输人为固定不变的直流电压,可以通过PwM技术在同一逆变器中既实现调压又实现调频。由于这种逆变器只有一个可控的功率级,简化了主回路和控制回路的结构,因而体积小、质量轻、可靠性高。又因为集凋压、调频于一身,所以调节速度快、系统的动态响应好。此外,采用PwM技术不仅能提供较好的逆变器输出电压和电流波形,而且提高了逆变器对交流电网的功率因数。把每半个周期内,输出电压的波形分割成若干个脉冲,每个脉冲的宽度为每两个脉冲间的间隔宽度为t2,则脉冲的占空比γ为此时,电压的平均值和占空比成正比,所以在调节频率时,不改变直流电压的幅值,而是改变输出电压脉冲的占空比,也同样可以实现变频也变压的效果。 二、正弦波脉宽调制(sPwM) 1.sPwM的概念工程实际中应用最多的是正弦PwM法(简称sPwM),它是在每半个周期内输出若干个宽窄不同的矩形脉冲波,每一矩形波的面积近似对应正弦波各相应每一等份的正弦波形下的面积可用一个与该面积相等的矩形来代替,于是正弦波形所包围的面积可用这N个等幅(Vd)不等宽的矩形脉冲面积之和来等效。各矩形脉冲的宽度自可由理论计算得出,但在实际应用中常由正弦调制波和三角形载波相比较的方式来确定脉宽:因为等腰三角形波的宽度自上向下是线性变化的,所以当它与某一光滑曲线相交时,可得到一组幅值不变而宽。度正比于该曲线函数值的矩形脉冲。若使脉冲宽度与正弦函数值成比例,则也可生成sPwM波形。在工程应用中感兴趣的是基波,假定矩形脉冲的幅值Vd恒定,半周期内的脉冲数N也不变,通过理论分析可知,其基波的幅值V1m脉宽δi有线性关系在进行脉宽调制时,使脉冲系列的占空比按正弦规律来安排。当正弦值为最大值时,脉冲的宽度也最大,而脉冲间的间隔则最小。反之,当正弦值较小时,脉冲的宽度也小,而脉冲间的间隔则较大,如图5 3所示;这样的电压脉冲系列可以使负载电流中的高次谐波成分大为减小,称为正弦波脉宽调制。sPwM方式的控制方法可分为多种。从实现的途径可分为硬件电路与软件编程两种类型;而从工作原理上则可按调制脉冲的极性关系和控制波与载波间的频率关系来分类。按调制脉冲极性关系可分为单极性sPwM和双极性sPwM两种。 3.双极性sPwM法双极性控制则是指在输出波形的半周期内,逆变器同一桥臂中的两只元件均处于开关状态,但它们之间的关系是互补的,即通断状态彼此是相反交替的。这样输出波形在任何半周期内都会出现正、负极性电压交替的情况,故称之为双极性控制。与单极性控制方式相比,载波和控制波都变成了有正、负半周的交流方式,其输出矩形波也是任意半周中均出现正负交替的情况 4.sPwM生成方法正弦脉宽调制波(sPwM)的生成方法可分为硬件电路与软件编程两种方式。按照前面讲述的PWM逆变电路的基本原理和控制方法,可以用模拟电路构成三角波载波和正弦调制波发生电路,用比较器来确定它们的交点,在交点时刻对功率开关器件的通断进行控制,就可以生成SPWM波形。但这种模拟电路结构复杂,难以实现精确的控制。微机控制技术的发展使得用软件生成的SPWM波形变得比较容易,因此,目前SPWM波形的生成和控制多用微机来实现。本节主要介绍用软件生成SPWM波形的几种基本算法。

PWM技术概述

脉冲宽度调制 编辑 PWM即脉冲宽度调制。 脉冲宽度调制(PWM),是英文“Pulse Width Modulation”的缩写,简称脉宽调制,是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术,广泛应用在从测量、通信到功率控制与变换的许多领域中。 目录 1简介 2背景介绍 3基本原理 4谐波频谱 5具体过程 6优点 7控制方法 8应用领域 9具体应用 1简介编辑 脉冲宽度调制是一种模拟控制方式,其根据相应载荷的变化来调制晶体管基极或MOS 管栅极的偏置,来实现晶体管或MOS管导通时间的改变,从而实现开关稳压电源输出的改变。这种方式能使电源的输出电压在工作条件变化时保持恒定,是利用微处理器的数字信号对模拟电路进行控制的一种非常有效的技术。 PWM控制技术以其控制简单,灵活和动态响应好的优点而成为电力电子技术最广泛应用的控制方式,也是人们研究的热点。由于当今科学技术的发展已经没有了学科之间的界限,结合现代控制理论思想或实现无谐振波开关技术将会成为PWM控制技术发展的主要方向

之一。 2背景介绍编辑 随着电子技术的发展,出现了多种PWM技术,其中包括:相电压控制PWM、脉宽PWM法、随机PWM、SPWM法、线电压控制PWM等,而在镍氢电池智能充电器中采用的脉宽PWM法,它是把每一脉冲宽度均相等的脉冲列作为PWM波形,通过改变脉冲列的周期可以调频,改变脉冲的宽度或占空比可以调压,采用适当控制方法即可使电压与频率协调变化。可以通过调整PWM的周期、PWM的占空比而达到控制充电电流的目的。 模拟信号的值可以连续变化,其时间和幅度的分辨率都没有限制。9V电池就是一种模拟器件,因为它的输出电压并不精确地等于9V,而是随时间发生变化,并可取任何实数值。 与此类似,从电池吸收的电流也不限定在一组可能的取值范围之内。模拟信号与数字信号的区别在于后者的取值通常只能属于预先确定的可能取值集合之内,例如在{0V,5V}这一集合中取值。 模拟电压和电流可直接用来进行控制,如对汽车收音机的音量进行控制。在简单的模拟收音机中,音量旋钮被连接到一个可变电阻。拧动旋钮时,电阻值变大或变小;流经这个电阻的电流也随之增加或减少,从而改变了驱动扬声器的电流值,使音量相应变大或变小。与收音机一样,模拟电路的输出与输入成线性比例。 尽管模拟控制看起来可能直观而简单,但它并不总是非常经济或可行的。其中一点就是,模拟电路容易随时间漂移,因而难以调节。能够解决这个问题的精密模拟电路可能非常庞大、笨重(如老式的家庭立体声设备)和昂贵。模拟电路还有可能严重发热,其功耗相对于工作元件两端电压与电流的乘积成正比。模拟电路还可能对噪声很敏感,任何扰动或噪声都肯定会改变电流值的大小。 通过以数字方式控制模拟电路,可以大幅度降低系统的成本和功耗。此外,许多微控制器和DSP已经在芯片上包含了PWM控制器,这使数字控制的实现变得更加容易了。 3基本原理编辑 脉宽调制(PWM)基本原理:控制方式就是对逆变电路开关器件的通断进行控制,使输出端得到一系列幅值相等的脉冲,用这些脉冲来代替正弦波或所需要的波形。也就是在输出波形的半个周期中产生多个脉冲,使各脉冲的等值电压为正弦波形,所获得的输出平滑且低次谐波少。按一定的规则对各脉冲的宽度进行调制,即可改变逆变电路输出电压的大小,也可改变输出频率。 例如,把正弦半波波形分成N等份,就可把正弦半波看成由N个彼此相连的脉冲所组成的波形。这些脉冲宽度相等,都等于∏/n ,但幅值不等,且脉冲顶部不是水平直线,而

正弦波脉宽调制技术

正弦波脉宽调制技术 一、正弦波脉宽调制 1、正弦脉宽调制法(SPWM):是将每一正弦周期内的多个脉冲作自然或规则的宽度调制,使其依次调制出相当于正弦函数值的相位角和面积等效于正弦波的脉冲序列,形成等幅不等宽的正弦化电流输出。其中每周基波(正弦调制波)与所含调制输出的脉冲总数之比即为载波比。 2、正弦脉宽调制原理(以单相为例):以正弦波作为逆变器输出的期望波形,以频率比期望波高得多的等腰三角波作为载波(Carrier wave),并用频率和期望波相同的正弦波作为调制波(Modulation wave),当调制波与载波相交时,由它们的交点确定逆变器开关器件的通断时刻,从而获得在正弦调制波的半个周期内呈两边窄中间宽的一系列等幅不等宽的矩形波。矩形波的面积按正弦规率变化。这种调制方法称作正弦波脉宽调制(Sinusoidal pulse width modulation,简称SPWM),这种序列的矩形波称作SPWM波。 a) b) 图6-3图1 SPWM调制原理 等效原理:如图1所示,把正弦分成n 等分,每一区间的面积用与其相等的等幅不等宽的矩形面积代替,正弦的正负半周均如此处理。

3、SPWM控制方式:SPWM控制技术有单极性控制和双极性控制两种方式。如果在正弦调制波的半个周期内,三角载波只在正或负的一种极性范围内变化,所得的SPWM波也只处于一个极性的范围内,叫做单极性控制方式。如果在正弦调制波的半个周期内,三角载波在正负极性之间连续变化,则SPWM波也在正负之间变化,叫作双极性控制方式。 4、正弦脉宽调制的特点是脉宽调制是以逆变器的功率器件的快速而有规律的开关,形成一系列有规则的矩形方波,以和期望的控制电压等效。其特点是基波分量大,2N-1次以下谐波得到有效的拟制,输出电流接近正弦波。 二、交流电动机动态数学模型: 1、交流电机数学模型的性质: (1)、多变量,强耦合(如图2) 输入变量:电压(或电流),频率 输出变量: 转速、磁通 (2)、有两个变量的乘积项。数学模型是非线性的。 (3)三相异步电机定子有三个绕组,转子也可等效为三个绕组,每个绕组产生磁通时都有自己的电磁惯性,再算上运动系统的机电惯性,和转速与转角的积分关系,即使不考虑变频装置的滞后因素,也是一个八阶系统。 Us (Is) ?

脉宽调制的基本原理及其应用实例

脉宽调制的基本原理及其应用实例 2009-12-16 20:17:00| 分类:驱动控制| 标签:|字号大中小订阅 脉冲宽度调制(PWM),是英文“Pulse Width Modulation”的缩写,简称脉宽 调制,是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术,广泛应用在从测量、通信到功率控制与变换的许多领域中。 一、脉冲宽度调制基本原理 随着电子技术的发展,出现了多种PWM技术,其中包括:相电压控制PWM、脉宽PWM法、随机PWM、SPWM法、线电压控制PWM等,而在镍氢电池智能充电器中采用的脉宽PWM法,它是把每一脉冲宽度均相等的脉冲列作为PWM波形,通过改变脉冲列的周期可以调频,改变脉冲的宽度或占空比可以调压,采用适当控制方法即可使电压与频率协调变化。可以通过调整PWM的周期、PWM的占空比而达到控制充电电流的目的。 脉冲宽度调制(PWM)是一种对模拟信号电平进行数字编码的方法。通过高分 辨率计数器的使用,方波的占空比被调制用来对一个具体模拟信号的电平进行编码。PWM信号仍然是数字的,因为在给定的任何时刻,满幅值的直流供电要么完全有(ON),要么完全无(OFF)。电压或电流源是以一种通(ON)或断(OFF)的重复脉冲序列被加到模拟负载上去的。通的时候即是直流供电被加到负载上的时候,断的时候即是供电被断开的时候。只要带宽足够,任何模拟值都可以使用PWM 进行编码。 脉冲宽度调制(PWM)是一种对模拟信号电平进行数字编码的方法。通过 高分辨率计数器的使用,方波的占空比被调制用来对一个具体模拟信号的电平进行编码。PWM信号仍然是数字的,因为在给定的任何时刻,满幅值的直流供电要么完全有(ON),要么完全无(OFF)。电压或电流源是以一种通(ON)或断(OFF)的重复脉冲序列被加到模拟负载上去的。通的时候即是直流供电被加到负载上的时候,断的时候即是供电被断开的时候。只要带宽足够,任何模拟值都可以使用PWM进行编码。 P WM调速基本原理 P WM脉冲驱动电路 直流电机的速度控制中,需要对控制信号进行功率驱动或电气隔离,以下为典型应用电路(负载为直流电机M1)。

PWM控制技术论文概要

PWM控制技术论文 西安科技大学 电气与控制工程学院 电气工程及其自动化1401班 赵蕾 1406060102 2016年6月12日

PWM控制技术 赵蕾 (电气与控制工程学院电气1401班 1406060102) 简介: PWM(Pulse Width Modulation)控制就是对脉冲的宽度进行调制的技术。即通过对一系列脉冲的宽度进行调制,来等效地获得所需的波形(含形状和幅值)。通过改变输出方波的占空比来改变等效的输出电压。广泛的应用于电动机的调速和阀门控制,比如电动车电机调速就是使用这种方式。 脉宽调制(PWM,Pulse Width Modulation)是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术,广泛应用在从测量、通信到功率控制与变换的许多领域中。 PWM是一种对模拟信号电平进行数字编码的方法。通过高分辨率计数器的使用,方波的占空比被调制用来对一个具体模拟信号的电平进行编码。 关键词:PWM;电力;计算机 关于PWM技术 基本原理: 采样控制理论中有一个重要的理论:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。冲量即指窄脉冲的面积。这里所说的效果基本相同,是指环节的输出响应波形基本相同。如果把各输入波形用傅里叶变换分析,则其低频段非常接近,仅在高频略有差异。(面积等效原理)这是PWM控制技术的重要基础理论。 特点: 开关电源一般都采用脉冲宽度调制(PWM)技术,其特点是频率高、效率高、功率密度高、可靠性高。然而,由于其开关器件工作在高频通断状态,高频的快速瞬变过程本身就是一电磁骚扰(EMD)源,它产生的EMI信号有很宽的频率范围,又有一定的幅度。若把这种电源直接用于数字设备,则设备产生的EMI信号会变得更加强烈和复杂。 优点: PWM的一个优点是从处理器到被控系统信号都是数字形式的,在进行数模转换。可将噪声影响降到最低。 对噪声抵抗能力的增强是PWM相对于模拟控制的另外一个优点,而且这也是在某些时候将PWM用于通信的主要原因。从模拟信号转向PWM可以极大地延长通信距离。 由于PWM可以同时实现变频变压反抑制谐波的特点。由此在交流传动及至其它能量变换系统中得到广泛应用。PWM控制技术大致可以分为三类: ●

相关文档
最新文档