试验20棱镜的色散关系

试验20棱镜的色散关系
试验20棱镜的色散关系

实验26 棱镜的色散关系

折射率是描述透明介质的重要光学常数。折射率与介质的分子结构、密度、温度、浓度等有关,也与光的波长有关,折射率是波长的函数。

测量介质折射率的方法很多,我们已学过用最小偏向角法测棱镜折射率,本实验介绍在任意入射角下测量棱镜折射率的方法。

实验目的

1.学会用自准法调整分光计,测量三棱镜顶角;

2.学会在任意入射角下测定棱镜材料的折射率;

3.了解棱镜的色散关系。

实验仪器

分光计、三棱镜、汞灯

实验原理

1.色散关系

光与物质相互作用的一个表现是,介质中的光速与波长有关,即折射率与波长有关。这种现象叫做色散。牛顿(I.Newton )发现了光的色散现象。他令一束近乎平行的白光通过玻璃棱镜,在棱镜后的屏上得到一条彩色光带。光的色散表明,不同颜色(波长)光的折射率不同。即折射率n 是波长的函数

)(λf n =

为表征介质折射率随波长变化的程度,我们引进色散率ν,它在数值上等于介质对于波长差为1单位的两光的折射率之差,即

2121n n n νλλλ

-?==-? (1)

或 d d ()d d n f λν

λλ

== (2) 表示折射率n 与波长关系的色散曲线,

首先是从实验上获得的。早期,对常用的

介质进行测量,发现它们的色散曲线十分

相似,如图1所示。波长增加时,折射率

和色散率都减小,这样的色散称为正常色

散。所有不带颜色的透明介质,在可见光 区域内,都表现为正常色散,即紫光折射率比红光大些。可以猜想,色散曲线显示出某种具有普遍意义的规律。[1]

描述正常色散的公式是柯西(A.L.Cauchy )于1836年提出的:

24B C n A λλ=++ (3)

这是一个经验公式。式中A 、B 和C 是由所研究的介质材料的特性决定的常数,叫做

图1 色散曲线

柯西常数,它们可以由实验求出。只需测出三个已知波长的n 值,代入(3)式即可求得。对于任一种介质,只要测出这三个常数,就可以用式(3)表示它的折射率与波长的关系。当波长间隔不太大时,取式(3)的前两项就够了

2B

n A λ=+ (4)

并且 32d n B d νλλ

==- (5) 2、棱镜材料折射率的测定

图2是光线在棱镜主截面内的折射。其中IE 为入射光,FR 为出射光,n 1和n 2分别是入射面AB 和出射面AC 法线,r 1和r 2分别是

光在AB 面和AC 面的折射角。棱镜材料的折

射率为n ,折射顶角为A ,由简单的几何关系

和折射定律,有

由此可求得棱镜折射率

n = (7) 只要测出光线在AB 面的入射角i 1,在AC 面的出射角i 2以及棱镜顶角A ,便可求出棱镜材料对该光线的折射率。

_______________________________________________

[1]母国光、战元龄 .光学[M] .北京:高等教育出版社,1978:540

实验仪器

分光计、汞灯、双面平面镜、三棱镜

实验内容

1.调整分光计

(1)目测粗调分光计。

(2)按图3放置棱镜使AC 尽可能垂直于螺钉a 、b 连线,AB 垂直于b 、c 连线。 锁定望远镜,轻旋目镜,使分划板上的十字叉丝清晰。用AB 面或AC 面代替平面反射 镜,从望远镜中寻找绿“+”字反射像,调节望远镜叉丝套筒,使反射像清晰。

112212sin sin sin sin i n r i n r r r A

==+=(6)

三棱镜折射率与入射光波长关系的研究

三棱镜折射率与入射光波长关系的研究 一、实验要求 已知棱镜顶角,用什么方法测量它的折射率?作出折射率—波长关系曲线。 二、实验目的 1、用最小偏向角法测定棱镜玻璃的折射率; 2、探究折射率与入射波长的关系。 三、实验仪器 分光计、光源(汞灯)、三棱镜、平面镜 四、实验原理 三棱镜如图02-16所示,AB和AC是透光的光学表面,又称折射面,其夹角称为三棱镜的顶角;BC为毛玻璃面,称为三棱镜的底面。 1、最小偏向角法测三棱镜玻璃的折射率 如图所示,假设有一束单色平行光LD 入射到棱镜上,经过两次折射后沿ER方向 射出,则入射光线LD与出射光线ER间的夹 角称为偏向角. 转动三棱镜,改变入射光对光学面AC 的入射角,出射光线的方向ER也随之改变, 即偏向角发生变化.沿偏向角减小的方 向继续缓慢转动三棱镜,使偏向角逐渐减 小;当转到某个位置时,若再继续沿此方 向转动,偏向角又将逐渐增大,此位置时 偏向角达到最小值,称为最小偏向角.

可以证明棱镜材料的折射率与顶角及最小偏向角 的关系式为: ()2 sin 21 sin min α αδ+= n 利用三棱镜的顶角α=60°及测出最小偏向角min δ,即可由上式算出棱镜材料的折射率n 。 实验中汞灯发出的是由波长为671(橙光)、546(绿)、435(蓝)、404(蓝紫)组成的复色光。测出各波长色光通过三棱镜的最小偏向角,进而可求出 各波长色光通过三棱镜的折射率n 。 五、实验内容与步骤 分光计的调节: 分光计由五部分组成:三脚架座、望远镜、载物平台、平行光管和游标盘.其结构见图02-21和图02-22 图02-21 1.平行光管 2. 载物台 3.刻度盘 4. 望远镜 5. 狭缝宽度调节旋钮 6. 望远镜目镜锁紧螺钉 7. 目镜视度调节手轮 8. 望远镜目镜体前后移动手轮 9. 望远镜水平调节螺钉 10. 载物台锁紧螺钉11. 狭缝体锁紧螺钉 12. 狭缝体系统前后移动手轮13. 游标盘微调螺钉14. 平行光管水平调节螺钉15. 望远镜止动螺钉16. 望远镜光轴高低调节螺钉 17. 小棱镜照明系统18. 刻度盘微调螺钉19. 刻度盘止动螺钉20. 游标盘调平螺钉 21. 游标盘止动螺钉22. 平行光管轴高低调节螺钉 分光计读数系统由主刻度盘(刻度范围0-360度,分度值0.5度)与游标盘(游标读数示值1分)组成 .

经典实验讲义-菲涅尔双面反射镜干涉 (测量实验)

菲涅尔双面反射镜干涉 (测量实验) 一、实验目的 观察双平面干涉现象及测量光波波长 二、实验原理 如附图7所示的是双面镜装置是由两块平面反射镜M 1和M 2组成,两者间夹一很小的 附图7 菲涅尔双面镜 角?。S 是与M 1和M 2的交线(图中以M 表示)平行的狭缝,用单色光照明后作为缝光源。从同一光源S 发出的光一部在M 1上反射,另一部分在M 2上发射,所得到的两反射光 是从同一入射波前分出来的,所以是相干的,在它们的重叠区将产生干涉。对于观察者来说,两束相干光似乎来自S 1和S 2,S 1和S 2是光源S 在两反射镜中的虚像,由简单的几何光学原理可证明,由S 光源发出的,后被两反射镜反射的两束相干光在屏幕上的光程差与将S 1、S 2视为两相干光源发出两列相干光波到达幕上的光程差相同。与双棱镜实验相似,根据双棱镜的实验中推导出的公式/xd D λ=?,亦可算出它的波长λ。 三、实验仪器 1、钠光灯(可加圆孔光栏) 2、凸透镜L : f=50mm 3、二维调整架: SZ-07 4、单面可调狭缝: SZ-22 5、双面镜 6、测微目镜Le (去掉其物镜头的读数显微镜) 7、读数显微镜架 : SZ-38 8、三维底座: SZ-01 9、二维底座: SZ-02 10、一维底座: SZ-03 11、一维底座: SZ-03 12、凸透镜: f=150mm 13、He —Ne 激光器(632.8nm) 14、白屏H : SZ-13 15、二维调整架: SZ-07 16、通用底座: SZ-01 17、通用底座: SZ-01

四、仪器实物图及原理图 图十一(1) 图十一(2) 五、实验步骤 1、把全部仪器按照图十一的顺序在平台上摆放好(图上数值均为参考数值), 靠拢后目测调至共轴。而后放入双面镜。 2、调节双面镜的夹角,使其与入光的夹角大约为半度,如图十一(2)。(亦 可用激光器替换钠灯,白屏H代替微测目镜,使细激光束同时打在棱边 尽量靠近的双面镜的两个反射镜上,在远离双面镜交棱的白屏上看到干 涉条纹。) 3、然后如图放入测微目镜,找到被双面镜反射的光线。调节单缝的宽度并 旋转单缝使它与双面镜的双棱平行,用测微目镜观察双平面反射镜干涉

大物实验——双棱镜干涉实验(七)

双棱镜干涉实验 学生姓名:陈延新学号:111050104 班级:应用物理1101 实验项目名称:双棱镜干涉实验 一、实验目的: 1、掌握菲涅尔双棱镜获得双光干涉的方法; 2、验证光的波动性,了解分波阵面法获得相干光的原理; 3、观察双棱镜产生光干涉现象和特点,用双棱镜测定光波的波长 4、通过用菲涅耳双棱镜对钠灯波长的测量,掌握光学测量的一些基本技巧,培养动手能力。 二、实验仪器: 单导体激光器,钠光源,扩束镜,双棱镜,二维调节架,透镜,测微目镜,测量显微镜,白炽光,光具座 三、实验原理: (1)、菲涅耳双棱镜实际上是一个顶角极大的等腰三棱镜,如图1所示。它可看成由两个楔角很小的直角三棱镜所组成,故名双棱镜。当一个单色缝光源垂直入射时,通过上半个棱镜的光束向下偏折,通过下半个棱镜的光束向上偏折,相当于形成S′1和S′2两个虚光源。与杨氏实验中的两个小孔形成的干涉一样,把观察屏放在两光束的交叠区,就可看到干涉条纹。

其中,d是两虚光源的间距,D是光源到观察屏的距离,λ是光的波长。用测微目镜的分划板作为观察屏,就可直接从该测微目镜中读出条纹间距△x值,D为几十厘米,可直接量出,因而只要设法测出d,即可从上式算出光的波长λ,即 △x=Dλ/d , λ=△xd/D (1) 测量d的方法很多,其中之一是“二次成像法”,如图2所示,即在双棱镜与测微目镜之间加入一个焦距为f的凸透镜L,当D>4f 时,可移动透镜L而在测微目镜中看到两虚光源的缩小像或放大像。分别读出两虚光源像的间距d1和d2,则由几何光学可知: d=2 d(2) 1d (2)、实验装置 光具座,双棱镜,测微目镜,钠光源,可调狭缝 测微目镜是用来测量微小实像线度的仪器,其结构如图3所示,在目镜焦平面附近,的一块量程为8mm的刻线玻璃标尺,其分度值为1mm (如图3(b)中的8条短线所示)在该尺后0.1mm处,平行地放置了

试验20棱镜的色散关系

实验26 棱镜的色散关系 折射率是描述透明介质的重要光学常数。折射率与介质的分子结构、密度、温度、浓度等有关,也与光的波长有关,折射率是波长的函数。 测量介质折射率的方法很多,我们已学过用最小偏向角法测棱镜折射率,本实验介绍在任意入射角下测量棱镜折射率的方法。 实验目的 1.学会用自准法调整分光计,测量三棱镜顶角; 2.学会在任意入射角下测定棱镜材料的折射率; 3.了解棱镜的色散关系。 实验仪器 分光计、三棱镜、汞灯 实验原理 1.色散关系 光与物质相互作用的一个表现是,介质中的光速与波长有关,即折射率与波长有关。这种现象叫做色散。牛顿(I.Newton )发现了光的色散现象。他令一束近乎平行的白光通过玻璃棱镜,在棱镜后的屏上得到一条彩色光带。光的色散表明,不同颜色(波长)光的折射率不同。即折射率n 是波长的函数 )(λf n = 为表征介质折射率随波长变化的程度,我们引进色散率ν,它在数值上等于介质对于波长差为1单位的两光的折射率之差,即 2121n n n νλλλ -?==-? (1) 或 d d ()d d n f λν λλ == (2) 表示折射率n 与波长关系的色散曲线, 首先是从实验上获得的。早期,对常用的 介质进行测量,发现它们的色散曲线十分 相似,如图1所示。波长增加时,折射率 和色散率都减小,这样的色散称为正常色 散。所有不带颜色的透明介质,在可见光 区域内,都表现为正常色散,即紫光折射率比红光大些。可以猜想,色散曲线显示出某种具有普遍意义的规律。[1] 描述正常色散的公式是柯西(A.L.Cauchy )于1836年提出的: 24B C n A λλ=++ (3) 这是一个经验公式。式中A 、B 和C 是由所研究的介质材料的特性决定的常数,叫做 图1 色散曲线

双棱镜干涉实验

双棱镜干涉实验 【实验目的】 1.掌握用双棱镜获得双光束干涉的方法,加深对干涉条件的理解. 2.学会用双棱镜测定钠光的波长. 【实验仪器】光具座、白屏、单色光源钠灯、测微目镜、短焦距扩束镜、白炽灯、氦氖激光器、毛玻璃屏、滑块(若干个)、手电筒可调狭缝、双棱镜、辅助透镜、白屏、凸透镜(不同焦距的数个)。. 【实验原理】 如果两列频率相同的光波沿着几乎相同的方向传播,并且它们的位相差不随时间而变 化,那么在两列 光波相交的区 域,光强分布是 不均匀的,而是 在某些地方表现 为加强,在另一些地方表现为减弱(甚至可能为零), 这种现象称为光的干涉. 菲涅耳利用图1所示的装置,获得了双光束的干涉现象.图中AB 是双棱镜,它的外形结构如图2所示,将一块平玻璃板的一个表面加工成两楔形板,端面与棱脊垂直,楔角A 较小(一般小于10).从单色光源发出的光经透镜L 会聚于狭缝S ,使S 成为具有较大亮度的线状光源.从狭缝S 发出的光,经双棱镜折射后,其波前被分割成两部分,形成两束光,就好像它们是由虚光源S1和S2发出的一样,满足相干光源条件,因此在两束光的交叠.区域 图1 图2 P1P2内产生干涉.当观察屏P 离双棱镜足够远时,在屏上可观察到平行于狭缝S 的、明暗相间的、等间距干涉条纹. 设两虚光源S1和S2之间的距离为d ',虚光源所在的平面(近似地在光源狭缝S 的平面内)到观察屏P 的距离为d ,且d d <<',干涉条纹间距为x ?,则实验所用光源的波长λ为 x d d ?'= λ 因此,只要测出d '、d 和x ?,就可用公式计算出光波波长. 【实验内容】 1.调节共轴 (1)将单色光源M ,会聚透镜L ,狭缝S ,双棱镜AB 与测微目镜P 放置在光具座上.用目视法粗略地调节它们中心等高、共轴,棱脊和狭缝S 的取向大体平行. (2)点亮光源M ,通过透镜L 照亮狭缝S ,用手执白纸屏在双棱镜后面检查:经双棱镜折

初中物理光的色散实验

【目的和要求】 通过实验认识光的色散现象: 1.白光是复色光,通过棱镜后分解成各种色光: 2.把各种颜色的色光合在一起可以得到白光; 3.单色光不能再分解成其他的色光。 【仪器和器材】 三棱镜、白色光屏(可用白墙代替)、凸透镜、平面镜、狭缝、红色玻璃和蓝色玻璃,或“白光的色散与合成演示器”。 【实验方法】 1.用平面镜引入一束日光,通过狭缝照到三棱镜上,如图2.10-1所示。调整棱镜的方位,在白色光屏上可以看到白光通过棱镜折射后得到的彩色光带。把白纸放在棱镜前,让学生看到照到棱镜上的光是白光,由此得知白光通过棱镜 折射后分解成各种颜色的色光。 2.在棱镜和光屏中间放一个凸透镜,调整凸透镜的位置,使得由三棱镜射出的各种颜色的色光都会聚在光屏上,得到白色的亮条,表明各种颜色的色光合 在一起成为白光。 3.在狭缝前放置红色玻璃(或蓝色玻璃),用白纸显示出照在三棱镜上的光是红光(或蓝光),通过三棱镜后,光改变了传播方向,但不分解,仍然是红 光(或蓝光)。 【注意事项】

1.仪器要在课前组装调整好,下面的调整顺序可供参考。按图2.10-2所示大致先摆好平面镜、棱镜和光屏的位置。转动平面镜使一束日光照到棱镜上,再稍稍转动棱镜的方位,在光屏上就可以见到彩色的光带。最后再在棱镜前面放上狭缝,调整狭缝的宽度,使得光屏上的几种颜色分辨得更清楚。要注意,狭缝的宽度要适当,例如3~5毫米左右。缝越宽,屏上光带的亮度越强,但是不同色光的光带会重叠,几种颜色不容易完全辨清。 2.日光的强度高,平行度好,而且日光的色温较高,是理想的白光光源,实验容易做好,如果狭缝取宽一些,实验可在一般教室中进行。光源也可以用普通平行光源来代替,由于白炽灯的色温较低,光的颜色偏黄,同时,光的强度也 较弱,实验需在暗室中进行。 3.用凸透镜把各种颜色的色光合成为白光的实验原理,如图2.10-3所示。如果在棱镜的出射面上加一个光阑,从出射面的AB部分射出的光通过光阑后照到凸透镜上。调整凸透镜的位置,使AB成实像于光屏上,实像A′B′是白色的。棱镜的出射面AB上的每一点发出的光包含了从该点射出的各种色光,并且这些不同的色光出射角是不相同的。经过凸透镜的折射,会聚在光屏上相应的像点处,每个像点都是由各种色光会聚的,因此,像A′B′是白色的。 实验时,应选择通光口径φ和焦距f都大一些的凸透镜。三棱镜出射光的侧面与光屏的距离要略大于透镜4倍焦距。调整凸透镜的位置,使棱镜出射光的侧

用双棱镜干涉测光波波长的实验报告

用双棱镜干涉测光波波长的实验报告 【实验目的】 1.掌握用双棱镜获得双光束干涉的方法,加深对干涉条件的理解. 2.学会用双棱镜测定钠光的波长. 【实验仪器】 光具座,单色光源(钠灯),可调狭缝,双棱镜,辅助透镜(两片),测微目镜,白屏. 【实验原理】 如果两列频率相同的光波沿着几乎相同的方向传播,并且它们的位相差不随时间而变化,那么在两列光波相交的区域,光强分布是不均匀的,而是在某些地方表现为加强,在另一些地方表现为减弱(甚至可能为零),这种现象称为光的干涉. 菲涅耳利用图1所示的装置,获得了双光束的干涉现象.图中AB 是双棱镜,它的外形结构如图2所示,将一块平玻璃板的一个表面加工成两楔形板,端面与棱脊垂直,楔角A 较小(一般小于10).从单色光源发出的光经透镜L 会聚于狭缝S ,使S 成为具有较大亮度的线状光源.从狭缝S 发出的光,经双棱镜折射后,其波前被分割成两部分,形成两束光,就好像它们是由虚光源S1和S2发出的一样,满足相干光源条件,因此在两束光的交叠.区域P1P2内产生干涉.当观察屏P 离双棱镜足够远时,在屏上可观察到平行于狭缝S 的、明暗 相间的、等间距干涉条纹. 图1 图2 设两虚光源S1和S2之间的距离为d ',虚光源所在的平面(近似地在光源狭缝S 的平面内)到观察屏P 的距离为d ,且d d <<',干涉条纹间距为x ?,则实验所用光源的波长λ为 x d d ?'= λ 因此,只要测出d '、d 和x ?,就可用公式计算出光波波长. 【实验内容】 1.调节共轴 (1)按图1所示次序,将单色光源M ,会聚透镜L ,狭缝S ,双棱镜AB 与测微目镜P 放置在光具座上.用目视法粗略地调节它们中心等高、共轴,棱脊和狭缝S 的取向大体平行. (2)点亮光源M ,通过透镜L 照亮狭缝S ,用手执白纸屏在双棱镜后面检查:经双棱镜折射后的光束,有否叠加区P1P2 (应更亮些)?叠加区能否进入测微目镜? 当移动白屏时,叠加

双棱镜干涉的深入研究实验报告

双棱镜干涉的深入研究实验 一、问题提出 实验课上我们已经掌握了用双棱镜获得双光束干涉的方法,加深对干涉条件的理解,并且学会了如何用双棱镜测定钠光的波长。本次设计性实验中我们将进一步掌握双棱镜的干涉原理及调节方法,测定两个虚光源之间的距离与狭缝-双棱镜间距之间的关系。主要从以下问题探讨: (一)实验测量双棱镜的楔角,并比较角度不同干涉现象的差异; (二)用多种方法来测两个虚光源之间的距离,并比较优缺点; (三)测定两虚光源之间的距离与狭缝-双棱镜间距之间的关系曲线; (四)利用双棱镜干涉观察He-Ne激光的干涉条纹,并测量氦氖光的波长;(五)将钠光灯换成大灯泡,观察白光的干涉条纹。 二、实验原理 (一)双棱镜楔角的测量 利用分光计测量:将分光机调平处于使用状态,使望远镜光轴与双棱镜的一个面垂直,这时在望远镜的视野中能够清晰看见绿色小十字叉丝的像。 C 双棱镜的外形图:A B 一束沿AB面法线方向的平行光投射于望远镜中, 测量α时, 当望远镜对准AB面时, 由望远镜物镜的焦面上发出的光束射到AB面上,一部分反射,形成要测量的像,一部分透射进入棱镜后,分别在AC和BC面上反射回到望远镜中, 所以在测量中, 实际看到的是三个绿色小十字叉丝像。AB面反射的像较亮,AC和BC 面反射的像较暗,望远镜叉丝对准较亮的十字叉丝像测量。当望远镜转到AC和BC 面一侧时,在望远镜中实际看到4个十字像,中间2个像较暗,边上2个较亮,望远镜叉丝应对准A一侧的亮像测量[2]。 将待测双棱镜置于分光计的载物台上,固定望远镜子,点亮小灯照亮目镜中

的叉丝,旋转分光计的载物台,使双棱镜的一个折射面对准望远镜,用自准直法调节望远镜的光轴与此折射面严格垂直,即使十字叉丝的反射像和调整叉丝完全 重合。记录刻度盘上两游标读数V 1、V 2 ;再转动游标盘联带载物平台,依同样 方法使望远镜光轴垂直于棱镜第二个折射面,记录相应的游标读数V 1',V 2 ',由 此得双棱镜的楔角α为: α=(|V 1'-V 1 |+|V 2 '-V 2 |)/4 (二)多种方法测两光源之间的间距 1.二次成像法 在“用双棱镜干涉测量光波的波长”时关键是测量两虚相干光源的间距d,目前使用的教科书中一般采用二次成像法测量两虚相干光源的间距,其实验装置和光路图如图1所示: 图1中狭缝光源S发出的光波经双棱镜上下两部分折射后形成两虚相干光源 S 1和S 2 ,d通过透镜L在两个不同位置的二次成像求得,即d= 2 1 d d,d 1 为 两虚相干光源通过透镜所成的放大实像间的距离d 2 为两虚相干光源通过透镜所成的缩小实像间的距离[3]。

菲涅尔双棱镜干涉测波长

实验17 菲涅耳双棱镜干涉测波长 利用菲涅耳双棱镜可以获得两束相干光以实现光的干涉。双棱镜实验和双平面反射镜实验及洛埃镜实验一起,在确立光的波动学说的历史过程中起了重要作用。同时它也是一种用简单仪器测量光波波长的主要元件。 双棱镜是利用分波阵面法获得相干光的光学元件,本实验用双棱镜实验装置测单色光的波长。 实验目的和学习要求 1. 学习用双棱镜干涉测量单色光波长的原理和方法; 2. 进一步掌握光学系统的共轴调整; 3. 学会测微目镜的使用; 4. 练习逐差法处理数据和计算不确定度。 实验原理 如果两列光波其频率相同,振动方向相同,相位相同或位相差恒定,且振幅差别不太悬殊的情况下,它们在空间相遇时叠加的结果,将使空间各点的光振幅有大有小,随地而异,形成光的能量在空间的重新分布。这种在空间一定处光强度的稳定加强或减弱的现象称为光的干涉。获得相干光源,依其原理不同可分为分振幅法和分波阵面法,牛顿环和劈尖干涉是分振幅的干涉,双棱镜是利用分波阵面法而获得相干光源的。 菲涅耳双棱镜可以看作是由两块底面相接、棱角很小(约为1°)的直角棱镜合成的。若置波长为λ的单色狭条光源S0于双棱镜的正前方,则从S0射来的光束通过双棱镜的折射后,变为两束相重叠的光,这两束光仿佛是从光源S0的两个虚像S1和S2射出的一样。由于S1和S2是两个相干光源,所以若在两束光相重叠的区域内再放一屏,即可观察到明暗相间的干涉条纹。(如图17-1)因为干涉场范围比较窄,干涉条纹的间距也很小,所以一般要用测量显微镜或测微目镜来观察。 图17-1 双棱镜干涉光路 现在讨论屏上干涉条纹的分布情况,分别从相干光源S1和S2发出来的光相遇时,若它们之间的光程差δ恰等于半波长(λ/2)的奇数倍,则两光波叠加后为光强极小值;若δ恰等于波长λ的整数倍,两光波叠加后得光强极大值。即 暗纹条件δ = (2-1)λ / 2 = ± 1, ±2 ,……(17-1)明纹条件δ = λ= 0 , ± 1, ±2 , ……(17-2)如图(17-2)所示,设S1和S2是双棱镜所产生的两相干虚光源,其间距为,屏幕到S1S2平面的距离为D,若屏上的P0点到S1和S2的距离相等,则S1和S2发出的光波到P0的光程也相等,因而在P0点相互加强而形成中央明条纹。

菲涅耳双棱镜干涉实验

研究性实验报告 光的干涉实验(分波面法)激光的双棱镜干涉

菲涅耳双棱镜干涉 摘要:两束光波产生干涉的必要条件是:1)频率相同;2)振动方向相同;3)相位差恒定。产生相干光的方式有两种:分波阵面法和分振幅法。本次菲涅耳双棱镜干涉就属于分波阵面法。菲涅耳双棱镜干涉实验是一个经典而重要的实验,该实验和杨氏双缝干涉实验共同奠定了光的波动学的实验基础。 一、实验重点 1)熟练掌握采用不同光源进行光路等高共轴调节的方法和技术; 2)用实验研究菲涅耳双棱镜干涉并测定单色光波长; 3)学习用激光和其他光源进行实验时不同的调节方法。 二、实验原理 菲涅耳双棱镜可以看成是有两块底面相接、棱角很小的直角棱镜合成。若置单色光源S0于双棱镜的正前方,则从S0射来的光束通过双棱镜的折射后,变为两束相重叠的光,这两束光仿佛是从光源S0的两个虚像S1和S2射出的一样。由于S1和S2是两个相干光源,所以若在两束光相重叠的区域内放置一个屏,即可观察到明暗相间的干涉条纹。

如图所示,设虚光源S 1和S 2的距离是a ,D 是虚光源到屏的距离。令P 为屏上任意一点,r 1和r 2分别为从S 1和S 2到P 点的距离,则从S 1和S 2发出的光线到达P 点得光程差是: △L= r 2-r 1 令N 1和N 2分别为S 1和S 2在屏上的投影,O 为N 1N 2的中点,并设OP=x ,则从△S 1N 1P 及△S 2N 2P 得: r 12=D 2+(x-2 a )2 r 22=D 2+(x+2a )2 两式相减,得: r 22- r 12=2ax 另外又有r 22- r 12=(r 2-r 1)(r 2+r 1)=△L(r 2+r 1)。通常D 较a 大的很多,所以r 2+r 1近似等于2D ,因此光程差为: △L=D ax 如果λ为光源发出的光波的波长,干涉极大和干涉极小处的光程差是: = k λ (k=0,±1, ±2,…) 明纹 =212 k λ (k=0,±1, ±2,…) 暗纹 由上式可知,两干涉条纹之间的距离是:

菲涅耳双棱镜干涉实验指导书

实验五 菲涅耳双棱镜干涉 [实验目的] 1. 观察和研究菲涅耳双棱镜产生的干涉现象; 2. 测量干涉滤光片的透射波长(λ0)。 [仪器和装置] 白炽灯,干涉滤光片,可调狭缝,柱面镜,菲涅耳双棱镜,双胶合成像物镜,测微目镜。 [实验原理] 如图1a 所示,菲涅耳双棱镜装置由两个相同的棱镜组成。两个棱镜的折射角α很小,一般约为5 ~ 30'。从点(或缝)光源S 发出的一束光,经双棱镜折射后分为两束。从图中可以看出,这两折射光波如同从棱镜形成的两个虚像S 1和S 2发出的一样。S 1和S 2构成两相干光源,在两光波的迭加区产生干涉。 a 、 从图1b 看出,若棱镜的折射率为n ,则两虚像S 1、S 2之间的距离 a n l d )1(2-= (5-1) 干涉条纹的间距 λa n l l l e )1(2' -+= (5-2) 式中,λ为光波的波长。 对于玻璃材料的双棱镜有n =1.50,则 λa l l l e ' += (5-3) 可得到 e l l la ' += λ (5-4) 在迭加区内放置观察屏E ,就可接收到平行于脊棱的等距直线条纹。若用白光照明,可接收到彩色条纹。 对于扩展光源,由图2可导出干涉孔径角: ' 'l l a l += β (5-5) 和光源临界宽度: ?? ? ??+== '1l l a b λβλ (5-6) 从式(5-5)和(5-6)看出,当l'=0时,β=0,则光源的临界宽度b 变为无穷大。此时,干涉条纹定域在双棱镜的脊棱附近。b 为有限值时,条纹定域在以下区域内: λ αλ-≤ b l l ' (5-7) a) 图 1 双棱镜干涉原理图

棱镜和光的色散

棱镜和光的色散 目标定位: 1.了解光的色散现象,知道白光可分解为七种色光。(重点) 2.了解光的三原色和颜料的三原色,以及色光的混合与颜料的混合是不同的。 3.知道红外线、紫外线都是人眼看不见的光。了解红外线、紫外线的应用。(难点) 4. 了解三棱镜对光的作用, 学习过程: 一、自主学习 (一)、结合学习目标,阅读教材P64-P66, (二)、导学练习(再结合文本独立完成下列练习) 1. 温故知新:光的折射定律: :光从一种介质斜射入另一介质时传播方向会发生光折射时,折射光线入射光线法线在;折射光线和入射光线法、分别位于。入射角增大时,折射角。○1光从空气斜射到水或玻璃表面时,折射角 入射角,折射光线法线。○2光从水中斜射入空气中,折射光线将法线,折射角入射角。光垂直射到水或玻璃的表面时,在水和玻璃中的传播方向。折射光路是的。 2.预习:白光是光,它由,,,,, ,七种颜色的光组成。 二、探究学习(学生先对每一个题目进行独立思考后,才进行小组内的交流讨论)(一)、棱镜和玻璃砖对光线的作用 1.玻璃砖对光线的作用。观察实验完成光路图 2. 棱镜对光线的作用,观察实验完成光路图 3.结论:○1光线经玻璃砖后折射光与入射光,且位置偏 ○2光线经棱镜后,折射光向偏折 (二)光的色散 观看多媒体,进行回答。 1.白光经三棱镜折射后,分解成,,,,,, 七种颜色的光。说明白光是光。这一现象叫光的 2.光的三基色是,,,其他颜色的光都是可由三基色混合而成。 3.颜料的三原色是,,。其他颜料的颜色都可由三原色调配而成。 (三)物体的颜色 1.透明物体的颜色由决定,比如红色的玻璃只能透过红色的光。 2.不透明物体的颜色由决定,比如红色的衣服只能反射红色的光。

光的色散特性的研究实验报告

光的色散特性的研究 光线在传播过程中,遇到不同介质的分界面(如平面镜、三棱镜等的光学面)时,就要发生反射和折射,光线将改变传播的方向,在入射光与反射光或者折射光之间就有一定的夹角。反射定律、折射定律等正是这些角度之间的关系的定量表述。一些光学量,如折射率、光波波长等也可通过测量有关角度来确定。因而精确测量角度,在光学实验中显得尤为重要。 分光计是用来精确测量入射光和出射光之间偏转角度的一种光学仪器,可用它来测量折射率、光波波长、色散率等。分光计的基本部件和调节原理与其它更复杂的光学仪器(如摄谱仪、单色仪等)有许多相似之处,学习和使用分光计也为今后使用精密光学仪器打下良好基础。分光计装置较精密,结构较复杂,调节要求也较高,这对初学者来说,往往会感到困难些。但只要在实验过程中注意观察现象,了解分光计的基本结构和测量光路,严格按调节要求和步骤耐心进行调节,就一定能够达到较好的要求。 本实验是在实验3-14用衍射光栅测量光的波长实验基础上的一个实验项目,有关分光计的结构、使用方法和调节步骤请认真阅读实验3-14中的相关内容。 【预习提示】 1.复习实验3-14中分光计的调节方法和步骤,明确分光计的调节要求。 2.用三棱镜调节分光计时,三棱镜应按什么位置放在载物台上?这样放的好处何在?3.如何判断偏向角减小的方向?如何寻找最小偏向角位置?跟踪谱线时能否将载物台(游标盘)与望远镜同时旋转? 【实验目的】 1.在实验3-14的基础上,进一步熟练掌握分光计的调节和使用方法。 2.掌握用最小偏向角法测定三棱镜对各色光的折射率。 3.观察色散现象,测绘三棱镜的色散曲线,求出色散曲线的经验公式。 【实验原理】 本实验中应该首先搞清楚以下几个概念: ⑴视差:所谓视差是指当两个物体停止不动时,改变观察者的位置,一个物体相对于另一物体有明显移动的现象。在光学仪器的调节中,当人的眼睛从一侧移到另一侧时,像相对于分划板的十字叉丝有明显的移动,即出现视差,说明像与十字叉丝不在同一平面。如果当眼睛移到右边时,像就移到十字叉丝的左边,说明这时的像是在眼睛与十字叉丝之间;如果当眼睛移到右边时,像就移到十字叉丝的右边,说明这时像是在十字叉丝之前。反之,如果眼睛左右移动时,像与十字叉丝之间没有相对移动,像与十字叉丝就在同一平面,说明聚焦已经调好。因此,光学实验中常根据视差现象来判断像与物是否共面。 ⑵平行光:当点光源正好处在凸透镜焦平面上时,由点光源发出的光经过凸透镜后,将形成一束平行光。 ⑶自准法:当光点(物)处在凸透镜的焦平面上时,它发出的光线通过透镜后将形成一束平行光。若用与主光轴垂直的平面镜将此平行光反射回去,反射光再次通过透镜后会聚于透镜的焦平面上,其会聚点将落在光点相对于光轴的对称位置上。 1.用最小偏向角法测量三棱镜的折射率 当光线从一种介质进入另一种介质时,即发生折射,其相对折射率由入射角的正弦和折射角正弦之比确定。由于仪器不能进入棱镜之中观测折射光,故只好让光线经过棱镜的两个界面回到空气中来,再来测量某一单色光经过两次折射后产生的总偏向角。

初中物理 第12单元:棱镜、光的色散、实验

第12单元:棱镜、光的色散、实验 一、黄金知识点: 1、棱镜、全反射棱镜; 2、平行透明板对光路的作用; 3、折射率与波长波速的关系; 4、光的色散; 5、实验:测玻璃砖的折射率; 二、要点大揭密: (一)棱镜、全反射棱镜: 1、三棱镜: (1)横截面为三角形的三棱柱透明体。有正三棱镜、等腰直角三棱镜等。 (2)棱镜对光线的偏折规律:光线向低面偏折,虚象向顶角偏移(注意:顶角、底面是相对于入射光线和折射光线的位置而言的) 2、全反射棱镜: (1)光线垂直于等腰直角三棱镜的一边入射时将在另一侧面上发生全反射, 故此玻璃三棱镜称为全反射棱镜。 (2)全反射棱镜既能使光路发生900偏斜,也能使光线1800全反射折回。 (3)应用:作反射镜改变光的传播方向。其效率和清晰度都优于平面反射镜。 (二)平行透明板对光路的作用: 1、平行透明板对光路的改变作用是侧移,侧移量的大小与入射角有关,与透明板 的厚度有关,与透明板的折射率有关,这些量越大,侧移量越大。 2、平行透明板对光线的方向没有影响,出射光线和原入射光线保持平行关系。 (三)折射率与波速、波长,频率与光的颜色之间的关系。 1、折射率与波长、波速之间的关系: 当光从真空进入介质时,频率不变,波速减小,因而波长也减小(满足v=λf ),在同一介质中,频率大的光波速小、波长短。 2、光的颜色由光的频率决定,从红光到紫光,光的频率依次增加,在同一介质中,波长依 次变短。 (四)光的色散: 1、一束白光通过三棱镜后入射光变为红橙黄绿蓝靛紫七色光的现象,称为光的色散。 2、光的色散现象一方面说明白光是由上述七种单色光复合而成的复色光;另一方面说明玻璃(包括其他各种透明物质)对不同单色光的折射率不同,即同一种介质对红光折射率

光的色散研究_(完整)

评分: 大学物理实验设计性实验 实 验 报 告 物理系 大学物理实验室 实验日期:200 9 年 12 月 4 日 实验题目: 光的色散研究 班 级: 姓 名: 学号: 指导教师:

实验24 《光的色散研究》实验提要 实验课题及任务 《光的色散研究》实验课题任务是:当入射光不是单色光并且入射到三棱镜上时,虽然入射角对各种波长的光都相同,但出射角并不相同,表明折射率也不相同。对于一般的透明材料来说,折射率随波长的减小而增大。如紫光波长短,折射率大,光线偏折也大;红光波长长,折射率小,光线偏折小。折射率n 随波长λ又而变的现象称为色散。 学生根据自己所学的知识,并在图书馆或互联网上查找资料,设计出《光的色散研究》的整体方案,内容包括:写出实验原理和理论计算公式,研究测量方法,写出实验内容和步骤,然后根据自己设计的方案,进行实验操作,记录数据,做好数据处理,得出实验结果,写出完整的实验报告,也可按书写科学论文的格式书写实验报告。 设计要求 ⑴ 通过查找资料,并到实验室了解所用仪器的实物以及阅读仪器使用说明书,了解仪器的使用方法,找出所要测量的物理量,并推导出计算公式,在此基础上写出该实验的实验原理。 ⑵ 选择实验的测量仪器,设计出实验方法和实验步骤,要具有可操作性。 ⑶ 掌握用分光计测定三棱镜顶角和最小偏向角的原理和方法,并求出物质的折射率。 ⑷ 用分光计观察谱线,并测定玻璃材料的色散曲线λ~n ; ⑸ 应该用什么方法处理数据,说明原因。 ⑹ 实验结果用标准形式表达,即用不确定度来表征测量结果的可信赖程度。 实验仪器 给定分光仪、平面镜、三棱镜、高压汞灯、钠光灯 实验提示 最小偏向角min δ。与入射光的波长有关,折射率也随不同波长而变化。折射率n 与波长λ之间的关系曲线称为色散曲线。本实验以高压汞灯为光源,各谱线的波长见附录。用汞灯的光谱谱线的波长作为已知数据,测量其通过三棱镜后所对应的各最小偏向角,算出与min δ对应的n 值,在直角坐标系中做出三棱镜的λ~n 色散曲线。用同一个三棱镜测出钠光谱谱线的最小偏向角,计算相对应的折射率,用图解插值法即可在三棱镜的色散曲线上求出钠光谱谱线的波长。 教师指导(开放实验室)和开题报告1学时;实验验收,在4学时内完成实验;

棱镜、光的色散、实验

棱镜、光的色散、实验 (一)棱镜、全反射棱镜: 1、三棱镜: (1)横截面为三角形的三棱柱透明体。有正三棱镜、等腰直角三棱镜等。 (2)棱镜对光线的偏折规律:光线向低面偏折,虚象向顶角偏移(注意:顶角、底面 是相对于入射光线和折射光线的位置而言的) 2、全反射棱镜: (1)光线垂直于等腰直角三棱镜的一边入射时将在另一侧面上发生全反射, 故此玻璃三棱镜称为全反射棱镜。 (2)全反射棱镜既能使光路发生900偏斜,也能使光线1800全反射折回。 (3)应用:作反射镜改变光的传播方向。其效率和清晰度都优于平面反射镜。 (二)平行透明板对光路的作用: 1、平行透明板对光路的改变作用是侧移,侧移量的大小与入射角有关,与透明板 的厚度有关,与透明板的折射率有关,这些量越大,侧移量越大。 2、平行透明板对光线的方向没有影响,出射光线和原入射光线保持平行关系。 (三)折射率与波速、波长,频率与光的颜色之间的关系。 1、折射率与波长、波速之间的关系: 当光从真空进入介质时,频率不变,波速减小,因而波长也减小(满足v =λf ),在同一介质中,频率大的光波速小、波长短。 2、光的颜色由光的频率决定,从红光到紫光,光的频率依次增加,在同一介质中,波长依 次变短。 (四)光的色散: 1、一束白光通过三棱镜后入射光变为红橙黄绿蓝靛紫七色光的现象,称为光的色散。 2、光的色散现象一方面说明白光是由上述七种单色光复合而成的复色光;另一方面说明 玻璃(包括其他各种透明物质)对不同单色光的折射率不同, 即同一种介质对红光折射率最小,对紫光折射率最大(平常所说的介质折射率是对波长为5893埃的黄光而言)。 (五)测定玻璃的折射率: 1、实验目的:(1)验证光的折射定律; (2)学会测定物体折射率的方法; (3)测定两面平行的玻璃砖的折射率。 a ‘ b ’ 4

牛顿对光学的研究

牛顿对光学的研究 英国物理学家牛顿(I.Newton,1642-1727) 1.色散现象的早期研究 色散也是一个古老的课题,最引人注目的是彩虹现象。早在13世纪,科学家就对彩虹的成因进行了探讨。 德国有一位传教士叫西奥多里克(Theodoric),曾在实验中模仿天上的彩虹。他利用阳光照射装满水的大玻璃球壳,观察到了和空中一样的彩虹,以此说明彩虹是由于空气中水珠反射和折射阳光造成的现象。不过,他进一步解释没有摆脱亚里斯多德的教义,继续认为各种颜色的产生是由于光受到不同阻滞所引起。光的四种颜色:红、黄、绿、蓝,处于白与黑之间,红色接近白色,比较明亮,蓝色接近黑色,比较昏暗。阳光进入媒质(例如水),从表面区域折射回来的是红色或黄色,从深部折射回来的是绿色或蓝色。雨后天空中充满水珠,阳光进入水珠再折射回来,人们就看到色彩缤纷的景象。 笛卡儿对彩虹现象也有兴趣,他用实验检验西奥多里克的认述。 在他的《方法论》(1637)中还有一篇附录,专门讨论彩虹,并且介绍了他自己做过的棱镜实验,如图所示。他用三棱镜将阳光折射后投在屏上,发现彩色的产生并不是由于进入媒质深浅不同所造成。因为不论光照在棱镜的那一部位,折射后屏上的图象都是一样的。遗憾的是,笛卡儿的屏离棱镜太近(大概只有几厘米),他没有看到色散后的整个光谱,只注意到光带的两侧分别呈现蓝色和红色。 1648年,布拉格的马尔西用三棱镜演示色散成功。不过他解释错了。他认为红色是浓缩了的光,蓝色是稀释了的光;之所以会出现五颜六色,是由于光受物质的不同作用,因而呈现各种不同的颜色。 17世纪正当望远镜、显微镜问世,伽利略运用望远镜观察天体星辰,胡克用显微镜观察小物体,激起了广大科学界的兴趣。然而,当放大倍数增大时,这些仪器不可避免地都会出现象差和色差,使人们深感迷惑。 人们不理解,为什么在图象的边缘总会出现颜色?这和彩虹有没有共同之处?这类现象有什么规律性?怎样才能消除? 这时,牛顿正在英国剑桥大学学习。他的老师中有一位数学教授名叫巴罗(Isaac Barrow,1630-1677),对光学很有研究。牛顿听过他讲光学,还邦他写《光学讲义》。牛顿很喜欢做光学实验,还亲自动手磨制透镜,想按自己的设计装配出差的显微镜和望远镜。这个愿望激励他对光的颜色的本性进行深入的探讨。 2.牛顿对色散现象的思考 牛顿从笛卡儿等人的著作中得到许多启示。例如笛卡儿说过:“运动慢的光线比运动快的光线折射得更厉害,”胡克描述过肥皂泡的颜色变化,认为不同的颜色是光脉冲对视网膜留下的不同印象。红色和蓝色是原色,其它颜色都是由这两种颜色合成和冲淡而成。牛顿注意到这些说法的合理成分,同时也提出许多疑问。 在牛顿留下的手稿中,记录了许多当年的疑问微压测高计思考, 例如,他问道:如果光是脉冲,为什么不像声音那样在传播中偏离直线? 为什么弱的脉冲比强的脉冲运动快? 为什么水比水蒸汽更清晰? 为什么煤是黑的,煤烧成的灰反而是白的? 牛顿不满意前人(包括他的老师)对光现象的解释,就自己动手做起了一系列的实验。 3.牛顿的色散实验 牛顿从笛卡儿的棱镜实验得到启发,又借鉴于胡克和玻意耳的分光实验。胡克用了一只充满水的烧瓶代替棱镜,屏距折射位置大约60厘米,玻意耳把棱镜散射的光投到1米多高的天花板上,而牛顿则将距离扩展为6-7米,从室外由洞口进入的阳光经过三棱镜后直接投射到对面的墙上。这样,他就获得了展开的光谱,而前面的几位实验者只看到两侧带颜色的光斑。

双棱镜光干涉实验仪说明书

用菲涅耳双棱镜测量光的波长 自从1801年英国科学家杨氏(T.Young)用双缝做了光的干涉实验后,光的波动说开始为许多学者接受,但仍有不少反对意见。有人认为杨氏条纹不是干涉所致,而是双缝的边缘效应,二十多年后,法国科学家菲涅耳(Augustin J.Fresnel,1788-1827)做了几个新实验,令人信服地证明了光的干涉现象的存在,这些新实验之一就是他在1826年进行的双棱镜实验。它不借助光的衍射而形成分波面干涉,用毫米级的测量得到纳米级的精度,其物理思想、实验方法与测量技巧至今仍然值得我们学习。本实验通过用菲涅耳双棱镜对钠灯波长的测量,要求掌握光的干涉的有关原理和光学测量的一些基本技巧,特别要学习在光学实验中如何计算测量结果的不确定度。 实验原理 菲涅耳双棱镜(简称双棱镜)实际上是一个顶角A极大的等腰三棱镜,如图1所示。它可看成由两个楔角很小的直角三棱镜ABD和ACD所组成,故名双棱镜。当一个单色点光源S从它的BC面入射时,通过上半个棱镜ABD的光束向下偏折,通过下 半个棱镜ACD的光束向上偏折,相当于形成S′ 1和S′ 2 两个虚光源。与杨氏实验中 的两个小孔形成的干涉一样,把观察屏放在两光束的交叠区,就可看到干涉条纹。 图1 点光源通过双棱镜的折射交叠区观 察 屏

λχd D = 其中,d是两虚光源的间距,D 是光源到观察屏的距离,λ是光的波长。用测微目镜的分划板作为观察屏,就可直接从该测微目镜中读出条纹间距χ值,D 为几十厘米,可直接量出,因而只要设法测出d,即可从上式算出光的波长λ。 图2 二次成像光路 测量d的方法很多,其中之一是“二次成像法”,如图2所示,即在双棱镜与测微目镜之间加入一个焦距为?的凸 L ,当D >4?时,可移动L 而在测微目镜中看到 两虚光源的缩小像或放大像。分别读出两虚光源像的间距d1和d2,则由几何光学可知: d=21d d 正如杨氏实验可把双孔改为双缝一样,为了增加干涉条纹的亮度,可把上述实验中的点光源改为线光源,只要线光源的方向与双棱镜的棱边方向平行即可。当然,若线光源与棱边不平行或线光源的宽度太大变成了面光源,则干涉条纹会相互重叠而模糊直至消失,这是光源的空间相干性问题。 实验装臵 本实验装臵由双棱镜、测微目镜、光具座、线光源和透镜等组成。

棱镜的角度和色散测量

实验2三棱镜的角度与色散测量 报告人同组实验者时间 实验目的: 1.了解分光仪的构造原理,学会正确使用分光仪 2.掌握棱镜角度测试的原理和方法 3.了解光的折射与棱镜色散现象 一、实验仪器: 分光仪、汞灯、三棱镜、LED(红、绿、黄) 二、实验原理: 1.分光仪的结构 可用来测量各种光之间的角度。其基本原理是,让光形成一束平行光线,经光学元件反射或折射后,通过目镜观察和测量各光线的偏向角度。 2.分光仪的调整 1)调望远镜对向无穷远,此时反射镜应正直地放在物台上。放反射镜时应使反射面压住一只支撑螺钉,且与另两只支撑螺钉的连线垂直; 2)调望远镜光轴垂直于仪器转轴 3.角度测量原理: 用分光仪测量棱镜顶角可采用两种方法(见下 图): 用望远镜依次对准夹棱镜顶角的两个面(要转动 望远镜不要转动载物台),使得返回的十字像在分划板 上重合(说明自准直望远镜已经垂直于被测的面),记 录下望远镜的两个角度读书,望远镜转过的角度与顶 角互补。 使待测顶角对向平行光管,望远镜依次观察由两个面反射的狭缝像,记录下望远镜的两个角度读书,望远镜转过的角度为顶角的两倍。 4. 最小偏向角法原理: 如图所示三棱镜的截面,P顶点,两边是透光的光学表面,又称折射面,夹角α称为三棱镜的顶角。假设某一波长的光线AB入射到棱镜中,经过两次折射后沿DE方向射

出,则入射线AB与出射线δ称为偏向角。由图中几何关系,偏向角δ=∠FBD+∠ FDB=I 1-I 2 ’-α,因为顶角α满足α=I 1 ’-I 2 ,对于给定的三棱镜来说,角α是固定的,δ 随I 1和I 2 ’而变化。其中I 2 ’与α,n (棱镜折射率),I 1 依次相关,当I 1 变化时,偏向角 δ有一极小值,称为最小偏向角。 三、实验步骤及现象 1.调整分光仪: 调望远镜对像无穷远,此时反射镜应正直地放在载物台上。放反射镜时应使反射面压住一只支撑螺钉,且与另两只连线垂直; (1)目测粗调,用眼睛从仪器侧面观察,使望远镜光轴、平行光管光轴与载物台面均大致垂直于仪器主轴; (2)旋转目镜内筒,使目镜看到清晰的分划板; (3)在载物台上放上反射平面镜,开启照明灯,缓慢转动小平台,找到反射像(“+” 字)后,伸缩目镜套筒使之最清晰; (4)调节望远镜光轴垂直于分光计主轴,将小平台旋转180度,仍能看到反射像,若两反射像位于目标位置同一侧,则先调望远镜的高低,把离目标较近的那个“+” 字像先调整好,若两反射像位于目标位置异侧,则采用各半调节法,先调节小平台前后螺丝,是像与目标位置距离缩小一半,在调节望远镜使之与目标位置重合;(需要进行多次调节) (5)将反射镜转过90度后重复步骤(4); (6)对平行光管进行调焦,打开汞灯,伸缩平行光管套筒使在望远镜中能看到清晰地狭缝像; (7)调整平行光管的光轴垂直于旋转主轴,将望远镜对准狭缝的像,使狭缝转过90度调节平行光管下的倾度调节螺丝,使狭缝像位于分划板中心线上,然后将平行光管狭缝调回垂直状态; (8)视差的调节,从目镜进行观察,左右晃动眼睛,观察“+”字像与分划板是否存在相对移动,若存在则调节高斯目镜。 2. 放置三棱镜: 使棱镜待测角A的一个边与载物台水平调整脚(Z1、Z3)的连线垂直,这样在调Z2时,棱面AB的状态可以保持不变。分光仪的载物台上有刻线标志,可以帮助正确安置棱镜。

相关文档
最新文档