几何定理证明

几何定理证明
几何定理证明

几何定理证明

1、重心定理:三角形的三条中线交于一点,这点到顶点的距离是它到对边

中点距离的2倍。该点叫做三角形的重心。

先证明交于一点,如图一中线AD、BE交于G,延长CG

交AB于F,即证明F为AB中点即可,延长GD至H使

GD=DH,又BD=DC∴BDCG为平行四边形,∴BE∥CH,

CF∥BH,又E为AC中点,EG为中位线,∴G为AH中

点,又CF∥BH,∴FG为中位线,即F为AB中点,∴三

条中线交于一点。

再证明2倍问题

证明1:如图:△ABC的中线AD、BE交于G(重心),求

证:AG=2GD

取CE的中点F,连接DF,

则CE=2EF=AE ,

∴DF是△BCE的中位线,

∴GE∥DF ,

AG/GD=AE/EF=2,

∴AG=2GD 。

证明2:面积法(三条中线将三角形分成6个面积相等

的三角形)

△ABC,AB、BC、CA中点分别为D、E、F,交于一点G。

∵D、E、F为中点

∴S△CAD=S△CDB=S△ABE=S△ACE=S△ABF=S△BCF

=S△ABC/2

∴S△ADG=S△CEG=S△BEG

同理S△BDG=S△BEG

∴S△ABG=2S△BEG

∴AG/GE=2即AG=2GE

证明3:相似三角形

△ABC,AB、BC、CA中点分别为D、E、F,交于一点G。

∴DF//BC,DF=BC/2 ①(中位线定理)。

∴△ADF∽△ABC, E为BC中点,∴H为DF中点(可证AH/AE=DH/BE=HF/EC, BE=EC, ∴DH=HF)

∴HF=DF/2 , BE=BC/2,又可由①知HF=BE/2

∴HF//BE.

又∵∠BGE=∠FGH。

∴△BGE∽△FGH

∴BG/GF=BE/HF=2。∴BG=(2/3)BF

2、外心定理:三角形的三条中垂线一定交于一点,称之为三角形的外心,之所以称之为三角形的外心,是因为它是三角形外接圆的圆心。

已知:如图8-21所示, PD、NE、MF是△ABC的3条边上的中垂线。

求证:PD、NE、MF交于一点O。

思路:先作两条边AB、AC上的中垂线MF、NE相交于O点,过O作OD⊥BC于D,其反向延长线与AB交于P。然后再证明D是BC的中点。

证明:作AB、BC边上的中垂线MF、NE相交于O点,过O作OD⊥BC于D,其反向延长线与AB交于P。

∵ MF⊥AB于F,AF=FB;

∴ OA=OB;

∵ NE⊥AC于E,AE=EC;

∴ OA=OC;

∴ OB=OC;

∵ OD⊥BC于D;

∴ POD是BC边上的中垂线。

∴ NE、MF、PD交于一点O;即,三角形的三条中垂线交于一点。

结论:该证法采用直接证法,简单明了,其中运用了中垂线的性质定理和判定定理。

3、垂心定理:三角形的三条高(所在直线)交于一点,该点叫做三角形的垂心。

证明1:已知:ΔABC中,AD、BE是两条高,AD、BE交于点H,连接CH并延长交AB于点F ,求证:CF⊥AB

证明:连接DE ∵∠ADB=∠AEB=90度

∴A、B、D、E四点共圆∴∠ADE=∠ABE

∵∠EAH=∠DAC ∠AEH=∠ADC

∴ΔAEH∽ΔADC

∴AE/AH=AD/AC ∴ΔEAD∽ΔHAC ∴∠ACF=∠ADE=∠ABE

又∵∠ABE+∠BAC=90度∴∠ACF+∠BAC=90度∴CF⊥AB

因此,垂心定理成立

证明2:(利用外心定理来证明),如图过A、B、C分别做BC、AC、AB的平行线相交于A'、B'、C',

∵AD⊥BC,B'C'//BC

∴DA⊥B'C'

∵B'C'//BC,A' C'//AC

∴四边形BCA C'与四边形BCA B'为平行四边形

∴AC'=A B' 即A为B'C'中点,又DA⊥B'C'

∴DA为B'C'中垂线

同理可证EB、CF为A' C'、A' B'中垂线

∴AD、BE、CF交于一点(外心定理)

4、内心定理:三角形的三内角平分线交于一点。该点叫做三角形的内心。内心到三角形三边等距,即为三角形内切圆的圆心。

如图,已知:ΔABC中,AI、BI是∠A、∠B的角平分线,ID

⊥BC,IE⊥AC,IF⊥AB,求证:∠ACI=∠BCI,IE=IF=ID

证明:∵AI是∠A的角平分线、

∴∠IAC=∠IAB

∵IE⊥AC,IF⊥AB

∴∠IEA=∠IFA=90°

又IA=IA

∴△AIE≌△AIF

∴IE=IF

同理可证IF=ID 即IE=IF=ID

∵ID⊥BC,IE⊥AC

∴∠IEC=∠IDC =90°

又IC=IC ∴△CIE≌△CID ∴∠ECI=∠DCI即∠ACI=∠BCI

5、旁心定理:三角形一内角平分线和另外两顶点处的外角平分线交于一点。该点叫做三角形的旁心。三角形有三个旁心。

如图,已知OC、OB为ΔABC中∠C、∠B的外角平分线,

连接OA,证明:∠OAC=∠OAB

证明:作OD⊥AB、 OE⊥AC、OF⊥BC

∵OC、OB 为∠BCE、∠CBD的平分线,OF⊥BC,OE⊥AC

∴OE=OF ,同理OF=OD

∴OE=OD,又OD⊥AB、 OE⊥AC,OA=OA

∴ΔAEO≌ΔOAD

∴∠OAC=∠OAB

6、中位线定理:三角形的中位线平行于第三边(不与中位线接触),并且等

于第三边的一半。

证明

如图,已知△ABC中,D,E分别是AB,AC两边中点。

求证DE平行于BC且等于BC/2

方法一:过C作AB的平行线交DE的延长线于G点。

∵CG∥AD

∴∠A=∠ACG

∵∠AED=∠CEG、AE=CE、∠A=∠ACG(用大括号)

∴△ADE≌△CGE (A.S.A)

∴AD=CG(全等三角形对应边相等)

∵D为AB中点

∴AD=BD

∴BD=CG

又∵BD∥CG

∴BCGD是平行四边形(一组对边平行且相等的四边形是平行四边形)

∴DG∥BC且DG=BC

∴DE=DG/2=BC/2

∴三角形的中位线定理成立.

方法二:相似法:

∵D是AB中点

∴AD:AB=1:2

∵E是AC中点

∴AE:AC=1:2

又∵∠A=∠A

∴△ADE∽△ABC

∴AD:AB=AE:AC=DE:BC=1:2

∠ADE=∠B,∠AED=∠C

∴BC=2DE,BC∥DE

方法三:坐标法:

设三角形三点分别为(x1,y1),(x2,y2),(x3,y3)

则一条边长为:根号(x2-x1)^2+(y2-y1)^2

另两边中点为((x1+x3)/2,(y1+y3)/2),和((x2+x3)/2,(y2+y3)/2)

这两中点距离为:根号((x2+x3)/2-(x1+x3)/2)^2+((y2+y3)/2-(y1+y3)/2)^2

最后化简时将x3,y3消掉正好中位线长为其对应边长的一半

方法四:

延长DE到点G,使EG=DE,连接CG

∵点E是AC中点

∴AE=CE

∵AE=CE、∠AED=∠CEF、DE=GE

∴△ADE≌△CGE (S.A.S)

∴AD=CG、∠G=∠ADE

∵D为AB中点

∴AD=BD

∴BD=CG

∵点D在边AB上

∴DB∥CG

∴BCGD是平行四边形

∴DE=DG/2=BC/2

∴三角形的中位线定理成立[2]

方法五:向量DE=DA+AE=(BA+AC)/2=BC/2[3]

∴DE//BC且DE=BC/2

中位线逆定理

逆定理一:在三角形内,与三角形的两边相交,平行且等于三角形第三边一半的线段是三角形的中位线。

如图DE//BC,DE=BC/2,则D是AB的中点,E是AC的中点。

逆定理二:在三角形内,经过三角形一边的中点,且与另一边平行的线段,是三角形的中位线。

如图D是AB的中点,DE//BC,则E是AC的中点,DE=BC/2

证明:取AC中点E',连接DE',则有

AD=BD,AE'=CE'

∴DE'是三角形ABC的中位线

∴DE'∥BC

又∵DE∥BC

∴DE和DE'重合(过直线外一点,有且只有

一条直线与已知直线平行)

∴E是中点,DE=BC/2

7、角平分线定理及逆定理

定理1:在角平分线上的任意一点到这个角的两条边的距离相

等。

逆定理:在一个角的内部(包括顶点),到这个角的两边距离

相等的点在这个角的角平分线上。

定理2:三角形一个角的平分线,这个角平分线其对边所成的

两条线段与这个角的两邻边对应成比例,

如:在△ABC中,BD平分∠ABC,则AD:DC=AB:BC

注:定理2的逆命题也成立,证明过程见后文。

角平分线的定义

?角平分线的定义:从一个角的顶点引出一条射线,把这个角分成两个相等的角,这条射线叫做这个角的角平分线。

?三角形的角平分线定义:三角形顶点到其内角的角平分线交对边的点连的一条线段,叫三角形的角平分线。

?PS:三角形的角平分线不是角的平分线,是线段。角的平分线是射线。

拓展:三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等!(即内心)。

四种证明法

已知,如图,AM为△ABC的角平分线,求证AB/AC=MB/MC

证明方法一:面积法

S△ABM=(1/2)·AB·AM·sin∠BAM,

S△ACM=(1/2)·AC·AM·sin∠CAM,

∴S△ABM:S△ACM=AB:AC

又△ABM和△ACM是等高三角形,面积的比等于底的比,

即三角形ABM面积S:三角形ACM面积S=BM:CM

∴AB/AC=MB/MC

证明方法二:相似形

过C作CN∥AB交AM的延长线于N

则△ABM∽△NCM

∴AB/NC=BM/CM

又可证明∠CAN=∠ANC

∴AC=CN

∴AB/AC=MB/MC

证明方法三:相似形

过M作MN∥AB交AC于N

则△ABC∽△NMC,

∴AB/AC=MN/NC

而在△ABC内,∵MN∥AB

∴AN/NC=BM/MC

又可证明∠CAM=∠AMN

∴AN=MN

∴AB/AC=AN/NC

∴AB/AC=MB/MC

证明方法四:正弦定理

作三角形的外接圆,AM交圆于D(起标明交点作用,对

证明无影响)

由正弦定理,得,

AB/sin∠BMA=BM/sin∠BAM,

AC/sin∠CMA=CM/sin∠CAM

又∠BAM=∠CAM,∠BMA+∠AMC=180°

sin∠BAM=sin∠CAM,sin∠BMA=sin∠AMC,

∴AB/AC=MB/MC

(word完整版)初中数学几何证明题技巧

初中数学几何证明题技巧 几何证明题入门难,证明题难做,是许多初中生在学习中的共识,这里面有很多因素,有主观的、也有客观的,学习不得法,没有适当的解题思路则是其中的一个重要原因。掌握证明题的一般思路、探讨证题过程中的数学思维、总结证题的基本规律是求解几何证明题的关键。在这里结合自己的教学经验,谈谈自己的一些方法与大家一起分享。 一要审题。很多学生在把一个题目读完后,还没有弄清楚题目讲的是什么意思,题目让你求证的是什么都不知道,这非常不可取。我们应该逐个条件的读,给的条件有什么用,在脑海中打个问号,再对应图形来对号入座,结论从什么地方入手去寻找,也在图中找到位置。 二要记。这里的记有两层意思。第一层意思是要标记,在读题的时候每个条件,你要在所给的图形中标记出来。如给出对边相等,就用边相等的符号来表示。第二层意思是要牢记,题目给出的条件不仅要标记,还要记在脑海中,做到不看题,就可以把题目复述出来。 三要引申。难度大一点的题目往往把一些条件隐藏起来,所以我们要会引申,那么这里的引申就需要平时的积累,平时在课堂上学的基本知识点掌握牢固,平时训练的一些特殊图形要熟记,在审题与记的时候要想到由这些条件你还可以得到哪些结论(就像电脑一下,你一点击开始立刻弹出对应的菜单),然后在图形旁边标注,虽然有些条件在证明时可能用不上,但是这样长期的积累,便于以后难题的学习。 四要分析综合法。分析综合法也就是要逆向推理,从题目要你证明的结论出发往回推理。看看结论是要证明角相等,还是边相等,等等,如证明角相等的方法有(1.对顶角相等2.平行线里同位角相等、内错角相等3.余角、补角定理4.角平分线定义5.等腰三角形6.全等三角形的对应角等等方法。然后结合题意选出其中的一种方法,然后再考虑用这种方法证明还缺少哪些条件,把题目转换

立体几何证明垂直专项含练习题及答案

立体几何证明------垂直 一.复习引入 1.空间两条直线的位置关系有:_________,_________,_________三种。 2.(公理4)平行于同一条直线的两条直线互相_________. 3.直线与平面的位置关系有_____________,_____________,_____________三种。 4.直线与平面平行判定定理:如果_________的一条直线和这个平面内的一条直线平行, 那么这条直线和这个平面平行 5.直线与平面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这 个平面相交,那么_________________________. 6.两个平面的位置关系:_________,_________. 7.判定定理1:如果一个平面内有_____________直线都平行于另一个平面,那么这两 个平面平行. 8.线面垂直性质定理:垂直于同一条直线的两个平面________. 9.如果两个平行平面同时和第三个平面相交,那么它们的________平行. 10.如果两个平面平行,那么其中一个平面内的所有直线都_____于另一个平面. 二.知识点梳理 知识点一、直线和平面垂直的定义与判定 定义判定 语言描述如果直线l和平面α内的任意一条直 线都垂直,我们就说直线l与平面 互相垂直,记作l⊥α一条直线与一个平面内的两条相交直线都垂直,则这条直线与该平面垂直. 图形 条件b为平面α内的任一直线,而l对这 一直线总有l⊥αl⊥m,l⊥n,m∩n=B,m?α,n?α 结论l⊥αl⊥α 要点诠释:定义中“平面内的任意一条直线”就是指“平面内的所有直线”,这与“无数条直线”不同(线线垂直线面垂直) 知识点二、直线和平面垂直的性质 性质 语言描述一条直线垂直于一个平面,那么这条 直线垂直于这个平面内的所有直线 垂直于同一个平面的两条直线平行.

初中数学所有几何证明定理

初中数学所有几何证明 定理 TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-

初中数学所有几何证明定理 证明题的思路 很多几何证明题的思路往往是填加辅助线,分析已知、求证与图形,探索证明。 对于证明题,有三种思考方式: (1)正向思维。对于一般简单的题目,我们正向思考,轻而易举可以做出,这里就不详细讲述了。 (2)逆向思维。顾名思义,就是从相反的方向思考问题。在初中数学中,逆向思维是非常重要的思维方式,在证明题中体现的更加明显。 同学们认真读完一道题的题干后,不知道从何入手,建议你从结论出发。 例如: 可以有这样的思考过程:要证明某两条边相等,那么结合图形可以看出,只要证出某两个三角形相等即可;要证三角形全等,结合所给的条件,看还缺少什么条件需要证明,证明这个条件又需要怎样做辅助线,这样思考下去……这样我们就找到了解题的思路,然后把过程正着写出来就可以了。 (3)正逆结合。对于从结论很难分析出思路的题目,可以结合结论和已知条件认真的分析。 初中数学中,一般所给的已知条件都是解题过程中要用到的,所以可以从已知条件中寻找思路,比如给我们三角形某边中点,我们就要想到是否要连出中位线,或者是否要用到中点倍长法。给我们梯形,我们就要想到是否要做高,或平移腰,或平移对角线,或补形等等。正逆结合,战无不胜。

证明题要用到哪些原理? 要掌握初中数学几何证明题技巧,熟练运用和记忆如下原理是关键。 下面归类一下,多做练习,熟能生巧,遇到几何证明题能想到采用哪一类型原理来解决问题。 一、证明两线段相等 1.两全等三角形中对应边相等。 2.同一三角形中等角对等边。 3.等腰三角形顶角的平分线或底边的高平分底边。 4.平行四边形的对边或对角线被交点分成的两段相等。 5.直角三角形斜边的中点到三顶点距离相等。 6.线段垂直平分线上任意一点到线段两段距离相等。 7.角平分线上任一点到角的两边距离相等。 8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。 9.同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等。 10.圆外一点引圆的两条切线的切线长相等或圆内垂直于直径的弦被直径分成的两段相等。 11.两前项(或两后项)相等的比例式中的两后项(或两前项)相等。 12.两圆的内(外)公切线的长相等。 13.等于同一线段的两条线段相等。 二、证明两个角相等 1.两全等三角形的对应角相等。 2.同一三角形中等边对等角。

立体几何证明题定理推论汇总

立体几何公理、定理推论汇总 一、公理及其推论 公理1 如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内。 符号语言:,,,A l B l A B l ααα∈∈∈∈?? 作用: ① 用来验证直线在平面内; ② 用来说明平面是无限延展的。 公理2 如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线。(那么它们有且只有一条通过这个公共点的公共直线) 符号语言:P l P l α βαβ∈?=∈且 ! 作用:① 用来证明两个平面是相交关系; ② 用来证明多点共线,多线共点。 公理3 经过不在同一条直线上的三点,有且只有一个平面。 符号语言:,,,,A B C A B C ?不共线确定一个平面 推论1 经过一条直线和这条直线外的一点,有且只有一个平面。 符号语言:A a A a a αα??∈?有且只有一个平面,使, 推论2 经过两条相交直线,有且只有一个平面。 符号语言:a b P a b ααα?=???有且只有一个平面,使, ) 推论3 经过两条平行直线,有且只有一个平面。 符号语言://a b a b ααα???有且只有一个平面,使, 公理3及其推论的作用:用来证明多点共面,多线共面。 公理4 平行于同一条直线的两条直线平行(平行公理)。

符号语言://////a b a c c b ???? 图形语言: 作用:用来证明线线平行。 二、平行关系 - 公理4 平行于同一条直线的两条直线平行(平行公理)。(1) 符号语言://////a b a c c b ???? 图形语言: 1.线面平行的判定定理 如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。(2) 符号语言: ////a b a a b ααα???????? 图形语言: 线面平行的性质定理 如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。(3) 符号语言:////a b a a b βαβα??????=? 图形语言: 2.面面平行的判定定理 如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.(4) 符号语言://(/,///),a b b b O a a ββαααβ??=?????? 图形语言: ! 面面平行的判定 如果两个平面垂直于同一条直线,那么这两个平面平行。(5) 符号语言:,,//oo oo ααββ???? ⊥⊥ 图形语言:

初中平面几何知识点汇总一

初中平面几何知识点汇 总一 WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】

平面几何知识点汇总(一)知识点一相交线和平行线 1.定理与性质 对顶角的性质:对顶角相等。 2.垂线的性质: 性质1:过一点有且只有一条直线与已知直线垂直。 性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。 3.平行公理:经过直线外一点有且只有一条直线与已知直线平行。 平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。 4.平行线的性质: 性质1:两直线平行,同位角相等。 性质2:两直线平行,内错角相等。 性质3:两直线平行,同旁内角互补。 5.平行线的判定: 判定1:同位角相等,两直线平行。 判定2:内错角相等,两直线平行。 判定3:同旁内角相等,两直线平行。 知识点二三角形 一、三角形相关概念 1.三角形的概念由不在同一直线上的三条线段首尾顺次连结所组成的图形叫做三角形 要点:①三条线段;②不在同一直线上;③首尾顺次相接. 2.三角形中的三种重要线段

(1)三角形的角平分线:三角形一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线. (2)三角形的中线:在一个三角形中,连结一个顶点和它的对边中点的线段叫做三角形的中线.(3)三角形的高线:从三角形一个顶点向它的对边作垂线,顶点和垂足间的限度叫做三角形的高线,简称三角形的高. 二、三角形三边关系定理 ①三角形两边之和大于第三边,故同时满足△ABC三边长a、b、c的不等式有:a+b>c,b+c>a,c+a>b. ②三角形两边之差小于第三边,故同时满足△ABC三边长a、b、c的不等式有:a>b-c,b>a-c, c>b-a. 注意:判定这三条线段能否构成一个三角形,只需看两条较短的线段的长度之和是否大于第三条线段即可 三、三角形的稳定性 三角形的三边确定了,那么它的形状、大小都确定了,三角形的这个性质就叫做三角形的稳定性.例如起重机的支架采用三角形结构就是这个道理. 四、三角形的内角 结论1:三角形的内角和为180°.表示:在△ABC中,∠A+∠B+∠C=180° 结论2:在直角三角形中,两个锐角互余. 注意:①在三角形中,已知两个内角可以求出第三个内角 如:在△ABC中,∠C=180°-(∠A+∠B) ②在三角形中,已知三个内角和的比或它们之间的关系,求各内角. 如:△ABC中,已知∠A:∠B:∠C=2:3:4,求∠A、∠B、∠C的度数. 五、三角形的外角 1.意义:三角形一边与另一边的延长线组成的角叫做三角形的外角. 2.性质: ①三角形的一个外角等于与它不相邻的两个内角的和. ②三角形的一个外角大于与它不相邻的任何一个内角. ③三角形的一个外角与与之相邻的内角互补 六、多边形

牛顿几何三大定理及证明

精品文档 . 牛顿三大定理 牛顿定理1:完全四边形两条对边的延长线的交点所连线段的中点和两条对角线的中点,三点共线。这条直线叫做这个四边形的牛顿线。 证明:四边形ABCD,AB∩CD=E,AD∩BC=F,BD中点M,AC中点L,EF中点N。取BE中点P,BC 中点R,PN∩CE=Q R,L,Q共线,QL/LR=EA/AB,M,R,P共线。RM/MP=CD/DE,N,P,Q共线,PN/NQ=BF/FC 三式相乘得:QL/LR*RM/MP*PN/NQ=EA/AB*CD/DE*BF/FC 由梅涅劳斯定理 QL/LR*RM/MP*PN/NQ=1 由梅涅劳斯定理的逆定理知:L,M,N三点共线 故牛顿定理1成立 牛顿定理2圆外切四边形的两条对角线的中点,及该圆的圆心,三点共线。 证明:设四边形ABCD是⊙I的外切四边形,E和F分别是它的对角线AC和BD的中点,连接EI只需证它过点F,即只需证△BEI与△DEI面积相等。 显然,S△BEI=S△BIC+S△CEI-S△BCE,而S△DEI=S△ADE+S△AIE-S△AID。注意两个式子,由ABCD外切于⊙I,AB+CD=AD+BC,S△BIC+S△AID=1/2*S四边形ABCD,S△ADE+S △BCE=1/2*S△ACD+1/2*S△ABC=1/2*S四边形ABCD。即S△BIC+S△AID=S△ADE+S△BCE,移项得S△BIC-S△BCE=S△ADE-S△AID,由E是AC中点,S△CEI=S△AEI,故S△BIC-S △CEI-S△BCE=S△ADE-S△AIE-S△AID,即S△BEI=△DEI,而F是BD中点,由共边比例定理EI过点F即EF过点I,故结论成立。证毕。 牛顿定理3圆的外切四边形的对角线的交点和以切点为顶点的四边形对角线交点重合。精品文档

高中数学立体几何证明定理及性质总结

一.直线和平面的三种位置关系: 1. 线面平行 2. 线面相交 l 符号表示: 符号表示: 3. 线在面内 符号表示: 二.平行关系: 1.线线平行: 方法一:用线面平行实现。方法二:用面面平行实现。 m l m l l // // ? ? ? ? ? ? = ? ? β α β α m l m l// // ? ? ? ? ? ? = ? = ? β γ α γ β α 方法三:用线面垂直实现。若α α⊥ ⊥m l,,则m l//。 2.线面平行: 方法一:用线线平行实现。 α α α// // l l m m l ? ? ? ? ? ? ? ? 方法二:用面面平行实现。 α β β α // // l l ? ? ? ? ? 3.面面平行: 方法一:用线线平行实现。方法二:用线面平行实现 β α α β // ' ,' , ' // ' // ? ? ? ? ? ? ? ? ? ? 且相交 且相交 m l m l m m l l 。β α β α α // , // // ? ? ? ? ? ? ?且相交 m l m l 三.垂直关系: l

1. 线面垂直: 方法一:用线线垂直实现。 方法二:用面面垂直实现。 α α⊥??? ????? ?=?⊥⊥l AB AC A AB AC AB l AC l , αββαβα⊥???? ???⊥=?⊥l l m l m , 2. 面面垂直: 方法一:用线面垂直实现。 方法二:计算所成二面角为直角。 βαβα⊥?? ?? ?⊥l l 3. 线线垂直: 方法一:用线面垂直实现。 m l m l ⊥?? ?? ?⊥αα 方法二:三垂线定理及其逆定理。 PO l OA l PA l αα⊥? ? ⊥?⊥????

初中数学所有几何证明定理

初中数学所有几何证明定理 证明题的思路 很多几何证明题的思路往往是填加辅助线,分析已知、求证与图形,探索证明。对于证明题,有三种思考方式: (1)正向思维。对于一般简单的题目,我们正向思考,轻而易举可以做出,这里就不详细讲述了。 (2)逆向思维。顾名思义,就是从相反的方向思考问题。在初中数学中,逆向思维是非常重要的思维方式,在证明题中体现的更加明显。 同学们认真读完一道题的题干后,不知道从何入手,建议你从结论出发。 例如: 可以有这样的思考过程:要证明某两条边相等,那么结合图形可以看出,只要证出某两个三角形相等即可;要证三角形全等,结合所给的条件,看还缺少什么条件需要证明,证明这个条件又需要怎样做辅助线,这样思考下去……这样我们就找到了解题的思路,然后把过程正着写出来就可以了。 (3)正逆结合。对于从结论很难分析出思路的题目,可以结合结论和已知条件认真的分析。 初中数学中,一般所给的已知条件都是解题过程中要用到的,所以可以从已知条件中寻找思路,比如给我们三角形某边中点,我们就要想到是否要连出中位线,或者是否要用到中点倍长法。给我们梯形,我们就要想到是否要做高,或平移腰,或平移对角线,或补形等等。正逆结合,战无不胜。 证明题要用到哪些原理?

要掌握初中数学几何证明题技巧,熟练运用和记忆如下原理是关键。 下面归类一下,多做练习,熟能生巧,遇到几何证明题能想到采用哪一类型原理来解决问题。 一、证明两线段相等 1.两全等三角形中对应边相等。 2.同一三角形中等角对等边。 3.等腰三角形顶角的平分线或底边的高平分底边。 4.平行四边形的对边或对角线被交点分成的两段相等。 5.直角三角形斜边的中点到三顶点距离相等。 6.线段垂直平分线上任意一点到线段两段距离相等。 7.角平分线上任一点到角的两边距离相等。 8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。 9.同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等。 10.圆外一点引圆的两条切线的切线长相等或圆内垂直于直径的弦被直径分成的两段相等。 11.两前项(或两后项)相等的比例式中的两后项(或两前项)相等。 12.两圆的内(外)公切线的长相等。 13.等于同一线段的两条线段相等。 二、证明两个角相等 1.两全等三角形的对应角相等。 2.同一三角形中等边对等角。 3.等腰三角形中,底边上的中线(或高)平分顶角。

几何定理证明

几何定理证明 1、重心定理:三角形的三条中线交于一点,这点到顶点的距离是它到对边 中点距离的2倍。该点叫做三角形的重心。 先证明交于一点,如图一中线AD、BE交于G,延长CG 交AB于F,即证明F为AB中点即可,延长GD至H使 GD=DH,又BD=DC∴BDCG为平行四边形,∴BE∥CH, CF∥BH,又E为AC中点,EG为中位线,∴G为AH中 点,又CF∥BH,∴FG为中位线,即F为AB中点,∴三 条中线交于一点。 再证明2倍问题 证明1:如图:△ABC的中线AD、BE交于G(重心),求 证:AG=2GD 取CE的中点F,连接DF, 则CE=2EF=AE , ∴DF是△BCE的中位线, ∴GE∥DF , AG/GD=AE/EF=2, ∴AG=2GD 。 证明2:面积法(三条中线将三角形分成6个面积相等 的三角形) △ABC,AB、BC、CA中点分别为D、E、F,交于一点G。 ∵D、E、F为中点 ∴S△CAD=S△CDB=S△ABE=S△ACE=S△ABF=S△BCF =S△ABC/2 ∴S△ADG=S△CEG=S△BEG 同理S△BDG=S△BEG ∴S△ABG=2S△BEG ∴AG/GE=2即AG=2GE 证明3:相似三角形 △ABC,AB、BC、CA中点分别为D、E、F,交于一点G。 ∴DF//BC,DF=BC/2 ①(中位线定理)。 ∴△ADF∽△ABC, E为BC中点,∴H为DF中点(可证AH/AE=DH/BE=HF/EC, BE=EC, ∴DH=HF) ∴HF=DF/2 , BE=BC/2,又可由①知HF=BE/2 ∴HF//BE. 又∵∠BGE=∠FGH。 ∴△BGE∽△FGH ∴BG/GF=BE/HF=2。∴BG=(2/3)BF

立体几何平行证明题复习过程

立体证明题(2) 1.如图,直二面角D﹣AB﹣E中,四边形ABCD是正方形,AE=EB,F为CE上的点,且BF⊥ 平面ACE. (1)求证:AE⊥平面BCE; (2)求二面角B﹣AC﹣E的余弦值. 2.等腰△ABC中,AC=BC=,AB=2,E、F分别为AC、BC的中点,将△EFC沿EF折起,使得C到P,得到四棱锥P﹣ABFE,且AP=BP=. (1)求证:平面EFP⊥平面ABFE; (2)求二面角B﹣AP﹣E的大小.

3.如图,在四棱锥P﹣ABCD中,底面是正方形,侧面PAD⊥底面ABCD,且 PA=PD=AD,若E、F分别为PC、BD的中点. (Ⅰ)求证:EF∥平面PAD; (Ⅱ)求证:EF⊥平面PDC. 4.如图:正△ABC与Rt△BCD所在平面互相垂直,且∠BCD=90°,∠CBD=30°. (1)求证:AB⊥CD; (2)求二面角D﹣AB﹣C的正切值. 5.如图,在四棱锥P﹣ABCD中,平面PAD⊥平面ABCD,△PAD是等边三角形,四边形ABCD 是平行四边形,∠ADC=120°,AB=2AD. (1)求证:平面PAD⊥平面PBD; (2)求二面角A﹣PB﹣C的余弦值.

6.如图,在直三棱柱ABC ﹣A 1B 1C 1中,∠ACB=90°,AC=CB=CC 1=2,E 是AB 中点. (Ⅰ)求证:AB 1⊥平面A 1CE ; (Ⅱ)求直线A 1C 1与平面A 1CE 所成角的正弦值. 7.如图,在四棱锥P ﹣ABCD 中,PA ⊥平面ABCD ,∠DAB 为直角,AB ∥CD ,AD=CD=2AB=2,E ,F 分别为PC ,CD 的中点. (Ⅰ)证明:AB ⊥平面BEF ; (Ⅱ)若PA= ,求二面角E ﹣BD ﹣C . 8.如图,在四棱锥P ﹣ABCD 中,PA ⊥平面ABCD ,PA=AB=AD=2,四边形ABCD 满足AB ⊥AD ,BC ∥AD 且BC=4,点M 为PC 中点. (1)求证:DM ⊥平面PBC ; (2)若点E 为BC 边上的动点,且λ=EC BE ,是否存在实数λ,使得二面角P ﹣DE ﹣B 的余弦值为 3 2 ?若存在,求出实数λ的值;若不存在,请说明理由.

高中立体几何证明方法及例题

1. 空间角与空间距离 在高考的立体几何试题中,求角与距离是必考查的问题,其中最主要的是求线线角、线面角、面面角、点到面的距离,求角或距离的步骤是“一作、二证、三算”,即在添置必要的辅助线或辅助面后,通过推理论证某个角或线段就是所求空间角或空间距离的相关量,最后再计算。 2. 立体几体的探索性问题 立体几何的探索性问题在近年高考命题中经常出现,这种题型有利于考查学生归纳、判断等方面的能力,也有利于创新意识的培养。近几年立体几何探索题考查的类型主要有:(1)探索条件,即探索能使结论成立的条件是什么?(2)探索结论,即在给定的条件下命题的结论是什么。 对命题条件的探索常采用以下三种方法:(1)先观察,尝试给出条件再证明;(2)先通过命题成立的必要条件探索出命题成立的条件,再证明充分性;(3)把几何问题转化为代数问题,探索出命题成立的条件。 对命题结论的探索,常从条件出发,再根据所学知识,探索出要求的结论是什么,另外还有探索结论是否存在,常假设结论存在,再寻找与条件相容还是矛盾。 (一)平行与垂直关系的论证 由判定定理和性质定理构成一套完整的定理体系,在应用中:低一级位置关系判定高一级位置关系;高一级位置关系推出低一级位置关系,前者是判定定理,后者是性质定理。 1. 线线、线面、面面平行关系的转化: ?a c //) αβ αγβγ //,// ==???? a b a b 面面平行性质 线面平行性质 a a b a b ////αβαβ?=???? ? ? 面面平行性质1 αβαβ ////a a ??? ? ? 面面平行性质 αγβγαβ //////?? ?? 2. 线线、线面、面面垂直关系的转化:

初中数学几何证明经典题(含答案)

初中几何证明题 经典题(一) 1、已知:如图,O是半圆的圆心,C、E是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO. 求证:CD=GF.(初二) .如下图做GH⊥AB,连接EO。由于GOFE四点共圆,所以∠GFH=∠OEG, 即△GHF∽△OGE,可得EO GF = GO GH = CO CD ,又CO=EO,所以CD=GF得证。 2、已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=150. 求证:△PBC是正三角形.(初二) .如下图做GH⊥AB,连接EO。由于GOFE四点共圆,所以∠GFH=∠OEG, 即△GHF∽△OGE,可得EO GF = GO GH = CO CD ,又CO=EO,所以CD=GF得证。 .如下图做GH⊥AB,连接EO。由于GOFE四点共圆,所以∠GFH=∠OEG, 即△GHF∽△OGE,可得EO GF = GO GH = CO CD ,又CO=EO,所以CD=GF得证。 A P C D B A F G C E B O D

3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、 CC 1、DD 1的中点. 求证:四边形A 2B 2C 2D 2是正方形.(初二) 4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F . 求证:∠DEN =∠F . 经典题(二) 1、已知:△ABC 中,H 为垂心(各边高线的交点),O (1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二) D 2 C 2 B 2 A 2 D 1 C 1 B 1 C B D A A 1 B

立体几何证明定理及性质总结

一.直线和平面的三种位置关系: 1. 线面平行 2. 线面相交 l 符号表示: 符号表示: 3. 线在面内 符号表示: 二.平行关系: 1.线线平行: 方法一:用线面平行实现。方法二:用面面平行 实现。 m l m l l // // ? ? ? ? ? ? = ? ? β α β α m l m l// // ? ? ? ? ? ? = ? = ? β γ α γ β α 方法三:用线面垂直实现。若α α⊥ ⊥m l,,则m l//。 2.线面平行: 方法一:用线线平行实现。 α α α// // l l m m l ? ? ? ? ? ? ? ? 方法二:用面面平行实现。 α β β α // // l l ? ? ? ? ? 3.面面平行: 方法一:用线线平行实现。方法二:用线面 平行实现 l

βααβ//',',' //'//??? ?? ? ? ? ??且相交且相交m l m l m m l l 。βαβαα//,////??? ????且相交m l m l 三.垂直关系: 1. 线面垂直: 方法一:用线线垂直实现。 方法二:用面面垂直实现。 α α⊥??? ????? ?=?⊥⊥l AB AC A AB AC AB l AC l , αββαβα⊥???? ???⊥=?⊥l l m l m , 2. 面面垂直: 方法一:用线面垂直实现。 方法二:计算所成二面角为直角。 βαβα⊥?? ?? ?⊥l l 3. 线线垂直: 方法一:用线面垂直实现。 m l m l ⊥?? ?? ?⊥αα 方法二:三垂线定理及其逆定理。 PO l OA l PA l αα⊥? ? ⊥?⊥????

高中立体几何证明方法及例题

由判定定理和性质定理构成一套完整的定理体系,在应用中:低一级位置关系判定高一级位置关系;高一级位置关系推出低一级位置关系,前者是判定定理,后者是性质定理。 1. 线线、线面、面面平行关系的转化: αβ αγβγ //,// ==???? a b a b 面面平行性质 ??? ? ? 面面平行性质 αγβγαβ //////?? ?? 2. 线线、线面、面面垂直关系的转化: a a OA a PO a PO a AO ?⊥?⊥⊥?⊥αα 在内射影则 面面垂直判定 线面垂直定义 l a l a ⊥??⊥? ??α α 面面垂直性质,推论2 αβ αββα⊥=?⊥?⊥??? ? ? b a a b a , αγβγαβ γ⊥⊥=?⊥? ?? ? ? a a 面面垂直定义 αβαβαβ =--?⊥? ?? l l ,且二面角成直二面角

面面∥面面平行判定2 线面垂直性质2a b a b //⊥?⊥??? α α a b a b ⊥ ⊥???? αα// a a ⊥⊥?? ?? αβα β // αβα β//a a ⊥⊥? ?? a 4. 应用以上“转化”的基本思路——“由求证想判定,由已知想性质。” 5. 唯一性结论: 1. 三类角的定义: (1)异面直线所成的角θ:0°<θ≤90 ° (2)直线与平面所成的角:0°≤θ≤90° (3)二面角:二面角的平面角θ,0°<θ≤180° 2. 三类角的求法:转化为平面角“一找、二作、三算” 即:(1)找出或作出有关的角;(2)证明其符合定义; (3)指出所求作的角; (4)计算大小。

部分课外平面几何定理证明

部分课外平面几何定理证明 一.四点共圆 很有用的定理,下面的定理证明中部分会用到这个,这也是我把它放在第一个的原因。 这个定理根据区域的不同,在中考有的地方能直接用,有的不能,据笔者所知,北京中考是可以直接用的。其余的还是问问老师比较好。起码在选择题是大有用处的。 二.三角形三垂线交于一点 四点共圆的一次运用。很多人都知道三垂线交于一点,在这里给出证明 三.三角形垂心是连接三垂直所得到新三角新的内心 由三角形的三垂线可得多组四点共圆,一般有垂心的题都离不开四点共圆。 估计这个结论在中考是不能直接用的,如果地区允许四点共圆的话稍微证一下就行了。

四.圆幂定理(在这里只是一部分) ·为割线定理、切割线定理于相交弦定理的总称。 这个应该是很多地方都允许用的,如果不能用的话也是稍微证一下就行了。

五.射影定理(欧几里得定理) 什么也不说了,初中几何里应该是比较常用的。目测考试随便用 六.三角形切线长公式

·已知三角形三边长可求内切圆切点到顶点距离 可能是做的题比较少吧,很少见有这样的中考题。推导也是很简单的。 七.广勾股定理 估计中考允许用的地方不多,除非你那允许“引理”这货 八.弦切角定理 很简单,估计每个地方都允许的。就算不把它当定理,自己也能发现这个结论

九.燕尾定理(共边比例定理) 面积法思想,出现中点时可以用来证线段相等(例如下一个,重心),另外用于比例也是挺好使的。 中考的时候,直接用的话估计老师会认为你跳跃度太大,考虑的时候想到这个,证明的时候用面积法就行了。 十.海伦公式 已知三角形三边可求其面积,可用余弦定理和正弦求面积公式推导,但余弦定理是高中知识(在后面会放出来)所以不用在这里。另外公式里带根号,若三边中有根号的配凑一下应该可以开根。这里是海伦公式的一个探讨,推广至n边形面积。在第五页有海伦公式的各种变形,其中变形⑤的个边带有平方,可以解决边长带根号的问题,缺点是过于冗繁。吧友可以根据自己的情况进行探讨。 中考嘛,一直不是很喜欢,过多的限制,不能发挥自己的能力。这个公式就不推荐考试的时候用了。

初中几何证明题要用到的一些定理

初中几何证明题要用到的一些定理 证明两线段相等 1.两全等三角形中对应边相等。 2.同一三角形中等角对等边。 3.等腰三角形顶角的平分线或底边的高平分底边。 4.平行四边形的对边或对角线被交点分成的两段相等。 5.直角三角形斜边的中点到三顶点距离相等。 6.线段垂直平分线上任意一点到线段两段距离相等。 7.角平分线上任一点到角的两边距离相等。 8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。 *9.同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等。*10.圆外一点引圆的两条切线的切线长相等或圆内垂直于直径的弦被直径分成的两段相等。 11.两前项(或两后项)相等的比例式中的两后项(或两前项)相等。 *12.两圆的内(外)公切线的长相等。 13.等于同一线段的两条线段相等。 证明两个角相等 1.两全等三角形的对应角相等。 2.同一三角形中等边对等角。 3.等腰三角形中,底边上的中线(或高)平分顶角。 4.两条平行线的同位角、内错角或平行四边形的对角相等。 5.同角(或等角)的余角(或补角)相等。 *6.同圆(或圆)中,等弦(或弧)所对的圆心角相等,圆周角相等,弦切角等于它所夹的

弧对的圆周角。 *7.圆外一点引圆的两条切线,圆心和这一点的连线平分两条切线的夹角。 8.相似三角形的对应角相等。 *9.圆的内接四边形的外角等于内对角。10.等于同一角的两个角相等 证明两直线平行 1.垂直于同一直线的各直线平行。 2.同位角相等,内错角相等或同旁内角互补的两直线平行。 3.平行四边形的对边平行。 4.三角形的中位线平行于第三边。 5.梯形的中位线平行于两底。 6.平行于同一直线的两直线平行。 7.一条直线截三角形的两边(或延长线)所得的线段对应成比例,则这条直线平行于第三边。证明两条直线互相垂直 1.等腰三角形的顶角平分线或底边的中线垂直于底边。 2.三角形中一边的中线若等于这边一半,则这一边所对的角是直角。 3.在一个三角形中,若有两个角互余,则第三个角是直角。 4.邻补角的平分线互相垂直。 5.一条直线垂直于平行线中的一条,则必垂直于另一条。 6.两条直线相交成直角则两直线垂直。 7.利用到一线段两端的距离相等的点在线段的垂直平分线上。 8.利用勾股定理的逆定理。 9.利用菱形的对角线互相垂直。

立体几何证明方法大全

(二)立体几何证明方法汇总 1、线线平行判定定理 一个平面 点 平行于同一条直线的两条直线的 两条直线平行 线面平行性质如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交, 面面平行的性一个平面与两个平行平面相交 则交线平行 线面垂直的性垂直于同 行

两条直线所成的角是 线面垂直的性质一条直线垂直于一个平面任何一条直线 一条直线垂直三角形两边则垂直一条直线垂直于三角形的两条边 第三边 三垂线定理 个平面的一条斜线的射影垂直,那么它和这条斜线垂直 三垂线定理逆定三垂线逆定理 这个平面的一条斜线垂直,那么它和这条斜线的射影垂直

一条直线与平面没有交点 线面平行判两个平面平行, 平行于另一个平面 如果一条直线垂直于平面内的任何一条 直线,则直线与平面垂直。 的一条直线垂直于平面内两条相交直线, 则平行于这个平面。 的推一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面 的若二平面垂直,那么在一个平面内垂直 于它们的交线的直线垂直于另一个平面

如果两个平面没有公共点,则两个平面平行。 面面平行的如果一个平面内有两条相交直线平行于另一 个平面,那么这两个平面平行 面面平行的判定定理推如果两个平面内两条相交直线平行于另一个平面内两条相交直线,则两个平面平行。 线面垂直的 垂直于同一直线的两个平面平行 两个平面相交, 这两个平面垂直。 面面垂直的判如果平面经过另一个平面的一条垂线, 面垂直。

公理 么这条直线上的所有点都在这个平面内。( ( 公理 它公共点,这些公共点的集合是一条直线( ( 公理 个平面。 干个点共面的依据 推论 有一个平面。 ( ( 推论 推论

平面几何证明题的一般思路及方法简述

平面几何证明题的一般思路及方法简述 【摘要】惠特霍斯曾说过,“一般地,解题之所以成功,在很大程度上依赖于选择一种最适宜的方法。”灵活、恰当地选择解题方法是求解平面几何问题的良好途径。解决任何一道平面几何证明题,都要应用这样或那样的方法,而选择哪一种方法,就取决于我们用什么样的解题思路。本文试对平面几何证明题中常用的几种解题思路及方法进行分析。 【关键词】平面几何证明题思路方法 平面几何难学,是很多初中生在学习中的共识,这里面包含了很多主观和客观因素,而学习不得法,没有适当的解题思路则是其中的一个重要原因。波利亚曾说过,“解题的成功要靠正确思路的选择,要靠从可以接近它的方向去攻击堡垒。为了辨别哪一条思路正确,哪一个方向可接近它,就要试探各种方向和思路。”由此可见,掌握证明题的一般思路、探索证题过程中的数学思维、总结证题的基本规律是求解几何证明题的关键。常见的证题思路有直接式思路和间接式思路。 一、直接式思路 证题时,首先应仔细审查题意,细心观察题目,分清条件和结论,并尽量挖掘题目中隐含的一些解题信息,以在缜密审题的基础上,根据定义、公式、定理进行一系列正面的逻辑推理,最后得出命题的证明,这种证题的思路被称为直接式思路。由于思维方式的逆顺,在证题时运用的方法主要有“分析法”和“综合法”。 1.分析法。分析法是从命题的结论入手,先承认它是正确的,执果索因,寻求结论正确的条件,这样一步一步逆而推之,直到与题设会合,于是就得出了由题设通往结论的思维过程。在由结论向已知条件的寻求追溯过程中,则由于题设条件的不同,或已知条件之间关系的隐含程度不同等,寻求追溯的形式会有一定差异,因而常把分析法分为以下四种类型。 (1)选择型分析法。选择型分析法解题,首先要从题目要求解的结论A出发,逐步把问题转化为分析要得出结论A需要哪些充分条件。假设有条件B,就有结论A,那么B就成为选择找到的使A成立的充分条件,然后再分析在什么条件下能选择得到B……最终追溯到命题中的某一题设条件。 (2)可逆型分析法。如果再从结论向已知条件追溯的过程中,每一步都是推求的充分必要条件,那么这种分析法又叫可逆型分析法,因而,可逆型分析法是选择型分析法的特殊情形。用可逆型分析法证明的命题用选择型分析法一定能证明,反之用选择型分析法证明的命题,用可逆型分析不一定能证明。 (3)构造型分析法。如果在从结论向已知条件追溯的过程中,在寻找新的充分条件的转化“三岔口”处,需采取相应的构造型措施:如构造一些条件,作某些辅助图等,进行探讨、推导,才能追溯到原命题的已知条件的分析法叫做构造型分析法。 (4)设想型分析法。在向已知条件追溯的过程中,借助于有根据的设想、假定,形成“言之成理”的新构思,再进行“持之有据”的验证,逐步地找出正确途径的分析法称为设想型分析法。 2.综合法。综合法则是由命题的题设条件入手,由因导果,通过一系列的正确推理,逐步靠近目标,最终获得结论。再从已知条件着手,根据已知的定义、公式、定理,逐步推导出结论。在这一过程中,由于思考角度不同,立足点不同,综合法常分为四种类型: (1)分析型综合法。我们把分析法解题的叙述倒过来,稍加整理而得到的解法称为分析型综合法。 (2)奠基型综合法。当由已知条件着手较难,或没有熟悉的模式可供归纳推导,就可转而寻找简单的模式,然后再将一般情形化归到这个简单的模式中来,这样的综合法称为奠基型综合法。 (3)媒介型综合法。当问题给出的已知条件较少,且看不出与所求结论的直接联系时,或条

平面几何中几个重要定理的证明

1 平面几何中几个重要定理及其证明 一、塞瓦定理 1.塞瓦定理及其证明 定理:在?ABC 内一点P ,该点与?ABC 的三个顶点相连所在的三条直线分别交?ABC 三边AB 、BC 、CA 于点D 、E 、F ,且D 、E 、F 三点均不是?ABC 的顶点,则有 1AD BE CF DB EC FA ??=. 证明:运用面积比可得 ADC ADP BDP BDC S S AD DB S S ????==. 根据等比定理有 ADC ADC ADP APC ADP BDP BDC BDC BDP BPC S S S S S S S S S S ??????????-=== -, 所以 APC BPC S AD DB S ??=.同理可得 APB APC S BE EC S ??=, BPC APB S CF FA S ??=. 三式相乘得 1AD BE CF DB EC FA ??=. 注:在运用三角形的面积比时,要把握住两个三角形是“等高”还是“等底”,这样就可以产生出“边之比”. 2.塞瓦定理的逆定理及其证明 定理:在?ABC 三边AB 、BC 、CA 上各有一点D 、E 、F ,且D 、E 、F 均不是?ABC 的顶点,若 1AD BE CF DB EC FA ??=,那么直线CD 、AE 、BF 三线共点. 证明:设直线AE 与直线BF 交于点P ,直线CP 交AB 于点D /,则据塞瓦定理有 // 1AD BE CF D B EC FA ??=. 因为 1AD BE CF DB EC FA ??=,所以有 A B C D F P A B C D E F P D /

初中平面几何证明题及答案

九年级数学练习题 1.如图,分别以△ABC 的边AB 、AC 为边,向外作正方形ABFG 和ACDE ,连接EG 求证:ABC AEG S S △△ 2.如图,分别以△ABC 的边AB 、AC 为边,向外作正方形ABFG 和ACDE ,连接EG 。若O 为EG 的中点 求证:EG=2AO 3. 如图,分别以△ABC 的边AB 、AC 为边,向外作正方形ABFG 和ACDE ,连接EG ,若O 为EG 的中点,OA 的延长线交BC 于点H 求证:OH ⊥BC

4. 如图,分别以△ABC的边AB、AC为边,向外作正方形ABFG和ACDE,连接EG,若AH⊥BC,HA的延长线交EG于点O 求证:O为EG的中点 5. 如图,分别以△ABC的边AB、AC为边,向外作正方形ABFG和ACDE,连接CE,BG、GE M、N、P、Q分别是EG、GB、BC、CE的中点 求证:四边形MNPQ是正方形 答案: 1.作CM⊥AB于点M,EN⊥GA,交GA的一次性于点N ∵∠MAN=∠CAE=90° ∴∠CAM=∠EAN ∵∠ANE=∠CMA=90°,AC=AE ∴△ACM≌△AEN ∴CM=EN ∵S△ABC=1/2*AB *CM,S△AGE=1/2*AG*EN 又∵AG=AB,CM=EN ∴S△ABC=S△AEG 2.证明: 延长AO到点M,使OM=OA,连接MG、ME 则四边形AEMG是平行四边形 ∴GM=AE=AC,MG‖AE

∴∠MGA+∠GAE=180° ∵∠BAG+∠CAE=180° ∴∠BAC+∠GAE=180° ∴∠BAC=∠AGM ∵AC=AB ∴△AGM≌△BAC ∴BC=AM=2AO 3. OA与OH共线,所以向量AO与向量BC的数量积为0即可证出AH⊥BC 我用AB表示向量AB,即此时字母AB都有方向性,下边的都是如此, 2AO=AG+GE 过A作直线BC的平行线交FG于M,交DE于N, 2AO*BC =(AG+AE)*BC =AG*BC+AE*BC =-|AG||BC|cos∠GAM+|AE||BC|cos∠EAN =|BC|*(-|AB|*sin∠MAB+|AC|*sin∠NAC) =|BC|*(-|AB|sin∠ABC+|AC|sin∠ACB) 设BC上的高长为h, 上式=|BC|(-h+h)=0 所以AO与BC垂直,即AH⊥BC 5.连结BE、CG, ∵PQ是△BEC的中位线, ∴PQ//BE,且PQ=BE/2, 同理MN//BC,MN=BE/2, ∴MN=PQ,且MN//PQ, ∴四边形PQMN是平行四边形, 同理MQ=PN=CG/2, 在△BAE和△GAC中, BA=GA, AC=AE, ∵〈BAG=〈CAE=90°, 〈BAG+〈BAC=〈CAE+〈BAC, ∴〈BAE=〈GAC, ∴△BAE≌△GAC,(SAS), ∴BE=CG, ∴BE/2=CG/2,

相关文档
最新文档