第五章热力学函数及其应用热力-USTC

第五章热力学函数及其应用热力-USTC
第五章热力学函数及其应用热力-USTC

热力学一般关系(热学高等数学偏微分)

第二部分工质的热力性质 六热力学函数的一般关系式 由热力学基本定律引出的一些基本热力学状态函数(如内能U、熵S)及其为某一研究方便而设的组合函数(如焓H、自由能F、自由焓G等)许多都是不可测量,必须将它们与可测量(如压力p、体积V、温度T等)联系起来,否则我们将得不到实际的结果,解决不了诸如上一章讲的最大功计算等一些具体的问题。 这就需要发展热力学的数学理论以将热力学基本定律应用到各种具体问题中去。 热力学函数一般关系式 全微分性质+基本热力学关系式6.1 状态函数的数学特性 对于状态参数,当我们强调它们与独立变量的函数关系时,常称它们为状态函数。从数学上说,状态函数必定具有全微分性质。这一数学特性十分重要,利用它可导出一系列很有实用价值的热力学关系式。下面我们扼要介绍全微分的一些基本定理。

设函数),(y x f z =具有全微分性质 dy y z dx x z dz x y ? ??? ????+??? ????= (6-1) 则必然有 (1) 互易关系 令式(6-1)中 ),(y x M x z y =???? ????, ),(y x N y z x =???? ???? 则 y x x N y M ???? ????=? ??? ???? (6-2) 互易关系与 ?=0 dz 等价。它不仅是全微分的必要条件 ,而且是充分条件。因此,可反过来检验某一物理量是否具有全微分。 (2) 循环关系 当保持z 不变,即0=dz 时,由式(6-1),得 0=???? ????+??? ????z x z y dy y z dx x z

则 x y z y z x z x y ???? ???????? ????- =???? ???? 故有 1-=???? ???????? ???????? ????y z x z x x y y z (6-3) 此式的功能是:若能直接求得两个偏导数,便可确定第三个偏导数。结果也很容易记忆,只需将三个变量依上、下、外次序,即))()((xzy yxz zyx 循环就行了。 (3) 变换关系 将式(6-1)用于某第四个变量ω不变的情况,可有 ωωωdy y z dx x z dz x y ? ??? ????+??? ????= 两边同除以ωdx ,得 ω ω??? ????? ??? ????+??? ????=??? ????x y y z x z x z x y (6-4) 式中:y x z ??? ????是函数),(y x z 对x 的偏导数;ω??? ????x z 是以),(ωx 为 独立变量时,函数),(ωx z 对x 的偏导数。上面的关系可用于它们之间的变换。这一关系式对于热力学公式的推导十分重要。

光子气体与它的热力学函数关系

目录 1引言 (1) 2热辐射和平衡辐射 (1) 3 用能量均分定律讨论热辐射 (3) 4 热力学量的统计表达式 (5) 4.1总分数和能的统计表达式 (5) 4.2广义作用力的统计表达式 (6) 4.3熵的统计表达式 (6) 5 光子气体的热力学函数 (7) 6 结论 (8) 参考文献 (9) 致谢 (10)

光子气体与它的热力学函数关系 摘要:早在1900年,马克斯·普朗克解释黑体辐射能量分布时作出量子假设,物质振子与辐射之间的能量交换是不连续的,一份一份的,每一分的能量为hv,1905年阿尔伯特·爱因斯坦进一步提出光除了波动性之外还具有粒子性,他指出电子辐射不仅在被发射吸收时以能量为hv的微粒形式出现,而且以这种形式以速度c在空间运动这种粒子称之为光量子;普朗克和爱因斯坦的光量子理论直到1924年康普顿成功地用光量子概念解释了x光被物质散射是波长变化的康普顿效应,从而光量子概念被广泛接受和应用1926年正式名称为光子。光子不但具有能量,而且具有动量,光子的静止质量为零。 该文论述了光子气体热力学函数并根据光子气体巨配分函数推导出热力学函数能、压强、熵、焓、自由能和吉布斯函数以及物态方程。 关键词:光子;热辐射;巨配分函数;熵;压强。

1引言 早在1900年,马克斯.普朗克解释黑体辐射能量分布时作出量子假设,物质振子与辐射之间的能量交换是不连续的,一份一份的,每一分的能量为hv,1905年阿尔伯特.爱因斯坦进一步提出光除了波动性之外还具有粒子性,他指出电子辐射不仅在被发射吸收时以能量为hv的微粒形式出现,而且以这种形式以速度c 在空间运动这种粒子称之为光量子;普朗克和爱因斯坦的光量子理论直到1924年康普顿成功地用光量子概念解释了x光被物质散射是波长变化的康普顿效应,从而光量子概念被广泛接受和应用1926年正式名称为光子。光子不但具有能量,而且具有动量,光子的静止质量为零。近代物理理论研究表明,辐射除了具有波动性质外,还具有微粒性质,辐射场可看成是有各种频率的电磁波所组成,也可以将其视为是光子的集合是光子气体。光子气体也普通气体一样按一定规律分布(波色分布),但与普通气体相比有着如下差异:(1)光子随时在产生或漂灭,故粒子数不能固定;(2) 由于光子具有相同的速度(光速) ,故不存在速度分布;(3)普通气体分子之间按速度的平衡分布,是通过分子之间相互碰撞与相互作用机制实现的.而光子气体中的光子彼此并不碰撞,其间的平衡分布,只在辐射场中有某种能够吸收和辐射光子的物体存在时才能建立起来.在吸收或辐射过程中,一种频率的光子将转变成另一种频率的光子.正是光子气体与普通气体之间的这些差异,从而导致光子气体具有与普通气体不同的热力学性质和特征函数。 2热辐射和平衡辐射 只要温度不是绝对零度,任何物体的表面都会向外发射各种波长的,频谱为连续的电磁波。温度升高,物体在单位时间从单位面积表面上向外发射的辐射总能量也之增加。一定时间辐射能量随波长的分布也与温度有关,简单来说爱热的固体会辐射电磁波,称为热辐射。一般情形下热辐射的强度和强度按频率的分布与辐射体的温度和性质有关。如果辐射体对电磁波的吸收和辐射达到平衡,热辐射的特性将只取决于温度,于热辐射的其它特性无关,称为平衡辐射。. 考虑一个封闭的空窖,窖壁保持一定的温度T。窖壁将不断向空窖发射并吸收电磁波,窖辐射场与窖壁达到平衡后,二者具有共同的温度,显然空窖的辐射就是平衡辐射。 平衡辐射包含各种频率,沿各个方向传播的电磁波.这些电磁波的振幅和相位

第五章 热力学基础 总结

§5-1 准静态过程 功 热量 内能 一、准静态过程 非静态过程:中间状态不是平衡态准静态过程:(平衡过程) 过程进行得足够缓慢中间状态 ~ 平衡态 p -V 图上,一点 代表一个平衡态,一条连续曲线代表一个准静态过程。这条曲线的方程称为过程方程 准静态过程是一种理想模型。 对于实际过程则要求的外界条件发生一微小变化的时间远远大于弛豫时间(从平衡态破坏到新平衡态建立所需的时间) 二、内能 热力学主要研究系统能量转换规律 例:实际气体 ) ,(V T E E =理想气体()2m ol M i E R T E T M = = 三、功和热量 1. 准静态过程的体积功 V p l pS l F A d d d d ==?= =μp F s V d l d ?= 2 1 d V V V p A 注意:非静态过程不适用 ?= 21 d V V V p A A d 0 d 0d >>A V 若0d 0d <

2 热 量(过程量) 摩尔热容: m mol m mol M C cM Q C T M == ??物理意义:1mol 物质温度升高或降低1K 时所吸收或放出的热量。 § 5-2 热力学第一定律及其在等值过程中的应用 一. 热力学第一定律1. 数学形式: A E E Q +-=)(12系统从外界吸热 = 内能增量+系统对外界做功 A Q E 1 E 2 准静态:d Q =d E +p d V 理想气体: d d d 2m ol M i Q R T p V M = +d Q =d E +d A 微小过程: 2. 物理意义:涉及热运动和机械运动的能量转换及守恒定律。 适用范围:静态过程和非准静态过程均适用。但为便于实际计算,要求初终态为平衡态。 第一类永动机是不可能制成的 第一类永动机不需要外界提供能量,也不需要消耗系统的内能,但可以对外界作功。 二 . 对理想气体的应用 等值过程 等体过程 等压过程 等温过程 d =V 0d =p 0 d =T 绝热过程 d =Q 1) 过程方程 2 1 21T T p p =查理定律 1. 等体过程 (d V = 0 V = C ) V V p 1 p 2p ) ,,(222T V p ) ,,(111T V p O 2) 热力学第一定律的具体形式 ?==0 d V p A V mol M Q C T M = ?2 mol M i E R T M ?= ?V m o l M E Q C T M ?==?吸热全部用于增加内能: 适用于一切过程。 V m o l M E C T M ?= ?注意:

第五章--热力学基础Word版

第五章 热力学基础 一、基本要求 1.掌握理想气体的物态方程。 2.掌握内能、功和热量的概念。 3.理解准静态过程。 4.掌握热力学第一定律的内容,会利用热力学第一定律对理想气体在等体、等压、等温和绝热过程中的功、热量和内能增量进行计算。 5.理解循环的意义和循环过程中的能量转换关系。掌握卡诺循环系统效率的计算,会计算其它简单循环系统的效率。 6.了解热力学第二定律和熵增加原理。 二、本章要点 1.物态方程 理想气体在平衡状态下其压强、体积和温度三个参量之间的关系为 RT M m PV = 式中是m 气体的质量,M 是气体摩尔质量。 2.准静态过程 准静态过程是一个理想化的过程,准静态过程中系统经历的任意中间状态都是平衡状态,也就是说状态对应确定的压强、体积、和温度。可用一条V P -曲线来表示 3.内能 是系统的单值函数,一般气体的内能是气体温度和体积的函数),(V T E E =,而理想气体的内能仅是温度的函数)(T E E =。 4.功、热量 做功和传递热量都能改变内能,内能是状态参量,而做功和传递热量都与过程有关。气体做功可表示为 ?=2 1 V V PdV W 气体在温度变化时吸收的热量为 T C M m Q ?= 5.热力学第一定律 在系统状态发生变化时,内能、功和热量三者的关系为 W E Q +?= 应用此公式时应注意各量正负号的规定:0>Q ,表示系统吸收热量,0?E 表示内能增加,0W 系统对外界做功,0

6.摩尔热容 摩尔热容是mol 1物质在状态变化过程中温度升高K 1所吸收的热量。对理想气体来说 dT dQ C V m V = , dT dQ C P m P =, 上式中m V C ,、m P C ,分别是理想气体的定压摩尔热容和定体摩尔热容,两者之差为 R C C m V m P =-,, 摩尔热容比:m V m P C C ,,/=γ。 7.理想气体的几个重要过程 8.循环过程和热机效率 (1)循环过程 系统经过一系列变化后又回到原来状态的过程,称为循环过程。 (2)热机的效率 吸 放吸 净Q Q Q W - == 1η (3)卡诺循环 卡诺循环由两个等温过程和两个绝热过程组成。其效率为 1 2 1T T - =η 工作在相同的高温热源和相同低温热源之间的热机的效率与工作物质无关,且以可逆卡诺热机的效率最高。

02章 热力学第一定律及其应用

第二章热力学第一定律及其应用 1. 如果一个体重为70kg的人能将40g巧克力的燃烧热(628 kJ) 完全转变为垂直位移所要作的功 ,那么这点热量可支持他爬多少高度? 2. 在291K和下,1 mol Zn(s)溶于足量稀盐酸中,置换出1 mol H2并放热152 kJ。若以Zn和盐酸为体系,求该反应所作的功及体系内能的变化。 3.理想气体等温可逆膨胀,体积从V1胀大到10V1,对外作了41.85 kJ的功,体系的起始压力为202.65 kPa。 (1)求V1。 (2)若气体的量为2 mol ,试求体系的温度。 4.在101.325 kPa及423K时,将1 mol NH3等温压缩到体积等于10 dm3, 求最少需作多少功? (1)假定是理想气体。 (2)假定服从于范德华方程式。 已知范氏常数a=0.417 Pa·m6·mol-2, b=3.71× m3/mol. 5.已知在373K和101.325 kPa时,1 kg H2O(l)的体积为1.043 dm3,1 kg水气的体积为1677 dm3,水的 =40.63 kJ/mol 。当1 mol H2O(l),在373 K 和外压为时完全蒸发成水蒸气时,求 (1)蒸发过程中体系对环境所作的功。 (2)假定液态水的体积忽略而不计,试求蒸发过程中的功,并计算所得结果的百分误差。 (3)假定把蒸汽看作理想气体,且略去液态水的体积,求体系所作的功。(4)求(1)中变化的和。 (5)解释何故蒸发热大于体系所作的功? 6.在273.16K 和101.325 kPa时,1 mol的冰熔化为水,计算过程中的功。

已知在该情况下冰和水的密度分别为917 kg·m-3和1000 kg·m-3。 7.10mol的气体(设为理想气体),压力为1013.25 kPa,温度为300 K,分别求出等温时下列过程的功: (1)在空气中(压力为101.325 kPa)体积胀大1 dm3。 (2)在空气中膨胀到气体压力也是101.325 kPa。 (3)等温可逆膨胀至气体的压力为101.325 kPa。 8.273.2K,压力为5×101.325 kPa的N2气2 dm3,在外压为101.325 kPa下等温膨胀,直到N2气的压力也等于101.325 kPa为止。 求过程中的W,ΔU ,ΔH 和Q。假定气体是理想气体。 9.0.02kg乙醇在其沸点时蒸发为气体。已知蒸发热为858kJ/kg.蒸汽的比容为0.607 m3/kg。 试求过程的ΔU ,ΔH,Q,W(计算时略去液体的体积)。 10. 1× kg水在373K,101.325 kPa压力时,经下列不同的过程变为373 K, 压力的汽,请分别求出各个过程的W,ΔU ,ΔH 和Q 值。 (1)在373K,101.325 kPa压力下变成同温,同压的汽。 (2)先在373K,外压为0.5×101.325 kPa下变为汽,然后加压成373K,101.325 kPa压力的汽。 (3)把这个水突然放进恒温373K的真空箱中,控制容积使终态为101.325 kPa 压力的汽。 已知水的汽化热为2259 kJ/kg。 11. 一摩尔单原子理想气体,始态为2×101.325 kPa,11.2 dm3,经pT=常数的可逆过程压缩到终态为4×101.325 kPa,已知C(V,m)=3/2 R。求: (1)终态的体积和温度。 (2)ΔU 和ΔH 。 (3)所作的功。

第五讲热力学函数法

第五讲热力学函数法 讲授内容:教科书§1.9-10 学时:6 教学方法:结合课件中的文字、画图、公式进行讲授;通过习题课使学生熟悉用热力学函数解决问题的方法 教学目的:1使学生熟悉热力学基本方程和基本不等式的应用,掌握热力学函数法的基本精神,会在典型热效应之间建立联系,会用热力学方法计算简单系统的热力学函数。 教学重点:热力学函数法的基本精神 教学难点:应用导数变换方法建立不同热效应之间的联系。本讲吸取国内对此内容的教学经验,将问题归纳为几种典型,通过较多的练习和习题课,使难点得以突破。 教学过程: 一热力学函数与典型过程(70分钟)(字幕) 引言:通过前面的讨论,我们在热力学定律和统计规律的基础上引进了两个基本的态函数——内能和熵。从原则上讲,利用这两个热力学函数再加上物态方程可以解决宏观热现象的一般问题。然而在实际操作上并不都很方便。例如在绝热过程中(字幕),外界对系统作的功等于系统内能的U A-U B=W (字幕)通过末态B与初态A内能之差可以直接得到功。根据熵增原理dS≥0(字幕)可以判断不可逆绝热过程的进行方向(字幕)。可是很多过程并不是绝热的,对于经常遇到的等温过程或等温等压过程就无法直接运用内能和熵解决上述问题。本节将引入几个新的热力学函数使问题得到简洁地处理。 1焓与等压过程:(字幕)

1.1等压过程中的功: (字幕)如果系统只有V 作为外参量,在等压过程中外界对系统的功W=-P 0(V B -V A )=-P 0ΔV (字幕) 1.2焓与等压过程中的热量: (字幕)ΔU=U B -U A =Q-P 0ΔV (字幕)移项得Δ(U+P 0V)=Q (字幕)不管等压过程是否可逆,只要初末态是平衡态,系统在初末态的压强P =P 0,引入新的热力学函数——焓H=U+PV (字幕)则ΔH=Q (字幕) 对于初末态为平衡态的无穷小过程则有dH=δQ (字幕)焓是广延量,具有和内能相同的量纲。焓具有明显的物理意义:在没有非体变功的等压过程中系统吸收的热量等于系统焓的增加,系统放出的热量等于系统焓的减少。(字幕)通过末态与初态焓的差就可以算得系统在等压过程中吸收的热量。 1.3焓的全微分式: (字幕)在热力学基本方程两端加d(PV),即 d U P V T d S P d V d P V ()()+=-+ 于是有 d H T d S Vd P =+ (字幕) 上式是以熵S 和压强P 为独立变量时焓的全微分表达式。有时,使用它讨论等压过程的问题比使用基本方程更为方便。通常,H(S,P)的全微分为 dH H S dS H P dP P S =+(/)(/)???? 两式对照即有(/)??H S T P =, (/)??H P V S = 。(字幕) 1.4定压热容:(字幕)系统的定压热容 C li m H T )H T )P T P ==→???0(/(/?? 对于等压过程, dH T dS Q C dT P ===δ 定压热容又可以由下式算得C H T T S T P P P ==(/)(/)???? (字幕) 2自由能与等温过程:(字幕) 2.1自由能与等温过程的功:(字幕)对于等温过程,将热力学基本不等式移项可得

第一章热力学第一定律及其应用

华中科技大学博士研究生入学考试《物理化学(二)》考试大纲 第一章热力学第一定律及其应用 1.1 热力学概论 1.2 热力学第一定律 1.3准静态过程与可逆过程 1.4 焓 1.5 热容 1.6 热力学第一定律对理想气体的应用 1.7 实际气体 1.8 热化学 1.9 赫斯定律 1.10 几种热效应 1.11 反应热与温度的关系 1.12 绝热反应——非等温反应 1.13 热力学第一定律的微观说明 第二章热力学第二定律 2.1 自发变化的共同特征一不可逆性性 2.2 热力学第二定律 2.3 卡诺定律 2.4 熵的概念.

2.5 克劳修斯不等式与熵增加原理 2.6熵的计算 2.7热力学第二定律的本质和熵的统计意义 2.8亥姆霍兹自由能和古布斯自由能 2.9变化的方向和平衡条件 2.10ΔG的计算示例 2.11几个热力学函数间的关系 2.12单组分体系的两相平衡 2.13多组分体系中物质的偏摩尔量和化学势 2.14不可逆过程热力学简介 第三章统计热力学基础 3.1 概论 3.2玻尔兹曼统计 3.3玻色—爱因期坦统计和费米—狄拉克统计 3.4配分函数 3.5各配分函数的求法及其对热力学因数的贡献3.6晶体的热容问题 3.7分子的全配分函数 第四章溶液——多组分体系热力学在溶液中的应用4.1 引言 4.2 溶液组成的表示法 4.3 稀溶液的两个经验定律

4.4混合气体中各组分的化学势 4.5理想溶液的定义、通性及各组分的化学势4.6稀溶液中各组份的化学势 4.7理想溶液和稀溶液的微观说明 4.8稀溶液的依数性 4.9吉朽斯—杜亥姆公式和杜亥姆—马居耳公式4.10非理想溶液 4.11分配定律――溶质在两互不相溶液中的分配第五章相平衡 5.1引言 5.2多相体系的一般平衡条件 5.3相律 5.4单组份体系的相图 5.5二组份体系的相图及应用 5.6三组份体系的相图和应用 5.7二级相变 第六章化学平衡 6.1化学反应的平衡条件和化学反应的亲和势6.2化学反应的平衡常数和等温方程式 6.3平衡常数的表示式 6.4复相化学平衡 6.5平衡常数的测定和平衡转化率的计算

热力学与统计物理第二章知识归纳

§2.1内能、焓、自由能和吉布斯函数的全微分 热力学函数中的物态方程、内能和熵是基本热力学函数,不仅因为它们对应热力学状态描述第零定律、第一定律和第二定律,而且其它热力学函数也可以由这三个基本热力学函数导出。焓:自由能: 吉布斯函数: 下面我们由热力学的基本方程(1) 即内能的全微分表达式推导焓、自由能和吉布斯函数的全微分 ?焓、自由能和吉布斯函数的全微分 o焓的全微分 由焓的定义式,求微分,得, 将(1)式代入上式得(2) o自由能的全微分 由得 (3) o吉布斯函数的全微分

(4) 从方程(1)(2)(3)(4)我们容易写出内能、焓、自由能和吉布斯函数的全微分dU,dH,dF,和dG独立变量分别是S,V;S,P;T,V和T,P 所以函数U(S,V),H(S,P),F(T,V),G(T,P)就是我们在§2.5将要讲到的特性函数。下面从这几个函数和它们的全微分方程来推出麦氏关系。 二、热力学(Maxwell)关系(麦克斯韦或麦氏) (1)U(S,V) 利用全微分性质(5) 用(1)式相比得(6) 再利用求偏导数的次序可以交换的性质,即 (6)式得(7) (2)H(S,P)

同(2)式相比有 由得(8) (3)F(T,V) 同(3)式相比 (9) (4)G(T,P) 同(4)式相比有 (10) (7),(8),(9),(10)式给出了热力学量的偏导数之间的关系,称为麦克斯韦(J.C.Maxwell)关系,简称麦氏关系。它是热力学参量偏导数之间的关系,利用麦氏关系,可以从以知的热力学量推导出系统的全部热力学量,可以将不能直接测量的物理量表示出来。例如,只要知道物态方程,就可以利用(9),(10)式求出熵的变化,即可求出熵函数。

热力学函数意义,应用

一、热力学函数: 1、热力学能(U): 意义:反映了处于一定状态下的系统内部的能量总和。 应用:其本身无实际应用意义,但是热力学能变,即△U,可以反映系统变化前后的能量变化,其变化只与系统始终状态有关而与过程的具体途径无关。即△U等于系统与环境之间的能量传递。△U=W+Q。△U>0表明系统吸收了能量, △U<0表明系统放出了能量。 2、焓(H): 意义:热力学中将(U+pV)定义为焓,其本身并无明确的物理意义。 应用:H= U+pV,因而,焓就和热力学能一样,无实际意义,但是焓变△H却很有应用意义,Q p =H2-H1 =△H反映了在恒温恒压只做体积功的封闭系统中,系统吸收的能量全部用于增加系统的焓。△H>0表明系统吸热,△H<0则表明系统放热。即可以用其表示恒压条件下系统放出的或吸收的热量多少,实践证明,即使有气体参加的反应,p△V也很小,即△H≈△U,因而,在没有△U数据时,可以暂时用△H代替。 3、熵(S): 意义:熵反映了在一定状态下系统混乱度的大小。 应用:熵变△S却反映了系统变化前后混乱度的变化,0 K时,纯物质完美晶体的微观粒子熵为0,即S m* (B,0 K)=0,因而可以以此为基准,确定其他温度下物质的熵,△r S m(B)= S m(B,T)- S m* (B,0 K)= S m(B,T)。 4、吉布斯函数(G): 意义:吉布斯函数和焓一样,本身没有明确的物理意义,热力学中将H-TS规定为吉布斯函数。 应用:其本身无实际用途,但是其变化,即△G=△H-T△S,反映了在恒温恒压非体积功等于零的自发过程中,其焓变、熵变和温度三者的关系。△G的大小可作为判断反应能否自发进行的判据。即: △G<0 自发进行 △G=0 平衡状态 △G>0 不能自发进行(其逆过程是自发的)即根据△H,T,△S可以计算出△G,用于判断反应的可行性。 二、解离常数(K): 意义:反映了物质在溶液中电解能力的大小。 应用:常用的是电解质在水中的解离常数,如果是酸,跟据其解离常数可以计 算出溶液的解离常数大小,进而可以判断其酸碱性强弱或者直接换成pH的大小,碱也是如此。另外,只要知道弱电解质的解离度大小,根据其浓度,就能计算出其溶液中离子的浓度。跟据加入的电解子的离子,还可以计算出溶解平衡的移动方向,即同离子效应。 三、溶度积(K sp): 意义:反映了难容电解质的饱和溶液中,个离子活度幂次方的乘积大小,从而反映出该物质溶解能力的大小。 应用:1、根据溶度积原理,可以判断沉淀平衡移动的方向。 Q i >K sp 溶液为过饱和溶液,平衡向生成沉淀的方向移动。

热力学第一定律的内容及应用

目录 摘要 (1) 关键字 (1) Abstract: ...................................................................................... 错误!未定义书签。Key words .................................................................................... 错误!未定义书签。引言 (1) 1.热力学第一定律的产生 (1) 1.1历史渊源与科学背景 (1) 1.2热力学第一定律的建立过程 (2) 2.热力学第一定律的表述 (3) 2.1热力学第一定律的文字表述 (3) 2.2数学表达式 (3) 3.热力学第一定律的应用 (4) 3.1焦耳实验 (4) 3.2热机及其效率 (5) 总结 (7) 参考文献 (7)

热力学第一定律的内容及应用 摘要:热力学第一定律亦即能量转换与守恒定律,广泛地应用于各个学科领域。本文回顾了其建立的背景及经过,它的准确的文字表述和数学表达式,及它在理想气体、热机的应用。 关键字:热力学第一定律;内能定理;焦耳定律;热机;热机效率 引言 在19世纪早期,不少人沉迷于一种神秘机械——第一类永动机的制造,因为这种设想中的机械只需要一个初始的力量就可使其运转起来,之后不再需要任何动力和燃料,却能自动不断地做功。在热力学第一定律提出之前,人们一直围绕着制造永动机的可能性问题展开激烈的讨论。直至热力学第一定律发现后,第一类永动机的神话才不攻自破。本文就这一伟大的应用于生产生活多方面的定律的建立过程、具体表述、及生活中的应用——热机,进行简单展开。 1.热力学第一定律的产生 1.1历史渊源与科学背景 人类使用热能为自己服务有着悠久的历史,火的发明和利用是人类支配自然力的伟大开端,是人类文明进步的里程碑。中国古代就对火热的本性进行了探讨,殷商时期形成的“五行说”——金、木、水、火、土,就把火热看成是构成宇宙万物的五种元素之一。 北宋时刘昼更明确指出“金性苞水,木性藏火,故炼金则水出,钻木而生火。”古希腊米利都学派的那拉克西曼德(Anaximander,约公元前611—547) 把火看成是与土、水、气并列的一种原素,它们都是由某种原始物质形成的世界四大主要元素。恩培多克勒(Empedocles,约公元前500—430)更明确提出四元素学说,认为万物都是水、火、土、气四元素在不同数量上不同比例的配合,与我国的五行说十分相似。但是人类对热的本质的认识却是很晚的事情。18世纪中期,苏格兰科学家布莱克等人提出了热质说。这种理论认为,热是由一种特殊的没有重量的流体物质,即热质(热素)所组成,并用以较圆满地解释了诸如由热传导从而导致热平衡、相变潜热和量热学等热现象,因而这种学说为当时一些著名科学家所接受,成为十八世纪热力学占统治地位的

第二章 热力学函数及其应用

第二章 热力学函数及其应用 上一章介绍了热力学第零、第一、第二定律,并分别引入了温度T 、内能U 和熵S 三个态函数,并建立了热力学基本微分方程。从原则上讲,已经能够解决平衡热力学的所用问题。不过在实际应用中,对于某些经常遇到的物理条件(如等温等压、等温等容等),用其它热力学函数进行判断更为方便。 §1 焓 自由能 吉布斯函数 1、焓 用热力学第一定律求定压热容p C 过程中,我们曾引入态函数——焓H H U pV =+ (2.1-1) 由于焓是态函数,因此它的全微分形式可表示为 Vdp pdV dU dH ++= (2.1-2) 根据热力学第一定律的微分式dQ dU pdV =+可得 dH dQ Vdp =+ (2.1-3) 对于等压过程而言,0dp =,故 ()()p p dH dQ = (2.1-4) 这正是等压过程中系统从外界吸收的热量,因此可以说,在等压过程中系统从外界吸收的热量等于态函数焓的增加量。因此, p p p dQ H C dT T ?????==???? ????? (2.1-5) 对于相变(相变是指系统的某些物理性质发生显著的跃变现象,如冰溶解为水,体积和密度发生变化)过程,总有体积改变,因而作功总是存在的。若相变过程中压强与温度不变,则系统做功 () 21W p V V =? (2.1-6) 由热力学第一定律的积分式21U U Q W ?=?,若Q 用相变的“潜热”L 表示,则 ()1212pV pV L U U ??=? (2.1-7) L pV U pV U =+?+)()(1122 (2.1-8) L H H =?12 (2.1-9) 从上式可以看出,任何相变的潜热等于系统在两相的焓之差。这也表明,处于等压条件下的系统用焓作为判据更为方便。 2、自由能 对于约束在等温条件下的系统,若系统由初态A 经等温过程到达终态B 。由热力学第二定律的数学表达式可知,

配分函数与热力学函数的关系

第七章统计热力学基础 教学目的与要求: 通过本章的教学使学生初步了解统计热力学的基本研究方法,各种独立子系统的微观状态数的求法,不同系统的统计规律,系统的各热力学函数的表示式,配分函数的计算,固体的热容理论导出的基本思路。 重点与难点: 统计热力学的基本研究方法,不同系统的微观状态数的计算,玻尔兹曼分布律的含义,系统的热力学函数的表示式,配分函数的计算,不同的固体热容理论的基本方法。 §7.1 概论 统计热力学的研究任务和目的 统计力学的研究对象是大量微观粒子所构成的宏观系统。从这一点来说,统计热力学和热力学的研究对象都是一样的。但热力学是根据从经验归纳得到的四条基本定律,通过演绎推理的方法,确定系统变化的方向和达到平衡时的状态。由于热力学不管物质的微观结构和微观运动形态,因此只能得到联系各种宏观性质的一般规律,而不能给出微观性质与宏观性质之间的联系。而统计热力学则是从物质的微观结构和基本运动特性出发,运用统计的方法,推导出系统的宏观性质,和变化的可能方向。 统计力学的研究方法是微观的方法,它根据统计单位(微粒)的力学性质如速度、动量、位置、振动、转动等,用统计的方法来推求系统的热力学性质,例如压力、热容、熵等热力学函数。统计力学建立了体系的微观性质和宏观性质之间的联系。从这个意义上,统计力学又可称为统计热力学。 相对于热力学,统计力学对系统的认识更深刻,它不但可以确定系统的性质,变化的方向和限度,而且还能确定系统的性质的微观根源,这一点要比热力学要深刻。对于简单系统,应用统计热力学的方法进行处理,其结果是令人满意的。当然统计热力学也有自身的局限性,由于统计力学要从微观粒子的基本运动特性出发,确定系统的状态,这就有一个对微观粒子的运动行为的认识问题。由于人们对于物质结构的认识不断深化,不断地修改充实物质结构的模型,所对统计理论和统计方法也要随之修改,所以统计理论是一种不断发展和完善的。同时模型本身也有近似性,所以由此得到的结论也有近似性。从历史的发展来看,最早是由玻兹曼(Boltzmann)以经典力学为基础建立的统计方法,称为经典统计热力学。1900 年普朗克(Planck)提出了量子论,麦克斯韦(Maxwell)将能量量子

纳米多晶体的热力学函数及其在相变热力学中的应用

纳米多晶体的热力学函数及其在相变 热力学中的应用 3 宋晓艳  高金萍 张久兴 (北京工业大学材料科学与工程学院,新型功能材料教育部重点实验室,北京 100022) (2004年5月20日收到;2004年6月18日收到修改稿) 以往关于纳米材料热力学的研究,绝大多数以界面的热力学函数表征整体纳米材料的热力学性质,这种近似处理,对于尺寸超过几十纳米的较粗纳米材料,在相变热力学中对特征转变温度和临界尺寸等重要参量的预测,将导致很大误差.应用“界面膨胀模型”和普适状态方程,研究了纳米晶界的热力学特性,进一步发展了纳米晶整体材料热力学函数的计算模型,给出了单相纳米多晶体的焓、熵和吉布斯自由能随界面过剩体积、温度,以及晶粒尺寸发生变化的明确表达式.以C o 纳米晶为例,分析了界面与整体纳米多晶体热力学函数的差异,确定了相变温度与晶粒尺寸的依赖关系,以及一定温度下可能发生相变的临界尺寸. 关键词:纳米多晶体,热力学函数,相变热力学 PACC :6146,0570C 3国家自然科学基金(批准号:50401001)资助的课题. 通讯联系人.E -mail :xys ong @https://www.360docs.net/doc/172265521.html, 11引言 纳米材料通常指尺度在100nm 以下的微细组织材料.对于纳米多晶体,由于晶粒极细,其组织中由晶界、相界或畴界等构成的内界面[1] 含量很高,显著影响纳米多晶体材料的物理和机械性能,使其在很多方面体现出优越于粗晶块体材料的奇异性能. 纳米材料的特殊性能是由其化学组成、界面结构,以及产生微细组织的制备过程等共同决定的,是与纳米结构和组织形成及转变的热力学和动力学紧密联系的.然而,相对于粗晶的大块多晶体材料,纳米材料的比热值升高、热膨胀系数成倍增大,以及与同成分粗晶材料相差迥异的相变特征和相稳定性等特性 [2] ,表明用于研究块体材料的传统热力学理论 已不能合理解释纳米材料的相变行为. Fecht [3] 和Wagner [4] 最早应用晶界膨胀模型,分 别采用普适状态方程(universal equation of state ,E OS ) 和准谐Debye 近似模型(quasiharm onic Debye approximation ,QDA )计算了一些纯物质纳米晶界面 的热力学性质.Lu 等人[5] 应用QDA 模型计算了纯 Ni 纳米晶界的一些热力学特性,分析了界面热力学 参量与温度的关系,并讨论了不同晶粒尺寸的纳米Ni-P 合金的非晶态晶化的热力学问题[6] .Meng 等 人[7] 应用E OS 理论,借助纳米界面的热力学参量,研究了β -C o (fcc )→α-C o (hcp )相变不同于粗晶材料的热力学特征,获得了高温相(β-C o )可在较低温度下存在的临界尺寸. 应该注意的是,迄今关于纳米材料的绝大多数工作集中于研究纳米界面的结构和特性,而忽略纳米晶粒内部的晶体对整体材料的贡献.如文献中已有的关于纳米材料热力学性质的研究,几乎全部以纳米晶界面的焓、熵和自由能作为表征整体纳米材料的热力学函数,并以之为判据探讨纳米多晶体材料的相变热力学.这一近似处理对于极细的纳米材 料(如尺度小于10nm ,约30%以上的原子位于界面上)是可行的,这也是Wagner 在其经典的界面膨胀QDA 理论中首先指出的模型适用条件:“尺寸为10 个纳米以下的多晶体且具有随机的晶体取向[4] ”.然而,对于较粗的纳米材料,上述近似处理则显示出局限性,尤其当晶粒尺寸超过几十纳米时,在相变热力学中对特征转变温度和临界尺寸等重要参量的预 第54卷第3期2005年3月100023290Π2005Π54(03)Π1313207 物 理 学 报 ACT A PHY SIC A SI NIC A V ol.54,N o.3,March ,2005 ν2005Chin.Phys.S oc.

热力学第一定律及其应用

热力学第一定律及其应用 §2. 1热力学概论 热力学的基本内容 热力学是研究热功转换过程所遵循的规律的科学。它包含系统变化所引起的物理量的变化或当物理量变化时系统的变化。 热力学研究问题的基础是四个经验定律(热力学第一定律,第二定律和第三定律,还有热力学第零定律),其中热力学第三定律是实验事实的推论。这些定律是人们经过大量的实验归纳和总结出来的,具有不可争辩的事实根据,在一定程度上是绝对可靠的。 热力学的研究在解决化学研究中所遇到的实际问题时是非常重要的,在生产和科研中发挥着重要的作用。如一个系统的变化的方向和变化所能达的限度等。热力学研究方法和局限性 研究方法: 热力学的研究方法是一种演绎推理的方法,它通过对研究的系统(所研究的对象)在转化过程中热和功的关系的分析,用热力学定律来判断该转变是否进行以及进行的程度。 特点: 首先,热力学研究的结论是绝对可靠的,它所进行推理的依据是实验总结的热力学定律,没有任何假想的成分。另外,热力学在研究问题的时,只是从系统变化过程的热功关系入手,以热力学定律作为标准,从而对系统变化过程的方向和限度做出判断。不考虑系统在转化过程中,物质微粒是什么和到底发生了什么变化。 局限性: 不能回答系统的转化和物质微粒的特性之间的关系,即不能对系统变化的具体过程和细节做出判断。只能预示过程进行的可能性,但不能解决过程的现实性,即不能预言过程的时间性问题。 §2. 2热平衡和热力学第零定律-温度的概念为了给热力学所研究的对象-系统的热冷程度确定一个严格概念,需要定义温度。 温度概念的建立以及温度的测定都是以热平衡现象为基础。一个不受外界影

响的系统,最终会达到热平衡,宏观上不再变化,可以用一个状态参量来描述它。当把两个系统已达平衡的系统接触,并使它们用可以导热的壁接触,则这两个系统之间在达到热平衡时,两个系统的这一状态参量也应该相等。这个状态参量就称为温度。 那么如何确定一个系统的温度呢?热力学第零定律指出:如果两个系统分别和处于平衡的第三个系统达成热平衡,则这两个系统也彼此也处于热平衡。热力学第零定律是是确定系统温度和测定系统温度的基础,虽然它发现迟于热力学第一、二定律,但由于逻辑的关系,应排在它们的前边,所以称为热力学第零定律。 温度的科学定义是由热力学第零定律导出的,当两个系统接触时,描写系统的性质的状态函数将自动调节变化,直到两个系统都达到平衡,这就意味着两个系统有一个共同的物理性质,这个性质就是“温度”。 热力学第零定律的实质是指出了温度这个状态函数的存在,它非但给出了温度的概念,而且还为系统的温度的测定提供了依据。 §2. 3热力学的一些基本概念 系统与环境 系统:物理化学中把所研究的对象称为系统 环境:和系统有关的以外的部分称为环境。 根据系统与环境的关系,可以将系统分为三类: (1)孤立系统:系统和环境之间无物质和能量交换者。 (2)封闭系统:系统和环境之间无物质交换,但有能量交换者。 (3)敞开系统:系统和环境之间既有物质交换,又有能量交换 系统的性质 系统的状态可以用它的可观测的宏观性质来描述。这些性质称为系统的性质,系统的性质可以分为两类: (1)广度性质(或容量性质)其数值与系统的量成正比,具有加和性,整个体系的广度性质是系统中各部分这种性质的总和。如体积, 质量,热力学能等。 (2)强度性质其数值决定于体系自身的特性,不具有加和性。如温度,压力,密度等。 通常系统的一个广度性质除以系统中总的物质的量或质量之后得到一个强度性质。 热力学平衡态 当系统的各种性质不随时间变化时,则系统就处于热力学的平衡态,所谓热力学的平衡,应包括如下的平衡。

第一章 热力学第一定律及应用练习题

第一章 热力学第一定律及应用练习题 一、 填空:(填<、>或=) 1、理想气体的自由膨胀:△U 0;△H 0;Q 0;W 0; 2、理想气体的等压膨胀:△U 0;△H 0;Q 0;W 0;△H △U ; 3、理想气体的等容升压:△U 0;△H 0;Q 0;W 0;△H △U ; 4、理想气体的等温压缩:△U 0;△H 0;Q 0;W 0;Q W ; 5、理想气体的节流膨胀:△U 0;△H 0;Q 0;W 0; 6、理想气体绝热抗恒外压膨胀:△U 0;△H 0;Q 0;W 0; 7、实际气体的绝热自由膨胀:△U 0; Q 0;W 0;△T 0; 8、实际气体的恒温自由膨胀:△U 0; Q 0;W 0;△U Q ; 9、实际气体的节流膨胀:△H 0; Q 0; 10、实际气体经循环过程恢复原状:△U 0;△H 0; 11、0℃、P 压力下冰融化为水:△U 0;△H 0;Q 0;W 0; 12、水蒸气通过蒸气机对外作功后恢复原状: △U 0;△H 0;Q 0;W 0;Q W ; 13、100℃、P 压力下的H 2O (l )向真空蒸发成同温同压下的蒸气: △U 0;△H 0;Q 0;W 0;△U Q ; 14、H 2(g )和O 2(g )在一绝热恒容反应器中剧烈反应生成水: △U 0; Q 0;W 0; 15、对于理想气体:V T U ??? ???? 0;P T U ??? ???? 0;T V U ??? ???? 0; T P U ??? ???? 0;V T H ??? ???? 0;P T H ??? ???? 0;T V H ??? ???? 0;

T P H ??? ???? 0;V T U ??? ???? P T U ??? ????;V T H ??? ???? P T H ??? ????; 二、单项选择题: 1.热力学第一定律的数学表达式△U =Q —W 只能适用于 (A)理想气体 ; (B)封闭物系; (C)孤立物系 ; (D)敞开物系 2、1mol 单原子理想气体,在300K 时绝热压缩到500K ,则其焓变△H 约为 (A )4157J ;(B )596J ;(C )1255J ;(D )994J 3、同一温度下,同一气体物质的等压摩尔热容Cp 与等容摩尔热容C V 之间 存在 (A )CpC V ;(C )Cp=C V ;(D )难以比较 4、对于任何循环过程,物系经历了i 步变化,则根据热力学第一定律应 该是 (A )∑i Q =0 ; (B )∑i W =0 ; (C )∑∑-][i i W Q >0 ; (D )∑∑-][i i W Q =0 ; 5、对于理想气体,下列关系中哪个是不正确的? (A )0=??? ????V T U ; (B )0=??? ????T V U ; (C )0=??? ????T P H ; (D )0=??? ????T P U 6、3mol 单原子理想气体,从初态T 1=300 K ,P 1=1atm 反抗恒定的外压0.5atm 作不可逆膨胀至终态T 2=300K .P 2=0.5atm 。对于这个过程的Q 、W 、 △U 、△H 的值下列正确的是 (A )Q=W=0;(B )△U=△H=0;(C )Q=△U=0;(D )Q=△H=0 7、实际气体的节流膨胀过程中,哪一组的描述是正确的? ’· i (A )Q=0,△H=0,△P<0; (B )Q=0,△H<0,△P>0;

热力学第一定律及其应用

第二章 热力学第一定律及其应用 1. 如果一个体重为70kg的人能将40g巧克力的燃烧热(628 kJ) 完全转变为垂直 位移所要作的功,那么这点热量可支持他爬多少高度? 2. 在291K和p o下,1 mol Zn(s)溶于足量稀盐酸中,置换出1 mol H2并放热152 kJ。 若以Zn和盐酸为体系,求该反应所作的功及体系内能的变化。 3.理想气体等温可逆膨胀,体积从V1胀大到10V1,对外作了41.85 kJ的功,体系的起始压力为202.65 kPa。 (1)求V1。 (2)若气体的量为2 mol,试求体系的温度。 4.在p o及423K时,将1 mol NH3等温压缩到体积等于10 dm3,求最少需作多少功? (1)假定是理想气体。 (2)假定服从于范德华方程式。 已知范氏常数a = 0.417 Pa·m6·mol-2,b=3.71×10-5 m3/mol. 5.已知在373K和p o时,1 kg H2O(l)的体积为1.043 dm3,1 kg水气的体积为1677 dm3,水的Δvap H mθ= 40.63 kJ/mol 。当1 mol H2O(l),在373 K和外压为p o时完全蒸发成水蒸气时,求 (1)蒸发过程中体系对环境所作的功。 (2)假定液态水的体积忽略而不计,试求蒸发过程中的功,并计算所得结果的百分误差。 (3)假定把蒸汽看作理想气体,且略去液态水的体积,求体系所作的功。(4)求(1)中变化的Δvap H mθ和Δvap U mθ。 (5)解释何故蒸发热大于体系所作的功? 6.在273.16K 和p o时,1 mol的冰熔化为水,计算过程中的功。 已知在该情况下冰和水的密度分别为917 kg·m-3和1000 kg·m-3。 7.10mol的气体(设为理想气体),压力为1013.25 kPa,温度为300 K,分别求出等温时下列过程的功: (1)在空气中(压力为p o)体积胀大1 dm3。 (2)在空气中膨胀到气体压力也是p o。 (3)等温可逆膨胀至气体的压力为p o。 8.273.2K,压力为5×p o的N2气2 dm3,在外压为p o下等温膨胀,直到N2气的压力也等于p o为止。求过程中的W,ΔU,ΔH和Q。假定气体是理想气体。

相关文档
最新文档