半波整流电容滤波电路分析

半波整流电容滤波电路分析
半波整流电容滤波电路分析

半波整流电容滤波电路分析

[摘要]本文首先介绍了半波整流过程,然后以桥式整流为例从物理角度和数学物理角度分别介绍了阻容滤波电路的波形和效果,指出了两种分析方法,得出了两种结果,最后指出了产生差别的原因。

[关键词]电压;电流;整流;滤波;充放电;傅里叶级数[DOI]1013939/jcnkizgsc201528062

任何电子设备都需要直流电源供电。获得直流电源最简单最经济的方法就是将交流电变为直流电。其中,半波整流电容滤波电路是最简单最基本的电路。这里试图从教学的角度对电路进行分析。

1 单相半波整流电路

电路如图1所示,为了问题的简化并突出重点,所有器件都认为是理想器件。变压器副边电压U2是正弦波。

图1 单相半波整流电路

当U2在正半周时,A点电位比B点高,二极管D加正向电压而导通,因为忽略了二极管正向导通压降,所以uo 与u2完全相同,则,负载电压uo、二极管管压降ud、流过负载的电流io和二极管的电流id 为:

uo=u2

ud=0

io=id=0

当U2在负半周时,A点电位比B点低,二极管D加反向电压而截止,则,负载电压uo、二极管管压降ud、流过负载的电流io和二极管的电流id 为:

uo=0

ud=u2

io=id=0

通过积分计算不难算出负载上输出电压、电流为

Uo=u2 045u2

IO=ID==045

输出电压的脉动系数(S)定义为输出电压的基波最大值与输出直流电压平均值之比。则

S===157如图2所示。

图2 半波整流电压电流波形

2 电容滤波电路

实际生活中桥式整流滤波电路应用广泛,这里以它为例分析一下电容滤波电路。

如图3(a)所示,不妨令电容初始电压为零,则当u2按正弦规律从零时刻上升时,D1、D3导通,电容开始充电,因为导线和二极管都是理想器件,所以,电容充电完全和u2一样按正弦规律上升,直至充到最大值U2。此后u2按正弦

规律下降;电容两端电压的变化要复杂得多,主要由电容容量和负载电阻决定。如果负载电阻无穷大即负载开路,则电容两端电压将不减小一直保持U2,这是因为u2下降后,电容两端电压大于u2,D1、D2都截止,电容上电量没有放电回路不会减少。如果负载电阻不是无穷大即带载状态,则电容将通过电阻放电,电容两端电压将减小,但具体按什么规律减小还要具体分析。因为u2按正弦规律下降,速度由零逐渐增大,而电容电压按指数规律下降,速度由大逐渐减小到零(理论上要无穷长时间),两者总有速度相等的时刻。显然在此之前电容一直被u2充电,电压与u2相等(如图3(b)bc段所示),此后D1、D2都将截止,电容电压按指数规律下降(如图3(b)cd段所示)。其中的d点是下一个充电周期的开始,此时u2电压的绝对值又等于电容电压,且按正弦规律上升,电容又开始充电。如此反复,周而复始。图3(c)是考虑电源内阻及二极管压降的情况下的电容电压波形,阴影部分为整流电路内阻上的压降。

从图3(b)可以看出,经滤波后的电容电压不仅变得比较平滑且平均值也得到提高。电容放电时按指数规律变化,放电快慢由放电时间常数RLC决定,RLC越大放电越慢,输出电压越平滑平均值越大。

图3 桥式整流电容滤波电路及波形

以上是从纯物理的角度对电容滤波的分析,下面从数学

和物理的角度进行分析。

桥式整流电路波形傅里叶展开式如图4所示。

其中的第一项即是直流分量,也就是输出电压的平均值,后面各项为各次谐波。将此电压加在后面的RL、C并联电路上,RL的阻抗与电源频率无关,而电容C的容抗为与频率有关,频率越高容抗越小。根据叠加原理我们可以理解为各个电源单独作用于RL、C并联电路。则无论是电容或是负载电阻两端获得的电压都是uL,仍为全波整流波形,一点也没有实现“滤波”效果。如果考虑电源内阻的作用,则由于内阻上压降与电源输出电流成比例,那么随着谐波频率的增高,电容容抗会越来越小,电容和电阻组成的阻抗的模就会越来越小,与电源内阻分压时获得的分压比例也就越来越小。结果是与uL各谐波相比,电阻两端电压的谐波幅度随谐波频率的升高而越来越小,电阻两端的电压总谐波含量比uL高频含量减少了,即部分谐波被滤掉了,达到了一定的“滤波”目的。

图4 单相桥式整流电路的波形

比较以上从物理角度和数学物理角度进行的分析不难发现:桥式整流波形用傅里叶级数展开后作用于电阻电容并联电路,考虑电源内阻时“有部分滤波”和理想电源时毫无“滤波”效果;从物理角度分析时无论考虑不考虑电源内组电容都有很好的滤波效果。我们是从不同角度对同一物理现

象进行分析的,怎么结果会如此大相径庭?问题出现在哪里?

可以肯定的是桥式整流电容滤波充放电过程是没有错误的,桥式整流的波形是正确的,傅里叶级数也是没有问题的,相信电阻、电容频率响应,分压分流也是没有问题的,那么哪里有问题?

问题在等效电源上,对于电阻电容电路而言,前面的电路就是电源,桥式整流电路中含有二极管等非线性器件,所以不是线性电源,而桥式整流波形进行傅里叶级数展开后得到的直流电源和各频率的交流电源都是线性电源,用线性电源代替非线性电源显然是错误的。

(完整版)整流滤波电路实验报告

整流滤波电路实验报告 姓名:XXX 学号:5702112116 座号:11 时间:第六周星期4 一、实验目的 1、研究半波整流电路、全波桥式整流电路。 2、电容滤波电路,观察滤波器在半波和全波整流电路中的滤波效果。 3、整流滤波电路输出脉动电压的峰值。 4、初步掌握示波器显示与测量的技能。 二、实验仪器 示波器、6v交流电源、面包板、电容(10μF*1,470μF*1)、变阻箱、二极管*4、导线若干。 三、实验原理 1、利用二极管的单向导电作用,可将交流电变为直流电。常用的二极管整 流电路有单相半波整流电路和桥式整流电路等。 2、在桥式整流电路输出端与负载电阻RL并联一个较大电容C,构成电容滤 波电路。整流电路接入滤波电容后,不仅使输出电压变得平滑、纹波显著成小,同时输出电压的平均值也增大了。 四、实验步骤 1、连接好示波器,将信号输入线与6V交流电源连接,校准图形基准线。 2、如图,在面包板上连接好半波整流电路,将信号连接线与电阻并联。

3、如图,在面包板上连接好全波整流电路,将信号输入线与电阻连接。

4、在全波整流电路中将电阻换成470μF的电容,将信号接入线与电容并联。 5、如图,选择470μF的电容,连接好整流滤波电路,将信号接入线与电阻并联。 改变电阻大小(200Ω、100Ω、50Ω、25Ω)

200Ω100Ω50Ω

25Ω 6、更换10μF的电容,改变电阻(200Ω、100Ω、50Ω、25Ω)200Ω 100Ω

50Ω 25Ω 五、数据处理 1、当C 不变时,输出电压与电阻的关系。 输出电压与输入交流电压、纹波电压的关系如下: avg)r m V V V (输+= 又有i avg R C V ??=输89.2V )(r 所以当C 一定时,R 越大 就越小 )(r V avg 越大 输V

全波整流滤波电路

二极管全波整流滤波电路 ①下面分两部分介绍其工作原理,即桥式整流电路与滤波电路两部分。 首先,介绍桥式整流电路,其工作原理为如下: 电路图 图10.02(a) 在分析整流电路工作原理时,整流电路中的二极管是作为开关运用,具有单向导电性。根据图10.02(a)的电路图可知:当正半周时二极管D1、D3导通,在负载电阻上得到正弦波的正半周。 当负半周时二极管D2、D4导通,在负载电阻上得到正弦波的负半周。 在负载电阻上正负半周经过合成,得到的是同一个方向的单向脉动电压。单相桥式整流电路的波形图见图10.02(b)。

下面介绍滤波电路的工作原理: (1)滤波的基本概念 滤波电路利用电抗性元件对交、直流阻抗的不同,实现滤波。电容器C对直流开路,对交流阻抗小,所以C应该并联在负载两端。电感器L对直流阻抗小,对交流阻抗大,因此L 应与负载串联。经过滤波电路后,既可保留直流分量、又可滤掉一部分交流分量,改变了交直流成分的比例,减小了电路的脉动系数,改善了直流电压的质量。 (2)电容滤波电路 现以单相桥式电容滤波整流电路为例来说明。电容滤波电路如图10.06所示,在负载电阻上并联了一个滤波电容C。 若电路处于正半周,二极管D1、D3导通,变压器次端电压v2给电容器C充电。此时C相当于并联在v2上,所以输出波形同v2,是正弦形。当v2到达90°时,v2开始下降。先假设二极管关断,电容C就要以指数规律向负载RL放电。指数放电起始点的放电速率很大。 在刚过90°时,正弦曲线下降的速率很慢。所以刚过90°时二极管仍然导通。在超过90°后的某个点,正弦曲线下降的速率越来越快,当刚超过指数曲线起始放电速率时,二极管关断。 所以,在t1到t2时刻,二极管导电,C充电,v C=v L按正弦规律变化;t2到t3时刻二极管关断,v C=v L按指数曲线下降,放电时间常数为R L C。通过以上分析画出波形图如下: ②讨论C和RL的大小对输出电压的影响。

整流滤波稳压实验报告

整流滤波及稳压电路 学院:机电工程学院专业:电气工程及其自动化学号:14040410039 姓名:廖芳群 一、实验目的 1.掌握单相桥式整流电路的应用 2.掌握电容滤波电路的特性 3.掌握稳压管稳压的应用和测试 二、实验仪器 电路板,示波器,函数信号发生器等。 三、实验原理 直流稳压电源是所有电子设备的重要组成部分,它的基本任务是将电力网交流电压变换为电子设备所需要的交流电压值,然后利用二极管单向导电性将交流电压整流为单向脉冲的直流电压,再通过电容或电感等储能元件组成的滤波电路来减小其脉动成分,从而得到较平滑的直流电压。同时,由于该直流电压易受电网波动及负载变化的影响,必须加稳压电路,利用负反馈来维持输出直流电压的稳定。直流稳压电源的基本组成框图和工作波形如图一所示: 220V a b c 50Hz 图一 1、整流电路 利用二极管的单向导电作用,将电网的交流电转变成单方向的脉冲直流电,这就是整流。常用的整流电路有半波整流、桥式整流以及倍压整流。这次实验中主要采用桥式整流的方式获得单向脉冲的直流电源。 桥式整流电路(如图二)由四个二极管组成,负载电流也由两路二极管轮流导通(如V1,V2)而提供,波纹小,截止一路两个二极管(如V3,V4)分担反向电压,对整流管要求较低,是最常用的整流电路。

图二 2、 滤波电路 整流电路输出的是直流脉冲电压,这种脉冲电压中含有较大的交流成分,因而不能保证电子设备正常工作,尤为明显的是在音响设备中会出现较严重的交流哼声。因此需要进一步减小输出电压的这种脉动,使其更加平滑。滤波电路就是利用电容或电感在电路中的储能作用来完成此功能的。常用的滤波器有电容滤波和电感滤波,但是相同的滤波效果时,采用电容滤波比采用电感滤波更经济有效。如图三,以桥式整流为例,说明整流滤波的工作原理。 图三 3、 稳压电路 虽然整流滤波电路可使交流电变成平滑的直流电,但由于受到电网电压的波动、负载电阻的变化以及环境温度的变化,这些均会导致输出直流电压的不稳定。因此,大多数电子设备还需要采取一定的稳压电路(措施),以保证输出电压值的稳定。稳压电路的种类通常有稳压管稳压电路、串联型稳压电路、集成稳压电路和开关型稳压电路。 对稳压电路的主要要求如下: ⑴稳压系数s (i i U U U U /0/0/??=)小,稳定度高,即输出电压相对变化量要 远小于输入电压变化量。 ⑵输出电阻0R 小,L I U R ??=/00,0R 小,一般为m Ω量级,表示负载电流变化时,输出电压稳定。 ⑶温度系数T S 小,T U S T ??=/0(mV/℃),T S 表示温度变化时,输出电压稳定。 四、实验内容

10种精密整流电路的详解

1.第一种得模拟电子书上(第三版442页)介绍得经典电路。A1用得就是半波整流并且放大 两倍,A2用得就是求与电路,达到精密整流得目得。(R1=R3=R4=R5=2R2) 2.第二种方法瞧起来比较简单A1就是半波整流电路,就是负半轴有输出,A2得电压跟随器 得变形,正半轴有输出,这样分别对正负半轴得交流电进行整流!(R1=R2) 3.第三种电路

仿真效果如下: 这个电路真就是她妈得坑爹,经过我半天得分析才发现就是这样得结论:Uo=-|Ui|,整出来得电路全就是负得,真想不通为什么作者放到这里,算了先把分析整理一下: 当Ui>0得时候电路等效就是这样得

放大器A就是同相比例电路,Uo1=(1+R2/R1)Ui=2Ui 放大器B就是加减运算电路,Uo2=(1+R2/R1)Ui-(R4/R3)Uo1=-Ui 当Ui<0得时候电路图等效如下: 放大器A就是电压跟随器,放大器B就是加减运算电路 式子整理:Uo2=(1+R4/(R2+R3))Ui- R4/(R2+R3)Ui=Ui 以上就是这个电路得全部分析,但就是想达到正向整流得效果就应该把二极管全部反向过来电路与仿真效果如下图所示

4.第四种电路就是要求所有电阻全部相等。这个仿真相对简单。 电路与仿真效果如下 计算方法如下: 当Ui>0时,D1导通,D2截止(如果真就是不清楚为什么就是这样分析,可以参照模拟电子技术书上对于第一种电路得分析),这就是电路图等效如下(R6就是为了测试信号源用得跟这个电路没有直接得关系,不知道为什么不加这个电阻就仿真不了)

放大器A构成反向比例电路,uo1=-ui, 这时在放大器B得部分构成加减运算电路,uo2=-uo1=-(-ui) 注意:这里放大器B得正相输入端就是相当于接地得,我刚开始一直没有想通,后来明白了,这一条线路上就是根本就没有电流得,根本就没有办法列出方程来。(不知道这么想就是不就是正确得) 当Ui<0得时候,D1截止,D2导通,电路图等效如下: 这时就需要列方程了 Ui<0时Ui/R1=-(U2/R5+U2/(R2+R3))计算得到U2=-2/3 Ui 再根据U2/(R2+R3)=(U0-U2)/R4 得到U0=3/2 U2 带入得到U0=-Ui

半波精密整流电路、8种类型精密全波整流电路及详细分析

精密全波整流电路 图中精密全波整流电路的名称,纯属本人命的名,只是为了区分;除非特殊说明,增益均按1设计.图1是最经典的电路,优点是可以在电阻R5上并联滤波电容.电阻匹配关系为R1=R2,R4=R5=2R3;可以通过更改R5来调节增益 图2优点是匹配电阻少,只要求R1=R2 图3的优点是输入高阻抗,匹配电阻要求R1=R2,R4=2R3 图4的匹配电阻全部相等,还可以通过改变电阻R1来改变增益.缺点是在输入信号的负半周,A1的负反馈由两路构成,其中一路是R5,另一路是由运放A2复合构成,也有复合运放的缺点. 图5 和图6 要求R1=2R2=2R3,增益为1/2,缺点是:当输入信号正半周时,输出阻抗比较高,可以在输出增加增益为2的同相放大器隔离.另外一个缺点是正半周和负半周的输入阻抗不相等,要求输入信号的内阻忽略不计 图7正半周,D2通,增益=1+(R2+R3)/R1;负半周增益=-R3/R2;要求正负半周增益的绝对值相等,例如增益取2,可以选R1=30K,R2=10K,R3=20K 图8的电阻匹配关系为R1=R2 图9要求R1=R2,R4可以用来调节增益,增益等于1+R4/R2;如果R4=0,增益等于1;缺点是正负半波的输入阻抗不相等,要求输入信号的内阻要小,否则输出波形不对称. 图10是利用单电源运放的跟随器的特性设计的,单电源的跟随器,当输入信号大于0时,输出为跟随器;当输入信号小于0的时候,输出为0.使用时要小心单电源运放在信号很小时的非线性.而且,单电源跟随器在负信号输入时也有非线性. 图7,8,9三种电路,当运放A1输出为正时,A1的负反馈是通过二极管D2和运放A2构成的复合放大器构成的,由于两个运放的复合(乘积)作用,可能环路的增益太高,容易产生振荡. 精密全波电路还有一些没有录入,比如高阻抗型还有一种把A2的同相输入端接到A1的反相输入端的,其实和这个高阻抗型的原理一样,就没有专门收录,其它采用A1的输出只接一个二极管的也没有收录,因为在这个二极管截止时,A1处于开环状态. 结论: 虽然这里的精密全波电路达十种,仔细分析,发现优秀的并不多,确切的说只有3种,就是前面的3种. 图1的经典电路虽然匹配电阻多,但是完全可以用6个等值电阻R实现,其中电阻R3可以用两个R并联.可以通过R5调节增益,增益可以大于1,也可以小于1.最具有优势的是可以在R5上并电容滤波. 图2的电路的优势是匹配电阻少,只要一对匹配电阻就可以了.

半波整流电容滤波电路分析

半波整流电容滤波电路分析 [摘要]本文首先介绍了半波整流过程,然后以桥式整流为例从物理角度和数学物理角度分别介绍了阻容滤波电路的波形和效果,指出了两种分析方法,得出了两种结果,最后指出了产生差别的原因。 [关键词]电压;电流;整流;滤波;充放电;傅里叶级数[DOI]1013939/jcnkizgsc201528062 任何电子设备都需要直流电源供电。获得直流电源最简单最经济的方法就是将交流电变为直流电。其中,半波整流电容滤波电路是最简单最基本的电路。这里试图从教学的角度对电路进行分析。 1 单相半波整流电路 电路如图1所示,为了问题的简化并突出重点,所有器件都认为是理想器件。变压器副边电压U2是正弦波。 图1 单相半波整流电路 当U2在正半周时,A点电位比B点高,二极管D加正向电压而导通,因为忽略了二极管正向导通压降,所以uo 与u2完全相同,则,负载电压uo、二极管管压降ud、流过负载的电流io和二极管的电流id 为: uo=u2

ud=0 io=id=0 当U2在负半周时,A点电位比B点低,二极管D加反向电压而截止,则,负载电压uo、二极管管压降ud、流过负载的电流io和二极管的电流id 为: uo=0 ud=u2 io=id=0 通过积分计算不难算出负载上输出电压、电流为 Uo=u2 045u2 IO=ID==045 输出电压的脉动系数(S)定义为输出电压的基波最大值与输出直流电压平均值之比。则 S===157如图2所示。 图2 半波整流电压电流波形 2 电容滤波电路 实际生活中桥式整流滤波电路应用广泛,这里以它为例分析一下电容滤波电路。 如图3(a)所示,不妨令电容初始电压为零,则当u2按正弦规律从零时刻上升时,D1、D3导通,电容开始充电,因为导线和二极管都是理想器件,所以,电容充电完全和u2一样按正弦规律上升,直至充到最大值U2。此后u2按正弦

整流滤波电路实验报告(模板加实验图片)

学生姓名: XX 学号:00000000 专业班级:XXXXXXXXXXXXXX 实验时间:XXXX时XXX分第XX周星期X 座位号:XX 上面是我自己的信息,被我改成“XX”,下载者自行修改,最下面还有我做实验的图片,如果没做实验或者实验一塌糊涂可以参照,或者P成黑白or照着画,这5财富值,你看值,就下载!我很给力的!!!!! 整流滤波电路实验 一.实验目的 1.研究半波整流电路、全波桥式整流、滤波电路; 2.测绘电学原件的伏安特性曲线,学习图示法表示实验结果。 二.实验器材 6伏交流电源,双踪示波器,电解电容470μF×1、100μF×1,整流二极管IN4007×4,电阻箱,导线若干。 三.实验原理 1、利用二极管的单向导电作用,可将交流电变为直流电。常用的二极管整流电路有单相半波整流电路和桥式整流电路等。 2、在桥式整流电路输出端与负载电阻RL并联一个较大电容C,构成电容滤波电路。整流电路接入滤波电容后,不仅使输出电压变得平滑、纹波显著成小,同时输出电压的平均值也增大了。 四.实验步骤

1、连接好示波器,将信号输入线与6V 交流电源连接,校准图形基准线。 2、如图,在面包板上连接好半波整流电路,将信号连接线与电阻并联。 3、如图,在面包板上连接好全波整流电路,将信号输入线与电阻连接。

4、在全波整流电路中将电阻换成470μF的电容,将信号接入线与电容并联。 5、如图,选择470μF的电容,连接好整流滤波电路,将信号接入线与电阻并联。改变电阻大小(200Ω、100Ω、50Ω、25Ω) 6、更换10μF的电容,改变电阻大小(200Ω、100Ω、50Ω、25Ω) 7、分别记下并描绘出各波形图。 五.实验数据以及波形图

十种运放精密全波整流电路

十种运放精密全波整流电路 图中精密全波整流电路的名称,纯属本人命的名,只是为了区分;除非特殊说明,增益均按1设计. 图1是最经典的电路,优点是可以在电阻R5上并联滤波电容.电阻匹配关系为R1=R2,R4=R5=2R3;可以通过更改R5来调节增益 图2优点是匹配电阻少,只要求R1=R2 图3的优点是输入高阻抗,匹配电阻要求R1=R2,R4=2R3

图4的匹配电阻全部相等,还可以通过改变电阻R1来改变增益.缺点是在输入信号的负半周,A1的负反馈由两路构成,其中一路是R5,另一路是由运放A2复合构成,也有复合运放的缺点. 图5 和图6 要求R1=2R2=2R3,增益为1/2,缺点是:当输入信号正半周时,输出阻抗比较高,可以在输出增加增益为2的同相放大器隔离.另外一个缺点是正半周和负半周的输入阻抗不相等,要求输入信号的内阻忽略不计 图7正半周,D2通,增益=1+(R2+R3)/R1;负半周增益=-R3/R2;要求正负半周增益的绝对值相等,例如增益取2,可以选R1=30K,R2=10K,R3=20K

图8的电阻匹配关系为R1=R2 图9要求R1=R2,R4可以用来调节增益,增益等于1+R4/R2;如果R4=0,增益等于1;缺点是正负半波的输入阻抗不相等,要求输入信号的内阻要小,否则输出波形不对称. 图10是利用单电源运放的跟随器的特性设计的,单电源的跟随器,当输入信号大于0时,输出为跟随器;当输入信号小于0的时候,输出为0.使用时要小心单电源运放在信号很小时的非线性.而且,单电源跟随器在负信号输入时也有非线性. 图7,8,9三种电路,当运放A1输出为正时,A1的负反馈是通过二极管D2和运放A2构成的复合放大器构成的,由于两个运放的复合(乘积)作用,可能环路的增益太高,容易产生振荡. 精密全波电路还有一些没有录入,比如高阻抗型还有一种把A2的同相输入端接到A1的反相输入端的,其实和这个高阻抗型的原理一样,就没有专门收录,其它采用A1的输出只接一个二极管的也没有收录,因为在这个二极管截止时,A1处于开环状态. 结论: 虽然这里的精密全波电路达十种,仔细分析,发现优秀的并不多,确切的说只有3种,就是前面的3种. 图1的经典电路虽然匹配电阻多,但是完全可以用6个等值电阻R实现,其中电阻R3可以用两个R并联.可以通过R5调节增益,增益可以大于1,也可以小于1.最具有优势的是可以在R5上并电容滤波. 图2的电路的优势是匹配电阻少,只要一对匹配电阻就可以了. 图3的优势在于高输入阻抗. 其它几种,有的在D2导通的半周内,通过A2的复合实现A1的负反馈,对有些运放会出现自激. 有的两个半波的输入阻抗不相等,对信号源要求较高. 两个单运放型虽然可以实现整流的目的,但是输入\输出特性都很差.需要输入\输出都加跟随

《电工技术》习题与答案__整流滤波电路

第一章整流滤波电路 一、填空题 1、(1-1,低)把P型半导体N型半导体结合在一起,就形成PN结。 2、(1-1,低)半导体二极管具有单向导电性,外加正偏电压导通,外加反偏电压截至。 3、(1-1,低)利用二极管的单向导电性,可将交流电变成直流电。 4、(1-1,低)根据二极管的单向导电性性,可使用万用表的R×1K挡测出其正负极,一般其正反向的电阻阻值相差越大越好。 5、(1-1,低)锗二极管工作在导通区时正向压降大约是0.3,死区电压是。 6、(1-1,低)硅二极管的工作电压为0.7,锗二极管的工作电压为0.3。 7、(1-1,中)整流二极管的正向电阻越小,反向电阻越大,表明二极管的单向导电性能越好。 8、(1-1,低)杂质半导体分型半导体和型半导体两大类。 9、(1-1,低)半导体二极管的主要参数有、,此外还有、、等参数,选用二极管的时候也应注意。 10、(1-1,中)当加到二极管上的反向电压增大到一定数值时,反向电流会突然增大,此现象称为现象雪崩。 11、(1-1,中)发光二极管是把能转变为能,它工作于状态;光电二极管是把能转变为能,它工作于状态。 12、(1-2,中)整流是把转变为。滤波是将转变为。电容滤波器适用于的场合,电感滤波器适用于的场合。 13、(1-1,中)设整流电路输入交流电压有效值为U2,则单相半波整流滤波电路的输出直流电压U L(A V)=,单相桥式整流电容滤波器的输出直流电压U L(A V)=,单相桥式整流电感滤波器的输出直流电压U L(A V)=。 14、(1-1,中)除了用于作普通整流的二极管以外,请再列举出2种用于其他功能的二极管:,。 15、(1-1,低)常用的整流电路有和。 16、(1-2,中)为消除整流后直流电中的脉动成分,常将其通过滤波电路,常见的滤波电路有,,复合滤波电路。 17、(1-2,难)电容滤波器的输出电压的脉动τ与有关,τ愈大,输出电压脉动愈,输出直流电压也就愈。 18、(1-2,中)桥式整流电容滤波电路和半波整流电容滤波电路相比,由于电容充放电过程(a.延长,b.缩短), 因此输出电压更为(a.平滑,b.多毛刺),输出的直流电压幅度也更(a.高,b.低)。 二、选择题 1、(1-1,低)具有热敏特性的半导体材料受热后,半导体的导电性能将。 A、变好 B、变差 C、不变 D、无法确定 2、(1-1,中)P型半导体是指在本征半导体中掺入微量的。 A、硅元素 B、硼元素 C、磷元素 D、锂元素 3、(1-1,中)N型半导体是指在本征半导体中掺入微量的。 A、硅元素 B、硼元素 C、磷元素 D、锂元素 4、(1-1,难)PN结加正向电压时,空间电荷区将。 A、变窄 B、基本不变 C、变宽 D、无法确定 5、(1-1,低)二极管正向电阻比反向电阻。

种精密整流电路的详解

1.第一种的模拟电子书上(第三版442页)介绍的经典电路。A1用的是半波整流并且放 大两倍,A2用的是求和电路,达到精密整流的目的。(R1=R3=R4=R5=2R2) 2.第二种方法看起来比较简单A1是半波整流电路,是负半轴有输出,A2的电压跟随器的 变形,正半轴有输出,这样分别对正负半轴的交流电进行整流!(R1=R2) 3.第三种电路

仿真效果如下: 这个电路真是他妈的坑爹,经过我半天的分析才发现是这样的结论:Uo=-|Ui|,整出来的电路全是负的,真想不通为什么作者放到这里,算了先把分析整理一下: 当Ui>0的时候电路等效是这样的

放大器A是同相比例电路,Uo1=(1+R2/R1)Ui=2Ui 放大器B是加减运算电路,Uo2=(1+R2/R1)Ui-(R4/R3)Uo1=-Ui 当Ui<0的时候电路图等效如下: 放大器A是电压跟随器,放大器B是加减运算电路 式子整理:Uo2=(1+R4/(R2+R3))Ui- R4/(R2+R3)Ui=Ui 以上是这个电路的全部分析,但是想达到正向整流的效果就应该把二极管全部反向过来电路和仿真效果如下图所示

4.第四种电路是要求所有电阻全部相等。这个仿真相对简单。 电路和仿真效果如下 计算方法如下: 当Ui>0时,D1导通,D2截止(如果真是不清楚为什么是这样分析,可以参照模拟电子技术书上对于第一种电路的分析),这是电路图等效如下(R6是为了测试信号源用的跟这个电路没有直接的关系,不知道为什么不加这个电阻就仿真不了)

放大器A构成反向比例电路,uo1=-ui, 这时在放大器B的部分构成加减运算电路,uo2=-uo1=-(-ui) 注意:这里放大器B的正相输入端是相当于接地的,我刚开始一直没有想通,后来明白了,这一条线路上是根本就没有电流的,根本就没有办法列出方程来。(不知道这么想是不是正确的) 当Ui<0的时候,D1截止,D2导通,电路图等效如下: 这时就需要列方程了 Ui<0时Ui/R1=-(U2/R5+U2/(R2+R3))计算得到U2=-2/3 Ui 再根据U2/(R2+R3)=(U0-U2)/R4 得到U0=3/2 U2 带入得到U0=-Ui

桥式整流滤波电路实验

桥式整流、滤波及稳压电路 一、实验目的 1.学会半导体二极管和稳压管极性的简单测试,了解其工作性能和作用; 2.掌握单相桥式整流、滤波、稳压电路的工作原理和对应电压波形及测试方法; 3.掌握输入交流电压与输出直流电压之间的关系; 4.了解倍压整流的原理与方法。 二、实验原理 整流电路是将交流电变为直流电以供负载使用。直流稳压电源先通过整流电路把交流电变为脉动的直流电,再经各种滤波电路、稳压电路,使输出直流电压维持稳定。由整流、滤波、稳压环节构成的简单稳压电路如图1所示 图1 桥式整流、滤波、稳压电路 三、实验仪器设备 注意事项:切勿用毫安表测电压。注意万用表的交直流电压挡、欧姆挡的转换及量程的选择;防止误操作,避免电源短路、烧损二极管和电容; 四、实验内容与要求根据实验室提供的实验设备完成以下实验内容的设计: 1.用万用表测量二极管,学会用万用表检查二极管极性和性能的好坏。 2.设计并连接单相桥式整流电路,调节负载电阻,使负载电流分别为2mA和8mA,测量并记录输入交流电压、整流电路的输出直流电压和负载两端的电压的大小,用示波器观察并画出上述

3.设计并连接具有滤波的单相桥式整流电路,调节负载电阻,使负载电流分别为2mA和8mA 时,测量并记录输入交流电压,整流滤波电路的输出直流电压和负载两端的电压的大小,用示波器观察并画出上述电压的波形。 4. 在上一个电路(单相桥式整流、滤波电路)中,若改变滤波电容的容量,输出波形会发生什么样的变化?若改变负载电阻,输出波形会发生怎样的变化? 5.

6.设计并连接具有滤波、稳压的单相桥式整流电路,在下列两种情况下,测量并记录输入交流电压、整流滤波电路的输出直流电压和负载两端的电压的大小,用示波器观察并画出上述电压的波形。 (2) 当负载电流保持5mA不变时,使电源电压波动,即使输入的交流电压有效值在15V左右变

十种精密全波整流电路图

十种精密全波整流电路图 图中精密全波整流电路的名称,纯属本人命的名,只是为了区分;除非特殊说明,增益均按1设计. 图1是最经典的电路,优点是可以在电阻R5上并联滤波电容.电阻匹配关系为R1=R2,R4=R5=2R3;可以通过更改R5来调节增益。 图2优点是匹配电阻少,只要求R1=R2

图3的优点是输入高阻抗,匹配电阻要求R1=R2,R4=2R3 图4的匹配电阻全部相等,还可以通过改变电阻R1来改变增益.缺点是在输入信号的负半周,A1的负反馈由两路构成,其中一路是R5,另一路是由运放A2复合构成,也有复合运放的缺点。 图5 和图6 要求R1=2R2=2R3,增益为1/2,缺点是:当输入信号正半周时,输出阻抗比较高,可以在输出增加增益为2的同相放大器隔离.另外一个缺点是正半周和负半周的输入阻抗不相等,要求输入信号的内阻忽略不计。

图7正半周,D2通,增益=1+(R2+R3)/R1;负半周增益=-R3/R2;要求正负半周增益的绝对值相等,例如增益取2,可以选R1=30K,R2=10K,R3=20K 图8的电阻匹配关系为R1=R2 图9要求R1=R2,R4可以用来调节增益,增益等于1+R4/R2;如果R4=0,增益等于1;缺点是正负半波的输入阻抗不相等,要求输入信号的内阻要小,否则输出波形不对称。

图10是利用单电源运放的跟随器的特性设计的,单电源的跟随器,当输入信号大于0时,输出为跟随器;当输入信号小于0的时候,输出为0.使用时要小心单电源运放在信号很小时的非线性.而且,单电源跟随器在负信号输入时也有非线性。 图7,8,9三种电路,当运放A1输出为正时,A1的负反馈是通过二极管D2和运放A2构成的复合放大器构成的,由于两个运放的复合(乘积)作用,可能环路的增益太高,容易产生振荡。 精密全波电路还有一些没有录入,比如高阻抗型还有一种把A2的同相输入端接到A1的反相输入端的,其实和这个高阻抗型的原理一样,就没有专门收录,其它采用A1的输出只接一个二极管的也没有收录,因为在这个二极管截止时,A1处于开环状态。 结论: 虽然这里的精密全波电路达十种,仔细分析,发现优秀的并不多,确切的说只有3种,就是前面的3种。 图1的经典电路虽然匹配电阻多,但是完全可以用6个等值电阻R实现,其中电阻R3可以用两个R并联.可以通过R5调节增益,增益可以大于1,也可以小于1.最具有优势的是可以在R5上并电容滤波。 图2的电路的优势是匹配电阻少,只要一对匹配电阻就可以了。 图3的优势在于高输入阻抗。 其它几种,有的在D2导通的半周内,通过A2的复合实现A1的负反馈,对有些运放会出现自激. 有的两个半波的输入阻抗不相等,对信号源要求较高。

整流滤波电路

第一节整流电路 电力网供给用户的是交流电,而各种无线电装置需要用直流电。整流,就是把交流电变为直流电的过程。利用具有单向导电特性的器件,可以把方向和大小交变的电流变换为直流电。下面介绍利用晶体二极管组成的各种整流电路。 一、半波整流电路 图5-1、是一种最简单的整流电路。它由电源变压器B 、整流二极管D 和 负载电阻R fz ,组成。变压器把市电电压(多为220伏)变换为所需要的交变 电压e2,D 再把交流电变换为脉动直流电。 下面从图5-2的波形图上看着二极管是怎样整流的。

变压器次级电压e2,是一个方向和大小都随时间变化的正弦波电压,它的 波形如图5-2(a)所示。在0~π时间内,e2为正半周即变压器上端为正下端为负。此时二极管承受正向电压面导通,e2通过它加在负载电阻R fz上,在π~2π时间内,e2为负半周,变压器次级下端为正,上端为负。这时D承受反向电压,不导通,R fz,上无电压。在2π~3π时间内,重复0~π 时间的过 程,而在3π~4π时间内,又重复π~2π时间的过程…这样反复下去,交流电的负半周就被"削"掉了,只有正半周通过R fz,在R fz上获得了一个单一右向(上正下负)的电压,如图5-2(b)所示,达到了整流的目的,但是,负载电 压U sc。以及负载电流的大小还随时间而变化,因此,通常称它为脉动直流。 这种除去半周、图下半周的整流方法,叫半波整流。不难看出,半波整说是以"牺牲"一半交流为代价而换取整流效果的,电流利用率很低(计算表明,整流 得出的半波电压在整个周期内的平均值,即负载上的直流电压U sc=0.45e2 )因此常用在高电压、小电流的场合,而在一般无线电装置中很少采用。 二、全波整流电路 如果把整流电路的结构作一些调整,可以得到一种能充分利用电能的全波整流电路。图5-3 是全波整流电路的电原理图。 全波整流电路,可以看作是由两个半波整流电路组合成的。变压器次级线圈中间需要引出一个抽头,把次组线圈分成两个对称的绕组,从而引出大小相等但 极性相反的两个电压e2a 、e2b ,构成e2a 、D1、R fz与e2b 、D2、R fz ,两个通电回路。

整流滤波稳压实验报告

整流滤波及稳压电路 一、实验目的 1.掌握单相桥式整流电路的应用 2.掌握电容滤波电路的特性 3.掌握稳压管稳压的应用和测试 二、实验仪器 电路板,示波器,函数信号发生器等。 三、实验原理 直流稳压电源是所有电子设备的重要组成部分,它的基本任务是将电力网交流电压变换为电子设备所需要的交流电压值,然后利用二极管单向导电性将交流电压整流为单向脉冲的直流电压,再通过电容或电感等储能元件组成的滤波电路来减小其脉动成分,从而得到较平滑的直流电压。同时,由于该直流电压易受电网波动及负载变化的影响,必须加稳压电路,利用负反馈来维持输出直流电压的稳定。直流稳压电源的基本组成框图和工作波形如图一所示: 220V a b c 50Hz →→→→ Uo 1、 整流电路 利用二极管的单向导电作用,将电网的交流电转变成单方向的脉冲直流电,这就是整流。常用的整流电路有半波整流、桥式整流以及倍压整流。这次实验中主要采用桥式整流的方式获得单向脉冲的直流电源。 桥式整流电路(如图二)由四个二极管组成,负载电流也由两路二极

管轮流导通(如V1,V2)而提供,波纹小,截止一路两个二极管(如V3,V4)分担反向电压,对整流管要求较低,是最常用的整流电路。 图二 2、 滤波电路 整流电路输出的是直流脉冲电压,这种脉冲电压中含有较大的交流成分,因而不能保证电子设备正常工作,尤为明显的是在音响设备中会出现较严重的交流哼声。因此需要进一步减小输出电压的这种脉动,使其更加平滑。滤波电路就是利用电容或电感在电路中的储能作用来完成此功能的。常用的滤波器有电容滤波和电感滤波,但是相同的滤波效果时,采用电容滤波比采用电感滤波更经济有效。如图三,以桥式整流为例,说明整流滤波的工作原理。 图三 3、 稳压电路 虽然整流滤波电路可使交流电变成平滑的直流电,但由于受到电网电压的波动、负载电阻的变化以及环境温度的变化,这些均会导致输出直流电压的不稳定。因此,大多数电子设备还需要采取一定的稳压电路(措施),以保证输出电压值的稳定。稳压电路的种类通常有稳压管稳压电路、串联型稳压电路、集成稳压电路和开关型稳压电路。 对稳压电路的主要要求如下: ⑴稳压系数s (i i U U U U /0/0/??=)小,稳定度高,即输出电压相对变化量要 远小于输入电压变化量。 ⑵输出电阻0R 小,L I U R ??=/00,0R 小,一般为m Ω量级,表示负载电流变化

10种全波精密整流电路

十种精密全波整流电路 图中精密全波整流电路的名称,纯属本人命的名,只是为了区分;除非特殊

说明,增益均按1设计。 图1是最经典的电路,优点是可以在电阻R5上并联滤波电容。电阻匹配关系为R1=R2,R4=R5=2R3;可以通过更改R5来调节增益 图2优点是匹配电阻少,只要求R1=R2 图3的优点是输入高阻抗,匹配电阻要求R1=R2,R4=2R3 图4的匹配电阻全部相等,还可以通过改变电阻R1来改变增益。缺点是在输入信号的负半周,A1的负反馈由两路构成,其中一路是R5,另一路是由运放A2复合构成,也有复合运放的缺点。 图5 和图6 要求R1=2R2=2R3,增益为1/2,缺点是:当输入信号正半周时,输出阻抗比较高,可以在输出增加增益为2的同相放大器隔离。另外一个缺点是正半周和负半周的输入阻抗不相等,要求输入信号的内阻忽略不计 图7正半周,D2通,增益=1+(R2+R3)/R1;负半周增益=-R3/R2;要求正负半周增益的绝对值相等,例如增益取2,可以选R1=30K,R2=10K,R3=20K 图8的电阻匹配关系为R1=R2 图9要求R1=R2,R4可以用来调节增益,增益等于1+R4/R2;如果R4=0,增益等于1;缺点是正负半波的输入阻抗不相等,要求输入信号的内阻要小,否则输出波形不对称。 图10是利用单电源运放的跟随器的特性设计的,单电源的跟随器,当输入信号大于0时,输出为跟随器;当输入信号小于0的时候,输出为0。使用时要小心单电源运放在信号很小时的非线性。而且,单电源跟随器在负信号输入时也有非线性。 图7,8,9三种电路,当运放A1输出为正时,A1的负反馈是通过二极管D2和运放A2构成的复合放大器构成的,由于两个运放的复合(乘积)作用,可能环路的增益太高,容易产生振荡。 精密全波电路还有一些没有录入,比如高阻抗型还有一种把A2的同相输入端接到A1的反相输入端的,其实和这个高阻抗型的原理一样,就没有专门收录,其它采用A1的输出只接一个二极管的也没有收录,因为在这个二极管截止时,A1处于开环状态。 结论: 虽然这里的精密全波电路达十种,仔细分析,发现优秀的并不多,确切的说只有3种,就是前面的3种。 图1的经典电路虽然匹配电阻多,但是完全可以用6个等值电阻R实现,

单向全波整流及滤波电路

“单向全波整流及滤波电路”教学设计方案 说课 一、授课内容 (一)教材内容:授课内容是由中国铁路出版社出版的、由董秀峰编著的《模拟电子技术》教材第七章直流稳压电源的第一节、第二节“单向桥式全波整流电路及滤波电路”中的内容。(二)内容分析: 整流及滤波是本章直流稳压电源教学中的教学重点。整流及滤波的概念虽然不复杂,但学生还是不容易掌握,容易混乱,且各种电子设备中稳压电源部分故障达到整个硬件故障近50%左右,整流及滤波实用性比较强。因此,整流及滤波是电子电路教学的重点内容,学生必须重点掌握,并能灵活运用,解决实际问题。 (三)教学重点: 1、单相桥式全波整流电路 2、电容滤波电路 (四)教学难点: 滤波电路的定量计算。 (五)教学特色:借助实物演示实验,使理论与实践紧密结合,学生有了直观感性认识;借助多媒体,采用启发式教学,从案例分析,启发思路。 (六)教学目标: 1、知识目标: (1)理解单相桥式全波整流及滤波电路的组成; (2)掌握单相桥式全波整流及滤波电路的工作原理、参数计算。 2、能力目标: (1)在直流稳压电源中出现故障能够分析查找故障点并排除; (2)培养学生分析问题,解决问题的实际能力。 3、情感目标: (1)通过课堂的学习交流,创造良好的学习氛围,增强师生感情,增强班级凝聚力; (2)以实际稳压电源演示实验,学生有了感性认识,使学生体验掌握整流及滤波概念后成功的快感,增强自信心。 二、说教法: 1、展示直流稳压电源实物,介绍直流稳压电源在各种电子产品中应用,看实际稳压电源演示实验,学生有了感性认识,激发了学习兴趣;采用启发式教学,再提出问题,由问题驱动引出概念,引出知识点,再讲授整流、滤波工作原理及分析方法。 2、坚持以“学生能力形成为核心”,在保证知识的系统性、完整性及严谨性的基础上,发挥教师的主导作用,讲授书本上学不到知识,传授本人实践方面经验,充分激发学生的学习兴趣,能够学以致用,使学生主动学习,实现师生方面很好的良性互动。 教案

精密整流电路

实验 精密整流电路 一、实验目的 (1) 了解精密半波整流电路及精密全波整流电路的电路组成、工作原理及参数估算; (2) 学会设计、调试精密全波整流电路,观测输出、输入电压波形及电压传输特性。 二、知识点 半波精密整流、全波精密整流 三、实验原理 将交流电压转换成脉动的直流电压,称为整流。众所周知,利用二极管的单向导电性,可以组成半波及全波整流电路。在图1(a )中所示的一般半波整流电路中,由于二极管的伏安特性如图1(b )所示,当输入电压 幅值小于二极管的开启电压 时,二极管在信 号的整个周期均处于截止状态,输出电压始终为零。即使幅值足够大,输出电压也只反 映 大于 的那部分电压的大小,故当用于对弱信号进行整流时,必将引起明显的误差, 甚至无法正常整流。如果将二极管与运放结合起来,将二极管置于运放的负反馈回路中,则 可将上述二极管的非线性及其温漂等影响降低至可以忽略的程度,从而实现对弱小信号的精密整流或线性整流。 1.精密半波整流 图2给出了一个精密半波整流电路及其工作波形与电压传输特性。下面简述该电路的工作原理: 当输入>0时,<0,二极管D 1导通、D 2截止,由于N 点“虚地”,故≈0(≈-0.6V )。 图1 一般半波整流电路 V i V O

当输入<0 时,>0,二极管D2导通、D1 截止,运放组成反相比例运算器,故,若R1=R2,则=-。其工作波形及电压传输特性如图所示。电路的输出电压可表示为 v0 = 0 v i>0 -v i v i<0 (a)电路(b)波形 (c)电压传输特性 图2 精密半波整流电路

这里,只需极小的输入电压,即可有整流输出,例如,设运放的开环增益为105 ,二 极管的正向导通压降为0.6V ,则只需输入为 μV 以上,即有整流输出了。同 理,二极管的伏安特性的非线性及温漂影响均被压缩了105 倍。 2.精密全波整流 图3给出一个具有高输入阻抗的精密全波整流电路及其工作波形与电压传输特性。 当输入 >0时, <0,二极管D 1导通、D 2截止,故 = = 。运放A 2为差分输入 放大器,由叠加原理知。 v o v i V OM (b )工作波形 (c ) 电压传输特性 图3 精密全波整流电路 v i R - + A 1 +15V -15V N D 1 R D 2 v o1 - + A 2 +15V -15V N R 2R R L v o (a )电路 t v i v o t

单相桥式整流滤波电路仿真实验任务书

实验一单相桥式整流滤波电路 一、实验目的 (1)理解二极管全波整流电路的工作原理。 (2)了解各元件的工作性能和外形。 (3)观察单相桥式整流滤波电路的输入和输出电压波形。 (4)由单相桥式整流电路输出电压峰值计算输出电压的直流平均值,并与输入电压有效值进行比较。 (5)由单相桥式整流滤波电路输出电压峰值计算输出电压的直流平均值,并与输入电压有效值进行比较。 (6)由单相桥式整流电路输出电压峰值计算变压器副边电流有效值。 (7)测量全波整流电路中二极管两端的反向峰值电压。 (8)测量整流滤波电路输出脉动电压的峰-峰值。 (9)观察滤波电容接与不接对输出电压波形的影响,了解滤波电容的作用。 (10)观察滤波电容大小的变化对输出脉动电压的影响。 (11)观察负载电阻大小的变化对输出脉动电压的影响。 二、实验器材 虚拟实验设备 操作系统为Windows XP的计算机 1台 Electronics Workbench Multisim ~电子线路仿真软件 1套 示波器Oscilloscope 1台 硅桥MDA2501 1个 数字万用表1个 交流电压源1个 电阻(200Ω,2W)1个 电阻(1KΩ,2W)1个 电解电容(470μF,50V) 1个 电解电容(10μF,50V)1个 开关1个 实际工程实验设备 模拟实验箱1台 函数信号发生器1台 示波器1台 数字万用表1台 电阻(200Ω,2W)1个 电阻(1KΩ,2W)1个 电解电容(470μF,50V) 1个 电解电容(10μF,50V)1个 三、实验原理及实验电路

全波桥式整流电路有电阻负载时直流电压平均值U L与输入交流电压有效值U的关系为 U L= 桥式整流电路输出电压的脉动频率f0为交流电源频率f(=50Hz)的2倍,也等于交流电源周期T倒数的2倍,即 f0=2f=2/T 桥式整流电路中,每个二极管两端所加的反向峰值电压U m为交流电压有效值的2倍, 2U。 以保证安全选取整流二极管时最大反向峰值电压U Rm取2 整流滤波电路的平均直流输出电压U CL可用输出电压的峰值U P减去脉动电压峰-峰值U P-P 的一半来计算,即 U CL=(U P-U P-P)/2 在小电流输出的情况下,全波整流电容滤波电路(包括桥式整流电容滤波电路)的直流输出电压可估算为交流电压有效值的倍,即 U CL≈ 实验电路如图1-1所示。 四、实验步骤 1、变压器副边输出的测量 建立如图1-2(a)所示的电路,双击数字万用表的图标,打开其面板,设置为交流电压档。单击仿真开关,进行仿真分析,观察XSC1示波器屏幕上的波形,如图1-2(b)所示。按下仿真暂停按钮,用游标测量波形的最大值。描绘波形曲线,记录测量的数值和数字万用表(图1-2(c))显示的数字,并与计算值比较。 图1-2(a)变压器副边输出测量电路

电感电容电阻滤波电路

电感电容电阻滤波电路 在电路中,当电流流过导体时,会产生电磁场,电磁场的大小除以电流的大小就是电感,电感的定义是L=phi/i, 单位是韦伯。 电感只能对非稳恒电流起作用,它的特点两端电压正比于通过他的电流的瞬时变化率(导数),比例系数就是它的“自感” 。 电感起作用的原因是它在通过非稳恒电流时产生变化的磁场,而这个磁场又会反过来影响电流,所以,这么说来,任何一个导体,只要它通过非稳恒电流,就会产生变化的磁场,就会反过来影响电流,所以任何导体都会有自感现象产生。 电阻-电容组合起低通滤波作用,这时输入端是两个元件两端,输出端是电容两端,对于后级电路来说,低、高频信号可以过去,但高频信号被电容短路了。(电容通高频信号,阻低频信号,通交流信号,阻直流信号,对于高频信号,电容现在相当与一根导线,所以将高频信号短路了) 对于电容-电阻组合则起高通滤波作用,这时输入端是两个元件两端,输出端是电阻两端,对于后级电路来说,低频信号由于电容存在,过不去,到不了后级电路(电容通高频信号,阻低频信号,通交流信号,阻直流信号),而高频信号却可以通过,所以为高通滤波。 如上图所示为10MHz低通滤波电路。该电路利用带宽高达100MHz的高速电流反馈运算放大器OPA603组成二阶巴特沃斯低通滤波器。转折频率为f0=1/2πRC,按图中所示参数,f0=10MHz,电路增益为1.6。 如上图所示为有源高通滤波电路。该电路的截止频率fc=100Hz。电路中,R1与R2之比和C1与C2之比可以是各种值。该电路采用R1=R2和C1=2C2。采用C1=C2和R1=2R2也可以。

滤波电路分类详解 整流电路的输出电压不是纯粹的直流,从示波器观察整流电路的输出,与直流相差很大,波形中含有较大的脉动成分,称为纹波。为获得比较理想的直流电压,需要利用具有储能作用的电抗性元件(如电容、电感)组成的滤波电路来滤除整流电路输出电压中的脉动成分以获得直流电压。 常用的滤波电路有无源滤波和有源滤波两大类。无源滤波的主要形式有电容滤波、电感滤波和复式滤波(包括倒L型、LC滤波、LCπ型滤波和RCπ型滤波等)。有源滤波的主要形式是有源RC滤波,也被称作电子滤波器。直流电中的脉动成分的大小用脉动系数来表示,此值越大,则滤波器的滤波效果越差。 脉动系数(S)=输出电压交流分量的基波最大值/输出电压的直流分量。 半波整流输出电压的脉动系数为S=1.57,全波整流和桥式整流的输出电压的脉动系数S≈O.67。对于全波和桥式整流电路采用C型滤波电路后,其脉动系数S=1/(4(RLC/T-1)。(T为整流输出的直流脉动电压的周期。) 电阻滤波电路 RC-π型滤波电路,实质上是在电容滤波的基础上再加一级RC滤波电路组成的。如图1(B)RC滤波电路。若用S表示C1两端电压的脉动系数,则输出电压两端的脉动系数 S=(1/ωC2R)S。 由分析可知,电阻R的作用是将残余的纹波电压降落在电阻两端,最后由C2再旁路掉。在ω值一定的情况下,R愈大,C2愈大,则脉动系数愈小,也就是滤波效果就越好。而R 值增大时,电阻上的直流压降会增大,这样就增大了直流电源的内部损耗;若增大C2的电容量,又会增大电容器的体积和重量,实现起来也不现实。这种电路一般用于负载电流比较小的场合. 电感滤波电路 根据电抗性元件对交、直流阻抗的不同,由电容C及电感L所组成的滤波电路的基本形式如图1所示。因为电容器C对直流开路,对交流阻抗小,所以C并联在负载两端。电感器L对直流阻抗小,对交流阻抗大,因此L应与负载串联。 (A)电容滤波(B)C-R-C或RC-π型电阻滤波脉动系数S=(1/ωC2R')S' (C)L-C电感滤波(D)π型滤波或叫C-L-C滤波

相关文档
最新文档