世界是不确定的,还好,我们有概率论

世界是不确定的,还好,我们有概率论
世界是不确定的,还好,我们有概率论

世界是不确定的,还好,我们有概率论

阅读本文需要耐心(数学好到一定程度的除外),不妨准备一套纸币。如果让你产生想重学概率论的冲动怎么办?去学呀!“概率”这两个字,除了课本以外,最常出现的地方也许就是天气预报中的“降水概率”,也就是未来几天下雨的可能性有多大。在数学中,概率论是专门研究“可能性”的一门分支。它涉及的问题非常广泛,内容远远超出了中学课本里那些刻板的习题。一切随机或者不确定的事件,都是概率论研究的范畴。上至气象下至金融,甚至连“磁铁的磁性怎么来的”这种物理问题,都可以用概率的方法来研究。但这门学科的诞生却有些“不太光彩”。来自赌博的问题在1654年的一天早上,法国数学家布莱兹·帕斯卡收到了他的朋友贡博的一封来信。这位朋友自称“来自梅雷的骑士”,也算是一位业余数学家。他向帕斯卡提出了类似如下的问题:两位贵族A与B正在进行一场赌局,赌注是每人500

法郎,两人轮流掷硬币,得到正面则A得一分,反面则B得一分,每一局两人得分的机会相等,谁先得到6分谁就得到1000法郎。两人激战正酣,比分达到2比4之际,B突然有事需要终止赌局。赌注应该如何分配才最公平。这一类问题被称为点数分配问题,早在16世纪就被研究过,但数学家当时的答案并不令人满意,在一些极端情况下会给出非常不

合理的分配方案。也许这位“梅雷骑士”也见识过现实中这种赌局引起的矛盾,他希望帕斯卡能够解决这个问题。帕斯卡对这个问题也很感兴趣。他向另一位业余数学家皮埃尔·德·费马发去一封信讨论这个问题。作为“业余数学家之王”,费马很快就给出了一个答案。他认为,不能单靠赌局停止时的比分或者各自获胜需要的分数来决定赌注的分配,而是应该考虑所有比赛的可能性中,双方获胜的比例。但列举所有的可能性的计算量非常大,帕斯卡继而提出了一个简化算法,完美地解决了点数分配问题。实际上,他们的解答相当于计算两位玩家胜利概率的大小。在研究中,帕斯卡提出了“数学期望”的概念和著名的“帕斯卡三角形”(杨辉三角)。某个结果为实数的随机事件的数学期望,也就是所有结果按照发生概率加权之后的平均值。数学期望这个概念,掀开了概率论研究的序幕。什么是概率?很多概率问题有着特别的结构。对于某个非常简单的随机事件,比如说掷硬币,我们知道每种结果出现可能性的大小,这样的事件被称为“基本事件”。我们可以多次重复这些基本事件,假定它们发生的可能性不会改变,而且这些重复没有相互影响。如果我们将这些基本事件以合适的形式组合起来,就能得到一个更为复杂而有趣的系统。许多概率问题实际上就是对这些随机系统的各种性质的研究。比如说,在点数分配问题中,基本事件就是硬币的投掷,而系统则是赌局的具体规则,最

后我们希望知道的则是每一方胜利的可能性大小。在概率论发展的早期,数学家研究的问题大多比较简单,基本事件只有有限几种结果,组合的方式也相对简单。这样构成的随机系统又叫古典概型。随着数学的发展,数学家开始考虑更复杂的模型。18世纪的法国数学家布丰提出了这样一个问题:在数条间隔相等的平行线之间,随机投下长度与间距相等的一根针,它与这些平行线相交的概率是多少?在这里,因为角度与距离都是连续的值,基本事件有无数不同的结果,这样的随机系统被称为几何概型。早在19世纪,概率论已经成为了一门枝繁叶茂的数学分支。有趣的是,“概率”这个概念的严格定义要等到20世纪才出现。对于古典概型,因为结果数量有限,概率的定义并没有含糊之处,但几何概型的情况更为复杂。考虑这样的一个问题:圆中的一条随机的弦,它的长度比圆内接正三角形的边长更长的概率是多少?这个问题又叫贝特朗悖论,它奇怪的地方在于,对于不同的选取“随机的弦”的方法,得到的概率也不相同,到底谁是谁非?要等到1933年,俄国数学家柯尔莫哥洛夫为概率论建立公理体系之后,这个问题的解答才变得昭然若揭。柯尔莫哥洛夫将概率模型建立在某一类所谓的“σ代数上的测度”上,这样的测度可以有很多种,不同的测度对应着不同的“随机”。而在贝特朗悖论中,选取随机弦的方法实际上对应着不同测度的选取,也就是不同的“随机”概念,那自

然会得到不同的结果。而到了现在,概率模型的种类越来越多也越来越复杂,系统可以包含无限个基本事件,而具体的组织方式也更复杂更有趣。随机图、渗流模型、自回避行走,这些概率模型早已不能用古典概型和几何概型来概括。也正因为有了这些复杂的模型,我们才能用概率论解决现实世界的种种难题。无处不在的分布如果让数学家评选概率论中最重要的定理,桂冠可能非中心极限定理莫属。它不仅是概率论中许多重要结果的基石,在别的学科中,尤其是计算机科学,它也有重要的应用,而在现实生活中,它是整整一个行业赖以生存的理论基础。中心极限定理其实不止一个,可以说它是一连串定理的总称。它可以看作所谓“大数定理”的细化与推广。假设我们有一枚硬币,它掷出正反面的概率相等。那么,如果我们连续抛掷这枚硬币一万次,常识告诉我们其中大概有五千次是正面。这就是大数定理:对于某个基本事件独立地重复多次的话,某个可能性发生的次数占总数的比例会趋近于这个可能性发生的概率。与大数定理不同的是,中心极限定理处理的是那些结果是实数的随机基本事件。它告诉我们,如果将许多相同而又独立的基本事件的结果取平均的话,这个平均值会趋向某个概率分布。根据大数定理,这个分布的数学期望就是基本事件的数学期望。而中心极限定理额外告诉我们的,就是这个概率分布必定是一个所谓的“正态分布”,而它的方差,也就是概率分布的“分

散”程度,是基本事件的方差除以事件数目的平方根。也就是说,基本事件越多,平均值的不确定性就越小。将这个正态分布画成曲线的话,它就像一个大钟,中间高,但两头呈指数衰减,这也为它赢得了“钟形曲线”这个形象的名字。中心极限定理可以推广到取值范围是高维空间中一点的情况,“相同的基本事件”这个要求也可以被更弱的条件代替,只需要基本事件满足某些要求,而不需要完全相同。正态分布在自然界中随处可见,比如说人的身高和智力都服从正态分布。这是因为自然界中的很多现象都由各种因素千丝万缕的联系而决定,其中没有特别突出的因素。比如说人的身高,除了由许多不同的基因调控以外,后天的营养、环境、健康,甚至偶然的意外,都有着各自的影响。在这种情况下,如果将每个因素看成一个基本事件,并且假定这些因素各自的影响都差不多,将这些因素综合考虑,根据中心极限定理,得到的结果就非常接近正态分布。中心极限定理也是保险这一整个行业的基础。每个人都会遇到各种各样的风险,比如事故、疾病等等,这些风险发生的概率都很低,但一旦发生,后果非常严重,并非每个人都能承受。而保险业,实际上就是通过保费与保险赔付的方式,将上千万人连结起来,每人付出相对小的代价,在万一不幸袭来时,就能获得一定的保障。由中心极限定理,这样由数量庞大的个案相加而成的保险业务,由于偶然因素导致无法赔付的概率非常小,而且参

与的人数越多,风险就越小。为了确定保费与赔付,保险公司要做的就是根据大量统计数据精确地确定意外发生的概率,然后根据意外概率与收益确定保费与赔付的金额。这也是为什么现代的保险公司越来越重视概率与统计。理解复杂世界除了与不确定性相关的问题之外,概率论也与物理息息相关。法国物理学家皮埃尔·居里在攻读博士学位时,就发现了磁铁的一个有趣的性质:无论磁力多强的铁制磁铁,在加热到770摄氏度时,都会突然失去磁性。这个温度后来被称为铁的居里点。为什么磁铁会突然失去磁性?通过概率论与统计物理,我们现在明白,这种现象与冰雪消融、开水沸腾相似,都属于相变的范畴。我们可以将磁铁里的铁原子想象成一个一个的小磁针。在磁铁还有磁性时,这些小磁针齐刷刷地指向同一个方向,但因为分子热运动的关系,每个小磁针都会时不时地动一下,但很快会被旁边的小磁针重新同化。物理学家将这个场景抽象成所谓的伊辛模型,通过对伊辛模型的研究,概率学家发现,当温度达到某个临界值时,整个体系就会由于热运动而不能保持统一的指向,也就是失去磁性。这个临界值就是居里点,而这样的对伊辛模型的研究也部分揭示了磁铁的一些微观结构的成因。

(图片很大,请耐心等待)相变不仅仅局限于物理现象。流言的传播,传染病的爆发,还有微博的转发,都是一种相变过程,都存在某种临界值。比如说传染病,在适当的模型下,

如果每个病人传染人数的平均值低于某个临界值,那么疾病就能被控制;如果高于临界值,就很可能导致疫病的全面爆发。对于疾病传播的研究,属于流行病学研究的范畴,而在概率论被引入流行病学研究之后,我们对如何防止与控制疫病爆发有了更深入的了解,这是能挽救成千上万人的知识。概率论的应用远远不止这些,大至飞机失事搜救,小至垃圾邮件过滤,都能在其中找到概率论的身影。这个复杂的世界充满了不确定性,有些无伤大雅,有些却能致命。要驾驭这些不确定性,就要从了解它们开始。这就是概率论的意义。概率论不能为我们带来一个没有风险的世界,但它却能教会我们如何与风险和平共处。它带来的仅仅是关于不确定性的知识。但知识,往往就是力量。

概率论第一章课后习题答案

《概率论与数理统计》课后习题解答 习题一 3.设A ,B ,C 表示三个事件,用A ,B ,C 的运算关系表示下列各事件: (1)A 发生,B 与C 不发生; (2)A 与B 都发生,而C 不发生; (3)A ,B ,C 都发生; (4)A ,B ,C 都不发生; (5)A ,B ,C 中至少有一个发生; (6)A ,B ,C 中恰有一个发生; (7)A ,B ,C 中至少有两个发生; (8)A ,B ,C 中最多有一个发生. 解:(1)C B A ; (2)C AB ; (3)ABC ; (4)C B A ; (5)C B A ; (6)C B A C B A C B A ++; (7)BC AC AB ; (8)BC AC AB 或C B C A B A . 5.在房间里有10个人,分别佩戴从1号到10号的纪念章,任选3人记录其纪念章的号码. (1)求最小的号码为5的概率; (2)求最大的号码为5的概率. 解:设事件A 表示“最小的号码为5”,事件B 表示“最大的号码为5”,由概率的古典定义得 (1)12 1)(31025==C C A P ; (2)20 1)(31024==C C B P . 6.一批产品共有200件,其中有6件废品,求: (1)任取3件产品恰有1件是废品的概率; (2)任取3件产品没有废品的概率; (3)任取3件产品中废品不少于2件的概率. 解:设事件i A 表示“取出的3件产品中恰有i 件废品”)3,2,1,0(=i ,由概率的古典定义得

(1)0855.0)(3200 2194161≈=C C C A P ; (2)9122.0)(3200 31940≈=C C A P ; (3)0023.0)(3200 3611942632≈+=+C C C C A A P . 8.从0,1,2,…,9这十个数字中任意取出三个不同的数字,求下列事件的概率: A 表示“这三个数字中不含0和5” ; B 表示“这三个数字中包含0或5” ; C 表示“这三个数字中含0但不含5”. 解:由概率的古典定义得 157)(31038==C C A P ;158)(1)(=-=A P B P ;30 7)(31028==C C C P 9.已知5.0)(=A P ,6.0)(=B P ,8.0)(=A B P ,求)(AB P 和)(B A P . 解:4.08.05.0)|()()(=?==A B P A P AB P )]()()([1)(1)()(AB P B P A P B A P B A P B A P -+-=-== 3.0) 4.06.0 5.0(1=-+-= 10.已知4.0)(=B P ,6.0)(=B A P ,求)(B A P . 解:314.014.06.0)(1)()() ()()(=--=--==B P B P B A P B P B A P B A P 11.某种品牌电冰箱能正常使用10年的概率为9.0,能正常使用15年的概率为3.0,现某人购买的该品牌电冰箱已经正常使用了10年,问还能正常用到15年的概率是多少? 解:设事件B A ,分别表示“该品牌电冰箱能正常使用10,15年”,依题可知 3.0)()(,9.0)(===B P AB P A P ,则所求的概率为 3 19.03.0)()()|(===A P AB P A B P 12.某人忘记了电话号码的最后一个数字,因而他随意地拨最后一个号码.

概率论与数理统计第三章课后习题答案

习题三 1.将一硬币抛掷三次,以X 表示在三次中出现正面的次数,以Y 表示三次中出现正面次数与 出现反面次数之差的绝对值.试写出X 和Y 的联合分布律. 222??222 ??= 2.盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球,以X 表示取到黑球的只数,以Y 表示取到红球的只数.求X 和Y 的联合分布律. 324 C 35= 32 4 C 35= 322 4 C 35= 11322 4 C C 12C 35=132 4 C 2C 35 = 21322 4 C C 6C 35 = 2324 C 3 C 35 = 3.设二维随机变量(X ,Y )的联合分布函数为 F (x ,y )=?????≤ ≤≤≤., 020,20,sin sin 其他ππy x y x 求二维随机变量(X ,Y )在长方形域? ?? ? ??≤<≤<36,40πππy x 内的概率. 【解】如图πππ {0,}(3.2)463 P X Y <≤ <≤公式 ππππππ(,)(,)(0,)(0,)434636 F F F F --+

ππππππ sin sin sin sin sin0sin sin0sin 434636 2 (31). 4 =--+ =- 题3图 说明:也可先求出密度函数,再求概率。 4.设随机变量(X,Y)的分布密度 f(x,y)= ? ? ?> > + - . ,0 ,0 ,0 ,)4 3( 其他 y x A y x e 求:(1)常数A; (2)随机变量(X,Y)的分布函数; (3)P{0≤X<1,0≤Y<2}. 【解】(1)由-(34) 00 (,)d d e d d1 12 x y A f x y x y A x y +∞+∞+∞+∞ + -∞-∞ === ???? 得A=12 (2)由定义,有 (,)(,)d d y x F x y f u v u v -∞-∞ =?? (34)34 00 12e d d(1e)(1e)0,0, 0, 0, y y u v x y u v y x -+-- ??-->> ? == ?? ? ?? ?? 其他 (3) {01,02} P X Y ≤<≤< 12 (34)38 00 {01,02} 12e d d(1e)(1e)0.9499. x y P X Y x y -+-- =<≤<≤ ==--≈ ?? 5.设随机变量(X,Y)的概率密度为 f(x,y)= ? ? ?< < < < - - . ,0 ,4 2,2 ), 6( 其他 y x y x k (1)确定常数k; (2)求P{X<1,Y<3}; (3)求P{X<1.5}; (4)求P{X+Y≤4}. 【解】(1)由性质有

《概率论与数理统计》期中考试试题汇总

《概率论与数理统计》期中考试试题汇总

《概率论与数理统计》期中考试试题(一) 一、选择题(本题共6小题,每小题2分,共12分) 1.某射手向一目标射击两次,A i表示事件“第i次射击命中目标”,i=1,2,B表示事件“仅第一次射击命中目标”,则B=()A.A1A2B.21A A C.21A A D.21A A 2.某人每次射击命中目标的概率为p(0

6.设随机变量X 与Y 相互独立,X 服从参数2为的指数分布,Y ~B (6,2 1),则D(X-Y)=( ) A .1- B .74 C .54- D .12 - 二、填空题(本题共9小题,每小题2分,共18分) 7.同时扔3枚均匀硬币,则至多有一枚硬币正面向上的概率为________. 8.将3个球放入5个盒子中,则3个盒子中各有一球的概率为= _______ _. 9.从a 个白球和b 个黑球中不放回的任取k 次球,第k 次取的黑球的概率是= . 10.设随机变量X ~U (0,5),且21Y X =-,则Y 的概率密度f Y (y )=________. 11.设二维随机变量(X ,Y )的概率密度 f (x ,y )=? ??≤≤≤≤,y x ,其他,0,10,101则P {X +Y ≤1}=________. 12.设二维随机变量(,)X Y 的协方差矩阵是40.50.59?? ???, 则相关系数,X Y ρ= ________. 13. 二维随机变量(X ,Y ) (1,3,16,25,0.5)N -:,则X : ;Z X Y =-+: . 14. 随机变量X 的概率密度函数为 51,0()50,0x X e x f x x -?>?=??≤?,Y 的概率密度函数为1,11()20,Y y f y others ?-<

2017-2018概率论与数理统计期末试题(A)答案

第1页(共3页) 中国矿业大学(北京) 2017-2018 学年 第1 学期 《概率论与数理统计》试卷( A 卷)答案和评分标准 一、填空题(每小题3分,共30分) 1、设,A B 为两个事件,()0.4,()0.8,()0.5P A P B P AB ===,则 (|) P B A =____0.75__________ 2、设随机变量X 在(3,3)-上服从均匀分布,关于t 的方程24420t Xt X +++=有实根的概率为______ 2 1 _________ 3、设随机变量X 的概率密度函数为)(x f X ,则随机变量X e Y 3=的概率密度函数 为=)(y f Y _____?? ???+∞ <的泊松分布,且[(1)(2)]1E X X --=,则 λ=______1_________ 6、设随机变量,X Y 相互独立,且都服从参数2θ=的指数分布,则 {max{,}2}P X Y ≤=_____12(1)e --_________ 7、设随机变量X 的方差为2.5,由切比雪夫不等式估计概率 {|()|7.5P X E X -≥≤_ ___2 45 _______ 8、设总体2 ~(,)X N μσ,12,, ,n X X X 是该总体X 的一个样本,1 211()n i i i c X X -+=-∑为 2σ的无偏估计,则c =_______ ) 1(21 -n ___________ 9、设随机变量X 和Y 相互独立,且都服从正态分布2(0,3)N ,而129,, X X X 和 129,, ,Y Y Y 分别来自正态总体X 和Y 的简单随机样本,则统计 量 Y 服从____)9(t ________分布 10、设总体),(~2σμN X ,抽取容量16n =的样本n x x x ,,,21 ,经计算得均值 ,2.5=x 样本标准方差2=s ,则未知参数μ的置信度为0.95的置信区间为 _____)266.6,134.4(____________ 二、(10分)设工厂A 和工厂B 的产品次品率分别为1%和2%.现从A 和B 的产品分别占60%和40%的一批产品中随机抽取一件,发现是次品,求该次品属于工厂A 生产的概率. 解:设事件A 表示产品来自工厂A ,事件B 表示产品来自工厂B ,事件C 表示抽取到的产品是次品,则 %1)|(=A C P ,%2)|(=B C P ,%60)(=A P ,%40)(=B P 5分 从而7 3 %2%40%1%60%1%60)|()()|()()|()()|(=?+??=+=B C P B P A C P A P A C P A P C A P 5分

上海工程技术大学概率论第一章答案

习题一 2.设A ,B 为随机事件,且P (A )=0.7,P (A -B )=0.3,求P ( AB 解: P (AB ) =1-P (AB )=1-[P (A )-P (A -B )] =1-[0.7-0.3]=0.6。 3. 设A ,B ,C 为三事件,且P (A )=P (B )=1/4,P (C )=1/3且P (AB )=P (BC )=0, P (AC )=1/12,求A ,B ,C 至少有一事件发生的概率。 解:因为 A B C A B ?,所以0()()P ABC P AB ≤≤,又 P (AB )=0,则()0P ABC =, P (A ∪B ∪C ) =P (A )+P (B )+P (C )-P (AB )-P (BC )-P (AC )+P (ABC ) =14+14+13-112=34 。 4.将3个不同的球随机地放入4个杯子中去,求所有杯中球的最大个数分别为1,2,3的概率。 解:设i A ={杯中球的最大个数为i },i =1,2,3。 将3个球随机放入4个杯子中,全部可能放法有43种,杯中球的最大个数为1时,每个杯中最多放一球,故 34 13C 3!3()84 P A == 而杯中球的最大个数为3,即三个球全放入一个杯中,故1433C 1()164 P A ==,因此 213319()1()()181616 P A P A P A =--=--= 或 12143323C C C 9()164P A ==. 6.从1,2,3,4,5,6,7,8,9,0这10个数字中任取五个数按先后顺序组成多位数,求下列事件的概率:(1) 这五个数字组成一个五位偶数;(2) 2和3都被抽到且靠在一起. 解(1)5105987648764190 P A ????-???==. (2)145102!876445 C P A ????==. 7.对一个五人学习小组考虑生日问题: (1) 求五个人的生日都在星期日的概率;(2) 求五个人的生日都不在星期日的概率; (3) 求五个人的生日不都在星期日的概率. 解:基本事件总数为57, (1)设A 1={五个人的生日都在星期日},所求事件包含基本事件的个数为1个,故 P (A 1)=517=51()7 ;

概率论与数理统计期末考试试题及解答

《概率论与数理统计》期末试题 一、填空题(每小题3分,共15分) 1. 设事件B A ,仅发生一个的概率为0.3,且5.0)()(=+B P A P ,则B A ,至少有一个不发 生的概率为__________. 答案:0.9 解: 3.0)(=+B A B A P 即 )(25.0)()()()()()(3.0AB P AB P B P AB P A P B A P B A P -=-+-=+= 所以 1.0)(=AB P 9.0)(1)()(=-==AB P AB P B A P . 2. 设随机变量X 服从泊松分布,且)2(4)1(==≤X P X P ,则==)3(X P ______. 答案: 解答: λλ λ λλ---= =+==+==≤e X P e e X P X P X P 2 )2(, )1()0()1(2 由 )2(4)1(==≤X P X P 知 λλλ λλ---=+e e e 22 即 0122 =--λλ 解得 1=λ,故 16 1)3(-= =e X P 3. 设随机变量X 在区间)2,0(上服从均匀分布,则随机变量2 X Y =在区间)4,0(的概率密 度为=)(y f Y _________. 答案: 04,()()0,. Y Y X y f y F y f <<'===? 其它 解答:设Y 的分布函数为(),Y F y X 的分布函数为()X F x ,密度为()X f x 则 2 ()()()((Y X X F y P Y y P X y P X F F =≤=≤=≤=- 因为~(0,2)X U ,所以(0X F = ,即()Y X F y F =

概率论与数理统计第一章课后习题及参考答案

概率论与数理统计第一章课后习题及参考答案 1.写出下列随机试验的样本空间. (1)记录一个小班一次数学考试的平均分数(以百分制记分); (2)一个口袋中有5个外形相同的球,编号分别为1,2,3,4,5,从中同时取 出3个球; (3)某人射击一个目标,若击中目标,射击就停止,记录射击的次数; (4)在单位圆内任意取一点,记录它的坐标. 解:(1)}100,,2,1{ =Ω; (2)}345,235,234,145,135,134,125,124,123{=Ω; (3)},2,1{ =Ω; (4)}|),{(22y x y x +=Ω. 2.在}10,,2,1{ =Ω,}432{,,=A ,}5,4,3{=B ,}7,6,5{=C ,具体写出下列各式:(1)B A ;(2)B A ;(3)B A ;(4)BC A ;(5)C B A . 解:(1),9,10}{1,5,6,7,8=A , }5{=B A ;(2)}10,9,8,7,6,5,4,3,1{=B A ; (3)法1:}10,9,8,7,6,2,1{=B , }10,9,8,7,6,1{=B A , }5,4,3,2{=B A ; 法2:}5,4,3,2{===B A B A B A ; (4)}5{=BC , }10,9,8,7,6,4,3,2,1{=BC , }4,3,2{=BC A , }10,9,8,7,6,5,1{=BC A ;

(5)}7,6,5,4,3,2{=C B A , {1,8,9,10}=C B A . 3.设}20|{≤≤=Ωx x ,}121| {≤<=x x A ,}2 341|{≤≤=x x B ,具体写出下列各式:(1)B A ;(2)B A ;(3)AB ;(4)B A . 解:(1)B B A = , }22 3,410|{≤<<≤==x x x B B A ;(2)=B A ?; (3)A AB =, }21,10|{≤<≤ ≤==x x x A AB ;(4)}231,2141|{<<<≤=x x x B A .4.化简下列各式:(1)))((B A B A ;(2)))((C B B A ;(3)))((B A B A B A .解:(1)A B B A B A B A ==)())(( ; (2)AC B C A B C B B A ==)())((;(3))())()((B A B B A B A B A B A =AB AB A A B A A === )(.5.A ,B ,C 表示3个事件,用文字解释下列事件的概率意义:(1)C B A C A C B A ;(2)BC AC AB ;(3)(C B A ;(4)BC AC AB . 解:(1)A ,B ,C 恰有一个发生; (2)A ,B ,C 中至少有一个发生; (3)A 发生且B 与C 至少有一个不发生; (4)A ,B ,C 中不多于一个发生. 6.对于任意事件A ,B ,证明:Ω=-A B A AB )(.

概率论与数理统计期中试卷(1-4章)附答案及详解

X,

23π+=X Y 5.设随机变量1X ,2X ,3X 相互独立,1X 在)5,1(-服从均匀分布,)2, 0(~22N X ,)2(~3Exp X (指数分布),记32132X X X Y +-=,则)(Y E )(Y D 6. 设二维正态分布的随机变量)0,3,4,2 ,1( ),(2 2-N ~Y X ,且知8413.0)1(=Φ,则 -<+)4(Y X P 7. 已知随机变量X 的概率密度2 01()0 a bx x f x ?+<<=??其他, 且41)(=X E ,则a b ) (X D 8. 设4. 0,36)(,25)(===XY Y D X D ρ,则=+)(Y X D =-)(Y X D 二. (10分) 某车间有甲乙两台机床加工同一种零件,甲机床加工的零件数量比乙机床多一倍,甲乙机床加工零件的废品率分别为0.03,0.02. 两机床加工出的零件放在一起. 试求 (1)任取一个零件是合格品的概率; (2)任取一个零件经检验是废品,试求它是由乙机床生产的概率. 解:设“从放在一起的零件中任取一件发现是甲/乙机床加工的”分别记为事件,A .A 再记“从放在一起的零件中任取一件发现是废品”为事件.B 由已知得 .02.0)(,03.0)(;3 1 )(,32)(====A B P A B P A P A P …… 3’ (1)由全概率公式知 027.075 2 02.03103.032)()()()()(≈=?+?= +=A B P A P A B P A P B P . …… 3’ 故任取一个零件是合格品的概率73 ()1()0.973.75 P B P B =-= ≈ …… 1’ (2)由贝叶斯公式知 .4 102.03 103.03202.031 )()()()()()()(=?+??=+=A B P A P A B P A P A B P A P B A P …… 3’

同济大学版概率论与数理统计——修改版答案

概率论与数理统计练习题 系 专业 班 姓名 学号 第一章 随机事件及其概率(一) 一.选择题 1.对掷一粒骰子的试验,在概率论中将“出现奇数点”称为 [ C ] (A )不可能事件 (B )必然事件 (C )随机事件 (D )样本事件 2.下面各组事件中,互为对立事件的有 [ B ] (A )1A ={抽到的三个产品全是合格品} 2A ={抽到的三个产品全是废品} (B )1B ={抽到的三个产品全是合格品} 2B ={抽到的三个产品中至少有一个废品} (C )1C ={抽到的三个产品中合格品不少于2个} 2C ={抽到的三个产品中废品不多于2个} (D )1D ={抽到的三个产品中有2个合格品} 2D ={抽到的三个产品中有2个废品} 3.下列事件与事件A B -不等价的是 [ C ] (A )A A B - (B )()A B B ?- (C )A B (D )A B 4.甲、乙两人进行射击,A 、B 分别表示甲、乙射中目标,则A B ?表示 [ C] (A )二人都没射中 (B )二人都射中 (C )二人没有都射着 (D )至少一个射中 5.以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对应事件A 为. [ D] (A )“甲种产品滞销,乙种产品畅销”; (B )“甲、乙两种产品均畅销”; (C )“甲种产品滞销”; (D )“甲种产品滞销或乙种产品畅销 6.设{|},{|02},{|13}x x A x x B x x Ω=-∞<<+∞=≤<=≤<,则A B 表示 [ A] (A ){|01}x x ≤< (B ){|01}x x << (C ){|12}x x ≤< (D ){|0}{|1}x x x x -∞<

概率统计第三章答案

概率统计第三章答案 概率论与数理统计作业8 (§ 3.1?§ 3.3 ) 一、填空题 1.X,Y 独立同分布X L03 2:3,则P(X+YW1)=?E(XY)=4? 2.设X的密度函数为5= 2(10x) 0其它1,则 2 E(X) = 1/3,E(X ) = 1/6 . 3.随机变量X的分布率为P|0;00303,则E(X) = -0.2 ________ , 2 E(3X 5)= 13.4 ________________ 。 4.已知随机变量X的分布列为P ( X=m )= 1 , m = 2,4,…,18,20 ”则 E( X ) = ___________

5.对两台仪器进行独立测试,已知第一台仪器发生故障的概率为P I,第二台仪器发生故障的概率为P2 ?令X表示测试中发生故障的仪器数,则 E x A P1 P2 二、计算题 1.连续型随机变量X的概率密度为 a f(x)= kx穿",「0)又知 E(X)=0.75 ,求k 和 a 的值。 0 其它 解:由[3 (x dx = Jkx a dx = 1,得_^=1, . o a 1 又E(X)匚0.75,则有xf xdx 二:x kx a dx =0?75,得—= 0.75, 0 a 2 故由上两式解得k=3,a=2?

2.对某工厂的每批产品进行放回抽样检查。如果发现次品,则立即停止检查而认为这批产品不合格;如果连续检查5个产品,都是合格品,则也停止检查而认为这批产品合格。设每批产品的次品率为p,求每批产品抽查样品的平均数。解:设随机变量X表示每批产品抽查的样品数,则:P( X =m ) = pq m」(m =1,2,3,4); P( X = 5) = pq4 q5二q4 ( p q = 1) ???X的概率分布表如下: EX = p 2pq 3pq2 4 pq3 5q4 = 5 TO p 10 p2_5p3 p4 3 ?设二维随机变量X, Y的联合密度函数为I 21 2 2 . f(x,y)J匸x y X —y —1 [0其它 1)求EX,EY 及EXY ;

概率论期中考试试卷及答案

将 个不同的球随机地放在 个不同的盒子里,求下列事件的概率 个球全在一个盒子里 恰有一个盒子有 个球 解 把 个球随机放入 个盒子中共有45 种等可能结果 ( ) 个球全在一个盒子里 共有 种等可能结果 故 个盒子中选一个放两个球,再选两个各放一球有 30 2 415=C C 种方法 个球中取 个放在一个盒子里,其他 个各放在一个盒子里有 种方法 因此, 恰有一个盒子有 个球 共有 × 种等可能结果 故 12572 625360)(= = B P 某货运码头仅能容纳一只船卸货,而,甲乙两船在码头卸货时间分别为 小时和 小时,设甲、乙在 小时内随时可能到达,求它们中间任何一船都不需要等待码头空出的概率。 解: 设 分别为两船到达码头的时刻。 由于两船随时可以到达,故 分别等可能地在 上取值,如 厦门大学概统课程期中试卷 ____学院___系___年级___专业 考试时间

右图 方形区域,记为Ω。设 为“两船不碰面”,则表现为阴影部分。 222024,024024,024,2111 ()24576,()2322506.522 () ()0.8793 ()x y x y x y y x m m A m A P A m Ω≤<≤<≤<≤<->->Ω===?+?===Ω={(x,y)}, A={(x,y)或},有所以, 设商场出售的某种商品由三个厂家供货,其供应量之比是 : : ,且第一、二、三厂家的正品率依次为 、 、 ,若在该商场随机购买一件商品,求: 该件商品是次品的概率。 该件次品是由第一厂家生产的概率。 解 1231122331, (1) ()()(|)()(|)()(|) =60%*(1-98%)+20%*(1-98%)+20%*(1-96%) =0.024 (2) (|)A B B B P A P B P A B P B P A B P B P A B P B A =++= 设为该产品为次品,,分别为三个厂家产品,则由全概率公式可知由贝叶斯公式可知 111()()(|)60%*(1-98%) ()()0.024 =0.5P AB P B P A B P A P A == 甲乙丙三台机床独立工作,在同一时间内他们不需要工人照顾的概率分别为 ,求在这段时间内,最多只有一台机床需人照顾的概率。 解: 设123A A A 、、分别代表这段时间内甲、乙、丙机床需要照管,i B 代表这段时

概率论与数理统计复旦大学出版社第一章课后答案

第一章 1.见教材习题参考答案. 2.设A ,B ,C 为三个事件,试用A ,B ,C (1) A 发生,B ,C 都不发生; (2) A ,B ,C 都发生; (3) A ,B ,C (4) A ,B ,C 都不发生; (5) A ,B ,C (6) A ,B ,C 至多有1个不发生; 【解】(1) ABC (2) ABC (3)A B C (4) ABC =A B C (5) ABC (6) ABC ∪ABC ∪ABC ∪ABC =AB BC AC 3. . 4.设A ,B 为随机事件,且P (A )=0.7,P (A -B )=0.3,求P (AB ). 【解】 P (AB )=1-P (AB )=1-[P (A )-P (A -B )] =1-[0.7-0.3]=0.6 5.设A ,B 是两事件,且P (A )=0.6,P (B )=0.7, (1) 在什么条件下P (AB (2) 在什么条件下P (AB 【解】(1) 当AB =A 时,()()0.6P AB P A ==,()P AB 取到最大值为0.6. (2) 当A ∪B =Ω时,()()()()0.3P AB P A P B P A B =+-=,()P AB 取到最小值为0.3. 6.设A ,B ,C 为三事件,且P (A )=P (B )=1/4,P (C )=1/3且P (AB )=P (BC )=0, P (AC )=1/12,求A ,B ,C 至少有一事件发生的概率. 【解】 因为P (AB )=P (BC )=0,所以P (ABC )=0, 由加法公式可得 ()()()()()()()()P A B C P A P B P C P AB P AC P BC P ABC =++---+ = 14+14+13-112=34

概率统计第三章答案

概率论与数理统计作业 班级 姓名 学号 任课教师 第三章 多维随机变量及其分布 教学要求: 一、了解多维随机变量的概念,了解二维随机变量的分布函数; 二、了解二维离散型随机变量分布律的概念,理解二维连续型随机变量概率密度的概念; 三、理解二维随机变量的边缘概率分布; 四、理解随机变量的独立性概念; 五、会求两个独立随机变量的简单函数的分布(和、极大、极小). 重点:二维离散型随机变量的联合分布律及二维连续型随机变量的边缘概率密度,随机变 量的独立性. 难点:边缘分布,随机变量的独立性,随机变量的函数的分布. 练习一 二维随机变量及其分布 1.填空题 (1)设二维随机变量),(Y X 的分布函数为),(y x F ,且d c b a <<,,则 =≤}{a X P ()+∞,a F ; =≥}{d Y P ()d F ,1∞+-; =≤<≤<},{d Y c b X a P ),(),(),(),(c a F c b F d a F d b F +--. (2)设二维连续型随机变量),(Y X 的概率密度为),(y x f ,则其分布函数),(y x F = ?? +∞∞-+∞ ∞ -dxdy y x f ),(;若G 是xoy 平面上的区域,则点),(Y X 落在G 内的概率,即 }),{(G Y X P ∈??=G dxdy y x f ),( (3)若二维随机变量),(Y X 的概率密度为 ) 1)(1(),(22y x A y x f ++= )0,0(>>y x , 则系数A = ,4 2 π= <}1{X P 2 1. (4)设二维随机变量),(Y X 的分布函数(),3arctan 2arctan ,?? ? ??+??? ? ?+=y C x B A y x F

《概率论与数理统计》期中考试试题汇总,DOC

《概率论与数理统计》期中考试试题(一) 一、选择题(本题共6小题,每小题2分,共12分) 1.某射手向一目标射击两次,A i 表示事件“第i 次射击命中目标”,i =1,2,B 表示事件“仅第一次射击命中目标”,则B =( ) A .A 1A 2 B .21A A C .21A A D .21A A 2 345C 68.将3个球放入5个盒子中,则3个盒子中各有一球的概率为=________. 9.从a 个白球和b 个黑球中不放回的任取k 次球,第k 次取的黑球的概率是=. 10.设随机变量X ~U (0,5),且21Y X =-,则Y 的概率密度

2 f Y (y )=________. 11.设二维随机变量(X ,Y )的概率密度f (x ,y )=? ??≤≤≤≤,y x ,其他,0,10,101则P {X +Y ≤1}=________. 12.设二维随机变量(,)X Y 的协方差矩阵是40.50.59?? ??? ,则相关系数,X Y ρ=________. 13.二维随机变量(X ,Y )(1,3,16,25,0.5)N -,则X ;Z X Y =-+. (-1,31),(2,0),且取这些值的概率依次为61,a ,121,125. 求(1)a =?并写出(X ,Y )的分布律;(2)(X ,Y )关于X ,Y 的边缘分布律;问X ,Y 是否独立;(3){0}P X Y +<;(4)1X Y =的条件分布律; (5)相关系数,X Y ρ

18.(8分)设测量距离时产生的随机误差X ~N (0,102)(单位:m),现作三次独立测量,记Y 为三次测量中误差绝对值大于19.6的次数,已知Φ(1.96)=0.975. (1)求每次测量中误差绝对值大于19.6的概率p ; (2)问Y 服从何种分布,并写出其分布律;求E (Y ). 1取出的3件中恰有一件次品的概率为( ) A .601 B .457 C .51 D .15 7 2.下列选项不正确的是() A .互为对立的事件一定互斥 B .互为独立的事件不一定互斥 C .互为独立的随机变量一定是不相关的 D .不相关的随机变量一定是独立的 3.某种电子元件的使用寿命X (单位:小时)的概率密度为

2019中国矿业大学(徐州)统计学考研权威解析

一、学院介绍 中国矿业大学于1996年获得应用数学硕士点、2006年获得数学一级学科硕士点、2011年获得数学一级学科博士点(含基础数学、计算数学、概率论与数理统计、用数学、运筹学与控制论5个二级学科)与统计学一级学科硕士点。2016年学校成立数学学院,同年数学一级学科博士点顺利通过国家专项评估,数学学科被遴选为江苏省“十三五”省一级重点学科。 数学学院目前设有数学与应用数学系、统计学系、信息与计算科学系、高等数学教学中心和数学实验实践中心。数学学院现有专任教师90人,其中教授17人,博士生导师11人、硕士导师约50人,教师中有1人获得全国优秀博士学位论文奖、3人入选江苏省“青蓝工程”中青年学术带头人,3人入选省级优秀青年骨干教师,1人为全国煤炭系统专业技术拔尖人才,1人入选江苏省“双创计划”,1人获得全国教育系统职业道德建设标兵称号,1人获得全国大学生数学建模竞赛优秀指导教师称号。 2012 年以来数学学院教师共主持国家自然科学基金项目46项,主持省部级科研项目共27项,参加国家973重点基础研究计划项目1项,在国际前沿研究领域取得了多项高水平研究成果。 二、考试科目 027000统计学(管理学院)

①101 思想政治理论 ②201 英语一或202 俄语或203 日语或245德语(二外) ③303 数学三 ④891 统计学A 数学学院: 071400统计学 ①101 思想政治理论 ②201 英语一 ③643 数学分析 ④835 概率论与数理统计 三、专业课参考书目 891 统计学A: 《统计学》(第 4 版)贾俊平中国人民大学出版社,2011 年6月 《统计学》(第四版)贾俊平、何晓群主编中国人民大学出版社,2009 年11月 643、835: 《数学分析(上、下册)》(第四版)华东师范大学数学系编高等教育出版社

概率论第一章答案

.1. 解:(正, 正), (正, 反), (反, 正), (反, 反) A (正 ,正) , (正, 反) .B (正,正),(反,反) C (正 ,正) , (正, 反) ,(反,正) 2.解:(1,1),(1,2), ,(1,6),(2,1),(2,2), ,(2,6), ,(6,1),(6,2), ,(6,6);AB (1,1),(1,3),(2,2),(3,1); A B (1,1),(1,3),(1,5), ,(6,2),(6,4),(6,6),(1,2),(2,1); AC - BC (1,1),(2,2). A B C D (1,5), (2,4), (2,6), (4,2), (4,6), (5,1), (6,2), (6,4) 3. 解:(1) ABC ;(2) ABC ;(3) ABC ABC ABC ; (4) ABC ABC ABC ;( 5) A B C ; (6) ABC ;(7) ABC ABC ABC ABC 或AB AC BC (8) ABC ;(9) ABC 4. 解:甲未击中;乙和丙至少一人击中;甲和乙至多有一人击中或甲和乙至少有一人未击中; 甲和乙都未击中;甲和乙击中而丙未击中;甲、乙、丙三人至少有两人击中c 5. 解:如图: 第一章概率论的基本概念习题答案

每次拿一件,取后放回,拿3次: ABC ABC; AB C ABC C; B A C ABC ABC ABC BA ABC BC ABC 6. 解:不 疋成立 。例如: A 3,4,5 B 那么 A C B C 但A B 0 7. 解:不 疋成立 。例如: A 3,4,5 B 那么 A (B C) 3 , 但是 (A B) C 3,6,7 ABC ABC A B 4,5,6 o 8.解: C ABC ABC ABC 3 C 4,5 6,7 P( BA) P(B AB) P(B) P(AB) (1) 2 ; (2) P( BA) P(B A) P(B) 1 P(A) 6 ; (3) P( BA) P(B AB) P(B) 1 P(AB)- 2 9. 解: P(ABC) P A B C 1 P(A B C)= 1 1 8 P (1 ) 2 982 1003 0.0576 ; 1旦 1003 0.0588 ; 1 P(A) 1 P(B) 1 P(C) 1 P(AB) 1 P(AC) 3 P(BC) P(ABC) 16 16 g 八牛 A)n .(.( (C p( B P (1) C ;8C ; C 100 0.0588 ; P (2) 3 100 1 98 0.0594 ; D P 3 2 2 P c ;c

概率论与数理统计修订版第三章练习答案郝志峰,谢国瑞

概率论与数理统计第三章习题 率分布。 ,试写出命中次数的概标的命中率为目;设已知射手每次射击射击中命中目标的次数指示射手在这三次独立以本空间上定义一个函数验的样本空间;试在样作为试验,试写出此试察这些次射击是否命中三次独立射击,现将观一射手对某目标进行了7.0.1 。 出的废品数的概率分布前已取个,求在取得合格品之不再放回而再取来使用,若取得废品就个这批零件中任取个废品,安装机器时从个合格品、一批零件中有1139.2

11880 54 99101112123)3(132054 109112123)2(132 27 119123)1(12 9 )0(3 210191911011111121121311019111121121311119112131121 9= ???=???=== ??=??=== ?=?=== ==C C C C C C C C P C C C C C C P C C C C P C C P ξξξξξξ,,,可能取值为:代表废品数,则解:令 .1188054132054132271293210 ??? ? ??的分布列为 所以,ξ 废品数的概率分布。 况,求出取得)取后放回两种不同情)取后不放回;(个,试分别就(件,每次取个废品,现从中任取混有个同类型的一堆产品内设在2113210.3 .008.0096.0384.0512.03210 008.0)3(096.0)2(384.0)1(512.0)0(32102210)2()1()0(2 1013 1101 22 1101211018231101 22 1101 8133 1101831022183101228310383 10 2 2 18310122831038??? ? ??=??? ? ??===???? ?????? ??===??? ? ????? ? ??===???? ??==???? ? ?????==?====的分布列为 所以,,,,有 ,,,,则可能取值有:)设废品数为(的分布列为 所以,,,,,的可能值有:代表废品数,则)令解:(ηηηηηηξξξξξξC C P C C C C C P C C C C C P C C P C C C C C C C C C C C P C C C P C C P

概率统考试卷及答案(A)03.7

概率论与数理统计(A)试卷 (2003年7月7日 答题时间100分钟) 一 简答题(要求写出简要步骤或理由、每题5分、共40分) 1. 设70.)A (P =,30.)B A (P =-,问)AB (P 为多少? 2.有甲、乙、丙三个口袋,甲袋装有1只红球两只白球;乙袋装有2只红球2只白球、丙 袋装有2只红球4只白球。任取一个口袋,并从中任取一个球,问取到红球的概率有多大? 3.有10件产品,其中有1件次品,9件正品,每次从中任取一件,取后放回,直到取到次品为止,X 表示抽取次数,问X 的分布律是什么? 4.设X 的分布函数为x arctan B A )x (F +=,+∞<<∞-x ,问A ,B 各为多少? 5.一个口袋中装有三个球,它们上面分别标有数字1,2,2。从这口袋中任取一个球,不放 回去,再从口袋中任取一个球。以X ,Y 分别表示第一次,第二次抽取的球上的数字。问X 和Y 的联合分布律是什么? 6.设X 服从),(ππ-上的均匀分布,且X sin Y =,X cos Z =,问Y 与Z 的相关系数 YZ ρ为多少? 7.设总体),(N ~X 2 σμ,n X X X ,,,21 为样本,为样本均值,问])X X ([E n i i ∑=-1 2 的值为多少? 8.设X 服从),0(θ上的均匀分布,其密度函数为 ??? ??<<=其它 01 )(θ θ x x f n X X X ,,,21 为样本,问{}n X X X ,,,max ?21 =θ是否为θ的无偏估计量? 二(16分)设二维随机变量),(Y X 的概率密度为

? ? ?>>=+-其它 ,00 ,0, 2),()2(y x e y x f y x (1) 求分布函数),(y x F ; (2) 求边缘分布函数)(x F X ,)(y F Y ; (3) 求边缘密度函数)(x f X ,)(y f Y ; (4) 求)(Y X P ≤。 三(12分)某商店对某种家用电器的销售采用先使用后付款的方式。记使用寿命为X (单位:年),规定: 1≤X ,一台付款1000元; 31≤X ,一台付款3000元。 设寿命X 服从正态分布),2(2 σN ,求该商店销售一台收费Y 的数学期望。 四 (12分) 某计算机网络有120个终端,任意一时刻有10%的终端同时使用,若各个终端使用与否是相互独立的。试用中心极限定理计算,在任意一时刻有多于20个终端同时使用的概率。 五(10分)设电池的寿命服从指数分布,其概率密度为 ?????≤>=0 01)(_x x e x f x θθ 其中0>θ为未知参数,今随机抽取5只,测得寿命如下: 1150,1190,1310,1380,1420 求电池的平均寿命θ的最大似然估计值。 六(10分) 在某次外语四级考试中,设全体考生的成绩服从正态分布,从中随机地抽取36位考生的成绩,算得样本均值566.x =分,样本标准差15=s 分。问在水平050.=α下,是否可以认为这次考试全体考生的平均成绩为70分? 附表:z 05.0=1.65 z 025.0=1.96 z 01.0=2.33 t 025.0(35)=2.0301 t 05.0(36)=1.6883 t 025.0(36)=2.0281

相关文档
最新文档