从业人员平均人数计算方法

从业人员平均人数计算方法
从业人员平均人数计算方法

从业人员平均人数计算方法

从业人员平均人数 指报告期内(年度、季度、月度)平均拥有的从业人员数。季度或年度平均人数按单位实际月平均人数计算得到,不得用期末人数替代。

1.月平均人数是以报告月内每天实有的全部人数相加之和,除以报告月的日历日数。计算公式为:

报告月的日历日数部人数之和

报告月内每天实有的全月平均人数=

对人员增减变动很小的单位,其月平均人数也可以用月初人数与月末人数之和除以2求得。计算公式为:

2月末人数月初人数月平均人数+=

在计算月平均人数时应注意:

(1)公休日与节假日的人数应按前一天的人数计算。

(2)对新建立不满整月的单位(月中或月末建立),在计算报告月的平均人数时,应以其建立后各天实有人数之和,除以报告期日历日数求得,而不能除以该单位建立的天数。

2.1-本季平均人数是季报基层表中应填报的平均人数是“1-本季平均人数”,以年初至报告季内各月平均人数之和除以报告季内月数求得。计算公式为:

33211月平均人数

月平均人数月平均人数本季平均人数一季度:++=-

66...11月平均人数

月平均人数本季平均人数二季度:++=-

99...11月平均人数

月平均人数本季平均人数三季度:++=

- 或(用本季平均人数计算)

一季度:1-本季平均人数=1季度本季平均人数

2211季度本季平均人数

季度本季平均人数本季平均人数二季度:+=-

33211季度本季平均人数季度本季平均人数季度本季平均人数本季平均人数三季度:++=

- 本季平均人数以报告季内三个月的平均人数之和除以3求得。计算公式为:

33个月平均人数之和

报告季内本季平均人数=

3.年平均人数是以12个月的平均人数相加之和除以12求得,或以4个季度的平均人数之和除以4求得。计算公式为:

1212个月平均人数之和报告年内年平均人数=

或:

44个季度平均人数之和

报告年内年平均人数=

在年内新成立的单位年平均人数计算方法为:从实际开工之月起到年底的月平均人数相加除以12个月。计算公式为:

12

12月平均人数开工之月平均人数年平均人数+???+=

数值计算方法课程设计(C语言)

数值计算方法课程设计 姓名 学号 成绩

课程实际报告 实验一:秦九韶算法 题目 用选列主元高斯消去法解线性方程组 ???????=+- =-+-=-+-=--02 02 0 21 34343232121x x x x x x x x x x 算法语言: 利用c 语言的知识编写该算法程序 算法步骤叙述: 秦九昭算法的基思路是v[0]=a[0]*x+a[1] v[i]=v[i-1]*x+a[i+1];利用秦九昭算法计算多项式函数。 程序清单: #include void main() { float a[5],x,sum; int i; printf("presase input the value of x="); scanf("%f",&x); for (i =5;i >=0;i --) { printf("please input the value of a%d=",i); scanf("%f",&a[i]); } sum =a[5];

for(i=5;i>=1;i--) {sum=sum*x+a[i-1]; } printf("f(x)=%f/n",sum); } 输出结果计算:

实验总结: 通过运用C 语言,解决了秦九韶算法手写的复杂。为以后的雪地打下基础。 实验二:用选列主元高斯消去法解线性方程组 题目 用选列主元高斯消去法解线性方程组 ???????=+- =-+-=-+-=--02 0 2 0 21 34343232121x x x x x x x x x x 算法步骤叙述 第一步消元——在增广矩阵(A,b )第一列中找到绝对值最大的元素,将其所在行与第一行交换,再对(A,b )做初等行变换使原方程组的第一列元素除了第一行的全变为0; 第二步消元——在增广矩阵(A,b )中第二列中(从第二行开始)找到绝对值最大的元素,将其所在行与第二行交换,再对(A,b )做初等行变换使原方程组的第二列元素除了第一和第二行的全变为0; 第三步消元——在增广矩阵(A,b )中第三列中(从第三行开始)找到绝对值最大的元素,将其所在行与第三行交换,再对(A,b )做初等行变换使原方程组的第三列第四行元素为0; 第四,按x4-x3-x2-x1的顺序回代求解出方程组的解,x[n]=b[n]/a[n][n],x[i]=(b[i]-Σa[i][j]x[j])/a[i][i],i=n-1,…,2,1 程序清单: #include #include #define N 4 static double A[N][N] = {-3,-1,0,0,-1,2,-1,0,0,-1,2,-1,0,0,-1,2}; static double B[N]={1,0,0,0};

四年级简便计算练习题(分类)

86x ( 1000- 2) 15x ( 40-8) 乘法分配律练习题 乘法分配律特别要注意 “两个数的和与一个数相乘, 可以先把它们与这个数分别相乘, 再相加”中的分别两个字。 选择。下面 4组式子中,哪道式子计算较简便?把算式前面的序号填在括号里。 (36+64)x 13 与 ② 36 x 13+64 x 13 135X 15+65X 15 与②(135+65)x 15 101 x 45 与② 100x 45+1 X 45 125X 842 与② 125X 800+125X 40+125X 2 7+8+9)x 10=7x 10+8x 10+9 12x 9+3x 9 = 12+3x 9 (25+50)x 200 = 25x 200+50 101x 63=100x 63+63 98 x 15= 100 x 15 + 2 x 15 类型一:(注意:一定要括号外的数分别乘括号里的两个数,再把积相加) 40+ 8)x 25 125x ( 8+80) 36x ( 100+50) 24x ( 2+10) 1、 2、 判断下面的 5 组等式,应用乘法分配律用对的打 ,应用错的打“x”

类型二:(注意:两个积中相同的因数只能写一次) 36 x 34+ 36 x 66 63X 43+ 57X 63 325x 113-325x 13 类型三:(提示:把78x102 75x 23+ 25x 23 93x 6+ 93x 4 28x 18-8x 28 102看作100+ 2;81看作80 + 1,再用乘法分配 律) 69x102 56x101 52x102 125x81 25x41

数值分析_数值计算小论文

Runge-Kutta 法的历史发展与应用 摘要Runge-Kutta 法是极其重要的常微分方程数值解法,本文仅就其起源及发展脉络加以简要研究。对Runge 、Heun 以及Kutta 等人的贡献做出适当评述,指出Runge-Kutta 方法起源于Euler 折线法。同时对Runge-Kutta 法的应用做简要研究。 关键词 Euler 折线法 标准四阶Runge-Kutta 法 应用 一、发展历史[1] 1.1 Euler 折线法 在微分方程研究之初,瑞士数学家L.Euler(1707.4—1783.9)做出了开创性的工作。他和其他一些数学家在解决力学、物理学问题的过程中创立了微分方程这门学科。在常微分方程方面,Euler 在1743年发表的论文中,用代换kx y e =给出了任意阶常系数线性微分方程的古典解法,最早引入了“通解”和“特解”的概念。 1768年,Euler 在其有关月球运行理论的著作中,创立了广泛用于求初值问题 00 (,), (1.1)() (1.2)y f x y x x X y x a '=<≤??=? 的数值解的方法,次年又把它推广到二阶方程。欧拉的想法如下:我们选择0h >,然后在00x x x h ≤≤+情况下用解函数的切线 0000()()(,)l x y x x f x y =+- 代替解函数。这样对于点 10x x h =+ 就得到 1000(,)y y hf x y =+。 在11(,)x y 重复如上的程序再次计算新的方向就会得到所谓的递推公式: 11, (,),m m m m m m x x h y y hf x y ++=+=+

数值计算方法课程设计

重庆邮电大学 数学与应用数学 专业 《数值计算方法》课程设计 姓名: 李金徽 王莹 刘姝楠 班级: 1131001 1131002 1131002 学号: 2010213542 2010213570 2010213571 设计时间: 2012-6-4 指导教师: 朱伟

一、课程设计目的 在科学计算与工程设计中,我们常会遇到求解线性方程组的问题,对于系数矩阵为低阶稠密矩阵的线性方程组,可以用直接法进行消元,而对于系数矩阵为大型稀疏矩阵的情况,直接法就显得比较繁琐,而迭代法比较适用。比较常用的迭代法有Jacobi 迭代与Gauss - seidel 迭代。本文基于两种方法设计算法,并比较他们的优劣。 二、课程设计内容 给出Jacobi 迭代法和Gauss-Seidel 迭代法求解线性方程组的算法思想和MATLAB 程序实现,并对比分析这两种算法的优劣。 三、问题的分析(含涉及的理论知识、算法等) Jacobi 迭代法 方程组迭代法的基本思想和求根的迭代法思想类似,即对于线性 方程组Ax = b( 其中n n n R b R R A ∈?∈,),即方程组 )1(2211222221211 1212111?? ???? ?=+?++??=+?++=+?++n n nn n n n n n n b x a x a x a b x a x a x a b x a x a x a 将系数矩阵A 写为 )2(000000 21122 12122 11U L D a a a a a a a a a A n n n n nn --≡??? ?? ? ? ??---- ??????? ??----??????? ??= 若选取D M =,则U L A M N +=-=,方程组)1(转化为等价方程组 b x U L Dx ++=)(

(完整版)四年级加减法简便计算练习题.doc

四年级运算定律与简便计算练习题 一、运算定律 加法交换律:。字母表示为: 加法结合律:。字母表示为: 一个数连续减两个数,可以先算两个减数的和,再相减。字母表示为: 如果小括号前面前面是减号,去掉小括号,要改变括号里的运算符号。字母表示为: 二、加法的简便计算 403+627+597355+260+140+24599+321+101(725+139)+261(245+138)+(62+155)999+322+99486+198546+695398+124549+301728+4052637+2989 三、减法的简便计算 635-99486-197782-4981000-696684-201752-403480-3011000-505 527-145-55496-172-228375-168-75402-192-18 469-128-169-721000-125-640-235 467+92-267654+138-157-43451-( 251+130)865-( 165+320)(678+249)-( 158+149) 四、怎样简便就怎样计算 325-64+75-36345+197+658645-180-2451022-478-422987-( 287+135) 672-36+6436+64- 36+64564-298564+298382+ 165+35- 82

487-287- 139-61500-257-34-143 2000-368- 132 568-( 68+178) 155+256+ 45-98514+189- 214369-256+156700-2011000-821 512+(373—212)228+(72+189)409-( 230-91)897- 72-28897-72+28 四、应用题。 1、雄城商场 1—4 季度分别售出冰箱269 台、 67 台、 331 台和 233 台。雄城商场平均每月售出冰箱多少台? 2、第三小组六个队员的身高分别是128 厘米、 136 厘米、 140 厘米、 132 厘米、 124 厘米、 127 厘米。他们的平均身高是多少? 3、一本书共有 326 页,小明第一天看了65 页,第二天看了 35 页,还剩多少页没有看? 4、黄山旅游景区周末上午迎来1398 名中国游客, 457 名外国游客,中午离开了257 名中国游客、 198 名外国游客,景区里还剩下多少游客? 五、列式计算 1、96 减去 35 的差,乘 63 与 25 的和,积是多少? 2、 2727 除以 9 的商与 36 和 43 的积相差多少? 3、3 与 9 的差除 336 与 474 的和,商是多少? 4、最大的两位数与最小的三位数的和与差的积是多少?

数值分析小论文

“数值分析”课程 第一次小论文 郑维珍2015210459 制研15班(精密仪器系)内容:数值分析在你所在研究领域的应用。 要求:1)字数2500以上;2)要有摘要和参考文献;3)截至10.17,网络学堂提交,过期不能提交! 数值分析在微流控芯片研究领域的应用 摘要: 作者在硕士期间即将参与的课题是微流控芯片的研制。当前,微流控芯片发展十分迅猛,而其中涉及到诸多材料学、电子学、光学、流体力学等领域的问题,加上微纳尺度上的尺寸效应,理论研究和数值计算都显得困难重重。发展该领域的数值计算,成为重中之重。本文从微流体力学、微传热学、微电磁学、微结构力学等分支入手,简要分析一下数值分析方法在该领域的应用。 微流控芯片(Microfluidic Chip)通常又称芯片实验室(Lab-On-a-Chip ),它是20世纪90年代初由瑞士的Manz和Widmer提出的[1-2],它通过微细加工技术,将微管道、微泵、微阀、微电极、微检测元件等功能元件集成在芯片材料(基片)上,完成整个生化实验室的分析功能,具有减少样品的消耗量、节省反应和分析的时间、高通量和便携性等优点。 通常一个微流控芯片系统都会执行一个到多个微流体功能,如泵、混合、热循环、扩散和分离等,精确地操纵这些流体过程是微流控芯片的关键。因此它的研究不仅需要生命科学、MEMS、材料学、电子学、光学、流体力学等多学科领域的基础理论的支持,还需要很多数学计算。

1)微流体力学计算[3]: 对微管里的流体动力的研究主要包含了以下几个方面:(1)微管内流体的粘滞力的研究;(2)微管内气流液流的传热活动;(3)在绝热或传热的微管内两相流的流动和能量转换。这三方面的研究涵盖了在绝热、传热和多相转换条件下,可压缩和不可压缩流体在规则或不规则的微管内的流动特性研究。 由此,再结合不同的初值条件和边界条件,我们可以得到各种常微分方程或偏微分方程,而求解这些方程,就是需要很多数值分析的知识。例如,文献[4]里就针对特定的初值和边界条件,由软件求解了Navier-Stodes方程: 文献[4]专门有一章节讨论了该方程的离散化和数值求解。 微流体力学主要向两个方面发展:一方面是研究流动非定常稳定特性、分叉解及微尺寸效应下的湍流流动的机理,更为复杂的非定常、多尺度的流动特征,高精度、高分辨率的计算方法和并行算法;另一方面是将宏观流体力学的基本模型,结合微纳效应,直接用于模拟各种实际流动,解决微纳芯片生产制造中提出来的各种问题。 2)微传热方程计算: 常微分、偏微分方程的数值求解应用较为广泛的另一问题就是微流体传热问题。由传热学的相关知识,我们可以达到如下的传热学基本方程: 该方程在二维情况下经过简化和离散,可以得到如教材第三章所讲的“五点差分格式”的方程组,从而采取数值方法求解[5]。 除此之外,微结构芯片在加工和制造过程中也会有很多热学方面的问题,例如文献[6]所反映的注塑成型工艺中,就有大量的类似问题的解决。 3)微电磁学计算: 由于外加电场的作用,电渗流道中会产生焦耳热效应。许多研究者对电渗流道中的焦耳热效应进行了数值模拟研究。新加坡南洋理工大学的G. Y. Tang等在电渗流模型的基础上,考虑了与温度有关的物理系数,在固一液祸合区域内利用

数值分析课程设计

淮海工学院计算机工程学院课程设计报告书 课程名:《数值分析》 题目:数值分析课程设计 班级: 学号: 姓名:

数值分析课程设计 课程设计要求 1、研究第一导丝盘速度y与电流周波x的关系。 2、数据拟合问题运用样条差值方法求出温度变化的拟合曲线。 课程设计目的 1、通过编程加深对三次样条插值及曲线拟合的最小二乘法的理解; 2、学习用计算机解决工程问题,主要包括数据处理与分析。 课程设计环境 visual C++ 6.0 课程设计内容 课程设计题目1: 合成纤维抽丝工段中第一导丝盘的速度对丝的质量有很大的影响,第一丝盘的速度和电流周波有重要关系。下面是一组实例数据: 其中x代表电流周波,y代表第一导丝盘的速度 课程设计题目3: 在天气预报网站上获得你家乡所在城市当天24小时温度变化的数据,认真观察分析其变化趋势,在此基础上运用样条差值方法求出温度变化的拟合曲线。然后将该函数曲线打印出来并与原来的温度变化数据形成的曲线进行比较,给出结论。写出你研究的心得体会。 课程设计步骤 1、利用最小二乘法写出题1的公式和算法; 2、利用excel表格画出数据拟合后题1的图像; 3、在Visual C++ 6.0中编写出相应的代码; 4、搜索11月12日南通当地一天的温度变化数据; 5、在Visual C++ 6.0中编写出相应的代码; 6、利用excel表格画出数据拟合后题3的图像 课程设计结果 课程设计题目1 数值拟合

解:根据所给数据,在excel窗口运行: x=[49.2 50.0 49.3 49.0 49.0 49.5 49.8 49.9 50.2 50.2] y=[16.7 17.0 16.8 16.6 16.7 16.8 16.9 17.0 17.0 17.1] 课程设计题目3 数据为:X=[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23]; Y=[12,12,11,12,12,12,12,12,13,15,16,17,17,18,17,17,17,16,15,15,15,15,14,14]; 源代码为: 第一题: #include #include"math.h" using namespace std; //double x[100],y[100]; int main(){ int i; double k,b; double sum1=0,sum2=0,sum3=0,sum4=0; double x[10]={49.2,50.0,49.3,49.0,49.0,49.5,49.8,49.9,50.2,50.2}; double y[10]={16.7,17.0,16.8,16.6,16.7,16.8,16.9,17.0,17.0,17.1}; for(i=0;i<10;i++){ sum1+=x[i]*y[i]; sum2+=x[i];

四年级下册简便方法计算练习题

四年级下册简便方法计算练习题126×6×8 600÷25÷4 55×36+64×55 755-122-78 600÷25 (8+80)×125 125×18 234×80×5 781-499 125×38+125×30 25×32 4004×25 25×16-25×10 25×16×125 (125+16)×8 79×99+79 781×101-781 79×16+79×78+79×6 25×101

789×99 800÷125 1736+403 2000÷125 65+93×65+6×65 9999+999+99+9 158+262+138 375+219+381+225 5001-247-1021-232 (181+2564)+2719 378+44+114+242+222 276+228+353+219 (375+1034)+(966+125) (2130+783+270)+1017 99+999+9999+99999 7755-(2187+755) 2214+638+286 3065-738-1065 899+344

2370+1995 3999+498 1883-398 12×25 75×24 138×25×4 (13×125)×(3×8) (12+24+80)×50 704×25 25×32×125 32×(25+125) 88×125 102×76 58×98 178×101-178 84×36+64×84 75×99+2×75 83×102-83×2 98×199 123×18-123×3+85×123 50×(34×4)×3 25×(24+16) 178×99+178 79×42+79+79×57 7300÷25÷4 8100÷4÷75 16800÷120 30100÷2100 32000÷400 49700÷700

数值分析(计算方法)总结

第一章绪论 误差来源:模型误差、观测误差、截断误差(方法误差)、舍入误差 是的绝对误差,是的误差,为的绝对误差限(或误差限) 为的相对误差,当较小时,令 相对误差绝对值得上限称为相对误差限记为:即: 绝对误差有量纲,而相对误差无量纲 若近似值的绝对误差限为某一位上的半个单位,且该位直到的第一位非零数字共 有n位,则称近似值有n位有效数字,或说精确到该位。 例:设x==3.1415926…那么,则有效数字为1位,即个位上的3,或说精确到个位。 科学计数法:记有n位有效数字,精确到。 由有效数字求相对误差限:设近似值有n位有效数字,则其相对误差限为 由相对误差限求有效数字:设近似值的相对误差限为为则它有n位有效数字 令 1.x+y近似值为和的误差(限)等于误差(限) 的和 2.x-y近似值为 3.xy近似值为 4. 1.避免两相近数相减 2.避免用绝对值很小的数作除数 3.避免大数吃小数

4.尽量减少计算工作量 第二章非线性方程求根 1.逐步搜索法 设f (a) <0, f (b)> 0,有根区间为 (a, b),从x0=a出发,按某个预定步长(例如h=(b-a)/N)一步一步向右跨,每跨一步进行一次根的搜索,即判别f(x k)=f(a+kh)的符号,若f(x k)>0(而f(x k-1)<0),则有根区间缩小为[x k-1,x k] (若f(x k)=0,x k即为所求根), 然后从 x k-1出发,把搜索步长再缩小,重复上面步骤,直到满足精度:|x k-x k-1|< 为止,此时取 x*≈(x k+x k-1)/2作为近似根。 2.二分法 设f(x)的有根区间为[a,b]= [a0,b0], f(a)<0, f(b)>0.将[a0,b0]对分,中点x0= ((a0+b0)/2),计算f(x0)。 3.比例法 一般地,设 [a k,b k]为有根区间,过(a k, f(a k))、 (b k, f(b k))作直线,与x轴交于一 点x k,则: 1.试位法每次迭代比二分法多算一次乘法,而且不保证收敛。 2.比例法不是通过使求根区间缩小到0来求根,而是在一定条件下直接构造出一个点列(递推公式),使该点列收敛到方程的根。——这正是迭代法的基本思想。 事先估计: 事后估计 局部收敛性判定定理: 局部收敛性定理对迭代函数的要求较弱,但对初始点要求较高,即初始点必须选在精确解的附近 Steffensen迭代格式: Newton法: Newton下山法:是下山因子 弦割法:

中北大学数值分析小论文

中北大学 《数值分析》 常微分方程初值问题的数值解法 专业: 班级: 学号: 姓名: 日期: 2012.12.26

常微分方程初值问题的数值解法 摘 要 微分方程的数值解法在科学技术及生产实践等多方面应用广泛. 文章分析了构造常微分方程初值问题数值解法的三种常用基本方法,差商代替导数法,数值积分法及待定系数法,推导出了Euler 系列公式及三阶龙格-库塔公式,指出了各公式的优劣性及适用条件,并对Euler 公式的收敛性、稳定性进行了分析。 Abstract The numerical solution of differential equations is widely used in science, technology, production practices and many other fields. This paper analyzed three kinds of basic methods for constructing numerical solutions for initial value problem of ordinary differential equations :difference quotient instead of derivative method, numerical integral method and undetermined coefficients method. At the same time, the paper deduces the Euler series formula and the classical third order Runge-Kutta formula. In addition, the paper pointed out the advantages and disadvantages of each formula and application condition, it also analyzed the convergence and stability of the Euler formula. 1.引言 科学技术及实际生产实践中的许多问题都可归结为微分方程的求解问题,使用较多的是常微分方程初值问题的求解。对于一阶常微分方程的初值问题 000dy /dx f (x,y),y(x )y ,x x b ==<<,其中f 为已知函数,0y 是初始值。如 果函数f 关于变量y 满足Lipschitz 条件,则初值问题有唯一解。只有当f 是一些特殊类型的函数时,才能求出问题的解析解,但一般情况下都满足不了生产实践与科学技术发展的需要,因此通常求其数值解法。 2.主要算法 数值解法是一种离散化的方法,可以求出函数的精确解在自变量一系列离散点处的近似值。基本思想是离散化,首先要将连续区间离散化,对连续区域[]0x ,b 进行剖分01n 1n x x x x b -<<Λ<<=,n n 1n h x x +=-为步长;其次将其函离散

四年级数学简便方法计算题

小学四年级简便方法计算题 第一种(300+6)x12 25x(4+8) 125x(35+8) (13+24)x8 第二种84x101 504x25 78x102 25x204 第三种99x64 99x16 638x99 999x99 第四种99X13+13 25+199X25 32X16+14X32 78X4+78X3+78X3 第五种125X32X8 25X32X125 88X125 72X125 第六种 3600÷25÷4 8100÷4÷75 3000÷125÷8 1250÷25÷5 第七种1200-624-76 2100-728-772 273-73-27 847-527-273 第八种278+463+22+37 732+580+268 1034+780320+102 425+14+186 第九种 214-(86+14) 787-(87-29) 365-(65+118) 455-(155+230)第十种576-285+85 825-657+57 690-177+77 755-287+87 第十一种871-299 157-99 363-199 968-599

第十二种178X101-178 83X102-83X2 17X23-23X7 35X127-35X16-11X35 第十三种64÷(8X2) 1000÷(125X4) 第十四种375X(109-9) 456X(99+1) 容易出错类型(共五种类型) 600-60÷15 20X4÷20X4 736-35X20 25X4÷25X4 98-18X5+25 56X8÷56X8 280-80÷ 4 12X6÷12X6 175-75÷25 25X8÷25X8 80-20X2+60 36X9÷36X9 36-36÷6-6 25X8÷(25X8) 100+45-100+45 15X97+3 100+1-100+1 48X99+1 1000+8-1000+8 5+95X28 102+1-102+1 65+35X13 25+75-25+75 40+360÷20-10 13+24X8 672-36+64 324-68+32 100-36+64

数值分析论文

插值方法总结 摘 要:本文是对学过的插值方法进行了总结使我们更清楚的知道那一种方法适合那一种型。 关键词:插值;函数;多项式;余项 (一)Lagrange 插值 1.Lagrange 插值基函数 n+1个n 次多项式 ∏≠=--= n k j j j k j k x x x x x l 0)( n k ,,1,0 = 称为Lagrange 插值基函数 2.Lagrange 插值多项式 设给定n+1个互异点))(,(k k x f x ,n k ,,1,0 =,j i x x ≠,j i ≠,满足插值条件 )()(k k n x f x L =,n k ,,1,0 = 的n 次多项式 ∏∏ ∏=≠==--==n k n k j j j k j k k n k k n x x x x x f x l x f x L 0 00 ))(()()()( 为Lagrange 插值多项式,称 ∏=+-+=-=n j j x n n x x n f x L x f x E 0)1()()!1()()()()(ξ 为插值余项,其中),()(b a x x ∈=ξξ (二)Newton 插值 1.差商的定义 )(x f 关于i x 的零阶差商 )(][i i x f x f = )(x f 关于i x ,j x 的一阶差商 i j i j j i x x x f x f x x f --= ][][],[ 依次类推,)(x f 关于i x ,1+i x ,……,k i x +的k 阶差商

i k i k i i k i i k i i i x x x x f x x f x x x f --= +-+++++] ,,[],,[],,,[111 2.Newton 插值多项式 设给定的n+1个互异点))(,(k k x f x ,n k ,,1,0 =,j i x x ≠,j i ≠, 称满足条件 )()(k k n x f x N =,n k ,,1,0 = 的n 次多项式 )()](,,,[)](,[][)(10100100---++-+=n n n x x x x x x x f x x x x f x f x N 为Newton 插值多项式,称 ],[,)(],,,[)()()(0 10b a x x x x x x f x N x f x E n j j n n ∈-=-=∏= 为插值余项。 (三)Hermite 插值 设],[)(1b a C x f ∈,已知互异点0x ,1x ,…,],[b a x n ∈及所对应的函数值为 0f ,1f ,…,n f ,导数值为'0f ,' 1f ,…,' n f ,则满足条件 n i f x H f x H i i n i i n ,,1,0,)(,)(' '1212 ===++ 的12+n 次Hermite 插值多项式为 )()()(0 '12x f x f x H j n j j j n j i n βα∏∏=++= 其中 )())((,)]()(21[)(2 2'x l x x x l x l x x x j j j j j j j j ---=βα 称为Hermite 插值基函数,)(x l j 是Lagrange 插值基函数,若],[22b a C f n +∈,插值误差为 220) 22(12)()()! 22() ()()(n x n n x x x x n f x H x f --+= -++ ξ,),()(b a x x ∈=ξξ (四)分段插值 设在区间],[b a 上给定n+1个插值节点 b x x x a n =<<<= 10 和相应的函数值0y ,1y ,…,n y ,求作一个插值函数)(x ?,具有性质

人教版四年级加减法简便计算专项练习题

四年级运算定律与简便计算练习题 姓名:评价: 一、运算定律。 加法交换律:。字母表示为: 加法结合律:。字母表示为: 一个数连续减两个数,可以先算两个减数的和,再相减。字母表示为: 如果小括号前面前面是减号,去掉小括号,要改变括号里的运算符号。字母表示为: 二、能简算就简算。 403+627+597 355+260+140+245 99+321+101 (725+139)+261 (245+138)+(62+155) 360+360÷40 527-145-55 375-168-75 469-128-169-72 1000-125-640-235 487-287-139-61 525-525÷5 467+92-267 36+64-36+64 325-64+75-36

?我会自学简便计算 ? 姓名: 自学结果教师评价: 自学结果家长评价:1、分解法。 小试身手: 例1:998 +322 想:998只要加上2即可得 197 +203 =998+2+320 1000,所以将322分解=(998+2)+320 成“322=2+320”,再=1000+320 用加法结合律。 =1320 例2:480-301 想:301是用300加上1得来的。690 -203 =480-300-1 所以将301分解为300和1。=180-1 然后,先减去300,再减1,不就是=179 总共减去301了吗。 2、借数还数法。 例1:486-198 想:通过观察,发现198个只差2个635-99 =486-200+2 即可得200,所以将198先跟空气?=286+2 借来2个组成200,再用486减去200,=288 这时,200里面多了个借来的2也被减去了,怎么办,还回来,所以得+2,懂了吗。 3、大显身手。 564-298 700-201 637+299 782-498 398+122 549+301 借得2个才满200哟, 记得还,再借不难。 借去的2个已经减掉了,所以还给你了哟还。 我得分开减 它要两个,送 2个给它呗。

数值计算方法设计论文

课程设计(论文) 题目: 三次样条插值问题 学院: ___ 理学院 _ 专业: __ _ 数学与应用数学 班级:数学08-2班 学生姓名: 魏建波 学生学号: 080524010219 指导教师:李文宇 2010年12月17日

课程设计任务书

目录 摘要……………………………………………………………………… 一、前言………………………………………………………………… (一)Lagrange插值的起源和发展过程……………………………………… (二)本文所要达到的目的……………………………………………………… 二、插值函数…………………………………………………………… (一)函数插值的基本思想…………………………………………………… (二)Lagrange插值的构造方法……………………………………………… 三、MATLAB程序………………………………………………………… (一)Lagrange程序…………………………………………………………… (二)龙格程序………………………………………………………………… 四、理论证明…………………………………………………………… 五、综述……………………………………………………………………谢辞………………………………………………………………………参考文献…………………………………………………………………

摘要

前言 要求:500字以上,宋体小四,行距20磅,主要内容写该算法的产生及发展、应用领域等。 题目 整体要求:报告页数,正文在8页以上 字体:宋体小四(行距20磅) 内容:1、理论依据 2、问题描述 3、问题分析 4、求解计算(程序) 5、结论 注:(1)页码编号从正文页开始 (2)标题可根据情况自己适当改动 示例见下: 2判别…………………… 2.1 判……………… 2.1.1 判别……………… 所谓的判别分析,………………………………………………方法[3]。 2.1.2 判………………………… 常用的有四种判别方法:…………………………………………………步判别法[6]。 1. 马氏………………

《数值分析》课程设计报告

《数值分析》课程设计实验报告 龙格—库塔法分析Lorenz 方程 200820302033 胡涛 一、问题叙述 考虑著名的Lorenz 方程 () dx s y x dt dy rx y xz dt dz xy bz dt ?=-???=--???=-?? 其中s ,r ,b 为变化区域内有一定限制的实参数,该方程形式简单,表面上看并无惊人之处,但由该方程揭示出的许多现象,促使“混沌”成为数学研究的崭新领域,在实际应用中也产生了巨大的影响。 二、问题分析 Lorenz 方程实际上是一个四元一阶常微分方程,用解析法精确求解是不可能的,只能用数值计算,最主要的有欧拉法、亚当法和龙格- 库塔法等。为了得到较高精度的,我们采用经典四阶龙格—库塔方法求解该问题。 三、实验程序及注释 (1)算法程序 function [T]=Runge_Kutta(f,x0,y0,h,n) %定义算法,其中f 为待解方程组, x0是初始自变量,y0是初始函数 值,h 是步长,n 为步数 if nargin<5 n=100; %如果输入参数个数小于5,则步数 n=100 end r=size(y0);r=r(1); %返回初始输出矩阵的行列数,并将 值赋给r(1) s=size(x0);s=s(1); %返回初始输入矩阵的行列数,并 将值赋给s(1) r=r+s; T=zeros(r,n+1); T(:,1)=[y0;x0]; for t=2:n+1 %以下是具体的求解过程 k1=feval(f,T(1:r-1,t-1)); k2=feval(f,[k1*(h/2)+T(1:r-1,t-1);x0+h/2]); k3=feval(f,[k2*(h/2)+T(1:r-1,t-1);x0+h/2]); k4=feval(f,[k3*h+T(1:r-1,t-1);x0+h]); x0=x0+h; T(:,t)=[T(1:r-1,t-1)+(k1+k2*2+k3*2+k4)*(h/6);x0]; end

(完整版)人教版四年级下数学简便方法计算题集

人教版四年级下册数学简便计算题 第一类:加 65+73+135 357+288+143 272+68+28 129+235+171+165 17+145+23+35 999+99+9+3 6+7+8+102+103+104 9998+3+99+998+3+9 第二类:减 400-256-44 517-53-47 284-159-41 258-42-16 545-167-145 478-47-178 344-(144+37)236-(177+36)

45×4×5 23 ×5×2 25×9×4 8×(125×13)(250×125)×(4×8)88×125 72×125 125×64×25 42×125×8×5 25×4×88×125 第四类:乘 (12+50)×40 125×(40-4)76×103 18×125 25×44 42×25 99×9 99×78

45×37+37×55 28×21+28×79 17×23-23×7 38×46+64×38 99×32+32 46+46×59 167×2+167×3+167×5 39×8+6×39-39×4 28×225-2×225-6×225 (42+25)×125+(18+15)×125 23×2×4+25×4×2+27×1×8+25×8×1 99×22+33×34 第六类:除 360÷4÷9 250÷5÷2 600÷12÷5

800÷5÷8 480÷5÷48 240÷5÷12 420÷35 2400÷25 7800÷12 第七类:加减 92+99 197+102 354-108 405-99 127-98 323+189-123 248+86-48 672-36+64 (6467-832)+(1832-1467) 1530+(592-530)-192 (2+4+6+……+98+100)-(1+3+5+……+97+99) 第八类:乘除 960×46÷48 99000÷121×11 3702×38÷1234

计算流体力学常用数值方法简介[1]

计算流体力学常用数值方法简介 李志印 熊小辉 吴家鸣 (华南理工大学交通学院) 关键词 计算流体力学 数值计算 一 前 言 任何流体运动的动力学特征都是由质量守恒、动量守恒和能量守恒定律所确定的,这些基本定律可以由流体流动的控制方程组来描述。利用数值方法通过计算机求解描述流体运动的控制方程,揭示流体运动的物理规律,研究流体运动的时一空物理特征,这样的学科称为计算流体力学。 计算流体力学是一门由多领域交叉而形成的一门应用基础学科,它涉及流体力学理论、计算机技术、偏微分方程的数学理论、数值方法等学科。一般认为计算流体力学是从20世纪60年代中后期逐步发展起来的,大致经历了四个发展阶段:无粘性线性、无粘性非线性、雷诺平均的N-S方程以及完全的N-S方程。随着计算机技术、网络技术、计算方法和后处理技术的迅速发展,利用计算流体力学解决流动问题的能力越来越高,现在许多复杂的流动问题可以通过数值计算手段进行分析并给出相应的结果。 经过40年来的发展,计算流体力学己经成为一种有力的数值实验与设计手段,在许多工业领域如航天航空、汽车、船舶等部门解决了大量的工程设计实际问题,其中在航天航空领域所取得的成绩尤为显著。现在人们已经可以利用计算流体力学方法来设计飞机的外形,确定其气动载荷,从而有效地提高了设计效率,减少了风洞试验次数,大大地降低了设计成本。此外,计算流体力学也己经大量应用于大气、生态环境、车辆工程、船舶工程、传热以及工业中的化学反应等各个领域,显示了计算流体力学强大的生命力。 随着计算机技术的发展和所需要解决的工程问题的复杂性的增加,计算流体力学也己经发展成为以数值手段求解流体力学物理模型、分析其流动机理为主线,包括计算机技术、计算方法、网格技术和可视化后处理技术等多种技术的综合体。目前计算流体力学主要向二个方向发展:一方面是研究流动非定常稳定性以及湍流流动机理,开展高精度、高分辩率的计算方法和并行算法等的流动机理与算法研究;另一方面是将计算流体力学直接应用于模拟各种实际流动,解决工业生产中的各种问题。 二 计算流体力学常用数值方法 流体力学数值方法有很多种,其数学原理各不相同,但有二点是所有方法都具备的,即离散化和代数化。总的来说其基本思想是:将原来连续的求解区域划分成网格或单元子区

数值分析小论文

基于MATLAB曲线拟合对离散数据的处理和研究 摘要:曲线拟合是数值分析中的一种普遍且重要的方法,求解拟合曲线的方法也有很多,这里主要介绍利用MATLAB曲线拟合工具箱对离散数据点做你和处理,并与利用最小二乘法求相应的拟合曲线的方法做对比,突出MATLAB曲线拟合工具箱的优点,并阐述了其适用的范围,最后通过利用MATLAB曲线拟合工具箱对实例中离散数据点的拟合来具体说明它的使用方法和优点。 关键字:数值分析;MATLAB;曲线拟合;最小二乘法 一问题探究 在很多的实际情况中,两个变量之间的关系往往很难用具体的表达式把它表示出来,通常只能通过实际测量得到一些互不相同的离散数据点,需需要利用这些已知的数据点估计出两个变量的关系或工件的具体轮廓,并要得到任意未知数据点的具体数据,这个过程就需要用到拟合或差值方法来实现,这里主要讨论拟合的方法。 曲线拟合可以通过MATLAB编程来完成,通常为了达到更好的讷河效果需要做多次重复修改,对于非线性曲线拟合还需要编写复杂的M-文件,运用MATLAB曲线拟合工具箱来实现离散数据点的曲线拟合是一种直观并且简洁的方法。 二曲线拟合的最小二乘法理论 假设给定了一些数据点(Xi,Yi),人们总希望找到这样的近似的函数,它既能反映所给数据的一般趋势,又不会出现较大的偏差,并且要使构造的函数与被逼近函数在一个给定区间上的偏差满足某种要求。这种思想就是所谓的“曲线拟合”的思想。 曲线拟合和差值不同,若要求通过所有给定的数据点是差值问题,若不要求曲线通过所有给定的数据点,而只要求反映对象整体的变化趋势,拟合问题,曲线拟合问题最常用的解决方法是线性最小二乘法[1],步骤如下: 第一步:先选定一组函数r1(x),r2(x),…,rm(x),m

相关文档
最新文档