数列数学归纳法测试题

数列 数学归纳法测试题

班级 姓名 得分 .

一、选择题:

1、等差数列{n a }中,a 3+a 7-a 10=8,a 11-a 4=4,则S 13=…………………………………………( )

(A )168 (B ) 156 (C )78 (D ) 152

2、数列{n a }、{n b }都是等差数列,a 1=25,b 1=75,a 100+b 100=100,则{n a +n b }的前100项和为( )

(A )0 (B )100 (C )10000 (D )102400

3、等差数列5,244,3,77 ,第n 项到第n +6项的和为T ,则|T|最小时,n=…………………( )

(A )6 (B )5 (C )4 (D )3

4、等差数列{n a }满足123101a a a a ++++ =0,则有……………………………………………( )

(A )11010a a +> (B )21000a a +< (C )3990a a += (D )5151a =

5、一个首项为正数的等差数列中,S 3=S 11,则当S n 最大知,n=……………………………………( )

(A )5 (B ) 6 (C )7 (D ) 8

6、{n a }为等比数列,{n b }是等差数列,b 1=0,n c =n a +n b ,如果数列{n c }是1,1,2,…,则{n c }的前10项和为……………………………………………………………………………………( )

(A ) 978 (B ) 557 (C ) 467 (D )以上都不对

7、若相异三数(),(),()a b c b c a c a b ---组成公比为q 的等比数列,则…………………………( )

(A )210q q ++= (B ) 210q q -+= (C ) 210q q +-= (D ) 210q q --=

8、{n a }的前n 项和为S n =232n n -,当n ≥2时,有…………………………………………………( )

(A )n S >n na >1na (B ) n S

9、{n a }是等差数列,则下列各不等式中正确的是…………………………………………………( )

(A )36a a <45a a (B ) 36a a ≤45a a (C ) 36a a >45a a (D ) 36a a ≥45a a

10、一个等比数列前n 项和为21n -,则它的前n 项的各项平方和为……………………………( )

(A )2(21)n - (B ) 122(21)n - (C )41n - (D )1(41)3

n - 11、据市场调查,预测某种商品从2004年初开始的几个月内累计需求量n S (万件)近似满足n S =2(215)90

n n n --,则本年度内需求量超过1.5万件的月份是……………………………( )

(A )5、6 (B ) 6、7 (C ) 7、8 (D ) 8、9

12、实数12,,,x a a y 成等差数列,12,,,x b b y 成等比数列,则2

1212

()a a b b +的取值范围是…………( ) (A )[4,+∞) (B ) (-∞,-4]∪[4,+∞)

(C ) (-∞,0]∪[4,+∞) (D )不能确定

二、填空题:

13、各项都是正数的等比数列{n a }中,56a a =9,则3132310l o g l o g l o g a a a +++ = 。

14、{n a }是首项为1的正数数列,2211(1)n n n n n a na a a +++-+=0,则通项公式n a = 。

15、数列{n a }的前n 项和n S =12n +n b ,其中{n b }是公差为2的等差数列,b 1≠0,则l i m n n n

b a →∞= 。 16、1999年上海市完成GDP 计4035亿元,2000年预期增长9%,市委提出本市人口自然增长率将控制在0.08%,若GDP 和人口均按照这样的速度增长,则要使人均GDP 达到或者超过1999年的2倍,至少需要 年.(1999年人口1300万,lg2=0.3010,lg1.089=0.0371)

三、解答题:

17、在等比数列{n a }的前n 项中,a 1最小,并且12166,128n n a a a a -+==,前n 项和为126。 ⑴求a 1;

⑵求公比q ;

18、{n a }是正数数列,前n 项和为n S ,并且满足关系n S =

1(1)(3)4n n a a -+。 ⑴求此数列的通项公式(写出推证过程); ⑵若12111n n T S S S =

+++ ,求lim n n T →∞。

2019年高考数学二轮复习试题:专题六 第4讲 用数学归纳法证明数列问题(带解析)

第4讲用数学归纳法证明数列问题 选题明细表 知识点·方法巩固提高A 巩固提高B 数学归纳法的理解1,2,5 1 数学归纳法的第一步3,7 2,7 3,4,5,6,8, 数学归纳法的第二步4,6,10,12 9,12 类比归纳8,9,11 10,11 数学归纳法的应用13,14,15 13,14,15 巩固提高A 一、选择题 1.如果命题P(n)对n=k成立,则它对n=k+2也成立,若P(n)对n=2也成立,则下列结论正确的是( B ) (A)P(n)对所有正整数n都成立 (B)P(n)对所有正偶数n都成立 (C)P(n)对所有正奇数n都成立 (D)P(n)对所有正整数n都成立 解析:由题意n=k时成立,则n=k+2时也成立,又n=2时成立,则P(n)对所有正偶数都成立.故选B. 2.设f(x)是定义在正整数集上的函数,且f(x)满足:“当f(k)≤k2成立时,总可推出f(k+1)≤(k+1)2成立.”那么,下列命题总成立的是( D )

(A)若f(2)≤4成立,则当k≥1时,均有f(k)≤k2成立 (B)若f(4)≤16成立,则当k≤4时,均有f(k)≤k2成立 (C)若f(6)>36成立,则当k≥7时,均有f(k)>k2成立 (D)若f(7)=50成立,则当k≤7时,均有f(k)>k2成立 解析:若f(2)≤4成立,依题意则应有当k≥2时,均有f(k)≤k2成立,故A不成立; 若f(4)≤16成立,依题意则应有当k≥4时,均有f(k)≤k2成立,故B不成立; 因命题“当f(k)≤k2成立时,总可推出f(k+1)≤(k+1)2成立”?“当f(k+1)>(k+1)2成立时,总可推出f(k)>k2成立”;因而若f(6)>36成立,则当k≤6时,均有f(k)>k2成立 ,故C也不成立; 对于D,事实上f(7)=50>49,依题意知当k≤7时,均有f(k)>k2成立,故D成立. 3.若f(n)=1+++…+(n∈N*),则f(1)为( C ) (A)1 (B) (C)1++++(D)非以上答案 解析:注意f(n)的项的构成规律,各项分子都是1,分母是从1到6n-1的正整数, 故f(1)=1++++.故选C. 4.用数学归纳法证明(n+1)(n+2)…(n+n)=2n·1·3·…·(2n-1)(n∈N*),从k到k+1时,左端需增乘的代数式为( B ) (A)2k+1 (B)2(2k+1) (C)(D) 解析:n=k时左边为(k+1)(k+2)…(k+k),n=k+1时左边为(k+2)(k+3)…(k+k+2),

数列极限数学归纳法综合能力训练

1 mn 4(m n) mn 2(m n) 【综合能力训练】 一、选择题 1?数列{a n }是等比数列,下列结论中正确的是( ) A. a n ? a n+1 >0 B. a n ? a n+1 ? a n+2>0 C. a n ? a n+2 >0 D. a n ? a n+2 ? a n+4>0 2.在等比数列{a n }中,a 1=sec 0 ( B 为锐角),且前n 项和S n 满足lim S n = ,那么B 的 n a 1 取值范围是( ) A. (0, ) B. (0, ) C. (0, ) D. (0, 2 3 6 4 3.已知数列{a n }中,a n =p^ (n € N ),则数列{a n }的最大项是( ) n 156 A.第12项 B.第13项 C.第 项或13 . D.不存在 4.三个数成等差数列,如果将最小数乘 2,最大数加上 7,所得三数之积为 1000,且成 等比数列,则原等差数列的公差一定是( ) A.8 B.8 或—15 C. ± 8 D. ± 15 112 1 2 3 1 2 9 1 5.已知数列{a n }: , + , + +-, + + …+ ” , ... 那么数列{ 2 3 3 4 4 4 10 10 10 a n ?a n 1 的所有项的和为( ) A.2 B.4 C.3 D.5 n 1 | n n 1 . n 6.已知a 、b € —?a -> lim n ,贝V a 的取值范围是( ) n a n a A. a>1 B. — 11 D.a>1 或一1O ,且 |a 10|<|an|, S n 为其前 n 项之和, 则() A. S 1,S 2,…, S 10都小于零,S 11, S 12, …都大于零 B. S 1,S 2,…, S 5都小于零,S 6, S 7,… 都大于零 C. S 1,S 2,…, S 19都小于零,S 20, S 21 , …都大于零 D. S 1,S 2,…, S 20都小于零,S 21 , S 22 , …都大于零 9.将自然数1, 2, 3,…,n ,…按第k 组含k 个数的规则分组: (1), (2, 3), (4, 5, 6),…,那么1996所在的组是( ) A.第62组 B.第63组 C.第64组 D.第65组 10.在等差数列中,前 n 项的和为S n ,若 S m =2n,S n =2m,(m 、 n € N 且m ^ n ),则公差d 的 值为( )

高中数学选修2-2同步练习题库:数学归纳法(填空题:一般)

数学归纳法(填空题:一般) 1、已知数列{a n}满足a1=2,a n+1= (n∈N*),则a3=________,a1·a2·a3·…·a2014=________. 2、设,则 _____.(不用化简) 3、用数学归纳法证明:,则当时,左端在时的左端加上了 ________ 4、用数学归纳法证明:,在第二步证明从到成立时,左边增加的项数是__________(用含有的式子作答). 5、用数学归纳法证明不等式成立,起始值应取为__________. 6、已知,用数学归纳法证明时,等于_____________。 7、用数学归纳法证明,从到,左边需要增乘的代数式为___________. 8、用数学归纳法证明(是非负实数,)时,假设命题成立之后,证明命题也成立的关键是________.

9、用数学归纳法证明“对于的自然数都成立”时,第一步证明中的起始值应取 _____________. 10、用数学归纳法证明:()时,从 “”时,左边应增添的代数式为_______________. 11、用数学归纳法证明()时,从“n=”到“n=”的证明,左边需增添的代数式是___________. 12、用数学归纳法证明1+++…+(,),在验证成立时,左式是____. 13、n为正奇数时,求证:x n+y n被x+y整除,当第二步假设n=2k-1命题为真时,进而需证n= ________,命题为真. 14、若f(n)=12+22+32+…+(2n)2,则f(k+1)与f(k)的递推关系式是________. 15、用数学归纳法证明: 的第二步中,当时等式左边与时的等式左边的差等于. 16、用数学归纳法证明“12+22+32+…+n2=n(n+1)(2n+1)(n∈N*)”,当n=k+1时,应在n=k时的等式左边添加的项是________. 17、用数学归纳法证明≥n(a,b是非负实数,n∈N+)时,假设n =k命题成立之后,证明n=k+1命题也成立的关键是________________.

高中数学归纳法大全数列不等式精华版

§数学归纳法 1.数学归纳法的概念及基本步骤 数学归纳法是用来证明某些与正整数n有关的数学命题的一种方法.它的基本步骤是: (1)验证:n=n0 时,命题成立; (2)在假设当n=k(k≥n0)时命题成立的前提下,推出当n=k+1时,命题成立. 根据(1)(2)可以断定命题对一切正整数n都成立. 2.归纳推理与数学归纳法的关系 数学上,在归纳出结论后,还需给出严格证明.在学习和使用数学归纳法时, 需要特别注意: (1)用数学归纳法证明的对象是与正整数n有关的命题; (2)在用数学归纳法证明中,两个基本步骤缺一不可. 1.用数学归纳法证明命题的第一步时,是验证使命题成立的最小正整数n,注意n不一定是1. 2.当证明从k到k+1时,所证明的式子不一定只增加一项;其次,在证明命题对n=k+1成立时,必须运用命题对n=k成立的归纳假设.步骤二中,在 由k到k+1的递推过程中,突出两个“凑”:一“凑”假设,二“凑”结论.关键是明确n=k+1时证明的目标,充分考虑由n=k到n=k+1时命题 形式之间的区别与联系,若实在凑不出结论,特别是不等式的证明,还可以应用比较法、分析法、综合法、放缩法等来证明当n=k+1时命题也成立,这也是证题的常用方法. 3.用数学归纳法证命题的两个步骤相辅相成,缺一不可.尽管部分与正整数 有关的命题用其他方法也可以解决,但题目若要求用数学归纳法证明,则必须 依题目的要求严格按照数学归纳法的步骤进行,否则不正确. 4.要注意“观察——归纳——猜想——证明”的思维模式,和由特殊到一般的数学思想的应用,加强合情推理与演绎推理相结合的数学应用能力.

5.数学归纳法与归纳推理不同.(1)归纳推理是根据一类事物中部分事物具有某种属性,推断该类事物中每一个都有这种属性.结果不一定正确,需要进行严格的证明.(2)数学归纳法是一种证明数学命题的方法,结果一定正确. 6.在学习和使用数学归纳法时,需要特别注意: (1)用数学归纳法证明的对象是与正整数n 有关的命题,要求这个命题对所有的正整数n 都成立; (2)在用数学归纳法证明中,两个基本步骤缺一不可. 数学归纳法是推理逻辑,它的第一步称为奠基步骤,是论证的基础保证,即通过验证落实传递的起点,这个基础必须真实可靠;它的第二步称为递推步骤,是命题具有后继传递的保证,即只要命题对某个正整数成立,就能保证该命题对后继正整数都成立,两步合在一起为完全归纳步骤,称为数学归纳法,这两步各司其职,缺一不可.特别指出的是,第二步不是判断命题的真伪,而是证明命题是否具有传递性.如果没有第一步,而仅有第二步成立,命题也可能是假命题. 证明:12+122+123+…+12 n -1+12n =1-1 2n (其中n ∈N +). [证明] (1)当n =1时,左边=12,右边=1-12=1 2,等式成立. (2)假设当n =k (k ≥1)时,等式成立,即 12+122+123+…+12k -1+12k =1-12k , 那么当n =k +1时, 左边=12+122+123+…+12k -1+12k +1 2k +1 =1-12k +12k +1=1-2-12k +1=1-1 2k +1=右边. 这就是说,当n =k +1时,等式也成立. 根据(1)和(2),可知等式对任何n ∈N +都成立. 用数学归纳法证明:1-12+13-14+…+12n -1- 1 2n

数列数学归纳法测试题

数列 数学归纳法测试题 班级 姓名 得分 . 一、选择题: 1、等差数列{n a }中,a 3+a 7-a 10=8,a 11-a 4=4,则S 13=…………………………………………( ) (A )168 (B ) 156 (C )78 (D ) 152 2、数列{n a }、{n b }都是等差数列,a 1=25,b 1=75,a 100+b 100=100,则{n a +n b }的前100项和为( ) (A )0 (B )100 (C )10000 (D )102400 3、等差数列5,244,3,77 ,第n 项到第n +6项的和为T ,则|T|最小时,n=…………………( ) (A )6 (B )5 (C )4 (D )3 4、等差数列{n a }满足123101a a a a ++++ =0,则有……………………………………………( ) (A )11010a a +> (B )21000a a +< (C )3990a a += (D )5151a = 5、一个首项为正数的等差数列中,S 3=S 11,则当S n 最大知,n=……………………………………( ) (A )5 (B ) 6 (C )7 (D ) 8 6、{n a }为等比数列,{n b }是等差数列,b 1=0,n c =n a +n b ,如果数列{n c }是1,1,2,…,则{n c }的前10项和为……………………………………………………………………………………( ) (A ) 978 (B ) 557 (C ) 467 (D )以上都不对 7、若相异三数(),(),()a b c b c a c a b ---组成公比为q 的等比数列,则…………………………( ) (A )210q q ++= (B ) 210q q -+= (C ) 210q q +-= (D ) 210q q --= 8、{n a }的前n 项和为S n =232n n -,当n ≥2时,有…………………………………………………( ) (A )n S >n na >1na (B ) n S 45a a (D ) 36a a ≥45a a 10、一个等比数列前n 项和为21n -,则它的前n 项的各项平方和为……………………………( ) (A )2(21)n - (B ) 122(21)n - (C )41n - (D )1(41)3 n - 11、据市场调查,预测某种商品从2004年初开始的几个月内累计需求量n S (万件)近似满足n S =2(215)90 n n n --,则本年度内需求量超过1.5万件的月份是……………………………( )

数列、极限、数学归纳法 归纳、猜想、证明 教案

数列、极限、数学归纳法·归纳、猜想、证明·教案 张毅 教学目标 1.对数学归纳法的认识不断深化. 2.帮助学生掌握用不完全归纳法发现规律,再用数学归纳法证明规律的科学思维方法. 3.培养学生在观察的基础上进行归纳猜想和发现的能力,进而引导学生去探求事物的内在的本质的联系.教学重点和难点 用不完全归纳法猜想出问题的结论,并用数学归纳法加以证明. 教学过程设计 (一)复习引入 师:我们已学习了数学归纳法,知道它是一种证明方法.请问:它适用于哪些问题的证明? 生:与连续自然数n有关的命题. 师:用数学归纳法证明的一般步骤是什么? 生:共有两个步骤: (1)证明当n取第一个值n0时结论正确; (2)假设当n=k(k∈N,且k≥n0)时结论正确,证明当n=k+1时,结论也正确. 师:这两个步骤的作用是什么? 生:第(1)步是一次验证,第(2)步是用一次逻辑推理代替了无数次验证过程. 师:这实质上是在说明这个证明具有递推性.第(1)步是递推的始点;第(2)步是递推的依据.递推是数学归纳法的核心.用数学归纳法证题时应注意什么? 生:两个步骤缺一不可.证第(2)步时,必须用归纳假设.即在n=k成立的前提下推出n=k+1成立.师:只有这样,才能保证递推关系的存在,才真正是用数学归纳法证题. 今天,我们一起继续研究解决一些与连续自然数有关的命题.请看例1. (二)归纳、猜想、证明 1.问题的提出 a3,a4,由此推测计算an的公式,然后用数学归纳法证明这个公式. 师:这个题目看起来庞大,其实它包括了计算、推测、证明三部分,我们可以先一部分、一部分地处理.(学生很快活跃起来,计算工作迅速完成,请一位同学口述他的计算过程,教师板演到黑板上) 师:正确.怎么推测an的计算公式呢?可以相互讨论一下.

(完整版)数学归纳法测试题及答案

选修2-2 2. 3 数学归纳法 一、选择题 1.用数学归纳法证明1+12+13+…+12n -1 1)时,第一步应验证不等式( ) A .1+12<2 B .1+12+13 <2 C .1+12+13<3 D .1+12+13+14 <3 [答案] B [解析] ∵n ∈N *,n >1,∴n 取第一个自然数为2,左端分母最大的项为 122-1=13 , 2.用数学归纳法证明1+a +a 2+…+a n +1=1-a n +21-a (n ∈N *,a ≠1),在验证n =1时,左边所得的项为( ) A .1 B .1+a +a 2 C .1+a D .1+a +a 2+a 3 [答案] B [解析] 因为当n =1时,a n +1=a 2,所以此时式子左边=1+a +a 2.故应选B. 3.设f (n )=1n +1+1n +2 +…+12n (n ∈N *),那么f (n +1)-f (n )等于( ) A.12n +1 B.12n +2 C.12n +1+12n +2 D.12n +1-12n +2 [答案] D [解析] f (n +1)-f (n ) =???? ??1(n +1)+1+1(n +1)+2+…+12n +12n +1+12(n +1) -??????1n +1+1n +2+…+12n =12n +1+12(n +1)-1n +1 =12n +1-12n +2 . 4.某个命题与自然数n 有关,若n =k (k ∈N *)时,该命题成立,那么可推得n =k +1时该命题也成立.现在已知当n =5时,该命题不成立,那么可推得( ) A .当n =6时该命题不成立 B .当n =6时该命题成立

专题06 数列与数学归纳法(原卷版)

1 专题6.数列与数学归纳法 数列是高考重点考查的内容之一,命题形式多种多样,大小均有.其中,小题重点考查等差数列、等比数列基础知识以及数列的递推关系,和其它知识综合考查的趋势明显,小题难度加大趋势明显;解答题的难度中等或稍难,随着文理同卷的实施,数列与不等式综合热门难题(压轴题),有所降温,难度趋减,将稳定在中等变难程度.往往在解决数列基本问题后考查数列求和,在求和后往往与不等式、函数、最值等问题综合.在考查等差数列、等比数列的求和基础上,进一步考查“裂项相消法”、“错位相减法”等,与不等式结合,“放缩”思想及方法尤为重要.关于数学归纳法的考查,主要与数列、不等式相结合. 预测2021年将保持稳定,主观题将与不等式、函数、数学归纳法等相结合 . 1.(2020·浙江省高考真题)已知等差数列{a n }的前n 项和S n ,公差d ≠0, 11a d ≤.记b 1=S 2,b n+1=S 2n+2–S 2n ,n *∈N ,下列等式不可能... 成立的是( ) A .2a 4=a 2+a 6 B .2b 4=b 2+b 6 C .2428a a a = D .2428b b b = 2.(2020·浙江省高考真题)我国古代数学家杨辉,朱世杰等研究过高阶等差数列的求和问题,如数列(1)2n n +??????就是二阶等差数列,数列(1)2n n +?????? (N )n *∈ 的前3项和是________. 3.(2020·浙江省高考真题)已知数列{a n },{b n },{c n }中,111112 1,,()n n n n n n n b a b c c a a c c n b +++====-= ?∈*N . (Ⅰ)若数列{b n }为等比数列,且公比0q >,且1236b b b +=,求q 与{a n }的通项公式; (Ⅱ)若数列{b n }为等差数列,且公差0d >,证明:1211n c c c d +++<+.*()n N ∈ 4.(2020·天津高考真题)已知{}n a 为等差数列,{}n b 为等比数列, ()()115435431,5,4a b a a a b b b ===-=-. (Ⅰ)求{}n a 和{}n b 的通项公式; (Ⅱ)记{}n a 的前n 项和为n S ,求证:()2*21n n n S S S n ++<∈N ;

数学归纳法典型例习题

欢迎阅读数学归纳法典型例题 一. 教学内容: 高三复习专题:数学归纳法 二. 教学目的 掌握数学归纳法的原理及应用 三. 教学重点、难点 四. ??? ??? (1 ??? (2()时命题成立,证明当时命题也成立。??? 开始的所有正整数 ??? 即只 称为数学归纳法,这两步各司其职,缺一不可,特别指出的是,第二步不是判断命题的真伪,而是证明命题是否具有传递性,如果没有第一步,而仅有第二步成立,命题也可能是假命题。 【要点解析】 ? 1、用数学归纳法证明有关问题的关键在第二步,即n=k+1时为什么成立,n=k+1时成立是利用假设n=k时成立,根据有关的定理、定义、公式、性质等数学结论推证出n=k+1时成立,而不是直接代入,否则n=k+1时也成假设了,命题并没有得到证明。 ??? 用数学归纳法可证明有关的正整数问题,但并不是所有的正整数问题都是用数学归纳法证明的,学习时要具体问题具体分析。

? 2、运用数学归纳法时易犯的错误 ??? (1)对项数估算的错误,特别是寻找n=k与n=k+1的关系时,项数发生什么变化被弄错。 ??? (2)没有利用归纳假设:归纳假设是必须要用的,假设是起桥梁作用的,桥梁断了就通不过去了。 ??? (3)关键步骤含糊不清,“假设n=k时结论成立,利用此假设证明n=k+1时结论也成立”,是数学归纳法的关键一步,也是证明问题最重要的环节,对推导的过程要把步骤写完整,注意证明过程的严谨性、规范性。 ? 例1. 时,。 ,右边,左边 时等式成立,即有,则当时, 由①,②可知,对一切等式都成立。 的取值是否有关,由到时 (2 到 本题证明时若利用数列求和中的拆项相消法,即 ,则这不是归纳假设,这是套用数学归纳法的一种伪证。 (3)在步骤②的证明过程中,突出了两个凑字,一“凑”假设,二“凑”结论,关键是明确 时证明的目标,充分考虑由到时,命题形式之间的区别和联系。

高考一轮复习之数列与数学归纳法

43 / 1843 / 18 第三章 数列及数学归纳法 知识结构 高考能力要求 1、理解数列的概念,了解数列通项公式的意义.了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项. 2、理解等差数列的概念,掌握等差数列的通项公式及前n 项和的公式,并能解决简单的实际问题. 3、理解等比数列的概念,掌握等比数列的通项公式及前n 项和公式,并能解决简单的实际问题. 4、理解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题. 高考热点分析 纵观近几年高考试题,对数列的考查已从最低谷走出,估计以后几年对数列的考查的比重仍不会减小,等差、等比数列的概念、性质、通项公式、前n 项和公式的应用是必考内容,数列及函数、三角、解析几何、组合数的综合应用问题是命题热点. 从解题思想方法的规律着眼,主要有:① 方程思想的应用,利用公式列方程(组),例如等差、等比数列中的 “知三求二”问题;② 函数思想方法的应用、图像、单调性、最值等问题;③ 待定系数法、分类讨论等方法的应用. 高考复习建议 数列部分的复习分三个方面:① 重视函数及数列的联系,重视方程思想在数列中的应用.② 掌握等差数列、等比数列的基础知识以及可化为等差、等比数列的简单问题,同时要重视等差、等比数列性质的灵活运用.③ 要设计一些新颖题目,尤其是通过探索性题目,挖掘学生的潜能,培养学生的创新意识和创新精神,数列综合能力题涉及的问题背景新颖,解法灵活,解这类题时,要引导学生科学合理地思维,全面灵活地运用数学思想方法. 数列部分重点是等差、等比数列,而二者在内容上是完全平行的,因此,复习时应将它们对比起来复习;由于数列方面的题目的解法的灵活性和多样性,建议在复习这部分内容时,要启发学生从多角度思考问题,提倡一题多解,培养学生思维的广阔性,养成良好的思维品质. 3.1 数列的概念 知识要点 1.数列的概念 数列是按一定的顺序排列的一列数,在函数意义下,数列是定义域为正整数N *或其子集{1,2,3,……n }的函数f (n ).数列的一般形式为a 1,a 2,…,a n …,简记为{a n },其中a n 是数列{a n }的第 项. 2.数列的通项公式 一个数列{a n }的 及 之间的函数关系,如果可用一个公式a n =f (n )来表示,我们就把这个公式叫做这个数列的通项公式. 3.在数列{a n }中,前n 项和S n 及通项a n 的关系为: = n a ?? ? ??≥==21n n a n 4.求数列的通项公式的其它方法 ⑴ 公式法:等差数列及等比数列采用首项及公差(公比)确定的方法. ⑵ 观察归纳法:先观察哪些因素随项数n 的变化而变化,哪些因素不变;初步归纳出公式,再取n 的特珠值进行检验,最后用数学归纳法对归纳出的结果加以证明. ⑶ 递推关系法:先观察数列相邻项间的递推关系,将它们一般化,得到的数列普遍的递推关系,再通过代数方法由递推关系求出通项公式.

高二数学数学归纳法综合测试题

高二数学数学归纳法综 合测试题 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT

选修2-2 2. 3 数学归纳法 一、选择题 1.用数学归纳法证明1+12+13+…+12n -1 1)时,第一步应验证不等式( ) A .1+12 <2 B .1+12+13 <2 C .1+12+13 <3 D .1+12+13+14 <3 [答案] B [解析] ∵n ∈N *,n >1,∴n 取第一个自然数为2,左端分母最大的项为122-1 =13,故选B. 2.用数学归纳法证明1+a +a 2+…+a n +1=1-a n +21-a (n ∈N *,a ≠1),在验证n =1时,左边所得的项为( ) A .1 B .1+a +a 2 C .1+a D .1+a +a 2+a 3 [答案] B [解析] 因为当n =1时,a n +1=a 2,所以此时式子左边=1+a +a 2.故应选 B.

3.设f (n )= 1n +1+1n +2 +…+12n (n ∈N *),那么f (n +1)-f (n )等于( ) +12n +2 -12n +2 [答案] D [解析] f (n +1)-f (n ) =???? ??1(n +1)+1+1(n +1)+2+…+12n +12n +1+12(n +1) -???? ??1n +1+1n +2+…+12n =12n +1+12(n +1)-1n +1 =12n +1-12n +2 . 4.某个命题与自然数n 有关,若n =k (k ∈N *)时,该命题成立,那么可推得n =k +1时该命题也成立.现在已知当n =5时,该命题不成立,那么可推得 ( ) A .当n =6时该命题不成立 B .当n =6时该命题成立 C .当n =4时该命题不成立 D .当n =4时该命题成立 [答案] C [解析] 原命题正确,则逆否命题正确.故应选C. 5.用数学归纳法证明命题“当n 是正奇数时,x n +y n 能被x +y 整除”,在第二步的证明时,正确的证法是( ) A .假设n =k (k ∈N *),证明n =k +1时命题也成立 B .假设n =k (k 是正奇数),证明n =k +1时命题也成立 C .假设n =k (k 是正奇数),证明n =k +2时命题也成立

数列与数学归纳法专项训练(含答案)(新)

数列与数学归纳法专项训练 1.如图,曲线2 (0)y x y =≥上的点i P 与x 轴的正半轴上的点i Q 及原点O 构成一系列正三角形△OP 1Q 1,△Q 1P 2Q 2,…△Q n-1P n Q n …设正三角形1n n n Q P Q -的边长为n a ,n ∈N ﹡(记0Q 为O ),(),0n n Q S .(1)求1a 的值; (2)求数列{n a }的通项公式n a 。 w.w.w.k.s.5.u.c.o.m 2. 设{}{},n n a b 都是各项为正数的数列,对任意的正整数n ,都有2 1,,n n n a b a +成等差数列, 2211,,n n n b a b ++成等比数列. (1)试问{}n b 是否成等差数列?为什么? (2)如果111,2a b ==,求数列1n a ?? ???? 的前n 项和n S . 3. 已知等差数列{n a }中,2a =8,6S =66. (Ⅰ)求数列{n a }的通项公式; (Ⅱ)设n n a n b )1(2+=,n n b b b T +++= 21,求证:n T ≥1 6 .

4. 已知数列{n a }中5 3 1=a ,112--=n n a a (n ≥2,+∈N n ),数列}{n b ,满足11-= n n a b (+∈N n ) (1)求证数列{n b }是等差数列; (2)求数列{n a }中的最大项与最小项,并说明理由; (3)记++=21b b S n …n b +,求 )1(lim -∞→n b n n . 5. (Ⅰ (Ⅱ (Ⅲn 项的 6. (1(2 7. 已知数列{}n a 各项均不为0,其前n 项和为n S ,且对任意* ∈N n ,都有 n n pa p S p -=?-)1((p 为大于1的常数),并记 n n n n n n n S a C a C a C n f ??++?+?+=21)(2211 .

高中奥数_函数 不等式 数列 极限 数学归纳法

函数 不等式 数列 极限 数学归纳法 一 能力培养 1,归纳-猜想-证明 2,转化能力 3,运算能力 4,反思能力 二 问题探讨 问题1数列{n a }满足112 a =,212n n a a a n a ++???+=,(n N *∈). (I)求{n a }的通项公式; (II)求1100n n a -的最小值; (III)设函数()f n 是 1100n n a -与n 的最大者,求()f n 的最小值. 问题2已知定义在R 上的函数()f x 和数列{n a }满足下列条件: 1a a =,1()n n a f a -= (n =2,3,4,???),21a a ≠, 1()()n n f a f a --=1()n n k a a --(n =2,3,4,???),其中a 为常数,k 为非零常数. (I)令1n n n b a a +=-(n N * ∈),证明数列{}n b 是等比数列; (II)求数列{n a }的通项公式; (III)当1k <时,求lim n n a →∞. 问题3已知两点M (1,0)-,N (1,0),且点P 使MP MN ?,PM PN ?,NM NP ?成公差小 于零的等差数列. (I)点P 的轨迹是什么曲线? (II)若点P 坐标为00(,)x y ,记θ为PM 与PN 的夹角,求tan θ.

三 习题探讨 选择题 1数列{}n a 的通项公式2n a n kn =+,若此数列满足1n n a a +<(n N *∈),则k 的取值范围是 A,2k >- B,2k ≥- C,3k ≥- D,3k >- 2等差数列{}n a ,{}n b 的前n 项和分别为n S ,n T ,若231n n S n T n =+,则n n a b = A, 23 B,2131n n -- C,2131 n n ++ D,2134n n -+ 3已知三角形的三边构成等比数列,它们的公比为q ,则q 的取值范围是 A, B, C, D, 4在等差数列{}n a 中,1125 a = ,第10项开始比1大,记21lim ()n n n a S t n →∞+=,则t 的取值范围是 A,475t > B,837525t <≤ C,437550t << D,437550t <≤ 5设A 11(,)x y ,B 22(,)x y ,C 33(,)x y 是椭圆22 221x y a b +=(0a b >>)上三个点,F 为焦点, 若,,AF BF CF 成等差数列,则有 A,2132x x x =+ B,2132y y y =+ C,213 211x x x =+ D,2213x x x =? 6在ABC ?中,tan A 是以4-为第三项,4为第七项的等差数列的公差,tan B 是以 13为 第三项,9为第六项的等比数列的公比,则这个三角形是 A,钝角三角形 B,锐角三角形 C,等腰直角三角形 D,以上都不对 填空 7等差数列{}n a 前n (6n >)项和324n S =,且前6项和为36,后6项和为180,则n = . 8223323232323236666n n n n S ++++=+++???+,则lim n n S →∞= . 9在等比数列{}n a 中,121lim()15 n n a a a →∞++???+=,则1a 的取值范围是 . 10一个数列{}n a ,当n 为奇数时,51n a n =+;当n 为偶数时,22n n a =.则这个数列的前 2m 项之和2m S = . 11等差数列{}n a 中,n S 是它的前n 项和且67S S <,78S S >,则①此数列的公差0d <,

数学归纳法经典练习及解答过程

数学归纳法经典练习及 解答过程 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

第七节数学归纳法 知识点数学归纳法 证明一个与正整数n有关的命题,可按下列步骤进行: (1)(归纳奠基)证明当n取第一个值n0(n0∈N*)时命题成立. (2)(归纳递推)假设n=k(k≥n0,k∈N*)时命题成立,证明当n=k+1时命题也成立. 只要完成这两个步骤,就可以断定命题对从n0开始的所有正整数n都成立.易误提醒运用数学归纳法应注意: (1)第一步验证n=n0时,n0不一定为1,要根据题目要求选择合适的起始值. (2)由n=k时命题成立,证明n=k+1时命题成立的过程中,一定要用到归纳假设,否则就不是数学归纳法. [自测练习] 1.已知f(n)=1 n + 1 n+1 + 1 n+2 +…+ 1 n2 ,则( ) A.f(n)中共有n项,当n=2时,f(2)=1 2 + 1 3 B.f(n)中共有n+1项,当n=2时,f(2)=1 2 + 1 3 + 1 4 C.f(n)中共有n2-n项,当n=2时,f(2)=1 2 + 1 3 D.f(n)中共有n2-n+1项,当n=2时,f(2)=1 2 + 1 3 + 1 4 解析:从n到n2共有n2-n+1个数,所以f(n)中共有n2-n+1项,且f(2)=1 2 + 1 3 + 1 4 ,故选D. 答案:D

2.(2016·黄山质检)已知n 为正偶数,用数学归纳法证明1-12+13-14+…+1 n +1 = 2? ???? 1n +2+1n +4 +…+12n 时,若已假设n =k (k ≥2为偶数)时命题为真,则还需要用归纳假设再证n =( )时等式成立( ) A .k +1 B .k +2 C .2k +2 D .2(k +2) 解析:根据数学归纳法的步骤可知,则n =k (k ≥2为偶数)下一个偶数为k +2,故选B. 答案:B 考点一 用数学归纳法证明等式| 求证:(n +1)(n +2)·…·(n +n )=2n ·1·3·5·…·(2n -1)(n ∈N *). [证明] (1)当n =1时,等式左边=2,右边=21·1=2,∴等式成立. (2)假设当n =k (k ∈N *)时,等式成立,即(k +1)(k +2)·…·(k +k )=2k ·1·3·5·…·(2k -1). 当n =k +1时,左边=(k +2)(k +3)·…·2k ·(2k +1)(2k +2) =2·(k +1)(k +2)(k +3)·…·(k +k )·(2k +1) =2·2k ·1·3·5·…·(2k -1)·(2k +1) =2k +1·1·3·5·…·(2k -1)(2k +1). 这就是说当n =k +1时,等式成立. 根据(1),(2)知,对n ∈N *,原等式成立. 1.用数学归纳法证明下面的等式: 12-22+32-42+…+(-1)n -1·n 2=(-1)n -1n ?n +1? 2 . 证明:(1)当n =1时,左边=12=1, 右边=(-1)0 ·1×?1+1? 2 =1, ∴原等式成立. (2)假设n =k (k ∈N *,k ≥1)时,等式成立,

(浙江专版)2019版高考数学大一轮复习第七章数列与数学归纳法第2节等差数列及其前n项和学案理

第2节 等差数列及其前n 项和 最新考纲 1.理解等差数列的概念;2.掌握等差数列的通项公式与前n 项和公式;3.能在具体的问题情境中识别数列的等差关系,并能用等差数列的有关知识解决相应的问题;4.了解等差数列与一次函数的关系. 知 识 梳 理 1.等差数列的概念 (1)如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示. 数学语言表达式:a n +1-a n =d (n ∈N * ,d 为常数),或a n -a n -1=d (n ≥2,d 为常数). (2)若a ,A ,b 成等差数列,则A 叫做a ,b 的等差中项,且A =a +b 2 . 2.等差数列的通项公式与前n 项和公式 (1)若等差数列{a n }的首项是a 1,公差是d ,则其通项公式为a n =a 1+(n -1)d . 通项公式的推广:a n =a m +(n -m )d (m ,n ∈N * ). (2)等差数列的前n 项和公式 S n =n (a 1+a n )2 =na 1+n (n -1)2 d (其中n ∈N *,a 1为首项,d 为公差,a n 为第n 项). 3.等差数列的有关性质 已知数列{a n }是等差数列,S n 是{a n }的前n 项和. (1)若m +n =p +q (m ,n ,p ,q ∈N * ),则有a m +a n =a p +a q . (2)等差数列{a n }的单调性:当d >0时,{a n }是递增数列;当d <0时,{a n }是递减数列;当 d =0时,{a n }是常数列. (3)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N * )是公差为md 的等差数列. (4)数列S m ,S 2m -S m ,S 3m -S 2m ,…也是等差数列. 4.等差数列的前n 项和公式与函数的关系 S n =d 2 n 2+? ?? ??a 1-d 2n .

数列的极限数学归纳法

数列的极限、数学归纳法 一、知识要点 (一) 数列的极限 1.定义:对于无穷数列{a n },若存在一个常数A ,无论预选指定多么小的正数ε,都能在数列中找到一项a N ,使得当n>N 时,|an-A|<ε恒成立,则称常数A 为数列{a n }的极限,记作 A a n n =∞ →lim . 2.运算法则:若lim n n a →∞ 、lim n n b →∞ 存在,则有 lim()lim lim n n n n n n n a b a b →∞ →∞ →∞ ±=±;lim()lim lim n n n n n n n a b a b →∞ →∞ →∞ ?=? )0lim (lim lim lim ≠=∞→∞ →∞→∞→n n n n n n n n n b b a b a 3.两种基本类型的极限:<1> S=?? ? ??-=>=<=∞ →)11() 1(1) 1(0lim a a a a a n n 或不存在 <2>设()f n 、()g n 分别是关于n 的一元多项式,次数分别是p 、q ,最高次项系数分别为p a 、 p b 且)(0)(N n n g ∈≠,则??? ????>=<=∞→)()() (0)()(lim q p q p b a q p n g n f q p n 不存在 4.无穷递缩等比数列的所有项和公式:1 1a S q = - (|q|<1) 无穷数列{a n }的所有项和:lim n n S S →∞ = (当lim n n S →∞ 存在时) (二)数学归纳法 数学归纳法是证明与自然数n 有关命题的一种常用方法,其证题步骤为: ①验证命题对于第一个自然数0n n = 成立。 ②假设命题对n=k(k ≥0n )时成立,证明n=k+1时命题也成立. 则由①②,对于一切n ≥ 0n 的自然数,命题都成立。 二、例题(数学的极限)

高考数学复习数列与数学归纳法 汇编

数列与数学归纳法 一、填空题 (杨浦区2013文理)1. 计算:=+∞→1 33lim n n n .1 1. 计算:= 3 . 4、已知{}n a 是公比为2的等比数列,若316a a -=,则n a a a +++Λ21 = 221-+n (2014年1月青浦)各项为实数的等比数列中7191,8a a =-=-,则13a = (2014年1月青浦)已知lim(1)1n n q →∞ -=,则实数q 的取值范围是 11q -<< . 221lim 2n n n n →∞+=-____1 2 _______. 已知数列{}n a 中,11a =,* 13,(2,)n n a a n n N -=+≥∈,则n a =___32n -________. 5.已知为等差数列,其前项和为.若,35a =,64n S =,则n = 8 . 10、数列()*241N n a a n n ∈+-=+,如果{}n a 是一个等差数列,则=1a 3 6. 如果()那么共有28项. 4.已知数列}{n a 的前n 项和2 n S n =(*N ∈n ),则8a 的值是__________.15 8.若等差数列的首项为2,公差为,其前项和满足:对于任意的, 都有 是非零常数.则 .4 8.若公差为的等差数列的项数为奇数,,的奇数项的和是175,偶数项 的和是150,则 .4 10.函数x a y =(0>a ,1≠a )的图像经过点?? ? ??41, 2P ,则=+++∞→)(lim 2n n a a a Λ______ 1 11.设等比数列}{n a 的前n 项和为n S ,且55S a =,则=2014S ________0 210lim 323x n n →∞++{}n a n n S 11a =()1111112312 n f n n n =+ +++++++L L *n N ∈()()1f k f k +-{}n a )0(≠d d n n S * ∈N n n n S S 2=d d {}n a 11=a {}n a =d

数列、极限、数学归纳法()

第二章数列、极限、数学归纳法(2) 等比数列 【例题精选】: 例1:“b 2 = ac ”是a , b , c 成等比数列的 A .充分非必要条件 B .必要非充分条件 C .充分且必要条件 D .既不充分又不必要条件 分析:由a , b , c 成等比数列?b ac 2=;b ac 2=若a , b , c 中有等于零者,a , b , c 不成等比数列,故选(B ) 说明:只有当a , b , c 均不为零时, b ac 2=? a , b , c 成等比数列。 例2:已知数列{}a n 的前n 次和S k k n n =+3(为常数),那么下述结论正确的 是 A .k 为任意实数时,{}a n 是等比数列 B .k = -1时,{}a n 是等比数列 C .k = 0时,{}a n 是等比数列 D .{}a n 不可能是等比数列 分析:给出 s k k n n =+3(为常数),可由s n 求出通项a n 来进行判断: n a s k n a s s k k n n n n n n ===+≥=-=+-+=?---13123323211111 时,时,() ()() 当n a ==?=1223210时,由()式 当a k k 121321=+==-时代入()式得得, {}∴=-=?∈-当时,数列k a n N a n n n 1231()是等比数列,故选(B )。 小结:解好本题要准确掌握数列的前n 项和S n 与通项a n 关系式 a n =s n s s n n n 1 112=-≥?? ?- 例3:在等比数列{}a n 中,已知a a a a a 132492040+=-+=,,求 解:设等比数列的公比为q ,依题意:() ()a a q a q a q 112 1 13 201402+=-+=????? ()()()()()12112 214 421024 19188÷=-∴=-=-∴==--=-得 代入得q q a a a q 例4:(1)在等比数列6,…,1458,…,13122,…中,1458是第n 项, 13122

相关文档
最新文档