高等量子力学 简谐振子

逻辑函数的化简方法

一、公式法化简:是利用逻辑代数的基本公式,对函数进行消项、消 因子。常用方法有: ①并项法利用公式AB+AB’=A 将两个与项合并为一个,消去其 中的一个变量。 ②吸收法利用公式A+AB=A 吸收多余的与项。 ③消因子法利用公式A+A’B=A+B 消去与项多余的因子 ④消项法利用公式AB+A’C=AB+A’C+BC 进行配项,以消去更多 的与项。 ⑤配项法利用公式A+A=A,A+A’=1配项,简化表达式。 二、卡诺图化简法 逻辑函数的卡诺图表示法 将n变量的全部最小项各用一个小方块表示,并使具有逻辑相邻性的最小项在几何位置上相邻排列,得到的图形叫做n变量最小项的卡诺图。 逻辑相邻项:仅有一个变量不同其余变量均相同的两个最小项,称为逻辑相邻项。 1.表示最小项的卡诺图 将逻辑变量分成两组,分别在两个方向用循环码形式排列出各组变量的所有取值组合,构成一个有2n个方格的图形,每一个方格对应变量的一个取值组合。具有逻辑相邻性的最小项在位置上也相邻地排列。

用卡诺图表示逻辑函数: 方法一:1、把已知逻辑函数式化为最小项之和形式。 2、将函数式中包含的最小项在卡诺图对应的方格中填 1,其余方格中填 0。 方法二:根据函数式直接填卡诺图。 用卡诺图化简逻辑函数: 化简依据:逻辑相邻性的最小项可以合并,并消去因子。 化简规则:能够合并在一起的最小项是2n个。 如何最简:圈数越少越简;圈内的最小项越多越简。 注意:卡诺图中所有的 1 都必须圈到,不能合并的 1 单独画圈。说明,一逻辑函数的化简结果可能不唯一。 合并最小项的原则: 1)任何两个相邻最小项,可以合并为一项,并消去一个变量。2)任何4个相邻的最小项,可以合并为一项,并消去2个变量。3)任何8个相邻最小项,可以合并为一项,并消去3个变量。 卡诺图化简法的步骤: 画出函数的卡诺图; 画圈(先圈孤立1格;再圈只有一个方向的最小项(1格)组合);画圈的原则:合并个数为2n;圈尽可能大(乘积项中含因子数最少);圈尽可能少(乘积项个数最少);每个圈中至少有一个最小

高等量子力学复习题

上册 1.3 粒子在深度为0V ,宽度为a 的直角势阱(如图1.3)中运动,求 (a)阱口刚好出现一个束缚态能级(即0V E ≈)的条件; (b)束缚态能级总和,并和无限深势阱作比较 . 解 粒子能量0V E 小于时为游离态,能量本征值方程为: []0)(22''=-+ ψψx V E m (1) 令002k mV = ,β=- )(20E V m (2) 式(1)还可以写成 ?? ???≥=-≤=+)(阱外)(阱内4)(2,03)(2,022''2''a x a x mE ψβψψψ 无限远处束缚态波函 数应趋于0,因此式(4)的解应取为()2,a x Ce x x ≥=-βψ 当阱口刚好出现束缚态能级时,0,0≈≈βV E ,因此 2,0)('a x Ce x x ≥≈±=-ββψ (6) 阱内波函数可由式(3)解出,当0V E ≈解为 ()()2,s i n ,c o s 00a x x k x x k x ≤?? ?==ψψ奇宇称 偶宇称 (7) 阱内、外ψ和ψ应该连续,而由式(6)可知,2a x =处,0'=ψ, 将这条件用于式(7),即得 ,5,3,,02cos ,6,4,2,02 sin 0000ππππππ====a k a k a k a k 奇宇称偶宇称(8) 亦即阱口刚好出现束缚能级的条件为 ,3,2,1, 0==n n a k π (9) 即2 22202π n a mV = (10) 这种类型的一维势阱至少有一个束缚能级,因此,如果 2 2202π< a mV ,只存在一个束缚态,偶宇称(基态)。如果22202π = a mV ,除基态外,阱口将再出现一个能级(奇宇称态),共两个能级。如() 222022π= a mV ,阱口将出现第三个能级(偶宇称)。依此类推,由此可知,对于任何20a V 值,束缚态能级总数为 其中符号[A]表示不超过A 的最大整数。 当粒子在宽度为a 的无限深方势阱中运动时,能级为 ,3,2,1,212 =?? ? ??=n a n m E n π 则0V E ≤的能级数为 120-=?? ????=N mV a n π (12) 也就是说,如果只计算0V E ≤的能级数,则有限深)(0V 势阱的能级数比无限深势阱的能级数多一个。注意,后者的每一个能级均一一对应的高于前者的相应能级。

第三章 谐振子

第三章 谐振子 一 内容提要 1 一维线性谐振子的能级与波函数 2221)(x x V μω= 2222 12??x p H μω+= ,3,2,1)2 1(=ω+=n n E n )()(222 1 x H e N x n x n n α-=ψ [其中 ! 2n N n n πα= μω = α ] 2 谐振子的升降算符 [1] 升降算符 )??(2?p i x a μω-μω=+ )??(21p i x μω-α= )??(2?p i x a μω+μω= )??(21p i x μω+α= 则 )??(2?++μω =a a x )??(2?+-μω-=a a i p [2] 升降算符的性质 11?++ψ+=ψn n n a 1?-ψ=ψn n n a 1]?,?[=+a a 二 例题讲解 1 一维谐振子如果考虑非谐振微扰项4 ' ?x H λ=,求体系能级的一级修正。 解:>+<μω λ>=<λ>==<+n a a n n x n n H n E n 42 4 ' ) 1()??()2(? 可以导出 )122(3)??(24++>=+<+n n n a a n 那么 = ) 1(n E )122()(4322++μω λn n 2 已知单摆在重力作用下能在竖直平面内摆动。求: [1] 小角度近似下,体系的能量本征值及归一化本征函数。 [2] 由于小角度近似而引起的体系基态能级的一级近似。 解:摆球平衡位置作为势能零点 摆球重力势能为 )cos 1(θ-==mgl mgh V (1) [1] 由公式 -θ+θ-=θ4 2! 41!211c o s (2)

高等量子力学习题汇总(可编辑修改word版)

2 i i i j i j ± 第一章 1、简述量子力学基本原理。 答:QM 原理一 描写围观体系状态的数学量是 Hilbert 空间中的矢量,只相差一个复数因子的两个矢量,描写挺一个物理状态。QM 原理二 1、描写围观体系物理量的是 Hillbert 空间内的厄米算符( A ? );2、物理量所能取的值是相应算符 A ? 的本征值;3、 一个任意态总可以用算符 A ? 的本征态 a i 展开如下: = ∑C i a i i C i = a i ;而 物理量 A 在 中出现的几率与 C i 成正比。原理三 一个微观粒子在直角坐标下的位置 算符 x ? 和相应的正则动量算符 p ? 有如下对易关系: [x ? , x ? ]= 0 , [p ? , p ? ] = 0 , [x ?i , p ? j ]= i ij 原理四 在薛定谔图景中,微观体系态矢量 (t ) 随时间变化的规律由薛定谔方程给 i ? ?t (t ) = H ? (t ) 在海森堡图景中,一个厄米算符 A ?(H ) (t ) 的运动规律由海森堡 方程给出: d A ?(H ) (t ) = 1 [A ?(H ), H ? ] 原理五 一个包含多个全同粒子的体系,在 dt i Hillbert 空间中的态矢对于任何一对粒子的交换是对称的或反对称的。服从前者的粒子称为玻色子,服从后者的粒子称为费米子。 2、薛定谔图景的概念? 答: (x, t ) =< x |(t )>式中态矢随时间而变而 x 不含 t ,结果波函数ψ(x ,t )中的宗量 t 来自 ψ(t ) 而 x 来自 x ,这叫做薛定谔图景. ?1 ? ? 0? 3、 已知 = ?,= ?. 0 1 (1)请写出 Pauli 矩阵的 3 个分量; (2)证明σ x 的本征态 ? ? ? ? 1 ?1 ? 1 | S x ± >= ? = ? 1? (± ). 4、已知:P 为极化矢量,P=<ψ|σ|ψ>,其中ψ=C 1α+C 2β,它的三个分量为: 求 证: 2 2

§3.2线性谐振子

§3.2 线性谐振子 重点: 谐振子模型的意义能量波函数的特征与经典情况的区别 (3.2-1) 其中是弹性系数为k的谐振子作简谐振动的角频率。 经典力学中线性谐振子的哈密顿函数为 (3.2-2) 故在量子力学中,线性谐振子的哈密顿算符为 由于U(x)与时间无关,故为定态。 线性谐振子的定态薛定谔方程为 (3.2-4)为了简化,引入无量纲的变量 (3.2-5) (3.2-6) (3.2-7)

则方程(3.2-4)可改写成 (3.2-8) 我们令方程(3.2-8)的一般解为 (3.2-9)所满足的方程 得到H (3.2-10) (3.2-11) 代入(3.2-7)中,可求得线性谐振子的能级 (3.2-12)n=0, 1, 2,…, 由此得下面结论: (1)线性谐振子能是只能取分立值(图3.4),好能量是量子化的, ,这与普朗 (2)谐振子的能级是均匀分布的,相邻两能级间隔 克假设一致。 (3)谐振子的基态(n=0)能量为 (3.2-13)称为零点能,零点能的存在,是量子力学的一个重要结果,这是旧量子论中所没有的。 对应于不同的n或不同的。

(3.2-14) ,它可以用下列式子表示 方程(3.2-14)的解是厄密多项式 (3.2-15)脚标n表示多项式的最高次幂。 下面列出前面n项厄密多项式: (3.2-16)由(3.2-9)式,对应能量E n的波函数是 (3.2-17a)或 (3.2-14b) 这函数称厄密函数,式中N n为归一化常数。由归一化条件 经计算得(见附录1)(3.2-18)归一化后的前三个波函数如下: (3.2-19)

等函数是x的偶函数,即 从上面各式容易看出, 我们称这些波函数具有偶宇称,而 我们称这些波函数具有奇宇称。 (三)与经典比较 经典和量子谐振子的能级与分布几率 上图中横坐标代表振子的位置,抛物线代有势能曲线,En是量子化的能级,虚曲线代表 波函数 ,实曲线代表几率分布,由图可以看出:当n=0时,波函数。除了 有n个节点,即有n个根。 类推,因此波函数 只在于绕平均值迅速振荡而已。下图中实线是n=11时的几率分布,虚线代表经典谐振子位置几率分布。

逻辑函数的公式化简方法

逻辑函数的化简方法 一、教学时数:30分钟 授课类型:理论课 二、教学目的、要求: 通过介绍、讲解逻辑函数化简方法中的公式法,让学生能够运用 公式法来化简逻辑函数。 三、教学重点:公式法中的并项法、吸收法、消去法、配项消项法 四、教学难点:配项消项法 五、教学方法:采用通过师生互动的方法让学生回答问题,上讲台解答题目的方法,让学生参与进来课堂教学中来。 六、教学内容: (一)回顾常用的公式与两个重要规则:(3分钟) 通过提问让大家回顾上节课的知识,并将重点部分展示出来。为了节省时 间,这部分的内容用PPT 展示。 1、德 摩根定理: 2、 A B A AB =+ 3、 A A B A =+ 4、B A B A A +=+ 5、C A AB BC C A AB +=++ 6、AB B A B A B A +=+ 7、C A B A C A AB +=+ 8、代入规则:在任何逻辑等十种,如果等式两边所有出现某一变量的地方, 都代之以一个函数,则等式仍然成立。 B A B A +=?B A B A ?=+

9、反演规则:对于任意一个函数表达式Y,如果将Y 中所有的“.”换成“+”,“+”换成“.”;“0”换成“1”, “1”换成“0”;原变量换成反变量,反变量换成原变量,那么所得到的表达式就是Y 的反函数Y 。(反演规则很有用,但在这一节我们主要用德 摩根定理) (二)介绍逻辑函数的各种最简式:(3分钟) 将各种类型的逻辑函数最简式在PPT 中展示出来,让学生思考他们是属于哪种最简式。 (最简与非与非式)(最简与或式) C A AB Z C A AB Z =+= (最简与或非式) (最简或非或非式)(最简或与式)C A B A Z C A B A Z C A B A Z +=+++=++=) )(( (三)运用公式法的四种方法来化简逻辑函数(19分钟) 将前三道例题在PPT 中展示出来,请学生上讲台到黑板上解答题目。(4分钟) 由三道例题引出前三种方法,在引出第四种方法(15分钟) 1、并项法:利用公式 A B A AB =+,把两个乘积项合并起来,消去一 个变量。 例题1: B B A AB =+= 2、吸收法:利用公式A AB A =+,吸收掉多余的乘积项。 例题2:E B D A AB Y ++=

量子力学期末考试试卷及答案

量子力学期末试题及答案 红色为我认为可能考的题目 一、填空题: 1、波函数的标准条件:单值、连续性、有限性。 2、|Ψ(r,t)|^2的物理意义:t时刻粒子出现在r处的概率密度。 3、一个量的本征值对应多个本征态,这样的态称为简并。 4、两个力学量对应的算符对易,它们具有共同的确定值。 二、简答题: 1、简述力学量对应的算符必须是线性厄米的。 答:力学量的观测值应为实数,力学量在任何状态下的观测值就是在该状态下的平均值,量子力学中,可观测的力学量所对应的算符必须为厄米算符;量子力学中还必须满足态叠加原理,而要满足态叠加原理,算符必须是线性算符。综上所述,在量子力学中,能和可观测的力学量相对应的算符必然是线性厄米算符。 2、一个量子态分为本征态和非本征态,这种说法确切吗? 答:不确切。针对某个特定的力学量,对应算符为A,它的本征态对另一个力学量(对应算符为B)就不是它的本征态,它们有各自的本征值,只有两个算符彼此对易,它们才有共同的本征态。 3、辐射谱线的位置和谱线的强度各决定于什么因素? 答:某一单色光辐射的话可能吸收,也可能受激跃迁。谱线的位置决定于跃迁的频率和跃迁的速度;谱线强度取决于始末态的能量差。 三、证明题。

2、证明概率流密度J不显含时间。 四、计算题。 1、

第二题: 如果类氢原子的核不是点电荷,而是半径为0r 、电荷均匀分布的小球, 计算这种效应对类氢原子基态能量的一级修正。 解:这种分布只对0r r <的区域有影响,对0r r ≥的区域无影响。据题意知 )()(?0 r U r U H -=' 其中)(0r U 是不考虑这种效应的势能分布,即 2004ze U r r πε=-() )(r U 为考虑这种效应后的势能分布,在0r r ≥区域, r Ze r U 024)(πε-= 在0r r <区域,)(r U 可由下式得出, ?∞ -=r E d r e r U )( ???????≥≤=??=)( 4 )( ,43441 02 003003303 420r r r Ze r r r r Ze r r Ze r E πεπεπππε ??∞ --=0 )(r r r Edr e Edr e r U ?? ∞ - - =00 20 2 3 002 144r r r dr r Ze rdr r Ze πεπε )3(84)(82 203 020*********r r r Ze r Ze r r r Ze --=---=πεπεπε )( 0r r ≤ ?? ???≥≤+--=-=')( 0 )( 4)3(8)()(?00022 2030020r r r r r Ze r r r Ze r U r U H πεπε

逻辑代数及逻辑函数化简.doc

第 2 章 逻辑代数和逻辑函数化简 基本概念:逻辑代数是有美国数学家 George Boole 在十九世纪提出 , 因此也称 布尔代数 , 是分析和设计数字逻辑电路的数学工具。 也叫开关代数, 是研究只用 0 和 1 构成的数字系统的数学。 基本逻辑运算和复合逻辑运算 基本逻辑运算:“与”、“或”、“非”。 复合逻辑运算:“与非”、“或非”、“与或非”、“异 或”、“同或”等。 A B 基本逻辑运算 ~ 220V F 1. “与”运算①逻辑含义:当决定事件成立的所有条件全部具 备时,事件才会发生。 ②运算电路:开关 A 、B 都闭合,灯 F 才亮。 ③表示逻辑功能的方法: 真值表 A B F 灯 F 的状态代表 开关 A 、B 的状态代 0 0 表输入: 0 1 0 输出: 1 0 0 “ 0”表示亮; “0”表示断开; 1 1 1 表达式: F A B = ? 逻辑符号: A & FA FA F B B B 国家标准 以前的符号 欧美符号 功能说明: 有 0 出 0,全 1 出 1。 在大规模集成电路可编程逻辑器件中的表示符号: A B A B A B & F F F

通过“ ?”接入到此线上的输入信号都是该与门的一个输入端。推广:当有 n 个变量时: F=A 1A 2 A 3 ? ? ? A n “与”运算的几个等式: 0?0=0,0?1=0, 1?1=1 A?0=0(0-1 律), A?1=A (自等律),A?A=A (同一律), A?A?A=A (同一律)。 2. “或”运算①逻辑含义:在决定事件成立的所有条件中,只 要具备一个,事件就会发生。 A ②运算电路: 开关 A 、B 只要闭合一个,灯 F 就亮。 B ~220V F ③表示逻辑功能的方法: 逻辑功能: 有 1 出 1,全 0 出 0。 真值表:(略) 表达式: F=A+B 逻辑符号: A ≥ 1 F A FA F B + B B 国家标准 以前的符号 欧美符号 推广:当有 n 个变量时: F=A 1+A 2+ A 3+? ? ? +A n “或”运算的几个等式: 0+0=0,0+1=1, 1+1=1 A+0=A (自等律) A+1=1( 0-1 律),A+A=A (同一律)。 上次课小结:与、或的功能、表达式等,几个等式。 3.“非”运算 ①逻辑含义:当决定事件的条件具备时, 事件不 发生;当条件不具备时,事件反而发生了。 R ②运算电路:开关 A 闭合,灯 F 不亮。 ~ 220V A F ③表示逻辑功能的方法: 逻辑功能: 入 0 出 1,入 1 出 0。 真值表:(略) 表达式: F= A

线性谐振子的不同解法比较

线性谐振子的不同解法比较 关键词:一维谐振子;能量本征值;波函数 摘 要:一维线性谐振子作为量子力学中的基础模型,它的解决方法具有多样性并随着科学工作者的努力和对数学理论的应用的不断深入(如群论和群表示理论),谐振子的解法将会最优化,并会对多维谐振子以及耦合谐振子等复合问题 [1] 的解决起着重要的帮助作 用。在这里我们将分别从表象理论(包括坐标表象、动量表象、能量表象和占有数表象),以及矩阵力学、宇称等角度出发求解一维线性谐振子,并作出适当的比较。 中国分类号:(140物理学) 文献标识码:A 文章编号: Comparison with Several Different Methods on the Solutions of One-dimensional Linear Harmonic Oscillator Key words: one-dimensional linear harmonic oscillator; eigenvalue of energy and wavefunction Abstract: One-dimensional linear harmonic oscillator as a basic model in quantum mechanics, there are more and more solutions to it with the increasing development of the theory of mathematics. It will serve the different problems of multidimensional and coupled harmonic oscillator. We will respectively solve one-dimensional linear harmonic oscillator from the theory of presentative, matrix mechanics and parity respectively. 1. 引言 谐振子的模型在量子力学,量子光学以及固体物理等学科领域都有着广泛的应用。本文我们将建立最简单一维线性谐振子作为模型并用不同的方法处理。设一维谐振子的质量为m,其圆频率为ω,势函数为, 22()1 2 x V m x ω= , 则其Hamilton 量 [2] 为 1 2221 22 p H m x m ω=+ (1.1) 收稿日期:2015-03-30 作者简介:李德远(1990年生),男,本科学生,物理学 我们也可以采用自然坐标系(即 1ωμ===)[3],能量单位为ω,长 。则(1)又可写作 221122H p x = + (1.2) 我们知道经典力学到量子力学的转变,满足量子化条件 [4] ??[,]x p i =[5] , 在自然坐标下又可写作 ??[,]x p i = (1.3) 2. 在坐标表象中的解法 写出在x 表象中的Schrodinger 方程 22 () 22()()2 1 22 x x x d m x E m dx ψωψψ- +=(2.1)

高等量子力学考试知识点

1、黑体辐射: 任何物体总在吸收投射在它身上的辐射。物体吸收的辐射能量与投射到物体上的辐射能之比称为该物体的吸收系数。如果一个物体能吸收投射到它表面上的全部辐射,即吸收系数为1时,则称这个物体为黑体。 光子可以被物质发射和吸收。黑体向辐射场发射或吸收能量hv的过程就是发射或吸收光子的过程。 2、光电效应(条件): 当光子照射到金属的表面上时,能量为hv的光子被电子吸收。 临界频率v0满足 (1)存在临界频率v0,当入射光的频率v

7、一维无限深势阱(P31) 8、束缚态:粒子只能束缚在空间的有限区域,在无穷远处波函数为零的状态。 一维无限深势阱给出的波函数全部是束缚态波函数。 从(2.4.6)式还可证明,当n分别是奇数和偶数时,满足 即n是奇数时,波函数是x的偶函数,我们称这时的波函数具有偶宇称;当n是偶数时,波函数是x的奇函数,我们称这时的波函数具有奇宇称。 9、谐振子(P35) 10、在量子力学中,常把一个能级对应多个相互独立的能量本征函数,或者说,多个相互独立的能量本征函数具有相同能量本征值的现象称为简并,而把对应的本征函数的个数称为简并度。但对一维非奇性势的薛定谔方程,可以证明一个能量本征值对应一个束缚态,无简并。 11、半壁无限高(P51例2) 12、玻尔磁子 13、算符 对易子 厄米共轭算符 厄米算符:若,则称算符为自厄米共轭算符,简称厄米算符 性质:(1)两厄米算符之和仍为厄米算符 (2)当且仅当两厄米算符和对易时,它们之积才为厄米算符,因为 只在时,,才有,即仍为厄米算符

高等量子力学习题汇总

第一章 1、简述量子力学基本原理。 答:QM 原理一 描写围观体系状态的数学量是Hilbert 空间中的矢量,只相差一个复数因子的两个矢量,描写挺一个物理状态。QM 原理二 1、描写围观体系物理量的是Hillbert 空间内的厄米算符(A ?);2、物理量所能取的值是相应算符A ?的本征值;3、一个任意态 总可以用算符A ?的本征态i a 展开如下:ψψi i i i i a C a C ==∑,;而物理量A 在 ψ 中出现的几率与2 i C 成正比。原理三 一个微观粒子在直角坐标下的位置算符i x ?和相应的正则动量算符i p ?有如下对易关系:[]0?,?=j i x x ,[]0?,?=j i p p ,[] ij j i i p x δ =?,? 原理四 在薛定谔图景中,微观体系态矢量()t ψ随时间变化的规律由薛定谔方程给 ()()t H t t i ψψ?=?? 在海森堡图景中,一个厄米算符() ()t A H ?的运动规律由海森堡 方程给出: ()()()[] H A i t A dt d H H ? ,?1? = 原理五 一个包含多个全同粒子的体系,在Hillbert 空间中的态矢对于任何一对粒子的交换是对称的或反对称的。服从前者的粒子称为玻色子,服从后者的粒子称为费米子。 2、薛定谔图景的概念? 答:()()t x t ψψ|,x =<>式中态矢随时间而变而x 不含t ,结果波函数()t x ,ψ中的宗量t 来自()t ψ而x 来自x ,这叫做薛定谔图景. 3、 已知.10,01??? ? ??=???? ??=βα (1)请写出Pauli 矩阵的3个分量; (2)证明σx 的本征态).(211121|βα±=??? ? ??±>=±x S 4、已知:P 为极化矢量,P=<ψ|σ|ψ>,其中ψ=C 1α+C 2β,它的三个分量为: 求证: 答案:设:C 1=x 1+iy 1,C 2=x 2+iy 2

逻辑函数的公式化简方法

逻辑函数的公式化简方 法 Document serial number【KK89K-LLS98YT-SS8CB-SSUT-SST108】

1.2逻辑函数的化简方法 一、教学时数:30分钟授课类型:理论课 二、教学目的、要求: 通过介绍、讲解逻辑函数化简方法中的公式法,让学生能够运用公式法来化简逻辑函数。 三、教学重点:公式法中的并项法、吸收法、消去法、配项消项法 四、教学难点:配项消项法 五、教学方法:采用通过师生互动的方法让学生回答问题,上讲台解答题目的方法,让学生参与进来课堂教学中来。 六、教学内容: (一)回顾常用的公式与两个重要规则:(3分钟) 通过提问让大家回顾上节课的知识,并将重点部分展示出来。为了节省时间,这部分的内容用PPT 展示。 1、德摩根定理: 2、A B A AB =+ 3、 A A B A =+ 4、B A B A A +=+ 5、C A AB BC C A AB +=++ 6、AB B A B A B A +=+ 7、C A B A C A AB +=+ 8、代入规则:在任何逻辑等十种,如果等式两边所有出现某一变量的地方,都代之以一个函数,则等式仍然成立。 9、反演规则:对于任意一个函数表达式Y,如果将Y 中所有的“.”换成“+”, “+”换成“.”;“0”换成“1”,“1”换成“0”;原变量换成反变量,反变量换成B A B A +=?B A B A ?=+

原变量,那么所得到的表达式就是Y 的反函数Y 。(反演规则很有用,但在这一节我们主要用德摩根定理) (二)介绍逻辑函数的各种最简式:(3分钟) 将各种类型的逻辑函数最简式在PPT 中展示出来,让学生思考他们是属于哪种最简式。 (三)运用公式法的四种方法来化简逻辑函数(19分钟) 将前三道例题在PPT 中展示出来,请学生上讲台到黑板上解答题目。(4分钟) 由三道例题引出前三种方法,在引出第四种方法(15分钟) 1、并项法:利用公式A B A AB =+,把两个乘积项合并起来,消去一个变量。 例题1:B A C AB ABC Y ++= 2、吸收法:利用公式A AB A =+,吸收掉多余的乘积项。 例题2:E B D A AB Y ++= 3、消去法:利用公式 B A B A A +=+,消去乘积项中多余的因子。 例题3:BD A C AB Y ++= 4、配项消项法:利用公式C A AB BC C A AB +=++,在函数与或表达式中加上多余的项——冗余项,以消去更多的乘积项,从而获得最简与或式。(常称之为冗余定理) 例题4:C B C A C B C A Y +++=(加上乘积项B A ) (四)重点、难点巩固:(4分钟) 加强练习:DEF E B ACEF BD C A AB D A AD Y +++++++= (五)布置作业:(1分钟) 通过布置习题,让学生在课后通过习题巩固知识。 课本习题:题1.9(9)、(10) 黑板板书:

逻辑函数的公式化简方法

1.2逻辑函数的化简方法 一、教学时数:30分钟 授课类型:理论课 二、教学目的、要求: 通过介绍、讲解逻辑函数化简方法中的公式法,让学生能够运用公式法来化简逻辑函数。 三、教学重点:公式法中的并项法、吸收法、消去法、配项消项法 四、教学难点:配项消项法 五、教学方法:采用通过师生互动的方法让学生回答问题,上讲台解答题目的方法,让学生参与进来课堂教学中来。 六、教学内容: (一)回顾常用的公式与两个重要规则:(3分钟) 通过提问让大家回顾上节课的知识,并将重点部分展示出来。为了节省时间,这部分的内容用PPT 展示。 1、德 摩根定理: 2、 A B A AB =+ 3、 A A B A =+ 4、B A B A A +=+ 5、C A AB BC C A AB +=++ 6、AB B A B A B A +=+ 7、C A B A C A AB +=+ 8、代入规则:在任何逻辑等十种,如果等式两边所有出现某一变量的地方,都代之以一个函数,则等式仍然成立。 9、反演规则:对于任意一个函数表达式Y ,如果将Y 中所有的“.”换成“+”,B A B A +=?B A B A ?=+

“+”换成“.”;“0”换成“1”, “1”换成“0”;原变量换成反变量,反变量换成原变量,那么所得到的表达式就是Y 的反函数Y 。(反演规则很有用,但在这一节我们主要用德 摩根定理) (二)介绍逻辑函数的各种最简式:(3分钟) 将各种类型的逻辑函数最简式在PPT 中展示出来,让学生思考他们是属于哪种最简式。 (最简与非与非式)(最简与或式) C A AB Z C A AB Z =+= (最简与或非式) (最简或非或非式)(最简或与式)C A B A Z C A B A Z C A B A Z +=+++=++=) )(( (三)运用公式法的四种方法来化简逻辑函数(19分钟) 将前三道例题在PPT 中展示出来,请学生上讲台到黑板上解答题目。(4分钟) 由三道例题引出前三种方法,在引出第四种方法(15分钟) 1、并项法:利用公式 A B A AB =+,把两个乘积项合并起来,消去一 个变量。 例题1:B A C AB ABC Y ++= B B A AB =+= 2、吸收法:利用公式A AB A =+,吸收掉多余的乘积项。 例题2:E B D A AB Y ++= B A E B D A B A +=+++=

线性谐振子相图研究

文献综述 题目:线性谐振子相图研究 姓名: 学号: 系别:物理与电子信息工程系专业:物理学 年级: 指导教师: 2009年2月7 日

文献综述 一、前言 线性谐振子是量子力学中可以精确求解的有限几个事例之一[1],其中最简单的线性谐振子是简谐振子。自然界中任何一个力学系统,只要某一个物理量在其稳定平衡点附近作微小振动,便可以用简谐振子模型来描述,例如:复摆的振动、分子的振动、晶格的振动、原子核表面振动以及辐射场的振动等。在选择适当的坐标系之后,复杂的运动往往可以分解成若干彼此独立的一维简谐振动(simple harmonic vibration )。简谐振动作为一种最简单最基本的振动,往往还是复杂运动的初步近似,是研究振动的基础。因此研究它在理论上和应用上都有重大的意义。 其中从相空间的角度来研究振动系统的力学问题如今已经成为一个研究趋势。因为相图里包含着完整的力学系统的全部信息,无须去解复杂的运动方程[2]。计算机技术软硬件的飞速发展,为此研究趋势提供了现实条件。 本论文从简谐振子的基本定义出发,在Fortran 90条件下进行数值模拟并在Origin75 软件下获得简谐振子的相图。 二、主体 2.1简谐振动的定义 定义一: 物体只在弹性力或准弹性 (线性回复力)作用下发生的运动,即动力学方程为 的运动为简谐振动[2]。 定义二: 在无外来强迫力作用下, 物体相对于平衡点的位移随时间按余弦(或正弦)规律变化即 则称物体作简谐振动式即简谐振动的表达式[3]。 —振幅; —角频率; —相位; —初相位。位移随时间的变化曲线称为振动曲线。 广义定义:某个物理量随时间的变化是按正弦或余弦规律,则可称该物理量做简谐动,可用 表示 。自然界中任何一个力学系统中,只要某一个物理量在其稳定 平衡点附近作微小振动,便可以用这种简谐振子模型来描述,例如:复摆的振动、分子的振动、晶格的振动,原子核表面振动、辐射场的振动以及电磁场振动等等。 2.2简谐振动的基本特征及动力学特征 简谐振动位移随时间的变化 cos()x A t ωφ =+2 2 2 d d x x o t ω +=()cos()x t A t ωφ=+()cos()x t A t ωφ=+

简谐振动模型

第二讲简谐振动模型【教学目标】 1.掌握简谐振动模型一弹簧振子 2.学习计算简谐振动模型单摆的周期【知 识点一】弹簧振子 1 、定义:物体和弹簧所组成的系统. 条件 (理想化 ) :①物体看成质点 ②忽略弹簧质量 ③忽略摩擦力 2、回复力:指向平衡位置的合外力提供 回复力。 左图:弹簧弹力提供回复力, 小球的平衡位置为O,在 AB 两点间做简谐振动, 振幅为 OA=0B 右图:弹簧弹力和重力的合力提供回复力 3 、周期:T m , 由振子质量和弹簧的劲度系数共同决定,与振幅无关。2 K ★运动规律包含振幅与周期 【例】如图所示,是一弹簧振子,设向右方向为正,O 为平衡位置,则下列说法不正确的是() A A→O位移为负值,速度为正值 B O→B时,位移为正值,加速度为负值 C B→O时,位移为负值,速度为负值 D O→A时,位移为负值,加速度为正值 【例】弹簧振子做简谐运动的振动图像如图 2 所示,在 t1 至 t2这段时间内() A 振子的速度方向和加速度方向都不变 B 振子的速度方向和加速度方向都改变 C 振子的速度方向改变,加速度方向不变 D 振子的速度方向不变,加速度方向改变 【例】同一个弹簧振子从平衡位置被分别拉开5cm 和 2cm, 松手后均作简谐运动,则它们的振幅之比A1:A2=______,最大加速度之比a1:a2=_____, 振动周期之比 T1:T2=______. ★回复力 【例】如图所示 ,物体 A 放在物体 B 上 ,B 与弹簧相连 ,它们在光滑水平面上一起做简谐运动.当弹簧伸长到最长时开始记时 (t = 0), 取向右为正方向 ,A 所受静摩擦力 f 随时间 t 变化的图象正确的是 ()

逻辑函数的卡诺图化简法

逻辑函数的卡诺图化简法 逻辑函数的卡诺图化简法 由前面的学习得知,利用代数法可以使逻辑函数变成较简单的形式。但要求熟练掌握逻辑代数的基本定律,而且需要一些技巧,特别是经化简后得到的逻辑表达式是否是最简式较难确定。运用卡诺图法可以较简便的方法得到最简表达式。但首先需要了解最小项的概念。 一、最小项的定义及其性质 1.最小项的基本概念 由A、B、C三个逻辑变量构成的许多乘积项中有八个 被称为A、B、C的最小项的乘积项,它们的特点是 1. 每项都只有三个因子 2. 每个变量都是它的一个因子 3. 每一变量或以原变量(A、B、C)的形式出现,或以反(非)变量(A、B、C)的形式出现,各出现一次 一般情况下,对n个变量来说,最小项共有2n个,如n=3 时,最小项有23=8个

2.最小项的性质 为了分析最小项的性质,以下列出3个变量的所有最 小项的真值表。 由此可见,最小项具有下列性质: (1)对于任意一个最小项,只有一组变量取值使得它的值为1,而在变量取其他各组值时,这个最小项的值都是0。 (2)不同的最小项,使它的值为1的那一组变量取值也不同。 (3)对于变量的任一组取值,任意两个最小项的乘积为0。 (4)对于变量的任一组取值,全体最小项之和为1。 3.最小项的编号 最小项通常用mi表示,下标i即最小项编号,用十进制数表示。以ABC为例,因为它和011相对应,所以就称ABC 是和变量取值011相对应的最小项,而011相当于十进制中的3,所以把ABC记为m3 按此原则,3个变量的最小项

二、逻辑函数的最小项表达式 利用逻辑代数的基本公式,可以把任一个逻辑函数化成一种典型的表达式,这种典型的表达式是一组最小项之和,称为最小项表达式 。下面举例说明把逻辑表达式展开为最小项表达式的方法。例如,要将化成最小项表达式,这时可利用的基本运算关系, 将逻辑函数中的每一项都化成包含所有变量A、B、C的项,然后再用最小项下标编号来代表最小项,即 又如,要将化成最小项表达式,可经下列几步: (1)多次利用摩根定律去掉非号,直至最后得到一个只在单个变量上有非号的表达式; (2)利用分配律除去括号,直至得到一个与或表达式; (3)在以上第5个等式中,有一项AB不是最小项(缺少变量C),可用乘此项,正如第6个等式所示。 由此可见,任一个逻辑函数都可化成为唯一的最小项表达式。

在坐标表象中处理一维线性谐振子问题

初中物理 题目:在坐标表象中处理一维线性谐振子问题 作者单位:响水滩乡中心学校 作者姓名:宁国强 2012年9月28日

在坐标表象中处理一维线性谐振子问题 响水滩中心学校 宁国强 摘 要:本文阐述了在坐标表象中处理一维线性谐振子问题的方法和思路,阐述了一般表象的概念。 关键词:一维线性谐振子;坐标表象; 一、 能量本征值、本征函数的求解 取自然平衡位置为坐标原点,并选原点为势能零点,则一维线性谐振子的势能为 221()2V x x μω= (1) 其中μ是谐振子的质量,ω是经典谐振子的自然频率。一维谐振子的哈密顿函数为 222122 p H x μωμ=+ (2) 体系的能量本征方程(亦即不含时Schr ?dinger 方程)为 ()()222221?22d x x E x dx μωψψμ??-+= ??? h (3) 严格的谐振子势是一个无限深势阱(如图1所示),粒子只存在束缚态,即起波函数应满足以下条件: ()0x x ψ→∞ ???→ (4) 将方程(3)无量纲化,为此,令

x ξα==, α= λ=2E ω h (5) (3)式可改写为 () 2220d d ψλξψξ+-= (6) 这是一个变系数二阶常微分方程。为了求解它,我们先看ψ在ξ→±∞时的渐进行为。当ξ????很大时,λ与2ξ相比可以略去,因而在ξ→±∞ 时,方程(6)可近似表示为 2220d d ψξψξ -= (7) ξ→±∞时, 它的渐近解为2/2~e ξψ±。因为波函数的标准条件要求当ξ→±∞时ψ应为有限,所以2/2e ξψ:不满足边界条件(4)式,应弃之。波函数指数上只能取负号,即2/2e ξψ-:。方程(6)在ξ为有限处的 根据以上讨论,可令方程(6)在ξ为有限处的解有如下形式: ()()2 2Ae H ξψξξ-= (8) 式中A 为归一化系数,(8)代入(6)式,得 ()22210d H dH H d d ξλξξ -+-= (9) 用级数解法,即把H 展开成ξ的幂级数来求这个方程的解。这个级数必须只含有有限项,才能在ξ→±∞ 时使()ψξ为有限,而级数只含有限项的条件是λ 为奇数:21n λ=+,()0,1,2n =L L 。代入(5)中的第三式,可得一维线性谐振子的能级为 12n E n ω??=+ ?? ?h , ()0,1,2n =L L (10) 因此,线性谐振子的能量只取分立值(如图2所示),两相邻能级间的间隔为ωh ,这与普朗克关于能量是量子化的假设相符合。

简谐振动总结

★简谐运动 简谐运动(Simple harmonic motion)(SHM)(直译简单和谐运动)是最基本也最简单的机械振动。当某物体进行简谐运动时,物体所受的力跟位移成正比,并且总是指向平衡位置。它是一种由自身系统性质决定的周期性运动。(如单摆运动和弹簧振子运动)实际上简谐振动就是正弦振动。故此在无线电学中简谐信号实际上就是正弦信号。 如果质点的位移与时间的关系遵从正弦函数的规律,即它的振动图像(x-t图像)是一条正弦曲线,这样的振动叫做简谐运动。 定义 如果做机械振动的质点,其位移与时间的关系遵从正弦(或余弦)函数规律,这样的振动叫做简谐运动,又名简谐振动。因此,简谐运动常用 作为其运动学定义。其中振幅A,角频率,周期T,和频率f的关系分别为:、 。 科学结论 振幅、周期和频率 简谐运动的频率(或周期)跟振幅没有关系,而是由本身的性质(在单摆中由初始设定的绳长)决定,所以又叫固有频率。 一般简谐运动周期 , 其中m为振子质量,k为振动系统的回复力系数。 一般,若振子受重力与弹力二力等效k=k,但平衡位置为kx=mg时所在位置。 单摆运动周期 其周期 (π为圆周率)这个公式仅当偏角很小时才成立。T与振幅(a<5°)都和摆球质量无关,仅限于绳长<<地球半径。[2] 扩展:由此可推出,据此可利用实验求某地的重力加速度。 周期公式证明 为了使示意图更加简洁,全部假设k=1,这样的话以为F回=-kx(并且在此强调此处负号只表示方向,不表示数值,所以在证明中使用数值关系时全部忽略负号),所以回复力F数值上和在图中的线段长度等于位移x,所以在两个示意图中都是用一条线表示的。 一般简谐运动周期公式证明 因为简谐运动可以看做圆周运动的投影,所以其周期也可以用圆周运动的公式来推导。 圆周运动的;很明显v无法测量到,所以根据

完整word版,量子力学试题(2008年)含答案,推荐文档

2008~2009郑州大学物理工程学院电子科学与技术专业 光电子方向量子力学试题(A 卷) (说明:考试时间120分钟,共6页,满分100分) 计分人: 复查人: 一、填空题:(每题 4 分,共 40 分) 1. 微观粒子具有 波粒 二象性。 2.德布罗意关系是粒子能量E 、动量P 与频率ν、波长λ之间的关系,其表达式为: E=h ν, p=/h λ 。 3.根据波函数的统计解释,dx t x 2 ),(ψ的物理意义为:粒子在x —dx 范围内的几率 。 4.量子力学中力学量用 厄米 算符表示。 5.坐标的x 分量算符和动量的x 分量算符x p 的对易关系为:[],x p i =h 。 6.量子力学关于测量的假设认为:当体系处于波函数ψ(x)所描写的状态时,测量某力学量 F 所得的数值,必定是算符F ?的 本征值 。 7.定态波函数的形式为: t E i n n e x t x η -=)(),(?ψ。 8.一个力学量A 为守恒量的条件是:A 不显含时间,且与哈密顿算符对易 。 9.根据全同性原理,全同粒子体系的波函数具有一定的交换对称性,费米子体系的波函数是_反对称的_____________,玻色子体系的波函数是_对称的_______ _。 10.每个电子具有自旋角动量S ρ,它在空间任何方向上的投影只能取两个数值为: 2 η± 。

二、证明题:(每题10分,共20分) 1、(10分)利用坐标和动量算符的对易关系,证明轨道角动量算符的对易关系: 证明: z y x L i L L? ] ?, ?[η = ] ? ? , ? ? [ ] ?, ?[ z x y z y x p x p z p z p y L L- - = ] ? ? , ? [ ] ? ? , ? [ z x y z x z p x p z p z p x p z p y- - - = ] ? , ? [ ] ? , ? [ ] ? , ? [ ] ? , ? [ z y x y z z x z p x p z p z p z p x p y p z p y+ - - = ] ? , ? [ ] ? , ? [ z y x z p x p z p z p y+ = y z z y z x x z p p x z p x p z p p z y p z p y?] ? , [ ] ? , ?[ ?] ? , [ ] ? , ?[+ + + = y z x z p p x z p z p y?] ? , [ ] ? , ?[+ = y z y z x z x z p p x z p p z x p z p y p p yz? ?] , [ ?] ?, [ ?] , ?[ ] ?, ?[+ + + = y x p i x p i y?) ( ?) (η η+ - = ] ? ? [ x y p y p x i- =η z L i?η =

相关文档
最新文档