氰化浸出金的基本原理及方法

氰化浸出金的基本原理及方法
氰化浸出金的基本原理及方法

氰化浸出金的基本原理及方法

设备工作原理

开发区生产车间部分设备工作原理汇编 1、卧式脱溶干燥机该机由电动机驱动硬齿面齿轮减速机,通过链轮、链条带动螺旋转子转动,物料由A 筒进料口进入,螺旋叶片及拨料板翻动物料,并使物料逐步前移,送到另一端厚,通过闭风器落入B 筒,物料在B 筒内重复上述过程,最后从脱溶机下端底部通过闭风器输出,进入下道工序。物料的加热靠夹套内得饱和水蒸气供热,通过调节进气阀、物料运行 速度,可调节烘干温度和烘干时间。 2、分离机 被分离的物料输入转鼓内部,在离心力的作用下,物料经过一组碟片束的分离间隔中,以碟片中性孔为分界面,比重较大的重相沿碟片壁向中性孔外运动,其中重渣积聚在沉渣区,皂脚则流向大向心泵处。比重较小的轻相沿碟片壁内向上运动,汇聚至小向心泵处。轻重相分别由小向心泵和 大向心泵输出。沉渣按照排渣时间及排渣间隔自动排出机外。 3、齿轮泵 齿轮油泵在泵体中装有一对外啮合齿轮,如图所示,其中一个主动,一个被动,从而依靠两齿轮的啮合,将泵体内的整个工作腔分为两个独立的部分:吸入腔A 和排出腔B。泵运转时主动齿轮带动被动齿轮旋转,当一对啮合的齿轮在吸入腔侧分开时,其齿谷就形成局部真空,液体被吸入齿间,当被吸入的液体通过齿轮的旋转进入排出腔后,由于轮齿的再度啮合,齿间的液体被挤出,从而形成高压液体,并经过泵的排出口排出泵外。 4、刮板机刮板输送机主要由机头、机尾和各种型式的中间工作段及输送链条组成。链条绕机头、机尾、各工作段一周,由机头的主动链轮驱动在槽内作低速运动,物料由加料段浸入,随链条刮动前进,由卸料口卸下。机头、机尾的头轮和尾轮由滚动轴承支撑。为了保证链条在运动过程中处于张紧状态,机尾设有张紧装置,尾轮轴承座可在特制导轨滑动,由螺杆调节其张紧程度。 5、关风器 物料从进料口进入,在转子转动过程中,物料随转子到出料口,形成连续喂料过程,同时起到密封的作用。 6、空压机当转子转动时,主副转子的齿沟空间在转至进气端壁开口时,其空间最大,此时转子的齿沟空间与进气口的自由空气相通,因在排气时齿

《金矿石氰化浸出锌粉置换提金工艺回收率计算方法》征求意见稿

ICS H : YS 金矿石氰化浸出锌粉置换提金工艺 回收率计算方法 Calculation methods of gold recovery rate Of cyanide leaching and zinc dust precipitation (征求意见稿) 中华人民共和国工业和信息化部 发布

YS/T××× -20×× 前言 本标准由中国黄金协会提出。 本标准由全国黄金标准化技术委员会归口。 本标准由长春黄金研究负责起草。 本标准主要起草人:XXX、XXX、郑晔、赵明福。 本标准为首次发布

目录 前言...................................................................................... I 1 范围 (1) 2 术语和定义 (1) 2.1 金矿石Gold ore (1) 2.2 氰原Gold-bearing material(gold ore or gold concentrates) before cyanide leaching (1) 2.3 氰化浸出Cyanide leaching (1) 2.4 洗涤Washing (1) 2.5 锌粉置换Zinc dust precipitation (1) 2.6 贵液Pregnant solution (1) 2.7 贫液Barren liquor (1) 2.8 氰渣cyanide leaching residue (1) 2.9 排液the apocenosis (1) 2.10 金泥Gold mud (1) 2.11 理论回收率Theoretical recovery rate (2) 2.12浸出率Leaching recovery (2) 2.13洗涤率washing rate (2) 2.14置换率precipitate rate (2) 3 氰化浸出锌粉置换工艺流程回收率计算方法 (2) 3.1氰化浸出锌粉置换提金工艺流程及采样点设置 (2) 3.1.1工艺流程及取样点设置 (2) 3.1.2 回收率计算方法 (5) 3.1.2.1浸出率计算方法 (5) 3.1.2.2洗涤率计算方法 (5) 3.1.2.3置换率计算方法 (6)

菜籽油成套浸出设备工艺

菜籽油就是我们俗称的菜油,又叫油菜籽油、香菜油、芸苔油、香油、芥花油,是用油菜籽榨出来的一种食用油。是我国主要食用油之一,主产于长江流域及西南、西北等地,产量居世界首位。中国经过近10年努力,使传统的劣质高芥酸菜籽油变革成了在大宗植物油中营养品质最好的低芥酸菜籽油,到2010年我国油菜双低率达到了90%以上。 1.清洗:清洗前,先将菜籽放在竹制箩筐内,用脚踩碎其中的并肩泥(泥块),然后进行筛选。通过风车除去轻于菜籽的灰杂物。再用粗细筛分别除去大于或小于菜籽的夹杂物。 2.炒籽:采用夹层锅(也可用两个锅套起来用),夹层中可以填入草灰或细砂。开始炒时,火力可稍大,约0.5小时后,锅内菜籽有炸裂声,即应控制火力。菜籽出锅前10分钟要压住火苗,当锅内菜籽温度达到115~120℃,手捻菜籽碎后呈金黄色时,即可出锅。炒时要勤翻动。

3.磨碾:磨要放平,调好磨心高低,下料均匀,大小籽分开磨,磨时不出整籽。碾籽要勤翻勤扫,头道坯将起槽时,加入3%左右的筛净粗糠或2%左右的3厘米长的草心混合,压出的厚度不超过0.2厘米,掺入规定的粗糠或草心后,就可直接蒸坯。 4.蒸坯:头坯蒸2分钟左右,冒青汽,二坯蒸25分钟。蒸时要不断往锅内加水,以补充损失。蒸腰不得漏气,烧火加煤要均匀。甑底上要加一层棕,既能保护甑底,又不粘坯。此时要勤换蒸锅水。 5.包饼、上榨:头道打双圈,二道打单圈,分散包饼,集中装榨,包饼要快,饼要踩紧踩平。包饼以散草为好。 6.压榨:轻打、勤打。使饼迅速压紧,出油后轻压、勤压,1小时后,油大部分榨出,重打、慢打,加大压力。撞杆要打平打正,上下尖均匀。头道打3小时,出油90%,二道打4小时,第二天早晨出榨。为防止冷风吹,用保温板

氰化法提金的基本原理

氰化法提金的基本原理? (2006-1-10) 氰化法提金的基本原理?氰化法提金浸出的主要影响因素? 氰化法提金是从金矿石中提取金的主要方法之一。氰化物对金溶解作用机理的解释目前尚不一致,多数认为金在氰化溶中有氧存在的情况下可以生成一 种金的络合而溶解其基本反应式为: 4Au+8KCN+O 2+2H 2 O— 4KAu(CN) 2 +4KOH 一般认为金被氰化物溶解发生两步反应: 2Au+4KCN+O 2+2H 2 O— 2(CN 2+H 2 O+2KOH 2Au+4KCN+O 2 +H 2 O 2 —2KAu(CN) 2 +2KOH 金的表面在氰化物溶液中逐渐地由表及里地溶解。溶液中氧的浓度与金的溶解速度有关. 浸出时氰化物浓度一般为,金的溶解速度随氰化物浓度的提高而呈直线上升到最大值。然后缓慢上升,当氰化物浓度达时,金的溶解速度和氰化物浓度无关,甚至下降(因氰化物水解)。 金的溶解速度随氧浓度上升而增大,采用富氧溶被或高压充气氰化可以强化金的溶解。氰化试剂溶解金银的能力为:氰化铵>氰化钙氰化钠>氰化钾。氰化钾的价格最贵,目前多数使用氰化钠,氰化物的耗量取决于物料性质和操作因素,常为理论量的20-200倍. 物料性质影晌金的浸出率。氰化法虽是目前提金的主要方法,但某些含金矿物原料不宜直接采用氰化法处理,若矿石中铜、砷、锑、铋、硫、磷、磁铁矿、白铁矿等组分含量高时将大大增加氰化物耗量成消耗矿桨中的氧。降低金的浸出率,矿石中含碳高时,碳会吸附已溶金而随尾矿损失。预先氧化焙烧或浮选方法可除去有害杂质的影晌。氰化物水解反应为:KCN+H 2 OyKOH+HCN因此会挥发出有毒的HCN;加入石灰是氰化物水解减弱,上式反应向左方向进行,减少氰化物的损失。石灰还有中和酸类物质作用并可沉淀矿浆中得有害离子,使金的溶解处于最佳条件,常用石灰作保护碱。石灰加入量使矿浆值达到11~12 为宜,矿浆lang=EN-值过高时对溶金不利。金粒大小主要影晌氰化时间,粗拉金(>74微米)的溶解速度慢。所以氰化前采用混汞、重选或浮选预先回收粗粒金是合理的。在磨矿过程中使细金粒充分单体解离仍是提高金的浸出率重要因素。 氰化时矿泥含量和矿浆浓度直接影晌组分扩散速度。矿浆浓度应小于 30~33%。矿泥多时矿浆浓度应小于22-25%,但浓度不宜过低,否则增加氰化物的消耗。 氰化时间取决于物料性质、氰化方式及氰化条件而异。一般搅拌氰化浸出时

金矿石氰化浸出锌粉置换提金工艺回收率计算规范(送审稿)_百度.

ICS H : YS 金矿石氰化浸出锌粉置换提金工艺 理论回收率计算方法 Calculation methods of gold recovery rate Of cyanide leaching and zinc dust precipitation (送审稿 中华人民共和国工业和信息化部发布 YS/T××× -20××前言 本标准由中国黄金协会提出。 本标准由全国黄金标准化技术委员会归口。本标准由长春黄金研究院负责起草。

本标准主要起草人:XXX 、 XXX 、郑晔、赵明福。 目次 前言 ...................................................................................... I 1 范围 . (1) 2 术语和定义 (1) 3 氰化浸出锌粉置换提金工艺理论回收率计算方法 ............ 2 3.1氰化浸出锌粉置换提金原则工艺流程及取样点设置 . ............... 2 3.2回收率计算方 法 (5) 金矿石氰化浸出锌粉置换提金工艺理论回收率计算方法 1 范围 本标准规定了金矿石氰化浸出锌粉置换提金工艺过程理论回收率计算方法。 本标准适用于金矿石、浮选金精矿,或金矿石、浮选金精矿经焙烧、生物氧化及其它工艺预处理后,氰化浸出锌粉置换提金工艺过程。 2 术语和定义 下列术语和定义适用于本标准。 2.1 金矿石 Gold ore 指含有金的矿石。 2.2 氰原 Gold-bearing material(gold ore or gold concentrates before cyanide leaching 进入氰化浸出作业前的含金物料,在本标准中指直接氰化的金矿石、浮选金精矿,或金矿石、浮选金精矿经焙烧、生物氧化及其它工艺预处理后得到的含金物料。

主要设备工作原理

一、轧胚机的主要结构 1、喂料机构:沿轴长均匀给料。喂料的多少是用挡料门上的连接螺栓和左、右旋螺母来确定的。当放料需增大时,先松开连接螺栓,再把左、右旋螺母距离缩短,反之,增大左右旋螺母距离。 2、磁选机构:去除物料中的金属硬物。 3、轧辊机构:当喂料电机停止时,轧辊靠电气连锁动作自动分开,当喂料斗内达到上料位时,料位计发出信号,开始合辊,并用延时继电器来控制挡料门和喂料电机开启。 4、液压紧辊机构:液压系统通过手动换向阀和液压电磁换向阀来实现松、合辊动作。 5、定位机构:轧辊合拢时的限位,在保证胚片厚度的前提下,有效地防止轧辊碰撞。 6、刮刀装置:去除粘在辊间的胚片,使胚片的质量得到保证。 二、轧胚机的工作原理 1、经过筛选、去石后的蓖麻籽,均匀地进入具有一定压力和间隙且相对旋转的两辊间,经过对辊的挤压使蓖麻籽外皮破碎。 2、如有异硬物混入料中,则异硬物将使两辊受到一个正常反作用力,有时将强行撑开轧辊,使紧辊油缸活塞外移,油缸工作腔容积减小,而压力增高,增高的压力通过蓄能器来平衡,以保持系统压力不变。当异硬物过后,蓄能器将释放储存的能量,使轧胚机重新正常工作。液压轧胚机的特点

1液压轧胚机的特点液压轧胚机与弹簧轧胚机相比较,具有很多优点:产量高、操作简单省力,产品质量稳定。液压轧胚机从根本上改变了弹簧轧胚机生产的落后面貌,可以全部取代目前国产的轧胚机,使我国制油工艺进入了新的发展阶段,推动了我国制油工业的发展。与弹簧轧胚机相比较,液压轧胚机具有以下的特点:1.1轧胚机的进给与退出、轧辊间的压力调整、异物掉入辊间时轧辊瞬间脱开以及轧辊的装卸等动作都是由操作液压泵站来实现的,可以大大地减轻工人的劳动强度,同时也提高了该机的调整精度和自动化程度。1.2整个操作过程均由液压控制,各部件的动作灵敏,轴间压力高,压力均衡、平稳,轧制出的物料破碎率高。 蒸炒锅 蒸炒锅有卧式蒸炒锅、立式蒸炒锅、环式蒸胚机等,我们所使用的是立式蒸炒锅。下面我们详细介绍立式蒸炒锅。 立式蒸炒锅是由几个单体蒸炒锅重叠装置而成的层式蒸炒设备。重叠方式是呈圆柱形重叠排列。由于这种争吵设备操作方便易于密闭,所以通常都采用比较普遍。 生胚从进料口进入到锅体1后,由于每层锅体的边层和低层均为蒸汽夹层,一次首先受到间接蒸汽的加热。同时,通过第一层锅体搅拌刮刀的搅拌,在下料口之前有直接蒸汽管,将直接蒸汽均匀地喷入生胚内。在搅拌刮刀的作用下,料胚经自动料门3落入下一层。经蒸炒后的料胚最后从底层锅体的处理澳门4排出锅外。 下面我们分述一下蒸炒锅的结构 1、锅体 锅体是立式蒸炒锅最主要的部件之一。根据生产能力的大小,它的内径有1000、1200、1500、1700和2100mm等几种规格,而其层数又有三、四、五、六层之分、每层锅体的结构基本相同,主要由边层、底层、落料孔、排气口和检修门等部分所组成。对于底层锅体则无落料孔,而装有可调节的出料门。我们的蒸炒锅夹层为外夹层,这种结构虽然不够美观,保温敷设也比较麻烦,但是这种结构锅体有效容积相对较大,而且不容易有物料的堆积,焦化结块等现象相对较少。 底夹层

氰化尾渣中铁的浸出对金银浸出率的影响

Doi:10.3969/j.issn.1007-7545.2015.12.013 氰化尾渣中铁的浸出对金银浸出率的影响 张跃红1,李云2,魏晋3,王云2,栾东武3,刘洪晓4 (1.青海省第一地质矿产勘察院,青海平安810600;2.北京矿冶研究总院,北京100160; 3.招远市招金金合科技有限公司,山东招远265400; 4.新疆星塔矿业有限公司,新疆托里834500) 摘要:对难处理金精矿两段焙烧提金流程中的氰化尾渣进行强化酸浸,酸浸过程中氧化铁矿物的溶解而使其中包裹的金得到解离并裸露,在氰化浸出过程中容易被浸出。研究表明,随着焙砂中氧化铁相包裹体的逐步酸溶,其酸浸渣中的金、银的氰化浸出率也随之显著提高。该预处理方法为提高难处理金精矿中金、银的浸出回收率提供了一种有效的途径。 关键词:难处理金精矿;氰化尾渣;氧化铁包裹;金;银;酸浸 中图分类号:TF831 文献标志码:A 文章编号:1007-7545(2015)12-0000-00 Effect of Dissolving of Ferric Oxide from Calcine Cyanide Residue on Leaching of Gold and Silver ZHANG Yue-hong1, LI Yun2, WEI Jin3, WANG Yun2, LUAN Dong-wu3, LIU Hong-xiao4 (1. Qinghai First Surveying Institute of Geology and Minerals, Ping’an 810600, Qinghai, China; 2. Beijing General Research Institute of Mining & Metallurgy, Beijing 100160, China; 3. Zhaoyuan City Zhaojin Jinhe Science and Technology Ltd, Zhaoyuan 265400, Shandong, China; 4. Xinjiang Xingta Kuangye Co. Ltd, Tuoli 834500, Xinjiang, China;) Abstract:Calcine cyaniding-residue produced from two-stage roasting of refractory gold concentrate was leached with sulfuric acid. Gold can be easily cyaniding leached after ferric oxide was dissociated and unlocked from the wrapped gold during acid leaching. Extraction efficiency of gold and silver raised remarkably when ferric oxide was dissociated continuously, which is proved to be an effective pretreatment for refractory gold concentrate to improve gold and silver extraction efficiency. Key words:refractory gold concentrate; calcine cyanide residue; ferric oxide-encapsulated; gold; silver; acid leaching 目前运行的两段焙烧金精矿黄金冶炼工艺中存在的主要问题是氰化尾渣含金仍然偏高[1-4]。对焙砂与氰化尾渣进行的矿物学研究表明,渣中含金主要是氧化铁的严密包裹而不能与浸出介质充分接触所致。本文以工艺矿物学为指导,通过对金精矿两段焙烧的氰化尾渣中金的物相形态以及金在氧化铁中的包裹分析测定以及对氰化尾渣中包裹金的氧化铁进行浸出[5-6],研究表明,随着氰化尾渣中铁的不断浸出,金的氰化浸出率随之提高,为焙砂酸浸提供了理论指导与实际应用。 1 金精矿及其焙砂提金氰化尾渣成分分析 新疆某黄金冶炼厂的金精矿含金45.85 g/t、银80.50 g/t,其他主要成分(%):S 36.50、As 2.75、Fe 31.63、Cu 0.22、Pb 0.12、Zn 0.42、MgO 0.82、CaO 1.78、Al2O33.64、SiO215.60。 金精矿的物相分析表明,硫化物为主要载金矿物,其中的金占总金的98.30%,裸露态的金占比1.13%,脉石包裹的金仅占0.57%。 在650 ℃条件下金精矿两段焙烧,矿物中的炭质被烧失,硫被氧化燃烧为SO2气体,砷氧化为As2O3,少量的As2O3在铁的焙烧产物的催化作用下氧化为As2O5被固定于焙砂中形成Ca3(AsO4)2。焙砂再磨至-0.039 mm 占85%后进行氰化浸金,氰化条件:液固比L/S=2、CaO调矿浆pH=10.5、搅拌4 h、NaCN用量4.5 kg/t、pH=11.5、浸出时间48 h,得到氰化尾渣含金6.15 g/t、银50.25 g/t,其他主要成分(%):S 1.38、As 0.60、Fe 48.50、Cu 0.38、Pb 0.18、Zn 0.63、MgO 1.23、CaO 2.68、Al2O35.47、SiO223.46。 收稿日期:2015-09-23 基金项目:“十二五”国家支撑计划项目(2012BAB08B04);国土资源部公益性行业科研专项(201211069-02) 作者简介:张跃红(1970-),男,辽宁喀左县人,工程师.

新型浸出工艺的研究

新型浸出工艺的研究 摘要:本文主要介绍了一些浸出工艺,如外场在浸出工艺的应用以及一些新型的浸出设备对冶金浸出工艺的帮助。通过本文可以清楚地了解浸出工艺对现代冶金的影响。 关键词:浸出设备外场强化搅拌 前言: 浸出是湿法冶金关键的一部分,对金属的收率有很大的影响,所以在此找了一些比较常用的比较先进的浸出方法以及和浸出设备的的强化浸出,例如外场强化下的浸出:微波,超声波,加压浸出。在浸出设备中的浸出主要有以下几种方法,管道中的浸出,搅拌中的浸出,还有利用细菌进行一系列的浸出。 1.浸出设备优化的浸出过程 冶金工业的方法的进展往往伴随着设备的改进。浸出是冶金过程中重要的一步,所以浸出方法的改进依赖于浸出设备的改进。下面我介绍几种主要的浸出设备改进实例。 1.1机械活化浸出 1.1.1机械活化浸出的原理 按照过程控制步骤的不同, 通常采用下列措施以强化浸出过程:通常采用提高温度和浸出剂浓度, 使用合适的催化剂提高反应固相的活性降低原料粒度提高浸出液与被处理物料表面间的相对运动速度, 或设法降低内扩散阻力等。在活化矿物原料的各种现代方法中, 机械活化法在浸出过程中的磨细过程中机械能并不都转变为热能,有5%~10%的能量是以新生成表面及各种缺陷的能量形式被固体吸收, 从而增大了固体的能储量及反应活性。 在机械活化过程中, 矿物原料活性增大, 且在固体接触处的温度及压力局部瞬间增大(压力可高达15~18×108Pa,对于难熔物温度可达1300K), 而引起某些在常温下不易进行或十分缓慢的反应, 即发生所谓机械化学反应, 从而使矿物化学成分发生某些变化。例如黄铜矿在行星磨中进行干式或湿式机械活化后, 活化样的DTA曲线上, 相应于放热峰的温度下降约100℃ , 而且矿物将部分氧化而生成一些化合物, 如CuSO4·5H2O及4Fe2(SO4)3·5Fe2O3·27H2O。磁黄铁矿机械活化后, 在X射线衍射谱上也会出现s“及1/2Fe2O3·H2O的谱线〕。在机械活化过程中, 甚至可能发生某些在一般条件下热力学上不可能发生的过程,如Cu+H2O→CuO+H2。

氰化法提金工艺

氰化法提金工艺—锌粉置换篇 传统的氰化法提金工艺主要包括浸出、洗涤、置换(沉淀)三个工序。 ①浸出——矿石中固体金溶解于含氧的氰化物溶液中的过程。 ②洗涤——为回收浸出后的含金溶液,用水洗涤矿粒表面以及矿粒之间的已溶金,以实现固液分离的过程。 ③置换——用金属锌从含金溶液中使其还原、沉淀,回收金的过程。 20世纪以来,从氰化矿浆中回收金是先进行矿浆的洗涤,然后进行贵液的澄清、除气。从澄清的贵液中沉淀金,一直沿用锌粉置换法。20世纪60年代以来才发展起来的向矿浆中加入活性炭的“炭浆法”发展很快。随着对离子交换剂应用的研究,采用离子交换树脂从氰化液或氰化矿浆中吸附金的方法亦具有重要的实用价值。在氰化液的溶剂萃取提金方面也作过一些研究。当往氰化含金液中加人硫酸时,可用异戊醇来萃取金,萃取率随硫酸浓度的升高而增加。如在2mol/L的硫酸液中进行萃取,还可使金与砷、铁等杂质分离。使用氧代烷氧基磷酸酯从氰酸盐碱性液中萃取金,萃取指标令人满意;使用亚硫酸钠反萃取也获得了较好的结果等等。 1.氰化浸金 用含氧的氰化物溶液把矿石中的金溶解出来的过程叫氰化浸出。目前,无论从工艺、设备、管理或操作等方面都已日臻完善。如前所述,金在含有氧的氰化物溶液中的溶解,实质上是一个电化学腐蚀过程。 浸出过程中主要使用的药剂是氰化物和保护碱两种。 1)氰化物 工业上用于氰化法浸出金的氰化物主要有氰化钾(KCN)、氰化钠(NaCN)、氰化钙

[Ca(CN)2]和氰化铵(NH4CN)四种。 在生产中常用的氰化物是氰化钠,它是一种剧毒的白色粉末,商品氰化钠一般压制成球状或块状。 工业上也有用氰熔体作为浸出药剂的。它是将氰化钙、食盐和焦炭混合后在电炉中熔化而成的一种混合物。除了含40%-45%的Ca(CN)2和NaCN以外,还含有一些对氰化过程有害的杂质,如可溶性硫化物、碳以及一些不溶性杂质等。其特点是价格便宜,但用量大,约为氰化钠的2-2.5倍。为了消除有害杂质的影响,使用氰熔体时应进行预先处理。处理方法是通入空气强烈搅拌或往溶液中加入适量的铅盐。 在理论上,溶解1gAu只需消耗0.5g氰化钠,但在实际生产中,氰化物的消耗值为理论量的20-200倍,甚至更高一些。消耗量的多少主要取决于矿石中能与氰化物起反应的其他成分的含量。 2)保护碱 保护碱主要是为了保持氰化物溶液的稳定性,减少氰化物的水解损失。使碱在氰化浸出中的加入保持在浸出槽或者是氰化原矿的磨矿过程中。当矿石成分复杂,含有一些诸如磁黄铁矿之类对氰化过程有害的矿物时,保护碱在磨矿过程中加入,有利于这些有害矿物氧化或形成沉淀除去。 保护碱可以是氢氧化钾和氢氧化钠,但更常用的是价格便宜的石灰(氢氧化钙)。如若处理含金碲矿这类需要强碱度的矿石时,还是用氢氧化钠为好。 保护碱的加入量应当适量,一般维持矿浆的pH为10-11即可。此时,矿浆中CaO质量分数约为0.01%-0.02%。过低不利于防止氰化物水解,过高尽管能促使带负电荷的硅泥絮凝,有利于矿浆沉淀和液体净化,但对金的浸出速度有明显的不利影响。

几种氰化法的介绍

几种氰化法提金介绍 1.氰化法提金概述 氰化法提金是以氰化物的水溶液作溶剂,浸出含金矿石中的金,然后再从含金浸出液中提取金的方法。 氰化法提金主要包括如下两个步骤: (1)氰化浸出:在稀薄的氰化溶液中,并有氧(或氧化剂)存在的条件下,含金矿石中的金与氰化物反应生成一价金的络合物而溶解进入溶液中,得到浸出液。以氰化钾为例,反应式为: 4Au+8KCN+2H2O→4KAu(CN)2+4KOH 氰化浸出金的工艺方法有槽浸氰化法和堆浸氰化法两类。槽浸氰化法是传统的浸金方法,又分渗滤氰化法和搅拌氰化法两种;堆浸法是近20年来才出现的新技术,主要用于处理低品位氧化矿。 自1887发现氰化液可以溶金以来,氰化法浸出至今已有近百年的生产实践,工艺比较成熟,回收率高,对矿石适应性强,能就地产金,所以至今仍是黄金浸出生产的主要方法。 (2)沉积提金:从氰化浸出液中提取金。工艺方法有加锌置换法(锌丝置换法和锌粉置换法)、活性炭吸附法(炭浆法CIP和炭浸法CIL)、离子交换树脂法(树脂矿浆法RIP 和RIL)、电解沉积法、磁炭法等。锌粉(丝)置换法是较为传统的提金方法,在黄金矿山应用较多;炭浆法是目前新建金矿的首选方法,其产金量占世界产金量的50%以上;其余方法在黄金矿山也正日渐得到应用。 2.渗滤氰化法 渗滤氰化法是氰化浸出的工艺方法之一,是基于氰化溶液渗透通过矿石层而使含金矿石中的金浸出的方法,适用于砂矿和疏松多孔物料。 渗滤氰化法的主要设备是渗滤浸出槽,见图1。渗滤浸出槽通常为木槽、铁槽或水泥槽。槽底水平或稍倾斜,呈圆形、长方形或正方形。槽的直径或边长一般为5~12米,高度一般为2~2.5米,容积一般为50~150吨。 图1 渗滤氰化法的工艺过程: (1)装入矿砂及碱:要求布料均匀,粒度一致,疏松一致。有干法和湿法两种装法。干法适于水分在20%以下的矿砂,可用人工或机械装矿。湿法是将矿浆用水稀释后,用砂泵扬送或沿槽自流入槽内。 (2)渗滤浸出:装料完毕后即可把氰化液送入槽中。氰化液在槽中的流向有两种:一种是上进下出。即氰化液从槽顶注入,并在重力作用下自上而下通过矿砂层;一种是下进上出,好氰化液靠压力作用自下而上通过矿砂层。浸出完成后用水洗涤氰化尾矿。 (3)尾矿排出:有干法和湿法两种。干法通过槽底工作门排出氰化尾矿;湿法是用高压水冲刷氰化尾矿,让尾矿浆沿预先安排好的尾矿管(槽)流出。

最新整理氰化浸出技术操作规程.docx

最新整理氰化浸出技术操作规程 1.工艺要求 1.1原料及溶剂标准 1.1.1金精矿焙砂金品位根据工艺不作特殊要求。 1.1.2碳酸钠浓度20%. 1.1.3氰化钠溶液浓度20% 1.1.4液碱溶液浓度20% 1.2工艺技术条件 1.2.1给料:浓度38~42%,细度:-325目≥90%。 1.2.2CN -:第一段浸出2#槽1.8~2.0%0,4#槽不低于1%0; 1.2.3PH值≈9~10。 1.2.4各槽风量控制:1#80m3/h;2#100m3/h;3#80m3/h;末尾槽60m3/h。 2.监测试验方法 2.1与磨矿分级操作人员一起每小时检测一次1#浸出槽给入矿浆流量、浓度、细度并填写记录,根据检测结果要求磨矿分级岗位进行调节,确保给入矿浆达到指标要求。 2.2与1#浓密机操作人员一起每小时检测一次末级浸出槽给入矿浆流量、浓度、细度并填写记录,根据检测结果要求1#浓密机岗位进行调节,确保给入矿浆达到指标要求。 2.3每小时检测一次2#槽、4#槽CN–浓度及PH值,根据检测结果及其变化趋势调整NaCN加药量以确保CN–浓度符合指标要求,若PH值发生偏离,及时对片碱、碳酸钠添加量进行调整。 3.工序管理

3.1检查项目 3.1.1氰化过程中应检查矿浆浓度、细度、CN–浓度、PH值、3#槽和8#槽尾浆品位。3.1.2检查调浆槽,氰化槽的液位,矿浆翻动情况。 3.2检查频次 3.2.1 CN–浓度及PH值每小时检测一次。 3.2.2矿浆浓度每小时检测一次。 3.2.3每小时取一次3#、9#槽矿浆样,8小时后送化验室化验渣金、银品位。 4.开、停车顺序 4.1开车顺序 步骤 内容 预防异常现象发生 准备工作 1、开车人员:操作工,班长; 2、检查风管、搅拌、减速机,正常; 3、罗茨风机盘动灵活; 4、调浆槽液体; 5、操作工具齐全; 6、氰化钠、液碱辅料存量充足; 7、校正浓度称;

氰化法提金工艺

氰化法提金工艺(一) [导读]20世纪以来,从氰化矿浆中回收金是先进行矿浆的洗涤,然后进行贵液的澄清、除气。从澄清的贵液中沉淀金,一直沿用锌置换法。 传统的氰化法提金工艺主要包括浸出、洗涤、置换(沉淀)三个工序。 ①浸出——矿石中固体金溶解于含氧的氰化物溶液中的过程。 ②洗涤——为回收浸出后的含金溶液,用水洗涤矿粒表面以及矿粒之间的已溶金,以实现固液分离的过程。 ③置换——用金属锌从含金溶液中使其还原、沉淀,回收金的过程。 20世纪以来,从氰化矿浆中回收金是先进行矿浆的洗涤,然后进行贵液的澄清、除气。从澄清的贵液中沉淀金,一直沿用锌置换法。20世纪60年代以来才发展起来的向矿浆中加入活性炭的“炭浆法”发展很快。随着对离子交换剂应用的研究,采用离子交换树脂从氰化液或氰化矿浆中吸附金的方法亦具有重要的实用价值。在氰化液的溶剂萃取提金方面也作过一些研究。当往氰化含金液中加人硫酸时,可用异戊醇来萃取金,萃取率随硫酸浓度的升高而增加。如在2mol/L的硫酸液中进行萃取,还可使金与砷、铁等杂质分离。使用氧代烷氧基磷酸酯从氰酸盐碱性液中萃取金,萃取指标令人满意;使用亚硫酸钠反萃取也获得了较好的结果等等。 1.氰化浸金 用含氧的氰化物溶液把矿石中的金溶解出来的过程叫氰化浸出。目前,无论从工艺、设备、管理或操作等方面都已日臻完善。如前所述,金在含有氧的氰化物溶液中的溶解,实质上是一个电化学腐蚀过程。 浸出过程中主要使用的药剂是氰化物和保护碱两种。 1)氰化物 工业上用于氰化法浸出金的氰化物主要有氰化钾(KCN)、氰化钠(NaCN)、氰化钙[Ca (CN)2]和氰化铵(NH4CN)四种。它们对金的相对溶解能力见表1。 表1四种氰化物的性质对金的相对溶解能力 名称分子式相对 分子 质量 化合价 对KCN的相对溶 解能力(以KCN 为100) 获同等溶解能 力时的相对消 耗量 溶液的 稳定顺 序 氰化钠NaCN 49 1 132.6 49 2 氰化钾KCN 65 1 100 65 1 氰化钙Ca(CN)292 2 141.3 46 4 氰化铵CH4CN 44 1 147.7 44 3

金的浸出工艺综述

金的多种浸出工艺综述 原矿品位低于10克/吨的矿石是常见的,而且某些尾矿再处理作业所处理的品位在1克/吨以下。较大的颗粒状金,现在都用机械方法回收。但是,较小的金颗粒常常分散在整块矿石中,因而只能用化学方法回收,也就是浸出。 1.1氰化物浸金法 氰化法仍是目前国内外主要的提金方法。氰化法之所以经久不衰,主要是因为它工艺简便、成本低廉。 一、溶金原理 现已公认,氰化法浸金是金的电化学自溶解过程,即金腐蚀过程,为一共扼电化学反应,它遵循电化学动力学规律。氰根一金溶解反应一般写成如下形式: 根据电化学机理,阳极反应为金的溶解: 阴极反应为: 在碱性氰化体系中,金阳极溶解的可逆性较大,氧阴极还原可逆性小而极化较大。若NaCN浓度低于0.05%时,金溶解受CN-扩散控制,当NaCN浓度大于0.05%时,金的溶解速度由氧阴极还原反应所决定。我国氰化浸金时,NaCN浓度大多大于0.05%,控制步骤主要为氧阴极还原过程。 二、氰化法浸金实践 氰化浸金的最大缺点之一就是浸出速度太慢,一般需要24一48h才能达到浸出终点。随着氰化浸金工艺的发展,人们逐渐认识到,矿浆中溶解氧的含量是影响浸金速度的一个重要因素,并为提高溶解氧的浓度采取了一系列切实可行的措施。 早期的氰化浸金都是通过鼓入空气来提供金溶解所需的氧。就改善供氧条件来说,使气体充分弥散或用纯氧代替压缩空气的方法,虽也能达到一定的效果,但还很难构成突破性的进展。最近几年的研究和生产实践表明,真正的突破性进展是通过加入各类化学氧化剂 (H2O2,Na2O2,BaO2,O3,KmnO4)而实现的,其中尤以H2O2:和Na2O2:等过氧试剂效 果更为明显。这是因为过氧试剂除能大大提高矿浆中的溶解氧含量以外,还具有活性氧利用率高等优点。 德国Degussa公司于1987年开发了过氧化氢助剂(PAL)法,同年9月在南非Fairview金矿试用成功。实践表明,PAL法可大大加快浸出速度,缩短浸出时间,降低氰化物耗量。Fairview金矿氰化物消耗量从17kg/t降到lokg/t,金浸出率提高12%;澳大利亚的PineGreek 金矿采用过氧化氢以后,氰化物耗量从17kg/t降到10kg/t,金浸出率提高7%,尾渣金品位 从o.79g/t降到0.629/t。目前全世界已有20多个工厂采用了H2O2:助浸工艺。我国山西某金矿投产10多年来未采用专门的充气设备,故浸出率不高,总回收率在70%左右。往浸出液中加入H2O2:后收到了明显效果,可以不用混汞,一次浸出率达90%以上,且工艺过程简单 易行。需要指出的是,过氧化氢助浸时,溶液中溶解氧的含量并不一定比充入纯氧时高,但仍能达到很好的助浸效果。例如,有一家选金厂原先使用纯氧,在溶解氧的体积分数为30xl0-6的条件下,浸出过程达到了最佳化。但后来在进行过氧化氢助浸试验时,矿浆中溶解氧的体

含砷锑碳低品位难浸金矿石氰化浸出工艺试验研究

含砷锑碳低品位难浸金矿石氰化浸出工艺试验研究 2010-1-24 16:29:38 中国选矿技术网浏览232 次收藏我来说两句 一、引言 随着黄金开采业的发展,在易处理金矿资源日趋减少的今天,深入研究难处理金矿石的选冶工艺,对开发利用这类资源有很大的现实意义。 笔者对西北某地的含砷锑碳低品位难处理金矿石的性质及处理工艺进行了一些研究,初步掌握了该矿石的特性,并探讨了用堆浸法处理该矿石的适宜工艺条件。 二、矿石性质 (一)矿石的矿物组成 该矿石属褐铁矿化、绢云母化、石英网脉化砂岩型金矿石。地表矿石氧化程度高,风化破碎,泥化较严重。矿石中主要矿物有石英、褐铁矿、黄铁矿、毒砂、辉锑矿及碳质物等。 (二)矿石的化学成分 矿石的主要化学成分见表1。 表1 原矿的主要元素分析 /10-2 ﹡ /10-6 由表1结果可知,矿石中影响金氰化浸出的杂质元素As、Sb、C的含量较高。 (三)矿石的粒度特性 对粒度为-40mm、品位为2.05g/t的原矿样进行了筛析,其中-200目粒级的产率为10.76%,金品位为6.57g/t,金的分布率为34.42%。而-0.9mm级别的产率达37.20%,金品位为3.52g/t,金的分布率为63.78%。这说明矿石破碎后,金富集在细粒级中。矿石中矿泥含量较高,影响堆浸时矿堆渗透性。 (四)矿石中金的浸出特性

-200目的原矿样焙烧后用王水溶矿,测出金的品位为2.02g/t。-200目的原矿样未经焙烧直接用王水加热浸出1h,金的浸出率为58.42% ,尾渣金品位为0.84g/t。当-200目的原矿样未经焙烧直接用逆王水加热浸出1h,金的浸出率为78.71% ,尾渣金品位为0.43g/t。 以上浸出结果表明,该矿石属于难浸类型。-200目未焙烧物料用热王水浸出时,金的浸出率只有58.42% ,还有41.58%的金或被包裹在毒砂及辉锑矿中或被矿石中的碳所吸附,留在尾渣中。逆王水浸出时,金的浸出率也只有78.71%,说明有20.29%被硫化物包裹的金得到了浸出,仍有21.29%的金由于矿石中的碳等因素的影响未能浸出。由此看来,该矿石的常规氰化浸出率难于超过58%。 (五)毒砂、辉锑矿及碳对金浸出的影响 毒砂能被氧化生成Fe 2(SO 4 ) 3 、As(OH) 3 、As 2 O 3 等,而As 2 O 3 能与氰化物作用生成HCN从 而消耗了氰化物。 As 2O 3 +6NaCN+3H 2 0==2Na 3 AsO 3 +6HCN↑ 此外,砷、锑的硫化物能很好地溶于碱,生成亚砷酸盐、硫代亚砷酸盐、亚锑酸盐及硫代亚锑酸盐,如: Sb 2S3+6NaOH==Na 3 SbS 3 +Na 3 SbO 3 +3H 2 2Na 3SbS 3 +3NaCN+3H 2 0+1.5O 2 ==Sb 2 S 3 +3NaCNS+6NaOH 这些反应产物都会在金矿物表面上生成薄膜,从而严重地阻碍了金与O 2 和CN-离子之间的相互作用,使金氰化反应难于进行。 三、矿石的全泥氰化浸出试验 对品位为2.02g/t、细度-200目质量分数为95%的原矿样,经不同的预处理后,进行了全泥氰化浸出试验。试验的条件及结果见表2。 表2 原矿全泥氰化试验条件及结果

几种氰化法提金介绍备课讲稿

几种氰化法提金介绍

2016-12-06 廖德华紫金矿业HOT全球矿业资讯 1.氰化法提金概述 氰化法提金是以氰化物的水溶液作溶剂,浸出含金矿石中的金,然后再从含金浸出液中提取金的方法。 氰化法提金主要包括如下两个步骤: (1)氰化浸出:在稀薄的氰化溶液中,并有氧(或氧化剂)存在的条件下,含金矿石中的金与氰化物反应生成一价金的络合物而溶解进入溶液中,得到浸出液以氰化钾为例,反应式为: 4Au+8KCN+2H2O→4KAu(CN)2+4KOH 氰化浸出金的工艺方法有槽浸氰化法和堆浸氰化法两类。槽浸氰化法是传统的浸金方法,又分渗滤氰化法和搅拌氰化法两种;堆浸法是近20年来才出现的新技术,主要用于处理低品位氧化矿。 自1887发现氰化液可以溶金以来,氰化法浸出至今已有近百年的生产实践,工艺比较成熟,回收率高,对矿石适应性强,能就地产金,所以至今仍是黄金浸出生产的主要方法。 (2)沉积提金:从氰化浸出液中提取金。工艺方法有加锌置换法(锌丝置换法和锌粉置换法)、活性炭吸附法(炭浆法CIP和炭浸法CIL)、离子交换树脂法(树脂矿浆法RIP和RIL)、电解沉积法、磁炭法等。锌粉(丝)置换

法是较为传统的提金方法,在黄金矿山应用较多;炭浆法是目前新建金矿的首选方法,其产金量占世界产金量的50%以上;其余方法在黄金矿山也正日渐得到应用。 2.渗滤氰化法 渗滤氰化法是氰化浸出的工艺方法之一,是基于氰化溶液渗透通过矿石层而使含金矿石中的金浸出的方法,适用于砂矿和疏松多孔物料。 渗滤氰化法的主要设备是渗滤浸出槽。渗滤浸出槽通常为木槽、铁槽或水泥槽。槽底水平或稍倾斜,呈圆形、长方形或正方形。槽的直径或边长一般为 5~12米,高度一般为2~2.5米,容积一般为50~150吨。 渗滤氰化法的工艺过程: (1)装入矿砂及碱:要求布料均匀,粒度一致,疏松一致。有干法和湿法两种装法。干法适于水分在20%以下的矿砂,可用人工或机械装矿。湿法是将矿浆用水稀释后,用砂泵扬送或沿槽自流入槽内。 (2)渗滤浸出:装料完毕后即可把氰化液送入槽中。氰化液在槽中的流向有两种:一种是上进下出。即氰化液从槽顶注入,并在重力作用下自上而下通过矿砂层;一种是下进上出,好氰化液靠压力作用自下而上通过矿砂层。浸出完成后用水洗涤氰化尾矿。 (3)尾矿排出:有干法和湿法两种。干法通过槽底工作门排出氰化尾矿;湿法是用高压水冲刷氰化尾矿,让尾矿浆沿预先安排好的尾矿管(槽)流出。

浸出各设备基本原理

油脂浸出基本原理 1.基本原理;应用固-液萃取原理,选用一种能够溶解油脂的有机溶剂,经过对物料的喷淋,浸泡,使油料中的油脂萃取出来的一种制油方法。 2.浸出制油的基本过程;把油料胚浸入选定的溶剂中,使油脂溶解在溶剂中,形成混合油,混合油利用油脂和溶剂的沸点不同,进行蒸发,汽提,使溶剂汽化,与油脂分离,溶剂汽体经过管道进入冷凝器,回收循环利用。 3.浸出制油方法的特点; 优点;(1)出油率高,粕残油低(2)粕的质量好 1.便于直接使用作食品或添加剂 2.便于提高饲料的营养和实用价值 3.便于提高肥料的效率(3)容易形成大 规模生产(4)动力消耗低 缺点;(1)由于选用的溶剂易然,易爆,具有一定的危险性(2)浸出的毛油质量差,含有一定的溶剂,不能直接食用。 4.溶剂的化学物理性质;(1)色泽,无镄透明(2)气味,刺鼻(3)比重0.6724kg/l (4)分子试;g3 (5)碘价;4.2 5.溶剂的安全性; (1)溶剂是种易然易爆的液体与空气混合达到一定浓度1.26-4.9mg/l时,遇明火会形成爆炸,当其浓度高过30-50mg/l时,与人直接接触时,可制人死亡。(2)其闪点是负值22-28度之间,燃点是260-280度左右 (3)当火星的温度高到233度或物体加热到233度时,最易燃烧 (4)蒸汽压力高于0.8mpa时,最高温度220度 (5)溶剂压力与空气比重是2.79:1,最易聚集于底处 (6)毒理性,对人体神精系统有害,连续吸入会头晕,头疼,呕吐,失去知觉工作场所浓度应低于为o.3% 6.浸出工艺对溶剂的要求; (1)对油脂有较大的溶解度,从而获的较高的出油率和高质量的粕。 (2)化学性质稳定,在运输,储存生产中不发生分解聚合反应,对设备无腐蚀作用(3)易与油脂分离,易回收,并能在较低温度下与油脂挥发分离,具有稳定合适的沸点。(4)安全性能好,无论汽体液体对人体无害,不带有不良气味,不有易燃易爆等危害。(5)来源广,价格便宜。 7.浸出工艺理论机理; (1)扩散过程有;1.分子扩散2.对流扩散 (2)油脂浸出是固-液萃取,用油料中的油脂和选定的溶剂,而使油脂由固相转移到液相的物质过程,其转质过程的推动力主要是两相中的浓度差,这种传质就是借助于 分子扩散和对流扩散进行来完成的 (3)分子扩散是以单个分子进行的物质传递的过程。 (4)对流扩散是溶剂中的油脂由单个体积的形式进行传递,溶剂首先润湿料胚的外部表面,并同时溶解处于料胚表面的游离油脂,其次溶剂浸泡后渗到料胚内部,溶解物 料内部油脂,这部分油脂叫结合油脂。 8.影响浸出效果的因素; (1)料胚的结构影响。入浸料要适当的予处理,破坏其内,外部的细胞组织,要适当的可塑性,从而有利于分子扩散和对流扩散,取的较好的浸出效果。 (2)料胚的水分影响。入浸物料的水分要适量偏低为好,水分过高溶剂对油脂的溶解会有较大的影响,水分过低会影响物料自身的结构强度,同样不利于浸出。

氰化法提金及高纯度金的提纯

氰化法提金及高纯度金的提纯 吴再民 黑龙江省地质勘查局703队勘查院,黑龙江哈尔滨150300 摘要以氰化法提金的原理为基础,综合分析了矿石中金的堆浸,收集有关采金实践经验, 论述了氰化法提金中金溶解的原理,杂质对金溶解的影响,氰化物溶液的稳定性以及氰化物污水的处理等若干问题。以99.9%的金做原料,经王水溶解,用乙醚做萃取剂,草酸做还原剂,可获得99.999%的纯金。经提纯的金进行杂质检验,完全达到了高纯试剂要求的技术指标。目的是为了配合当前单位、个体采金的需要,以提高其工作效果及经济效益。 关键词金氰化法氰化物溶液溶解度络合物提纯 金系质软,延展性及强的强金属光泽的金黄色金属。溶于王水、氰化碱等,不溶于酸,其比重为19.32,熔点1063℃,沸点2807℃,目前发现的金的主要矿物有自然金、金的硫化物、金的硒化物、碲化物、锑化物、银金矿、金常与银共生、并与黄铁矿、方铅矿、毒砂、闪锌矿、黄铜矿、黝铜矿、辉钼矿等矿物关系密切,常和它们连生在一起【7】。 1、氰化原理与金的溶解〔6〕 用氰化法提取金,是基于金粒与氰化物溶液的交互作用。在有氧存在的条件下,金易溶于碱金属及碱土金属的氧化物溶液中。而又易从溶液中被置换出来。金在氰化物溶液中溶解的作用按下列反应方程式进行: 2Au+4NaCN+1/2O2+H2O=2NaAu(CN)2+2NaOH 金在含氰化钠溶液不超过0.03—0.05%的低浓度中溶解得最完全,速度也较快,当溶液氰化钠浓度提高到0.05—0.15%之间时,金的溶解速度增加,溶液氰化钠浓度增高到0.20—0.25%之间时,金的溶解度缓慢增加,而当浓度超过此范围时,金的溶解度有所降低。采用低浓度氰化物溶液处理含金矿石,就会使金的溶解度为最大,而铜、铁、锌等的溶解度为最小。由于采用低浓度氰化物溶液,这样就减少氰化物的消耗,因为减少了各种贱金属化合物的溶解,所造成的损失、以及漏脱等很小。各种贱金属的溶解度与金不同,它们随着氰化物在溶液中的浓度的提高而增加。所以,可以用预先使氰化物溶液充氧的办法(即通入空气),来提高氧在溶液中的浓度,以达到强化氧化法操作的目的。提高溶液中的含氧量就可以大大加速氰化反应的过程;并能增加金的浸出率10—15%,增加溶液的含氧量对处理含金矿石中的金与脉岩呈连生体的颗粒特别重要,因为这种呈连生体的金在氰化物溶液中溶解的缓慢使 金的浸出率低。 2、在氰化过程中,杂质对金溶解的影响及其消除【1】 在氰化法堆浸过程中,矿石中往往存在着铜、锌、铁的氰化络合物以及硫化氰酸盐和其它杂质,因为这些化合物差不多都溶于氰化物溶液中。我们知道,铜和锌等氰络合物在浓度很大时就将使氰化溶液对溶解金的活性降低,这样就会使氰化物造成大量的损失。因此,在氰化处理以前,应该采取必要的措施。 A 、铜矿物的影响 矿石中含铜的化合物存在形态是不同的,如氢氧化铜,碱式碳酸铜(蓝铜矿、孔雀石)等都与氰化物发生反应生成铜氰络盐而消耗氰化物。2Cu(OH)2+8NaCN=2Na2Cu(CN)3+4NaOH+(CN)2↑

相关文档
最新文档