异步串行通信的工作方式

异步串行通信的工作方式
异步串行通信的工作方式

异步串行通信的工作方式,然后给出了VB MSComm控件下异步串行通信在电子衡器中的应用实例,包括硬件接口及软件设计。关键词:RS-232 异步串行通信Visual Basic 电子衡器控件计算机一般提供了2个25针或9针的RS-232标准串行口,简称为COM1和COM2。在某些应用中,我们还可以通过插通信卡来获得额外的RS-232标准串行口。利用这些串行口可以与其它数字设备进行一般的数据通信,计算机的串行接口主要用于远程通信和低速输入输出设备。由于串行数据通信传输线条数最少,而且有许多较便宜的专用芯片可实现它,发送和接受器也简单,因而对数据传输速度要求不高的计算机和数字设备间的近程通信,多采用串行通信实现。而目前各个厂家生产的电子衡器的称重仪表多配有与上位机通信的RS—232C串行接口,因而计算机与称重仪表之间的数据通信用串口很容易实现,只需要制作一条2芯或3芯的数据线编写相应的接口程序即可实现,不需要增加其他硬件设备。采用这种方式组成的微机电子衡器有许多优点:称重仪表经过多年的发展,在数据采集、抗干扰、可靠性等方面技术成熟,质量稳定;而计算机在存储容量、数据处理、查询、统计报表等数据管理方面有明显优势。正是两者的完美结合,才使计算机与称重仪表组成的在线式称重管理系统得到了广泛的应用。1串行通信的工作方式串行通信,可分为同步和异步两种方式。异步方式是指在约定的波特率下,传送和接受的数据不需要严格的保持同步,允许有相对的延迟,虽然速度较慢,但经济实用,所以异步串行通信现大量应用于计算机接口技术中。计算机与称重仪表就采用异步通信的方式传送数据。1.1异步串行通信的数据格式在这种通信方式中,一般以一个字符为一帧。一帧最少由三部分组成:起始位、数据位、停止位,开始是一位起始位以发送一个逻辑“0”表示,接着是表示这个数据的数据位,数据位可以是5位、6位、7位或8位,再加一位奇偶校验位,然后是一个、一个半或二个停止位,停止位以逻辑“1”表示。1.2波特率串行通信每秒传送的位数,传送时先低位后高位。常用的波特率有600、1200、2400、4800、9600等。1.3端口在计算机中,一般都配有两个标准串行口,用COM1和COM2表示。(通常采用2个9针D型阳性插头。)1.4信号线RS—232C标准规定有25根连线,使用21个信号线。在我们讨论的微机电子衡器中仅用到3根信号线,它们是:发送数据线TXD(输出信号),接受数据线RXD(输入信号线),信号地GND。其余信号线定义可参考相关书籍。2串行通信在电子衡器中的应用实例串行通信接口设计,包括硬件、软件设计两部分。在WINDOWS操作系统下,可选用VC++、VB等可视化开发工具。下面将以上海耀华称重系统公司的XK3190—A1+为例,以VB6.0编程语言,说明串行通信的软、硬件设计过程。

2.1称重仪表仪表选用上海耀华XK3190-A1+仪表,其串口通信格式如下:2.1.1连续方式发送:所传送的数据为仪表显示的当前称量(毛重或净重),每帧数据由12组数据组成。

第X组

内容及注释

1

02(XON)开始

2

+或- 符号位

3

称量数据高位

称量数据:

称量数据:

8

称量数据低位

9

小数点位数从右到左(0~4)

10异或校验高四位

11异或校验低四位

12 03(XOFF)结束

异步串行通信的工作方式

异步串行通信的工作方式,然后给出了VB MSComm控件下异步串行通信在电子衡器中的应用实例,包括硬件接口及软件设计。关键词:RS-232 异步串行通信Visual Basic 电子衡器控件计算机一般提供了2个25针或9针的RS-232标准串行口,简称为COM1和COM2。在某些应用中,我们还可以通过插通信卡来获得额外的RS-232标准串行口。利用这些串行口可以与其它数字设备进行一般的数据通信,计算机的串行接口主要用于远程通信和低速输入输出设备。由于串行数据通信传输线条数最少,而且有许多较便宜的专用芯片可实现它,发送和接受器也简单,因而对数据传输速度要求不高的计算机和数字设备间的近程通信,多采用串行通信实现。而目前各个厂家生产的电子衡器的称重仪表多配有与上位机通信的RS—232C串行接口,因而计算机与称重仪表之间的数据通信用串口很容易实现,只需要制作一条2芯或3芯的数据线编写相应的接口程序即可实现,不需要增加其他硬件设备。采用这种方式组成的微机电子衡器有许多优点:称重仪表经过多年的发展,在数据采集、抗干扰、可靠性等方面技术成熟,质量稳定;而计算机在存储容量、数据处理、查询、统计报表等数据管理方面有明显优势。正是两者的完美结合,才使计算机与称重仪表组成的在线式称重管理系统得到了广泛的应用。1串行通信的工作方式串行通信,可分为同步和异步两种方式。异步方式是指在约定的波特率下,传送和接受的数据不需要严格的保持同步,允许有相对的延迟,虽然速度较慢,但经济实用,所以异步串行通信现大量应用于计算机接口技术中。计算机与称重仪表就采用异步通信的方式传送数据。1.1异步串行通信的数据格式在这种通信方式中,一般以一个字符为一帧。一帧最少由三部分组成:起始位、数据位、停止位,开始是一位起始位以发送一个逻辑“0”表示,接着是表示这个数据的数据位,数据位可以是5位、6位、7位或8位,再加一位奇偶校验位,然后是一个、一个半或二个停止位,停止位以逻辑“1”表示。1.2波特率串行通信每秒传送的位数,传送时先低位后高位。常用的波特率有600、1200、2400、4800、9600等。1.3端口在计算机中,一般都配有两个标准串行口,用COM1和COM2表示。(通常采用2个9针D型阳性插头。)1.4信号线RS—232C标准规定有25根连线,使用21个信号线。在我们讨论的微机电子衡器中仅用到3根信号线,它们是:发送数据线TXD(输出信号),接受数据线RXD(输入信号线),信号地GND。其余信号线定义可参考相关书籍。2串行通信在电子衡器中的应用实例串行通信接口设计,包括硬件、软件设计两部分。在WINDOWS操作系统下,可选用VC++、VB等可视化开发工具。下面将以上海耀华称重系统公司的XK3190—A1+为例,以VB6.0编程语言,说明串行通信的软、硬件设计过程。 2.1称重仪表仪表选用上海耀华XK3190-A1+仪表,其串口通信格式如下:2.1.1连续方式发送:所传送的数据为仪表显示的当前称量(毛重或净重),每帧数据由12组数据组成。 第X组 内容及注释 1 02(XON)开始 2 +或- 符号位 3 称量数据高位 : 称量数据: : 称量数据: 8 称量数据低位 9

RS232串口通信详解

RS232串口通信详解(引脚定义,电气特性,传输格式,接收过程,单片机晶振,RS485,RS422) 通信原理知识2010-01-03 20:53 阅读1 评论0 字号:大中小RS232串口通信详解(引脚定义,电气特性,传输格式,接收过程,单片机晶振,RS485,RS422) 串口是计算机上一种非常通用的设备通信协议。 --------------------------------- 串口的引脚定义: 信号方向来 9芯 缩写描述 自 1调制解调器CD载波检测 2调制解调器RXD接收数据 3PC TXD发送数据 4PC DTR数据终端准备好 5GND信号地 6调制解调器DSR通讯设备准备好 7PC RTS请求发送 8调制解调器CTS允许发送 9调制解调器RI响铃指示器

两个串口连接时,接收数据针脚与发送数据针脚相连,彼此交叉,信号地对应相接即可。 --------------------------------- 串口的电气特性: 1)RS-232串口通信最远距离是50英尺 2)RS232可做到双向传输,全双工通讯,最高传输速率20kbps 3)RS-232C上传送的数字量采用负逻辑,且与地对称 逻辑1:-3 ~-15V 逻辑0:+3~+15V 所以与单片机连接时常常需要加入电平转换芯片: --------------------------------- 串口通信参数: a)波特率:RS-232-C标准规定的数据传输速率为每秒50、75、 100、150、300、600、1200、2400、4800、9600、19200波特。 b)数据位:标准的值是5、7和8位,如何设置取决于你想传送的信息。比如,标准的ASCII码是0~127(7位);扩展的ASCII码是0~255(8位)。 c)停止位:用于表示单个包的最后一位,典型的值为1,1.5和2位。由于数是在传输线上定时的,并且每一

8251串行通讯实验

安徽师范大学数计学院实验报告 专业名称11计科 课程微机原理 实验名称串行通信实验姓名 学号110704012

8251 可编程串行口与PC 机通讯实验 一、实验目的 (1) 掌握8251 芯片的结构和编程,掌握微机通讯的编制。 (2) 学习有关串行通讯的知识。 (3) 学习PC 机串口的操作方法。 二、实验说明 1、8251 信号线 8251 是CPU 与外设或Mode 之间的接口芯片,所以它的信号线分为两组:一组是用于与CPU 接口 的信号线,另一组用于与外设或Mode 接口。 (1)与CPU 相连的信号线: 除了双向三态数据总线(D7~D0)、读(RD)、写(WR)、片选(CS)之外,还有: RESET:复位。通常与系统复位相连。 CLK:时钟。由外部时钟发生器提供。 C/D:控制/数据引脚。 TxRDY:发送器准备好,高电平有效。

TxE:发送器空,高电平有效。 RxRDY:接收器准备好,高电平有效。 SYNDET/BRKDET:同步/中止检测,双功能引脚。 (2)与外设或Mode 相连的信号线: DTR:数据终端准备好,输出,低电平有效。 DSR:数据装置准备好,输入,低电平有效。 RTS:请求发送,输出,低电平有效。 CTS:准许传送,输入,低电平有效。 TxD:发送数据线。 RxD:接收数据线。 TxC:发送时钟,控制发送数据的速率。 RxC:接收时钟,控制接收数据的速率。 2、8251 的初始化编程和状态字 8251 是一个可编程的多功能串行通信接口芯片,在使用前必须对它进行初始化编程。初始化编 程包括CPU 写方式控制字和操作命令字到8251 同一控制口,在初始化编程时必须按一定的顺序。如 下面的流程图:

串口通信实验讲解

课程名称:Zigbee技术及应用实验项目:串口通信实验指导教师: 专业班级:姓名:学号:成绩: 一、实验目的: (1)认识串口通信的概念; (2)学习单片机串口通信的开发过程; (3)编写程序,使单片机与PC通过串口进行通信。 二、实验过程: (1)根据实验目的分析实验原理; (2)根据实验原理编写C程序; (3)编译下载C程序,并在实验箱上观察实验结果。 三、实验原理: 串行通信是将数据字节分成一位一位的形式在一条传输线上逐个地传送,此时只需要一条数据线,外加一条公共信号地线和若干条控制信号线。因为一次只能传送一位,所以对于一个字节的数据,至少要分8位才能传送完毕,如图3-1所示。 图2-1串行通信过程 串行通信制式: (1)单工制式 这种制式是指甲乙双方通信时只能单向传送数据,发送方和接收方固定。 (2)半双工制式 这种制式是指通信双方都具有发送器和接收器,即可发送也可接收,但不能同时接收和发送,发送时不能接收,接收时不能发送。

(3)全双工制式 这种制式是指通信双方均设有发送器和接收器,并且信道划分为发送信道和接收信道,因此全双工制式可实现甲乙双方同时发送和接收数据,发送时能接收,接收时能发送。 三种制式分别如图3-2所示 图3-2串行通信制式 3.1硬件设计原理 CC2530有两个串行通信接口USART0和USART1,两个USART具有同样的功能,可已分别运行于UART模式和同步SPI模式。 CC2530的两个串行通信接口引脚图分布如表3-1所示 表3-1 CC2530串行通信口引脚图分布 本实验CC2530模块使用的是USART1的位置2,P1_6和P1_7。

异步串行接口电路及通信系统设计设计报告

异步串行接口电路及通信系统设计 设计报告 2009级可编程逻辑课程名称: 实验题目:学生姓名: YC 开课学院: Bio开课时间: 2011课程设计可编程逻辑设计异步串行接口电路及通信系统设计、SXL、ZY、YLJ、WJ 学院至2012学年第二学期重庆大学本科学生课程设计指导教师评定成绩表学院年级学生姓名课程设计题目be学院2009级指导教师专业Zxm. Wxp. BME YC、SXL、ZY、YLJ、WJ 异步串行接口电路及通信系统设计指导教师评语课程设计成绩指导教师签名:年月日重庆大学本科学生课程设计任务书课程设计题目学院BE学院异步串行接口电路及通信系统设计专业BME 年级、班09 BME 01、02班

设计要求:设计一个能进行异步全双工串行通信的模块,该模块以固定的串行数据传送格式收发数据。1)每帧数据供10 位,其中1位启动位,8位数据位,1位停止位。2)波特率为:9600。3)收发误码率摘要摘要通用串口是远程通信接口,在数字系统使用很普遍,是一个很重要的部件。本论文使用VHDL语言描述硬件功能,并适当借助Verilog HDL 语言,利用在FPGA 芯片上的综合描述,采用模块化设计方法设计UART的各个模块。其中包括波特率发生器,程序控制器,UART数据接收器和UART数据发送器,采用的外部时钟为50MHZ,波特率为9600。在QuartusII 环境下进行设计、编译和仿真。最后的程序编译仿真结果及硬件测试结果表明系统设计完全正确。关键字:VHDL; Verilog HDL;UART; 帧格式; FPGA;异步通信I 摘要Abstract In this paper, the use of

串口通信的接线方法

目前较为常用的串口有9针串口(DB9)和25针串口(DB25),通信距离较近时(<12m),可以用电缆线直接连接标准RS232端口(RS422、RS485较远),若距离较远,需附加调制解调器(MODEM)。最为简单且常用的是三线制接法,即地、接收数据和发送数据三脚相连,本文只涉及到最为基本的接法,且直接用RS232相连。 1、DB9和DB25的常用信号脚说明 2、RS232C串口通信接线方法(三线制) 首先,串口传输数据只要有接收数据针脚和发送针脚就能实现:同一个串口的接收脚和发送脚直接用线相连,两个串口相连或一个串口和多个串口相连同一个串口的接收脚和发送脚直接用线相连对9针串口和25针串口,均是2与3直接相连; 两个不同串口(不论是同一台计算机的两个串口或分别是不同计算机的串口) 图2 上面表格是对微机标准串行口而言的,还有许多非标准设备,如接收GPS数据或电子罗盘数据,只要记住一个原则:接收数据针脚(或线)与发送数据针脚(或线)相连,彼些交叉,信号地对应相接,就能百战百胜。 3、串口调试中要注意的几点: 不同编码机制不能混接,如RS232C不能直接与RS422接口相连,市面上专门的各种转换器卖,必须通过转换器才能连接; 线路焊接要牢固,不然程序没问题,却因为接线问题误事;

串口调试时,准备一个好用的调试工具,如串口调试助手、串口精灵等,有事半功倍之效果; 强烈建议不要带电插拨串口,插拨时至少有一端是断电的,否则串口易损坏。 RS232C标准串口接线方法 (第二版) 检验仪器与微机的通讯主要是以RS232C标准接口为主,而串口的接线方法也有一定的标准,在此谈谈几种常用的串口接法,仅作参考: 一、标准接法 1、9对9(包括9针对9孔,9孔对9孔,9针对9针): 说明:以下的孔、针指串口线两端的串口,不过2、3有可能不交换 2-------------3 3-------------2 4-------------6 5-------------5 6-------------4 7-------------8 8-------------7 2、9对25(包括9孔对25孔,9孔对25针) 2-------------3 (备注:2、3有可能不交换) 3-------------2 4-------------6 5-------------7 6-------------20 7-------------5 8-------------4

单片机串行通信实验

单片机实验报告 实验名称:串行通信实验 姓名:高知明 学号:110404320 班级:通信3 实验时间:2014-6-11 南京理工大学紫金学院电光系

一、实验目的(四号+黑体) 1、理解单片机串行口的工作原理; 2、学习使用单片机的TXD\RXD口; 3、了解MAX232芯片的作用; 二、实验原理 MCS-51单片机内部集成有一个UART,用于全双工方式的串行通信,可以发送、接收数据。他有两个相互独立的接收、发送缓冲器,这两个缓冲器同名(SBUF),共用一个地址号(99H)。发送缓冲器只能写入,不能读出,接受缓冲器只能读出,不能写入。要发送的字节数据直接写入发送缓冲器。SBUF=a;当UART接收到数据后,CPU从接收缓冲器中读取数据,a=SBUF;串行口内部有两个移位寄存器,一个用于串行发送,一个用于串行接收。定时器T1作为波特率发生器,波特率发生器的溢出信号昨接受或发送移位寄存器的位移时钟。TI与RI分别为发送完数据的中断标志,用来想CPU发中断请求。 三、实验内容 1、发送信号 1)C51程序: #include void main(void) { SCON=0X40; //设置串口为接受,REN=0 PCON=0; //波特率不倍频 REN=1; TMOD=0X20; //启动定时器1的方式2 TH1=0XFD; TL1=0XFD; //初值:0XFD TR1=1; //启动定时器1 while(1) {SBUF='U'; while(!TI); TI=0; //发送中断清0 }} 2)硬件图:

2、接受装置: 1)C51程序: #include char s[32]; void main(void) { char a,b=0; SCON=0X40; //设置串口为接受,REN=0 PCON=0; //波特率不倍频 REN=1; TMOD=0X20; //启动定时器1的方式2 TH1=0XFD; TL1=0XFD; //初值:0XFD TR1=1; //启动定时器1 a=32; for(;b

C#串口通讯编程

C#中串口通信编程收藏 本文将介绍如何在.NET平台下使用C#创建串口通信程序,.NET 2.0提供了串口通信的功能,其命名 空间是System.IO.Ports。这个新的框架不但可以访问计算机上的串口,还可以和串口设备进行通信。 我们将使用标准的RS 232 C 在PC间通信。它工作在全双工模式下,而且我们不打算使用任何的握手 或流控制器,而是使用无modem连接。 命名空间 System.IO.Ports命名空间中最重用的是SerialPort 类。 创建SerialPort 对象 通过创建SerialPort 对象,我们可以在程序中控制串口通信的全过程。 我们将要用到的SerialPort 类的方法: ReadLine():从输入缓冲区读一新行的值,如果没有,会返回NULL WriteLine(string):写入输出缓冲 Open():打开一个新的串口连接 Close():关闭 Code: //create a Serial Port object SerialPort sp = new SerialPort (); 默认情况下,DataBits 值是8,StopBits 是1,通信端口是COM1。这些都可以在下面的属性中重新设置 : BaudRate:串口的波特率 StopBits:每个字节的停止位数量 ReadTimeout:当读操作没有完成时的停止时间。单位,毫秒 还有不少其它公共属性,自己查阅MSDN。 串口的硬件知识

在数据传输的时候,每个字节的数据通过单个的电缆线传输。包包括开始位,数据,结束为。一旦 开始位传出,后面就会传数据,可能是5,6,7或8位,就看你的设定了。发送和接收必须设定同样 的波特率和数据位数。 无猫模式 没有Modem模式的电缆只是简单地交叉传送和接收线。同样DTR & DSR, 和RTS & CTS 也需要交叉。 RS232针图 这里,我们三条线。互连2和3(一段的2pin连接3pin),连接两端的5pin。 [示例程序] 主程序 如果想使用默认属性,按“Save Status”按钮,如果想改变属性按“Property”。它会弹出下图:

串口通讯通信协议技术

串口通讯—通信协议 所谓通信协议是指通信双方的一种约定。约定包括对数据格式、同步方式、传送速度、传送步骤、检纠错方式以及控制字符定义等问题做出统一规定,通信双方必须共同遵守。因此,也叫做通信控制规程,或称传输控制规程,它属于ISO'S OSI七层参考模型中的数据链路层。 目前,采用的通信协议有两类:异步协议和同步协议。同步协议又有面向字符和面向比特以及面向字节计数三种。其中,面向字节计数的同步协议主要用于DEC公司的网络体系结构中。 一、物理接口标准 1.串行通信接口的基本任务 (1)实现数据格式化:因为来自CPU的是普通的并行数据,所以,接口电路应具有实现不同串行通信方式下的数据格式化的任务。在异步通信方式下,接口自动生成起止式的帧数据格式。在面向字符的同步方式下,接口要在待传送的数据块前加上同步字符。 (2)进行串-并转换:串行传送,数据是一位一位串行传送的,而计算机处理数据是并行数据。所以当数据由计算机送至数据发送器时,首先把串行数据转换为并行数才能送入计算机处理。因此串并转换是串行接口电路的重要任务。 (3)控制数据传输速率:串行通信接口电路应具有对数据传输速率——波特率进行选择和控制的能力。 (4)进行错误检测:在发送时接口电路对传送的字符数据自动生成奇偶校验位或其他校验码。在接收时,接口电路检查字符的奇偶校验或其他校验码,确定是否发生传送错误。 (5)进行TTL与EIA电平转换:CPU和终端均采用TTL电平及正逻辑,它们与EIA采用的电平及负逻辑不兼容,需在接口电路中进行转换。 (6)提供EIA-RS-232C接口标准所要求的信号线:远距离通信采用MODEM时,需要9根信号线;近距离零MODEM方式,只需要3根信号线。这些信号线由接口电路提供,以便与MODEM或终端进行联络与控制。 2、串行通信接口电路的组成 为了完成上述串行接口的任务,串行通信接口电路一般由可编程的串行接口芯片、波特率发生器、EIA 与TTL电平转换器以及地址译码电路组成。其中,串行接口芯片,随着大规模继承电路技术的发展,通用的同步(USRT)和异步(UART)接口芯片种类越来越多,如下表所示。它们的基本功能是类似的,都能实现

两个单片机之间的简单异步串行通信

两个单片机之间的简单异步串行通信 2009-9-1 21:13 提问者:feitian_001|悬赏分:10|浏览次数:898次 我在proteus中用两个AT89C52单片机做了一个小设计,想以来来验证两个单片之间异步串行通信功能的实现。下位机的TXD和上位机的RXD相连。下位机发送0x07给上位机,然后上位机接受0x07这个数,并将收到的这个数赋给P1口(P1口连着八个发光二极管(共阴极)),按理说如果是正常通信的话,上位机收到下位机的数据应该是0x07,也就是说P1口连接着的八个发光二极管会点亮后三个,但是我编写程序加载到proteus中的单片机中运行程序,发现数码管亮的很乱,不是预期的那种亮法,实在是找不到问题出在了哪里。下面我把程序贴一下,希望大家对异步串行通信比较懂的给我指点一下。 下位机(发送数据的单片机): #include #define uchar unsigned char #define uint unsigned int voiduart_init() { TMOD=0x20; //T1 方式2 TH1=0xFD; //baud rate 9600bit/s TL1=0xFD; TR1=1; REN=1; //允许接收 SM0=0; //串口方式1 SM1=1; TI=0; } void delay(uint z) { uintx,y; for(x=z;x>0;x--) for(y=125;y>0;y--); } void main() { uart_init(); while(1) { SBUF=0x07; while(!TI); TI=0; delay(5000); } } 上位机(接收发过来的数据的单片机): #include #define uchar unsigned char

DSP与计算机的异步串行通信

1 绪论 1.1 设计背景 在DSP芯片出现之前,数字信号处理只能依靠通用微处理器来完成,由于微处理器芯片速度较低,难以满足高速实时处理的要求。1965年库利和图基发表了著名的快速傅立叶变换FFT,极大地降低了傅立叶变换的计算量,从而为数字信号的实时处理奠定了算法的基础。与此同时,伴随集成电路技术的发展,各大集成电路厂商为生产通用DSP芯片做了大量的工作。1978年AMI公司生产第一片DSP芯片S2811。1979年美国Intel公司发布了商用可编程DSP器件Intel2920,由于内部没有单周期的硬件乘法器,使芯片的运算速度,数据处理能力和运算精度受到了很大的限制。运算速度大哟为单指令周期200~250ns,应用范围仅局限于军事或航空领域。 随着时间的推移,许多国际上著名集成电路厂家都相继推出自己的DSP产品。这个时期的DSP器件在硬件结构上更适合数字信号处理的要求,能进行硬件乘法,硬件FFT变换和单指令滤波处理,其单指令周期为80~100ns,20实际80年代后期,以TI公司的TMS320C30为代表的第三代DSP芯片问世,伴随着运算速度的进一步提高,其应用范围逐步扩大到通信,计算机领域。 在2000年以后,DSP制造商不仅信号处理能力更加完善,而且是系统开发更加方便,程序编辑更加灵活,功耗进一步降低,成本不断下降。尤其是各种通用外设集成到片上,大大地提高了数字信号处理能力。这一时期的DSP运算速度可达到单指令周期10ms左右,可在Windows环境下直接应用C语言编程,使用方便灵活,使DSP芯片不仅在通信,计算机领域得到了广泛的应用,而且逐步渗透到了人们的日常消费领域。 目前DSP芯片的发展非常迅速。硬件结构方面主要是向多处理器的并行处理结构,便于外部数据交换的串行总线传输,大容量片上RAM和ROM,程序加密,增加IO驱动能力,外围电路内装化,低功耗等方面发展。软件方面主要是综合平台的完善,使DSP的应用开发更加灵活方便。

串行口通信实验 单片机实验报告

实验六串行口通信实验 一、实验内容 实验板上有RS-232接口,将该接口与PC机的串口连接,可以实现单片机与PC机的串行通信,进行双向数据传输。本实验要求当PC机向实验板发送的数字在实验板上显示,按实验板键盘输入的数字在PC机上显示,并用串口助手工具软件进行调试。 二、实验目的 掌握单片机串行口工作原理,单片机串行口与PC机的通信工作原理及编程方法。 三、实验原理 51单片机有一个全双工的串行通讯口,所以单片机和电脑之间可以方便地进行串口通信。进行串行通讯信要满足一定的条件,比如电脑的串口是RS232电平(-5~-15V为1,+5~+15V为0),而单片机的串口是TTL电平(大于+2.4V为1,小于- 0.7V为0),两者之间必须有一个电平转换电路实现RS232电平与TTL电平的相互转换。 为了能够在PC机上看到单片机发出的数据,我们必须借助一个Windows软件进行观察,这里我们可以使用免费的串口调试程序SSCOM32或Windows的超级终端。 单片机串行接口有两个控制寄存器:SCON和PCON。串行口工作在方式0时,可通过外接移位寄存器实现串并行转换。在这种方式下,数据为8位,只能从RXD端输入输出,TXD端用于输出移位同步时钟信号,其波特率固定为振荡频率的1/12。由软件置位串行控制寄存器(SCON)的REN位后才能启动,串行接收,在CPU将数据写入SBUF寄存器后,立即启动发送。待8位数据输完后,硬件将SCON寄存器的T1位置1,必须由软件清零。 单片机与PC机通信时,其硬件接口技术主要是电平转换、控制接口设计和远近通信接口的不同处理技术。在DOS操作环境下,要实现单片机与微机的通信,只要直接对微机接口的通信芯片8250进行口地址操作即可。WINDOWS的环境下,由于系统硬件的无关性,不再允许用户直接操作串口地址。如果用户要进行串行通信,可以调用WINDOWS的API 应用程序接口函数,但其使用较为复杂,可以使用KEILC的通信控件解决这一问题。 四、实验电路 [参考学习板说明书P27]

通用串口通讯程序设计

通用串口通讯程序设计 作者:和光同尘版本:V1.0 序 做硬件开发近20载,花了近十年做基础开发,对硬件开发略知一二,接触的做国防/工业大项目的人才我就是和他们沟通中获取了很多思想;人生已过而立之年,不惑解疑,总想写点什么。从一线研发(做了4年),开发(3年),硬件开发主管(12年),算起来人生从不到弱冠之年(中专毕业)开始接触MCS51、AVR等8位处理器到ARM v7核、CoretxM 核的32位处理器,CPLD/FPGA、PLC…………啰嗦了!! 最近因为工作原因需要把一些自己感悟的记录下来,希望传递给入门的有心沉下心做基础健壮扎实的初学者。

正文 做嵌入式硬件开发一般都会用到通讯数据交互,这就涉及通讯协议/规约的设计。本文从基础的串口(RS232、RS485等)为模型进行讲解。 说道串口通讯,就是编写串口程序,简单的就是1个字节的发送,1个字节的接收,但这不能满足绝大多数实际工作业务需求,实际需要一串字节数据的交互,A发送,B接收……Z 接收;Z机……B机收到根据情况需要回复(ACK)A机,这个过程就叫交互双向通讯(本文不讨论多主机、1主机相对复杂通讯机制。)。这种通讯就需要提前设计好通讯的规约(大家约定好暗号——每个字节代表什么意思)。 接下来编写通信程序(发送/接收),如何写出一个健壮高效串口程序?是否健壮高效其实很大一部分取决于通讯接收程序的架构。 通讯程序编写依据是——通讯规约,通讯帧的设计。 ●I类通用型: ||帧头段|===|数据段|===|校验码|===|帧尾段|| ●II类时隙通讯: ||开始时隙T(T1T2T3T4T5T6)|=|功能码|=|数据段|=|校验码|=|结束时隙T(T1T2T3)|注意:时隙只是纯粹的前后两帧数据的间隔时间,这期间坚决不能有数据产生。 1.1I类通用型 ◆帧头段 帧头段用于鉴别一串字节流中1帧数据起始位置,这个帧头段必须具有足够的特殊标识(易分辨)。 什么样的特殊标识可作为帧头? 根据个人经验: ①具有监测通讯波特率功能特点:0B01010101(55H)、0B10101010(AAH)或0B00000000(00H)、0B11111111(FFH); ②利用ASCII码如MODBUS ASCII规约以冒号‘:’(3AH)作为帧头。也可以采用ASCII ‘U’(55H)、‘@’(40H)等等 只要保证帧头字节数据内容,在所有通讯数据字节流中,除帧头有意为之而出现,那就是帧头。建议最好有两个字节及以上,这样数据出现与帧头一致的概率更加小,才做到独一无二的特殊性。

串行通信技术-模拟信号转换接口

微机原理与应用实验报告6 实验9串行通信技术 实验10A模拟信号转换接口 实验报告

实验九串行通信技术 一、实验目的 1. 了解异步串行通信原理; 2. 掌握MSP430异步串行通信模块及其编程方法; 二、实验任务 1. 了解MSP430G2553实验板USB转串口的通信功能,掌握串口助手的使用 (1)利用PC机的串口助手程序控制串口,实现串口的自发自收功能 为实现PC串口的自发自收功能,须现将实验板上的扩展板去下,并将单片机板上的BRXD和BTXD用杜邦线进行短接,连接图如下所示: 由此可以实现PC串口的自收自发功能。 (2)思考题:异步串行通信接口的收/发双方是怎么建立起通信的 首先在异步通信中,要求接收方和发送方具有相同的通信参数,即起始位、停止位、波特率等等。在满足上面条件的情况下,发送方对于每一帧数据按照起始位数据位停止位的顺序进行发送,而接收方则一直处于接受状态,当检测到起始位低电平时,看是采集接下来发送方发送过来的数据,这样一帧数据(即一个字符)传送完毕,然后进行下一帧数据的接受。这样两者之间就建立起了通信。 2. 查询方式控制单片机通过板载USB转串口与PC机实现串行通信 (1)硬件连接图

(2)C语言程序 采用SMCLK=1.0MHz时,程序如下:

其中SMCLK=1MHz,波特率采用的是9600,采用低频波特方式,则N=1000000/9600=104.1666…,故UCA0BR1=0,UCA0BR0=104,UCBRS=1; 当采用外部晶振时,时钟采用默认设置即可,程序如下:

也是采用了低频波特率方式,所以关于波特率设置的相关计算和上面是一样的。 (3)思考:如果在两个单片机之间进行串行通信,应该如何设计连线和编程? 由于在上面的连线中将单片机上的P1.2和BRXD相连,P1.1和BTXD相连,所以若要在两个单片机之间进行通信,首先应该将两个单片机的P1.2和P1.1交叉相连,并根据上面的程序进行相同的关于端口和波特率相关的设置即可实现两个单片机之间的通信。 3. (提高)利用PC机RS232通信接口与单片机之间完成串行通信 (1)硬件连接图 在实验时,采用了将PC机的串口com1直接连接至MSP430F149的孔型D9连接器上,G2553单片机的输出引脚P1.1和P1.2分别与F149单片机上的URXD1和UTXD1相连接,连接图如下所示:

串口通信的基本知识

串口通信的基本知识 串口通信的基本概念 1,什么是串口? 2,什么是RS-232? 3,什么是RS-422? 4,什么是RS-485? 5,什么是握手? 1,什么是串口? 串口是计算机上一种非常通用设备通信的协议(不要与通用串行总线Universal Serial Bus 或者USB混淆)。大多数计算机包含两个基于RS232的串口。串口同时也是仪器仪表设备通用的通信协议;很多GPIB兼容的设备也带有RS- 232口。同时,串口通信协议也可以用于获取远程采集设备的数据。 串口通信的概念非常简单,串口按位(bit)发送和接收字节。尽管比按字节(byte)的并行通信慢,但是串口可以在使用一根线发送数据的同时用另一根线接收数据。它很简单并且能够实现远距离通信。比如IEEE488定义并行通行状态时,规定设备线总常不得超过20米,并且任意两个设备间的长度不得超过2米;而对于串口而言,长度可达1200米。 典型地,串口用于ASCII码字符的传输。通信使用3根线完成:(1)地线,(2)发送,(3)接收。由于串口通信是异步的,端口能够在一根线上发送数据同时在另一根线上接收数据。其他线用于握手,但是不是必须的。串口通信最重要的参数是波特率、数据位、停止位和奇偶校验。对于两个进行通行的端口,这些参数必须匹配: a,波特率:这是一个衡量通信速度的参数。它表示每秒钟传送的bit的个数。例如300波特表示每秒钟发送300个bit。当我们提到时钟周期时,我们就是指波特率例如如果协议需要4800波特率,那么时钟是4800Hz。这意味着串口通信在数据线上的采样率为4800Hz。通常电话线的波特率为14400,28800和36600。波特率可以远远大于这些值,但是波特率和距离成反比。高波特率常常用于放置的很近的仪器间的通信,典型的例子就是GPIB 设备的通信。 b,数据位:这是衡量通信中实际数据位的参数。当计算机发送一个信息包,实际的数据不会是8位的,标准的值是5、7和8位。如何设置取决于你想传送的信息。比如,标准的ASCII 码是0~127(7位)。扩展的ASCII码是0~255(8位)。如果数据使用简单的文本(标准ASCII码),那么每个数据包使用7位数据。每个包是指一个字节,包括开始/停止位,数据位和奇偶校验位。由于实际数据位取决于通信协议的选取,术语“包”指任何通信的情况。c,停止位:用于表示单个包的最后一位。典型的值为1,1.5和2位。由于数据是在传输线上定时的,并且每一个设备有其自己的时钟,很可能在通信中两台设备间出现了小小的不同步。因此停止位不仅仅是表示传输的结束,并且提供计算机校正时钟同步的机会。适用于停止位的位数越多,不同时钟同步的容忍程度越大,但是数据传输率同时也越慢。 d,奇偶校验位:在串口通信中一种简单的检错方式。有四种检错方式:偶、奇、高和低。当然没有校验位也是可以的。对于偶和奇校验的情况,串口会设置校验位(数据位后面的一位),用一个值确保传输的数据有偶个或者奇个逻辑高位。例如,如果数据是011,那么对

北邮设计一:异步串行通信控制器

设计一:异步串行通信控制器 一、目的: ●掌握状态机的原理与设计方法; ●了解异步通信的原理和特点; ●掌握异步通信接口的设计方法。 二、异步通信原理简介: 我们主要以接收端为例来说明异步通信的工作原理,发送端可依此类推。异步通信的特点是数据在线路上的传输是不连续的,线路上数据是以一个字符为单位来传输的。异步传输时,各个字符可以是连续传输,也可以是间隔传输,这完全由发送方根据需要来决定。另外,在异步传输时,同步时钟信号并不传送到接收端,即收发双方各用自己的时钟来控制发送和接收。 由于字符的发送是随机进行的,因此,对于接收端来说就有一个判断何时有字符来,何时是新的一个字符开始的问题。因此,在异步通信时,对字符必须规定统一的格式。 异步信息传输格式 一个字符通常由四部分组成:起始位、数据位、奇偶校验位和停止位。一个字符由起始位开始,停止位结束。奇偶校验位只占一位,为了简化分析我们暂且规定不用奇偶校验位。 起始位为0信号,占用一位,来通知接收端一个新的字符开始来到。线路上不传输字符时,应保持为1。接收端不断检测线路的状态,若连续为1以后又开始测到一个0,就知道是发来一个新字符,马上应准备接收。字符的起始位还被用来同步接收端的时钟,以保证以后的接收能正确进行。接收时钟信号RXC的频率是数据率的N倍,一般N=8,16,32,64等。由于异步通信双方各用自己的时钟源,若是时钟频率等于波特率,则频率稍有偏差便会产生接收误差,因此,采用较高频率的时钟,就能保证正确地捕获到信号。 起始位后面紧接着的是数据位,它可以是5位、6位、7位和8位。我们这里规定采用8位的数据位。注意在发送时,总是低位先发送(最低位LSB,最

Java串口通信编程指南

Java串口通信编程指南

1. 概述 在java中,利用Java Communication包可以操作串口,但官方的包在3.0之后就只支持Linux和Solaris平台了,Windows平台的只支持到98年出的2.0版本,不过在XP下还能使用。另外,也可以用开源的Rxtx实现串口通信,这里仅以Java Communication包,在Windows 平台实现串口通信进行说明。 2. 前期准备 2.1. 下载Java Communication包 ?下载地址如下:https://www.360docs.net/doc/1714497837.html,/Jolt/javacomm20-win32.zip。 ?如果是非Windows平台,请到Sun网站选择其他版本下载。地址如下: https://www.360docs.net/doc/1714497837.html,/download/products.xml?id=43208d3d 2.2. 配置 ?解压缩javacomm20-win32.zip ?把win32com.dll拷贝到{JAVA_HOME}\jre\bin ?把comm.jar拷贝到{JAVA_HOME}\jre\lib\ext ?把https://www.360docs.net/doc/1714497837.html,m.properties拷贝到{JAVA_HOME}\jre\lib ?set CLASSPATH={JAVA_HOME}\jre \lib\ext \comm.jar;%classpath%

3. 实现过程 主要步骤包括: ?获得串口标识 ?打开串口 ?设置串行端口通讯参数 ?获取输入(出)流 ?进行读写操作 3.1. 获得串口标识 指定串口的端口号,生成串口的标识类的实例。 https://www.360docs.net/doc/1714497837.html,mPortIdentifier是通讯端口管理器,控制访问到通讯端口的中心类。一个应用程序首先使用CommPortIdentifier中的方法,通过相关的驱动去获取那些通讯端口是可用的并且选择一个端口便于开始。它包括如下功能: a. 通过驱动决定通讯端口是可用的。 b. 打开通讯端口为了I/O操作。 c. 决定端口的拥有者。 d. 解析端口拥有者的争夺。 e. 管理事件显示在端口拥有者的中的状态改变。 示例代码如下: 代码: 3.2. 打开串口 示例代码如下: 代码:

异步串行通信接口实验

计算机系统的通信实验 一.目的:了解计算机间的数据通信的基本技术; 了解RS─232C的结构及使用方法。RS----232C 9芯连接器插针定义如下: 二.使用设备:带有RS─232C通信接口的微型计算器及一根多芯电缆。 三.8250异步串行接口: IBM PC系统可选的串行异步通信接口板上用的UART是一片INS8250,以它为核心,附加一些辅助电路,如I / O地址译码电路电平变换电路等,组成了RS232C接口,所以,对RS232C编程实际上是对8250的编程。8250的逻辑框图如下:

(一)8250的编程模型 8250异步串行接口是用于IBM PC串行通讯的接口芯片,8250内含比特率分频器,无须外接,所以用它构成接口非常简单。有两个串口,每个串口上有10个寄存器,IBM PC系统只为这10个寄存器分配了连续的7个端口地址,其端口地址分配如下: 分配的端口地址输入还是输出相应寄存器 3F8H/2F8H*输出发送数据寄存器 3F8H/2F8H*输入接收数据寄存器 3F8H/2F8H+输出波特率分频器L(数据传输速度)3F9H/2F9H+输出波特率分频器H 3F9H/2F9H*输出中断允许寄存器 3FAH/2FAH 输入中断标识寄存器 3FBH/2FBH 输出线控制寄存器 3FCH/2FCH 输出Modem控制寄存器 3FDH/2FDH 输入线狀态寄存器 3FEH/2FEH 输入Modem狀态寄存器 注:标有*寄存器地址是线控制存器7位为0时的寄存器地址,标有+寄存器地址是线控制存器7位为1时的寄存器地址。 从功能上分,这10个寄存器可分为两组:一组用于工作方式,通信参数的控置和设置。如数据格式有关参数的设置,是否允许中断方式的设置以及是否使用RTS,DTR等联络控制信号等,属于这一组的有5个寄存器:波特率分频器L(低位)和H(高位) 线控制寄存器,Moden控制寄存器,中断允许寄存器。这5个寄存器都是在8250初始化时用OUT指令向其中置入初值的。另一组寄存器用于实现通信传输,有5个寄存器, 它包括:输入和输出的缓冲寄存器——接收数据寄存器和发送保持寄存器, 记忆当前状态的寄存器——线状态寄存器, Moden状态寄存器和中断标识寄存器。 (二)8250的初始化: 1.波特率的设置:(波特率分频器L和H)是用OUT指令向地址为3F8H和3F9H的两个波特率分频器置入合适的值实现的。 在初始化时,将线控寄存器最高为置1,然后写3F8H,3F9H便可对串行传送速率进行初始化。波特率分频器确定串行传送的速率(每秒传送的位数)如下: 波特率分频器H 分频器L 50 09H 00H 75 06H 00H 110 04H 17H 134.5 03H 59H 150 03H 00H 300 01H 80H 600 00H C0H 1200 00H 60H 1800 00H 40H 2000 00H 3AH 2400 00H 30H 3600 00H 20H

串行通信的同步传输与异步传输

------分隔线---------------------------- 这里所讲的同步传输和异步传输不同于VC 串口编程时的同步和异步,这里只讲串口硬件层传输的两种模式,有关VC 串口编程的同步模式和异步模式我将另外写一篇文章。 这里所讲的同步和异步是从硬件层级来讲的。首先要知道什么串行传输,串行传输是指数据的二进制代码在一条物理信道上以位为单位按时间顺序逐位传输的方式。串行传输时,发送端逐位发送,接收端逐位接受,同时,还要对所接受的字符进行确认,所以收发双方要采取同步措施(即判断什么时候有数据,数据是什么,什么时候结束传输)。 同步措施有两种,一种在传输的每个(帧)数据前(数据可能是5~8位)加一个起始位,后面加一位校验位及一位或两位的停止位组成一帧数据,这各方式称为异步传输;另一种是在一次传输(可能是多个字节)前加同步字节,可能不止一个字节,最后加校验字节或代表结束标志的字节,这种方式称为同步传输方式。 异步传输 异步传输将比特分成小组进行传送,小组可以是8位的1个字符或更长。发送方可以在任何时刻发送这些比特组,而接收方从不知道它

们会在什么时候到达。一个常见的例子是计算机键盘与主机的通信。按下一个字母键、数字键或特殊字符键,就发送一个8比特位的ASCII 代码。键盘可以在任何时刻发送代码,这取决于用户的输入速度,内部的硬件必须能够在任何时刻接收一个键入的字符。 异步传输存在一个潜在的问题,即接收方并不知道数据会在什么时候到达。在它检测到数据并做出响应之前,第一个比特已经过去了。这就像有人出乎意料地从后面走上来跟你说话,而你没来得及反应过来,漏掉了最前面的几个词。因此,每次异步传输的信息都以一个起始位开头,它通知接收方数据已经到达了,这就给了接收方响应、接收和缓存数据比特的时间;在传输结束时,一个停止位表示该次传输信息的终止。按照惯例,空闲(没有传送数据)的线路实际携带着一个代表二进制1的信号,异步传输的开始位使信号变成0,其他的比特位使信号随传输的数据信息而变化。最后,停止位使信号重新变回1,该信号一直保持到下一个开始位到达。例如在键盘上数字“1”,按照8比特位的扩展ASCII编码,将发送“00110001”,同时需要在8比特位的前面加一个起始位,后面一个停止位。 异步传输的实现比较容易,由于每个信息都加上了“同步”信息,因此计时的漂移不会产生大的积累,但却产生了较多的开销。在上面的例子,每8个比特要多传送两个比特,总的传输负载就增加25%。对于数据传输量很小的低速设备来说问题不大,但对于那些数据传输量很大的高速设备来说,25%的负载增值就相当严重了。因此,异步传输常用于低速设备。

相关文档
最新文档