数字控制有源功率因数校正器的设计(重要)

数字控制有源功率因数校正器的设计(重要)
数字控制有源功率因数校正器的设计(重要)

定稿日期:2008-02-18

作者简介:黄海宏(1973-),男,江西省清江人,副教授,

研究方向为电力电子和传动方面。

1引言

直流操作电源系统是发电厂、变电站中不可缺少的二次设备之一,由整流电源、蓄电池组和馈电部分组成。通常情况下,整流电源的作用是AC/DC变换,在对蓄电池组充电的同时,通过馈电部分向直流负荷供电;在交流停电时,蓄电池组通过馈电部分向直流负荷供电,以保证直流负荷不停电。目前,直流操作电源普遍采用高频开关电源模块并联运行方式,与传统的晶闸管相控电源相比,其技术指标优异,如稳压、稳流精度高,纹波系数低,易与阀控密封铅酸蓄电池组一起组成直流电源成套装置。由于开关电源输入端有整流、电容平波电路,使其输入电流

呈尖脉冲状,功率因数通常只有0.6~0.7,

会对电网造成谐波污染,造成电力公害,干扰其他用电设备,使测量仪表产生较大误差。为降低电源装置对电网的污染,电力用开关电源需加功率因数校正电路。

2有源功率因数校正基本原理

目前,功率因数校正有无源功率因数校正(RPFC)和有源功率因数校正(APFC)两种。RPFC方法是在输入端加入电感量很大的低频电感,并降低滤波电容的容量,以减小滤波电容充电电流的尖峰,校正后的功率因数能达到0.9以上,一般用于三相输入的大功率开关电源模块[1]。

APFC的基本思路是在输入端加入高频功率开

关管及相应的控制器,如图1所示。控制器通过采集交流输入电压、输入电流和输出电压信号,利用输出电压控制环的输出uo(t)与输入整流后的电压uAC(t)

相乘,得到一个电流参考信号iref(t)

,用于控制功率管VT的导通和关断,使得电感L电流iL波形跟踪

iref(t)波形,从而使输入交流平均值波形跟随输入电压波形,成为与输入电压同相位的近似正弦波,而且可使功率因数接近于1,同时使输出电压uo(t)得到控制[2]。目前,国内APFC方法主要用于单相输入的开关电源模块,其中采用UC3854作为APFC的控

制用集成电路较为普遍。

3数字控制APFC电路

随着计算机和信息技术的飞速发展,数字信号处理技术得到了迅速发展。数字控制使得电力电子变换控制更为灵活,在CPU计算速度允许的情况下,可以实现模拟控制难以做到的复杂控制算法,即使在控制对象改变的情况下,也无需修改控制器硬件,而只需修改某些参数,因此增强了系统的兼容性。由于数字控制所采用的CPU计算速度决定了数字控制系统的适用场合,故现在的数字控制多被用于

数字控制有源功率因数校正器的设计

黄海宏1,王海欣1,高

格2,付

鹏2

(1.合肥工业大学,安徽合肥230009;2.中国科学院等离子体物理研究所,安徽合肥230031)

摘要:直流电源系统是变电站的重要组成设备,它可为负载提供不间断电源,因此要求应用于直流电源的高频开关

电源模块必须具备功率因数校正功能。利用Freescale新型号MC56F8025的高性能特性,完成了基于DSP的具有软开关特性的数字控制有源功率因数校正(ActivePowerFactorCorrection,

简称APFC)电路的设计,描述了系统设计过程。最后通过2.2kW的实验样机验证了数字控制的优良特性。

关键词:功率因数;数字控制/有源功率因数校正;开关电源;软开关中图分类号:TM714.1

文献标识码:A

文章编号:1000-100X(2008)05-0017-03

DesignofDigitalControlActivePowerFactorCorrectionRectifier

HUANGHai-hong1,WANGHai-xin1,GAOGe2,FUPeng2

(1.HefeiUniversityofTechnology,Hefei230009,China;

2.InstituteofPlasmaPhysics,ChineseAcademyofScience,Hefei230031,China)

Abstract:TheDCpowersupplyisanimportantdeviceinsubstations,itcansupplyuninterruptedpowerforload,thehighfrequencyswitchmodepowermodulemusthavefunctionofpowerfactorcorrection.BasedonnewDSPchipMC56F8025,adigitalactivepowerfactorcorrectionrectifierwithsoftswitchcharacteristicwasdesigned,theprocessofsystemdesignwasdescribed.Atlasta2.2kWprototypewasbuilttoverifythefavorableperformanceresultedfromdigitalcontrol.Keywords:powerfactor;digitalcontrol/activepowerfactorcorrection;switchmodepowersupply;softswitching

图1有源功率因数校正电路框图

17

图2数字控制有源功率因数校正器框图

图3数字控制功率因数校正算法结构

计算速度要求不太苛刻的场合,例如UPS和逆变器控

制等,其计算频率一般小于20kHz。而对于控制频率大于100kHz的高频功率变换,目前主要还是以模拟器件控制为主。

随着DSP的应用逐渐普及,用DSP取代模拟电路中的专用PWM集成电路,实现电力用高频开关电源数字控制已成为研究的热点。

这里采用MC56F8025数字信号处理器作为控制芯片,实现APFC的数字控制。MC56F8025是

56800E系列的16位定点DSP,

采用双哈佛结构,主频可达32MHz,

运算能力达32MIPS,单指令周期可完成16×16位并行乘加运算,具有4个带扩展位的36位累加器,3条内部地址总线和4条内部数据总线,内置16kbyte的Flash和2kbyte的RAM,6路PWM输出和双4路ADC等其他丰富的外设资源。

图2电路中,数字控制器采样全波整流电压、输入电流和输出直流电压3个变量,送入DSP处理。电压外环G1保证输出直流电压稳压在给定值,电压环的输出Ur决定电流环给定的幅值。DSP软件程序生成的数字纯正弦电流波形给定Ishape决定电流环给定的形状,保证输入电流的正弦化。输入电压的采样不仅决定了输入电流的过零点,保证输入电流与输入电压相位一致,同时输入电压前馈也加速了输入变化时系统的响应速度。电流内环G2将输入电流采样值Iin与电流环给定Iref相比较,经电流环的PI调节器产生变化的占空比参数,通过PWM0/PWM1控制功率管的驱动波形,以达到校正输入功率因数校正和稳定输出电压的目的。

传统APFC电路中,主功率管工作在硬开关状

态,开通时的电流上升和电压下降及关断时的电流下降和电压上升均同时发生,会造成较大的开关损耗。为克服硬开关的缺点,在PFC电路中引入了带软开关辅助网络的零电压转换PWM电路[3]。

通过在主开关管VT1两端并联缓冲电容C2可限制VT1关断时的电压上升率,降低VT1的关断损

耗。辅助功率管VT2先于VT1导通,

使C2与L2构成的谐振回路工作,当VT1两端电压下降到零时,其内

部的反并二极管导通箝位,实现VT1零电压导通。

4数字控制APFC软件设计

图3所示APFC算法结构分成三部分。电压外环实现输出直流电压跟随给定电压,实现稳压输出;电流给定算法计算电流波形给定,并完成恒功率电压前馈;电流内环实现输入交流电流跟随输入电流给定,完成功率因数校正。

在传统APFC模拟控制算法中,电流波形给定以输入电压波形为依据,同时为达到恒功率电流均值控制,电流环的给定以输入电压有效值平方作为倒数:

i*=KmuoregUff2

Ussin!0t(1)

式中:i*为输入电流给定;Km为比例系数;uoreg为电压调节器的输出电压;Us为输入电压峰值;Uff为前馈电压的有效值。

在模拟电路实现APFC算法中,由于将输入电压波形作为输入电流波形的给定,会将输入电压的纹波带入输入电流控制,若电源外界工作环境不佳,会影响电源的输入功率因数校正效果。而在基于

DSP的数字控制中,

正弦给定可方便地由DSP内部软件完成,给定波形为纯净的正弦波,不受输入电压的影响,其算法公式为:

i*=KmuoregUff2

Ishape(2)

考虑到电网电压频率会发生波动,数字正弦给定波形的频率应随输入电压频率的变化而变化。在DSP程序中量化正弦表的点数固定,在读表频率一定时,需实时改变读表步长。设N为总的读表次数;

M为顺序读表次数,

则第M次读表时对应的读表步长,即当前读表指针应跨过的正弦表点数为:

Nstep=(Sp-1)MN

(3)式中:Sp为正弦表总点数;fr为读表频率,

是由软件设定的固定值;fs为输入电压两倍频率(输入电压采样为整流后的全波电压波形),可通过采样结果进行周期判断得到;N=fr/fs;M=

1,

2,3……N。同时通过硬件捕获输入电压过零点,在捕获中

断中将正弦给定读表指针归零,实现输入电压与DSP内部正弦给定的同步。

在数字控制系统中,电压环和电流环调节器均采用数字PI调节器。PI调节器通过控制偏差进行控

制,控制偏差为给定值r(t)与实际输出值c(t)

的差18

图4输入电压和输入电流波形

uin

/V

iin/A

Uo

/V

THDiin%

!

模拟电路数字电路模拟电路数字电路

224.01.6382.224.816.60.9680.984223.43.0382.212.28.80.9830.994222.17.2382.110.84.00.9910.996221.68.6

382.1

10.53.60.9930.997220.110.1382.010.43.20.9940.997219.811.4381.9

10.2

3.0

0.994

0.997

表1

模拟电路和数字电路实验数据对比

值,即e(t)=r(t)-c(t)

。将偏差的比例P和积分I通过组合构成控制量,对被控对象进行控制:

u(t)=Kpe(t)+1Tst

!

e(t)d"

#

t(4)式中:u(t)为PI调节器输出;e(t)为PI调节器输入;Kp为比例系数;TI为积分时间常数。

由于DSP控制是一种离散的数字控制,它只能根据采样时刻的偏差值计算控制量,因此必须对上

式进行离散化处理,用一系列采样时刻点k代表连

续的时间t,离散的PI控制算法表达式为:u(k)=Kpe(k)+Ts

Ti

j=0

$e(

j%

&

)=Kp

e(k)+Ki

j=0

$e(j)(5)式中:k=0,1,2……表示序列;u(k)为第k次采样时刻PI调节器的输出值;e(k)为第k次采样时刻输出的偏差值;Ts为采样周期;Ti为积分时间常数;Ki为积分系数。

由式(5)可知,在积分环节中每次要对e(k)进行累加,易出现积分饱和情况。为解决该问题,采用

抑制积分饱和的PI算法[4]对该算法进行修改,有:U(n)=Kpe(n)+In(n-1)(6)In(n)=In(n-1)+Kie(n)+KsatePI(7)

式中:ePI=Us-U(n);Us为抑制积分饱和的PI算法的输出;Us=

Umin

[U(n)≤Umin]Umax[U(n)≥Umax]U(n)[Umin<U(n)<Umax)

;U(n)

为本次PI调节器的计算结果;Ksat为抗饱和系数;In(n)为本次积分累加和;Umax和Umin为PI

调节器输出的最大值和最小值。

当控制对象为PWM占空比时,分别设置Umax=

1,

Umin=0。使用这种PI算法,可将调节器的输出限制在需要的范围内,以保证当计算出现错误时也不会使控制量出现不允许的数值,使PI调节器的输出具有抗饱和特性。

5系统实验

考虑到额定输出电流为10A的开关电源模块在电力直流操作电源中应用最为普及,作为DC/DC前的PFC部分,要求样机技术参数:交流输入电压

220V,

直流输出电压380V,输出额定功率2.2kW,开关频率100kHz,功率因数!>0.99。图4示出输入电压uin和输入电流iin实验波形。

实验波形表明,iin在相位上跟踪uin波形,且保持了优秀的正弦特性。为验证数字控制APFC的效果,与传统采用UC3854为控制芯片的模拟APFC电路进行了比较,表1示出数据对比。

实验数据说明,由于数字控制的正弦给定为DSP内部软件形成的纯净正弦,iin的正弦化程度得以改善,功率因数得到进一步提高。

图5为功率管采用硬开关和软开关时功率管两端电压uds波形。由波形可知,采用软开关技术后,降低了功率管的电压应力。

图5功率管端波形

6结束语

数字控制已成为实现电源模块化、集成化、绿色

化的有效手段。采用新型DSP芯片MC56F8025,

将数字控制引入到电力用高频开关电源有源功率因数校正的控制之中,完成了基于数字控制的功率因数校正电路设计,取得了良好的控制效果。

参考文献

[1]黄海宏,

王海欣.开关电源在电力系统的应用[J].电力建设,2005,26(1):14-16.[2]刘文华.高功率因数48V/50A通信开关电源[J].电力系统自动化,1997,21(9):69-71.[3]

王兆安,黄

俊.电力电子技术[M].北京:机械工业出版

社,2004.

[4]陈新,

吴崇理.DSP56800E控制器及其应用[M].北京:电子工业出版社,2007.

数字控制有源功率因数校正器的设计*********************************************+

*****+

*********************************************+

*****+

征稿

本刊2008年第12期将开辟“电力电子器件研发进展”栏目,欢迎广大读者踊跃投稿。截稿日期2008年7

月30日。录用通知发出日期2008年9月30日。论文刊登日期2008年第12期(2008年12月20日出版)。

19

Edited by Foxit Reader

Copyright(C) by Foxit Software Company,2005-2008

For Evaluation Only.

2 kW有源功率因数校正电路设计

2 kW 有源功率因数校正电路设计 概述:有源功率因数校正可减少用电设备对电网的谐波污染,提高电器 设备输入端的功率因数。详细分析有源功率因数校正APFC(active power factor corrector)原理,采用平均电流控制模式控制原理,设计一种2 kW 有源功率因数校正电路。实验结果表明:以TDA16888 为核心的有源功率因数校 正器能在90~270 V 的宽电压输入范围内得到稳定的380 V 直流电压输出,功率因数达O.99,系统性能优越。 1 引言 目前家用电器的功率前级多采用二极管全桥整流方式,这会造成电网谐波 污染,功率因数下降,无功分量主要为高次谐波,其中三次谐波幅度约为基 波幅度的95%,五次谐波幅度约为基波幅度的70%.七次谐波幅度约为基波幅度的45%。高次谐波会对电网造成危害,使用电设备的输入端功率因数 下降,而且产生很强的电磁干扰(EMI),对电网和其他用电设备的安全运行造 成潜在危害。 有源功率因数校正电路(Active Power Factor Corrector,APFC)可将电源的输入电流变换为与输入市电同相位的正弦波,从而提高电器设备的功率因数, 减少对电网的谐波污染。理论上,降压式(Buck)、升压式(Boost)、升/降压式(Boost-Buck)以及反激式(Flyback)等变换器拓扑都可作为APFC 的主电路。其中,Boost APFC 是简单电流型控制,功率因数值高,总谐波失真小,效率高,但输出电压高于输入电压,适用于75~2 000 W 功率电源,应用广泛。因为升压式APFC 的电感电流连续,储能电感可作为滤波器抑制射频干扰(RFI)和EMI 噪声,并防止电网对主电路的高频瞬态冲击.电路有升压斩波电路,输出电压大于输入电压峰值,电源允许的输入电压范围扩大,通常可达

数字控制有源功率因数校正器的设计(重要)

定稿日期:2008-02-18 作者简介:黄海宏(1973-),男,江西省清江人,副教授, 研究方向为电力电子和传动方面。 1引言 直流操作电源系统是发电厂、变电站中不可缺少的二次设备之一,由整流电源、蓄电池组和馈电部分组成。通常情况下,整流电源的作用是AC/DC变换,在对蓄电池组充电的同时,通过馈电部分向直流负荷供电;在交流停电时,蓄电池组通过馈电部分向直流负荷供电,以保证直流负荷不停电。目前,直流操作电源普遍采用高频开关电源模块并联运行方式,与传统的晶闸管相控电源相比,其技术指标优异,如稳压、稳流精度高,纹波系数低,易与阀控密封铅酸蓄电池组一起组成直流电源成套装置。由于开关电源输入端有整流、电容平波电路,使其输入电流 呈尖脉冲状,功率因数通常只有0.6~0.7, 会对电网造成谐波污染,造成电力公害,干扰其他用电设备,使测量仪表产生较大误差。为降低电源装置对电网的污染,电力用开关电源需加功率因数校正电路。 2有源功率因数校正基本原理 目前,功率因数校正有无源功率因数校正(RPFC)和有源功率因数校正(APFC)两种。RPFC方法是在输入端加入电感量很大的低频电感,并降低滤波电容的容量,以减小滤波电容充电电流的尖峰,校正后的功率因数能达到0.9以上,一般用于三相输入的大功率开关电源模块[1]。 APFC的基本思路是在输入端加入高频功率开 关管及相应的控制器,如图1所示。控制器通过采集交流输入电压、输入电流和输出电压信号,利用输出电压控制环的输出uo(t)与输入整流后的电压uAC(t) 相乘,得到一个电流参考信号iref(t) ,用于控制功率管VT的导通和关断,使得电感L电流iL波形跟踪 iref(t)波形,从而使输入交流平均值波形跟随输入电压波形,成为与输入电压同相位的近似正弦波,而且可使功率因数接近于1,同时使输出电压uo(t)得到控制[2]。目前,国内APFC方法主要用于单相输入的开关电源模块,其中采用UC3854作为APFC的控 制用集成电路较为普遍。 3数字控制APFC电路 随着计算机和信息技术的飞速发展,数字信号处理技术得到了迅速发展。数字控制使得电力电子变换控制更为灵活,在CPU计算速度允许的情况下,可以实现模拟控制难以做到的复杂控制算法,即使在控制对象改变的情况下,也无需修改控制器硬件,而只需修改某些参数,因此增强了系统的兼容性。由于数字控制所采用的CPU计算速度决定了数字控制系统的适用场合,故现在的数字控制多被用于 数字控制有源功率因数校正器的设计 黄海宏1,王海欣1,高 格2,付 鹏2 (1.合肥工业大学,安徽合肥230009;2.中国科学院等离子体物理研究所,安徽合肥230031) 摘要:直流电源系统是变电站的重要组成设备,它可为负载提供不间断电源,因此要求应用于直流电源的高频开关 电源模块必须具备功率因数校正功能。利用Freescale新型号MC56F8025的高性能特性,完成了基于DSP的具有软开关特性的数字控制有源功率因数校正(ActivePowerFactorCorrection, 简称APFC)电路的设计,描述了系统设计过程。最后通过2.2kW的实验样机验证了数字控制的优良特性。 关键词:功率因数;数字控制/有源功率因数校正;开关电源;软开关中图分类号:TM714.1 文献标识码:A 文章编号:1000-100X(2008)05-0017-03 DesignofDigitalControlActivePowerFactorCorrectionRectifier HUANGHai-hong1,WANGHai-xin1,GAOGe2,FUPeng2 (1.HefeiUniversityofTechnology,Hefei230009,China; 2.InstituteofPlasmaPhysics,ChineseAcademyofScience,Hefei230031,China) Abstract:TheDCpowersupplyisanimportantdeviceinsubstations,itcansupplyuninterruptedpowerforload,thehighfrequencyswitchmodepowermodulemusthavefunctionofpowerfactorcorrection.BasedonnewDSPchipMC56F8025,adigitalactivepowerfactorcorrectionrectifierwithsoftswitchcharacteristicwasdesigned,theprocessofsystemdesignwasdescribed.Atlasta2.2kWprototypewasbuilttoverifythefavorableperformanceresultedfromdigitalcontrol.Keywords:powerfactor;digitalcontrol/activepowerfactorcorrection;switchmodepowersupply;softswitching 图1有源功率因数校正电路框图 17

有源功率因数校正原理要点

有源功率因数校正PFC 电路主要有升压型、降压型、升压--降压型和回扫型等 基本电路形式,其中升压型有源PFC 电路在一定输出功率下可减小输出电流,减小输 出滤波电容的容值和体积,故在电子镇流器中广泛应用。升压型有源PFC 电路在控制方法上,有电感电流断续传导模式和峰值电流控制模式。其电路原理图如图2所示。 电路工作原理如下:Q1导通时,D5截止,电容C1向负载放电;Q1截止,电感L1储能经D5对电容C1充电。由于Q1和D5交替导通,使整流器输出电流经电感L1连续。这样输入电流也连续。图中,R1取样输入电压,保证通过电感L1的电流跟随输入电压按正弦规律变化,通过L1的高频电流包络正比于输入电压,其平均电流呈正弦波形,使输入电流呈正弦波;R2取样输出电压,控制APFC 控制器的输出 占空比,稳定输出电压。 目前,APFC 专用芯片很多,在电子镇流器中应用广泛,具体电路不做详细介绍,可参阅参考文献。 4 利用自振荡半桥PWM 驱动器设计的APFC 电路 在某些自振荡半桥PWM 驱动器电路中,可以利用PWM 驱动器输出固定频率的 脉冲来作APFC 控制,这里介绍两种典型电路。 4.1利用自振荡输出波形控制的APFC 电路 电路原理图如图3所示。

升压电感L1、二极管D5、电容C2和开关管Q3等组成APFC 电路。由于PWM 驱动器U1输出脉冲的频率和占空比都是固定的,Q3导通时,D5截止,C2向负载放电;Q3截止时,电感L1产生的突变电势使D5正向偏置而导通,电感 L1通过D5向C2和负载释放储能,此时整流二极管电流经电感L1连续,使输入电流波形连续,呈正弦波形,可将线路功率因数提高到0.95以上,使输入电流总谐波失真度(THD )降低到10%以下。 4.2 利用自振荡PWM 驱动器的定时电路 图3利用自振荡PWM 驱动器输出波形控制的APFC 原理电路图图4利用自振荡PWM 驱动器的定时器设计的APFC 原理电路图和波形图设计的APFC 电路自振荡半桥PWM 驱动器的振荡器是一个类似555的定时振荡器,CT 端为锯齿波,可以用一电路产生同频、占空比可调的APFC 电路。其原理电路如图4所示。 自振荡PWM 驱动器的CT 端波形为锯齿波,送到比较器U2的正端;将直流输出 电压分压送到比较器U2的负端。当C 点的电压小于D 点时,E 点为高电平,Q4导通;当B 点为高电平时,F 点为高电平,Q3导通,电感L1储能,电容C2向后级供电。当C 点电压高于D 点时,E 点为低点平,不论F 点电平状态,Q4截止,Q3截止,电感L1经 D5向C2和后级释放储能。这样二极管电流经电感L1连续,各点相关波形如图4(B )所示。从波形上可以看出F 点波形脉冲宽度小于A 或B ,而且可调,但小于50%;通过 调整R1、R2的分压比,可调整输出电压和输出功率,构成可调输出电路,这在开关电源和电子镇流器中有较广泛的应用。 5 利用TOPSwitch 开关构成的APFC 电路

由单相有源功率因数校正(APFC)组合成三相APFC的几种方法

由单相有源功率因数校正(APFC)组合成三相APFC的几种方法 中心议题:由单相APFC组合成三相APFC的几种方法 解决方案:由三个分别带隔离DC/DC变换的单相PFC并联组成由三个单相PFC在输出端直接并联组成两个单相PFC组成的三相PFC电路由矩阵式DC/DC变换器构成 功率因数校正(Power Factor CorrecTIon,简称PFC)技术,尤其是有源功率因数校正(Active Power FactorCorrection,简称APFC)技术可以有效的抑制谐波,单相APFC技术的研究比较成熟,已有不少商业化的专用控制芯片,如UC3854,IRll 50,LTl508,ML4819。与单相功率因数校正整流装置相比,三相PFC整流装置具有许多优点:(1)输入功率高,功率额定值可达几千瓦以上;(2)单相PFC整流装置输入功率是一个两倍于工频变化的量,但在三相平衡装置中,三相输入功率脉动部分的总和为零,输入功率是一恒定值,三相PFC整流装置输出功率的脉动周期仅为单相全波整流的三分之一,脉动系数低,因此可以使用容量较小的输出电容,从而可以实现更快的输出电压动态响应。三相APFC技术正成为众多学者研究的重点,但其实现有一定的困难,而且还未见成熟的专用控制芯片。若能将单相APFC电路简单整合成一个三相APFC电路,将能充分利用成熟的单相控制芯片,制作出满足要求的三相APFC装置。下面介绍几种由单相APFC组合成三相APFC的方法。1 由单相APFC组合成三相APFC的几种方法单相PFC组合成三相PFC的技术优势是:(1)无需研究新的拓扑和控制方式,可直接应用发展比较成熟的单相PFC拓扑,以及相应的单相PFC控制芯片和控制方法;(2)电路由多个单相PFC同时供电,如果某一相出现故障,其余两相仍能继续向负载供电,电路具有冗余特性; (3)由于单向模块的使用,因此需要更少的维护和维修,而且有利于产品的标准化;(4)与三相PFC相比,不需要高压器件等。下面将对由单相PFC实现三相PFC的几种方法分别进行介绍。1)由三个分别带隔离DC/DC变换的单相PFC并联组成的方法每个单相PFC后跟随一个隔离型DC/DC变换器,DC/DC变换器输出端并联起来,形成一个直流回路后向负载供电,。此类电路即可采用三相三线制接法,也可用三相四线制的接法,很灵活且很简单。而且此类电路都可设计成单级形式,从而减少功率等级且动态响应比较快。但该类电路由三个完全独立的单相PFC及DC/DC变换器组成,由于需3个外加隔离的DC/DC变换器,因此用的器件比较多,成本较高。 (1)单相PFC电路由全桥电路构成 图2电路的特点是DC/DC的开关控制比较简单,相对于其它电路更适合于大功率场合的应用。但是由于隔离变压器反射电压的影响,全桥电路相对于反激电路来说有更高的电流失真。 (2)单相PFC电路由Buck电路构成图3用三个单相Buck变换器组成的三相PFC示意图,图3所示Buck型电路的结构比较简单,同全桥电路相似,由于隔离变压器反射电压的影响,其相对于反激电路来说也有较大的电流失真,但其谐波仍可以限定在比较低水平,达到IEC—1000的要求。另外,其可实现的功率等级的大小不如全桥高,但比反激式电路要大。 (3)单相PFC电路由反激电路构成图4所示反激式电路有比较接近正弦的相电流,而且功率因数也更接近于单位功率因数。由于其本身的结构特点,所以不必以增加电压为代价即可达到隔离的作用。但相对于前两种电路其功率不容易做大。 (4)单相PFC电路由SEPIC电路构成在Boost变换中,传统的隔离在此种情况下的应用并不理

功率因数校正之基本原理

功率因数校正之基本原理 何谓工率因数? 功率因数(power factor;pf)定义为实功(real power;P)对视在功率(apparent power;S)之比,或代表电压与电流波形所形成之相角之余弦,如图1。功率因数值可由0至1之间变化,可为电感性(延迟的、指标向上)或电容性(领先的、指标向下)。为了降低电感性之延迟,可增加电容,直到pf为1。当电压与电流波形为同相时,工率因数等于1(cos(0o)=1)。所有努力使工率因数等于1是为了使电路为纯电阻化(实功等于视在功率)。 ▲图1: 功率因数之三角关系。 实功(瓦特)可提供实际工作,此为能量转换元素(例如电能到马达转动rpm)。虚功(reactive power)乃为使实功完成实际工作所产生之磁场(损耗)。而视在功率可想成电力公司提供之总功率,如图1所示。此总功率经由电力线提供产生所需之实功。 当电压与电流皆为正弦波时,如前述定义之功率因数(简称为功因)为电压与电流波形之对应相角,但大部份之电源供应器之输入电流乃非正弦波。当电压为正弦波而电流为非正弦波时,则功因包括两个因素:1)相角位移因素,2)波形失真因素。等式1表示相角位移与波形失真因素之于功因的关系。 ----------------------------------------------------(1)

Irms(1)为电流之主成份,Irms电流之均方根值。因此功率因数校正线路是为了使电流失真最小,且使电流与电压同相。 当功因不等于1时,电流波形没有跟随电压波形,不但有功率损耗,且其产生之谐波透过电力线干扰到连接同一电力线之其它装置。功因越接近1,几乎所有功率皆包含于主频率,其谐波越接近零。 ■了解规范 EN61000-3-2对交流输入电流至第40次谐波规范。而其class D对适用设备之发射有严格之限制(图2)。其class A要求则较宽松(图3)。 ▲图2:电压与电流波形同相且PF=1(Class D)。

PFC开关电源功率因数校正原理

PFC开关电源功率因数校正原理 PFC开关电源功率因数校正原理 一、什么是功率因数补偿,什么是功率因数校正: 功率因数的定义为有功功率与视在功率的比值. 功率因素补偿:这项技术主要是针对因具有感性负载的交流用电器具的电压和电流不同相(图1)而引起的供电效率低下,提出的改进方法(由于感性负载的电流滞后所加电压,电压和电流的相位不同,使供电线路的负担加重,导致供电线路效率下降,这就要求在感性用电器具上并联一个性质相反的电抗元件.用以调整该用电器具的电压、电流相位特性.例如:当时要求所使用的40W日光灯必须并联一个4.75μF的电容器).用电容器并联在感性负载的两端,利用电容上电流超前电压的特性,用以补偿电感上电流滞后电压的特性,使总的特性接近于阻性,从而改善效率低下的方法叫做功率因数补偿(交流电的功率因数可以用电源电压与负载电流两者相位角的余弦函数值cosφ表示)。 图1 在具有感性负载中供电线路中电压和电流的波形

常规开关电源功率因数低是由于开关电源都是在整流后,用一个大容量的滤波电容使输出电压平滑,因此负载特性呈现容性.这就造成了交流220V在整流后,由于滤波电容的充、放电作用,在其两端的直流电压上出现略呈锯齿波的纹波.滤波电容上电压的最小值远非为零,与其最大值(纹波峰值)相差并不多. 图2 全波整流电压和AC输入电流波形 因为根据整流二极管的单向导电性,只有在AC线路电压瞬时值高于滤波电容上的电压时,整流二极管才会因正向偏置而导通,而当AC输入电压瞬时值低于滤波电容上的电压时,整流二极管因反向偏置而截止.也就是说,在AC线路电压的每个半周期内,只是在其峰值附近,二极管才会导通.虽然AC输入电压仍大体保持正弦波波形,但AC输入电流却呈高幅值的尖峰脉冲,如图2所示.这种严重失真的电流波形含有大量的谐波成份,引起线路功率因数严重下降. 在正半个周期内(180o),整流二极管的导通角大大小于180o,甚至只有30o~70o.由于要保证负载功率的要求,在极窄的导通角期间,会产生极大的导通电流,使供电电路中的供电电流呈脉冲状态.它不仅降低了供电的效率,更为严重的是,它在供电线路容量不足或电路负载较大时,会产生严重的交流电压波形畸变(图3),并产生多次谐波,从而干扰了其它用电器具的正常工作(这就是电磁干扰-EMI和电磁兼容-EMC问题)。

有源功率因数校正

有源功率因数校正 编辑锁定 本词条由“科普中国”百科科学词条编写与应用工作项目审核。 有源功率因数校正是指通过有源电路(主动电路)让输入功率因数提高,控制开关器件让输入电流波形跟随输入电压波形,相对于无源功率因数校正电路(被动电路)通过加电感和电容要复杂一些,功率因数的改善要好些,但成本要高一些,可靠性也会降低。 中文名 有源功率因数校正 性质 技术 优点 功率因数的改善要好些 缺点 成本要高一些,可靠性也会降低 目录 1. 1校正电路分类 2. 2工作原理 有源功率因数校正校正电路分类 编辑 常用有源功率因数校正电路分为连续电流模式控制型与非连续电流模式控制型两类。其中,连续电流模式控制型主要有升压型(Boost)、降压型(Buck)、升降压型(Buck-Boost)之分;非连续电流模式控制型有正激型(Forward)、反激型(Fly back)之分。[1] 有源功率因数校正工作原理 编辑 升压型PFC电路 升压型PFC主电路如图所示,其工作过程如下:当开关管Q导通时,电流IL流过电感线圈L,在电感线圈未饱和前,电流线性增加,电能以磁能的形式储存在电感线圈中,此时,电容C放电为负载提供能量;当Q截止时,L两端产生自感电动势VL,以保持电流方向不变。这样,VL与电源VIN串联向电容和负载供电。

升压型PFC主电路 这种电路的优点是:(1)输入电流完全连续,并且在整个输人电压的正弦周期内都可以调制,因此可获得很高的功率因数;(2)电感电流即为输入电流,容易调节;(3)开关管栅极驱动信号地与输出共地,驱动简单;(4)输入电流连续,开关管的电流峰值较小,对输入电压变化适应性强,适用于电网电压变化特别大的场合。主要缺点是输出电压比较高,且不能利用开关管实现输出短路保护。 降压型PFC电路 降压型PFC电路如图所示,其工作过程如下:当开关管Q导通时,电流IL流过电感线圈,在电感线圈未饱和前,电流IL线性增加;当开关管Q关断时,L两端产生自感电动势,向电容和负载供电。由于变换器输出电压小于电源电压,故称为降压变换器。 降压型PFC主电路 (1)这种电路的主要优点是:开关管所受的最大电压为输人电压的最大值,因此开关管的电压应力较小;当后级短路时,可以利用开关管实现输出短路保护。 (2)该电路的主要缺点是:由于只有在输人电压高于输出电压时,该电路才能工作,所以在每个正弦周期中,该电路有一段因输人电压低而不能正常工作,输出电压较低,在相同功率等级时,后级DC/DC变换器电流应力较大;开关管门极驱动信号地与输出地不同,驱动较复杂,加之输人电流断续,功率因数不可能提高很多,因此很少被采用。 升降压型PFC电路 升降压型PFC电路如图所示,其工作过程如下:当开关管Q导通时,电流IIN流过电感线圈,L储能,此时电容C放电为负载提供能量;当Q断开时,IL有减小趋势,L中产生的自感电动势使二极管D正偏导通,L释放其储存的能量,向电容C和负载供电。 图3升压型PFC主电路 (1)该电路的优点是既可对输人电压升压又可以降压,因此在整个输入正弦周期都可以连续工作;该电路输出电压选择范围较大,可根据一级的不同要求设计;利用开关管可实现输出短路保护。

有源功率因数校正技术及控制方式分析_张浩

第25卷第3期上海电力学院学报V o l .25,N o .3 2009年6月 J o u r n a l o f S h a n g h a i U n i v e r s i t y o f E l e c t r i c P o w e r J u n e 2009 文章编号:1006-4729(2009)03-0201-07 有源功率因数校正技术及控制方式分析 收稿日期:2009-03-30 作者简介:张浩(1962-),男,博士,教授,博士生导师,江苏无锡人.主要研究方向为电力系统自动化,工业以太网, 现场总线,电力监测与管理,电力企业信息化等.E -m a i l :h z h a n g k @y a h o o .c o m .c n . 张 浩,许龙虎 (上海电力学院电力与自动化工程学院,上海 200090) 摘 要:电力电子设备谐波污染问题越来越严重,功率因数校正技术是解决该问题的最有效方法,而有源功率因数校正(A P F C )技术因其独特的优势成了该领域的研究重点.介绍了功率因数的定义和校正原理,并根据有源功率因数校正电路说明了A P F C 的工作原理,重点阐述了A P F C 技术的各种控制方法及其未来的发展趋势. 关键词:有源功率因数;校正技术;控制方式中图分类号:T P 217+.3 文献标识码:A A c t i v e P o w e r F a c t o r C o r r e c t i o n T e c h n o l o g y a n dC o n t r o l Me t h o d s A n a l y s i s Z H A N GH a o ,X UL o n g -h u (C o l l e g e o f E l e c t r i c P o w e r a n dA u t o m a t i o nE n g i n e e r i n g ,S h a n g h a i U n i v e r s i t y o f E l e c t r i c P o w e r ,S h a n g h a i 200090,C h i n a ) A b s t r a c t : T h eh a r m o n i c p o l l u t i o np r o b l e m o f p o w e r e l e c t r o n i cd e v i c e s b e c o m e s m o r ea n dm o r e s e r i o u s ,a n d p o w e r f a c t o r c o r r e c t i o n t e c h n o l o g y i s t h e m o s t e f f e c t i v e m e t h o d t o s o l v e t h i s p r o b l e ma n d t h e a c t i v e p o w e r f a c t o r c o r r e c t i o n(A P F C )t e c h n o l o g y h a s b e c o m e t h e r e s e a r c hf o c u s o w i n gt oi t s u n i q u e a d v a n t a g e s .T h ed e f i n i t i o na n dp r i n c i p l e s o f p o w e r f a c t o r c o r r e c t i o na r ei n t r o d u c e d ,t h e w o r k i n g p r i n c i p l e o f A P F Ct e c h n o l o g y i s s h o w e d a c c o r d i n g t o t h e A P F Cc i r c u i t .T h e d e v e l o p m e n t t r e n d a n d v a r i o u s c o n t r o l m e t h o d s o f A P F Ct e c h n o l o g y a r e m a i n l y a n a l y z e d .K e y w o r d s : a c t i v e p o w e r f a c t o r ;c o r r e c t i o n t e c h n o l o g y ;c o n t r o l m e t h o d s 随着我国经济的发展,各种换流设备的使用越来越多、容量越来越大,加上一些非线性用电设备接入电网,将其产生的谐波电流注入电网,使公用电网的电压波形发生畸变,造成电能质量下降,威胁电网和包括电容器在内的各种电气设备的安全经济运行.为了提高电网的供电质量,限制高次谐波污染,国内外电气组织先后制定了相关标准,我国国家技术监督局1993年颁布了G B /T 14549 -93电能质量公用电网谐波,国际电工委员会(I E C )1998年制定了I E C 61000-3-2标准 [1] .解 决电力电子设备谐波污染问题的方法有两种:一是对电网采用滤波补偿;二是对电力电子设备本 身进行改进,即进行功率因数校正.相对来说,功率因数校正能够更有效地消除整流装置的谐波,具有更广泛的前景,已经成为电力电子技术的一 个重要研究方向[2] .

功率因数校正(PFC)的几个小知识

1、什么是功率因数校正(PFC)? 功率因数指的是有效功率与总耗电量(视在功率)之间的关系,也就是有效功率除以总耗电量(视在功率)的比值。基本上功率因数可以衡量电力被有效利用的程度,当功率因数值越大,代表其电力利用率越高。开关电源供应器上的功率因数校正器的运作原理是去控制调整交流电电流输入的时间与波型,使其与直流电电压波型尽可能一致,让功率因数趋近于。这对于电力需求量大到某一个水准的电子设备而言是很重要的, 否则电力设备系统消耗的电力可能超出其规格,极可能干扰铜系统的其它电子设备。一般状况下, 电子设备没有功率因数校正(Power Factor Correction, PFC)时其PF值约只有0.5。 PFC的英文全称为“Power Factor Correction”,意思是“功率因数校正”,功率因数指的是有效功率与总耗电量(视在功率)之间的关系,也就是有效功率除以总耗电量(视在功率)的比值。基本上功率因素可以衡量电力被有效利用的程度,当功率因素值越大,代表其电力利用率越高。计算机开关电源是一种电容输入型电路,其电流和电压之间的相位差会造成交换功率的损失,此时便需要PFC电路提高功率因数。目前的PFC有两种,一种为被动式PFC(也称无源PFC)和主动式PFC(也称有源式PFC)。 PFC打个形象的比方:一个啤酒杯的容积是一定的,就好比是视在功率,可是你倒啤酒的时候很猛,就多了不少的泡沫,这就是无功功率,杯底的啤酒其实很少,这些就是有功功率。这时候酒杯的利用率就很低,相当于电源的功率因数就很小。PFC的加入就是要减少输入侧的无功功率,提高电网的利用率,对于普通的工业用电来讲是把电流的相位与电压的相位调整到一块了,对于开关电源来讲是把严重畸变了的交流侧输入电流变成正弦,另外还有降低低次谐波的功能,因为输入的电流是正弦了。 2、为什么我们需要PFC? 功率因素校正的好处包含: 1. 节省电费 2. 增加电力系统容量 3. 稳定电流 低功率因数即代表低的电力效能,越低的功率因数值代表越高比例的电力在配送网络中耗损,若较低的功率因数没有被校正提升,电力公司除了有效功率外,还要提供与工作非相关的虚功,这导致需要更大的发电机、转换机、输送工具、缆线及额外的配送系统等事实上可被省略的设施,以弥补损耗的不足。有PFC 功能的电子设备配可以帮助改善自身能源使用率,减少电费,PFC也是一种环保科技,可以有效减低造成电力污染之谐波,是对社会全体有益的功能。 PFC电源供应器是如何帮助节省能源? 藉由降低您的电力设备必须传输的电压-电流,以提供一台电源供应器至少所需的供电量。因为产生较少无用的谐波(只会替交流电运输系统增加不必要的负担),让电力的消耗减少。 什么是谐波? 谐波是一种噪音形式,基本上是由复合的60个循环正弦波组合而成的频率所造成。他们通常发生在电源供应器及其它包括计算机在内等多种频率相关机器。谐波会扭曲基本的正弦波波型, 也会在同一系统的水线及接地线造成偏高的电流。[注: 美国的电源线,有3个pins,就是(Live,火线)-(Neutral,水线)-(Ground,地线)] 有哪些国家规定PFC为电子设备的标准配备? 2001年一月,欧盟正式对电子设备谐波有详细规范,规定凡输出在75W~600W范围间之电子设备产品,都必须通过谐波测试[Harmonics test(EN 61000-3-2)],测量待测物对电力系统所产生的谐波干扰;中国大陆自2002年5月起,规范凡政府机关采购之电子设备,皆将功率因数校正(PFC)视为电子设备的标准配备功能;日本已着手研拟关于节约电力的各项方案,这是一种未来的趋势,相信在不久的将来,其它国家将陆续跟进。 什么是主动式/被动式功率因数校正(Active/Passive PFC)? 被动式PFC,使用由电感、电容等组合而成的电路来降低谐波电流,其输入电流为低频的50Hz到60Hz,因

功率因数校正电路(pfc)电路工作原理及应用

功率因数校正(英文缩写是PFC)是 目前比较流行的一个专业术语。PFC 是在20世纪80年代发展起来的一项新技术,其背景源于离线开关电源的迅速发展和荧光灯交流电子镇流器的广泛应用。PFC 电路的作用不仅仅是提高线路或系统的功率因数,更重要的是可以解决电磁干扰(EMI)和电磁兼容(EMC)问题。 线路功率因数降低的原因及危害 导致功率因数降低的原因有两个,一个是线路电压与电流之间的相位角中,另一个是电流或电压的波形失真。前一个原因人们是比较熟悉的。而后者在电工学等书籍中却从未涉及。 功率因数(PF)定义为有功功率(P)与视在功率(S)之比值,即PF=P/S 。对于线路电压和电流均为正弦波波形并且二者相位角Φ时,功率因数PF 即为COS Φ。由于很多家用电器(如排风扇、抽油烟机等)和电气设备是既有电阻又有电抗的阻抗负载,所以才会存在着电压与电流之间的相位角Φ。这类电感性负载的功率因数都较低(一般为0.5-0.6),说明交流(AC)电源设备的额定容量不能充分利用,输出大量的无功功率,致使输电效率降低。为提高负载功率因数,往往采取补偿措施。最简单的方法是在电感性负载两端并联电容器,这种方法称为并联补偿。 PFC 方案完全不同于传统的“功率因数补偿”,它是针对非正弦电流波形而采取的提高线路功率因数、迫使AC 线路电流追踪电压波形的瞬时变化轨迹,并使电流与电压保持同相位,使系统呈纯电阻性的技术措施。 长期以来,像开关型电源和电子镇流器等产品,都是采用桥式整流和大容量电容滤波电路来实现AC-DC 转换的。由于滤波电容的充、放电作用,在其两端的直流电压出现略呈锯齿波的纹波。滤波电容上电压的最小值远非为零,与其最大值(纹波峰值)相差并不多。根据桥式整流二极管的单向导电性,只有在AC 线路电压瞬时值高于滤波电容上的电压时,整流二极管才会因正向偏置而导通,而当AC 输入电压瞬时值低于滤波电容上 的电压时,整流二极管因反向偏置而截止。也就是说,在AC 线路电压的每个半周期内,只是在其峰值附近,二极管才会导通(导通角约为70°)。虽然AC 输入电压仍大体保持正弦波波形,但AC 输入电流却呈高幅值的尖峰脉冲,如图l 所示。这种严重失真的电流波形含有大量的谐波成份,引起线路功率因数严重下降。若AC 输入电流基波与输入电压之间的位移角是Φ1,根据傅里叶分析,功率因数PF 与电流总谐波失真(度)THD 之间存在下面关系: 而是由二极管、电阻、电容和电感等无源元件组成。无源PFC 电路有很多类型,其中比较简单的无源PFC 电路由三只二极管和两只电容组成,如图2所示。这种无源PFC 电路的工作原理是:当50Hz 的AC 线路电压按正弦规律由0向峰值V m 变化的1/4周期内(即在0

有源功率因数校正 总结

有源功率因数校正 一、功率因数的定义 功率因数PF 定义为:功率因数(PF )是指交流输入有功功率(P )与输入视在功率(S )的比值。 PF =S P =R L L I U I U φcos 1=R I I 1cos φ= γcos φ (1) 式中: γ:基波因数,即基波电流有效值I 1与电网电流有效值I R 之比。 I R :电网电流有效值 I 1:基波电流有效值 U L :电网电压有效值 cos Φ:基波电流与基波电压的位移因数 在线性电路中,无谐波电流,电网电流有效值I R 与基波电流有效值I 1相等, 基波因数γ=1,所以PF =γ·cos Φ=1·cos Φ=cos Φ。当线性电路且为纯电阻性负载时,PF =γ·cos Φ=1·1=1。 二、有源功率因数校正技术 1.有源功率因数校正分类 (1)按电路结构分为:降压式、升/降压式、反激式、升压式(boost )。 其中升压式为简单电流型控制,PF 值高,总谐波失真(THD :Total Harmonic Distortion )小,效率高,适用于75W~2000W 功率范围的应用场合,应用最为广泛。它具有以下优点: ● 电路中的电感L 适用于电流型控制 ● 由于升压型APFC 的预调整作用在输出电容器C 上保持高电压,所以电容器C 体积小、储能大 ● 在整个交流输入电压变化范围内能保持很高的功率因数 ● 输入电流连续,并且在APFC 开关瞬间输入电流小,易于EMI 滤波 ● 升压电感L 能阻止快速的电压、电流瞬变,提高了电路工作可靠性 (2)按输入电流的控制原理分为:平均电流型(工作频率固定,输入电流

连续)、滞后电流型、峰值电流型、电压控制型。 图1 输入电流波形图 其中平均电流型的主要有点如下: ●恒频控制 ●工作在电感电流连续状态,开关管电流有效值小、EMI滤波器体积小。 ●能抑制开关噪声 ●输入电流波形失真小 主要缺点是: ●控制电路复杂 ●需用乘法器和除法器 ●需检测电感电流 ●需电流控制环路

单相有源功率校正电路

实验五:单相有源功率校正电路 (一)实验目的 1.掌握单相有源功率校正电路的工作原理,要求输出电压达到给定值,且网侧电流正弦化,功率因数为1; 2.掌握电压外环和电流内环的设计方法。 (二)实验原理 有源功率因数校正(Active Power Factor Correction APFC)电路,是指在传统的不控整流中融入有源器件,使得交流侧电流在一定程度上正弦化,从而减小装置的非线性、改善功率因数的一种高频整流电路。 基本的单相APFC电路在单相桥式不可控整流器和负载电阻之间增加一个DC-DC功率变换电路,通常采用Boost电路。通过适当的控制Boost电路中开关管的通断,将整流器的输入电流校正成为与电网电压同相位的正弦波,消除谐波和无功电流,将电网功率因数提高到近似为1。其电路原理图如图1所示。 假定开关频率足够高,保证电感L的电流连续;输出电容C足够大,输出电压u o可认为是恒定直流电压。电网电压u i为理想正弦,即u i=U m sinωt,则不可控整流桥的输出电压u d为正弦半波,u d=u i=U m sinωt。 图1.APFC电路原理图 当开关管Q导通时,u d对电感充电,电感电流i L增加,电容C向负载放电;当Q关断、二极管D导通时,电感两端电压u L反向,u d和u L对电容充电,电感电

流i L减小。电感电流满足下式。 通过控制Q的通断,即调节占空比D,可以控制电感电流i L。若能控制i L近似为正弦半波电流,且与u d同相位,则整流桥交流侧电流i i也近似为正弦电流,且与电网电压u i同相位,即可达到功率因数校正的目的。为此需要引入闭环控制。 控制器必须实现以下两个要求:一是实现输出直流电压u o的调节,使其达到给定值;二是保证网侧电流正弦化,且功率因数为1。即在稳定输出电压u o的情况下,使电感电流i L与u d波形相同。采用电压外环、电流内环的单相APFC双闭环控制原理如图2所示。 电压外环的任务是得到可以实现控制目标的电感电流指令值i L?。给定输出电压u o?减去测量到的实际输出电压u o的差值,经PI调节器后输出电感电流的幅值指令I L?测量到的整流桥出口电压u d除以其幅值U m后,可以得到表示u d波形的量u d′,u d′为幅值为1的正弦半波,相位与u d相同。I L?与u d′相乘,便可以得到电感电流的指令值i L?。i L?为与u d′同相位的正弦半波电流,其幅值可控制直流电压u o的大小。 图2.APFC控制框图 电流内环的任务是通过控制开关管Q的通断,使实际的电感电流气跟踪其

功率因数校正控制方案

功率因数校正方案 方案一:采用数字控制 方案:采用MCU (微控制单元)或DSP(数字信号处理)通过编程控制完成系统的功率因数校正。,MCU 时刻检测输入电压、输入电流以及输出电压的值,在程序中经过一定的算法后输出PWM 控制信号,经过隔离和驱动控制开关管,从而提高输入端的功率因数。采用数字控制的优点是通过软件调整控制参数,使系统调试方便,减少了元器件的数量。缺点是软件编程困难,采样算法复杂,计算量大,难以达到很高的采样频率,此外还要注意控制器和主电路的隔离和驱动。 方案二:采用模拟控制 方案:采用专用PFC(功率因数校正)控制芯片来完成系统功率因数的校正。整流后的线电压与误差放大器处理的输出电压相乘,建立电流的参考信号,该参考信号就具有输入电压的波形,同时也具有输出电压的平均幅值。因此在电流反馈信号的作用下,误差放大器控制的PWM 信号基本变化规律是成正弦规律变化的,于是得到一个正弦变化的平均电流,其相位与输入电压相同,达到功率因数校正的目的。该方案的优点是,使用专用IC 芯片,简单直接,无需软件编程。缺点是电路调试麻烦,易受噪声干扰。模拟PFC 控制是当前的工业选择,且技术成熟,成本低,使用方便。通过比较,系统选用方案二,采用TI 公司专用PFC 控制芯片UCC28019 来完成功率因数的校正。 方案一:LC校正电路根据电感电流不能突变的原理,整流后采用LCC滤波电路,可在一定程度上提高功率因素PF,一般可达0.8~0.9。优点是电路简单、可靠性高、成本低、EMI(电磁干扰)小;缺点是体积大、重量重,电感损耗较大,PF很难接近1。 方案二:填谷式PF校正电路使用电容C1~C2及二极管D5~D7构成填谷式滤波电路,扩展了整流二极管电流波形导通角θ,二极管D6后可串联浪涌电流限制电阻R,可将PF提高到0.8~0.9之间。该电路优点:体积略小于LC校正电路,可靠性高,EMI小,PF也容易达到0.85以上;缺点是输出功率小,只能用在输出功率小于25W的AC-DC变换器中,损耗相对较大,输入电压允许变化范围小,一般不超过15%。电路原理图如图2.1所示。 2.1 填谷式电路 方案三:有源功率因素校正(APFC)电路在整流器与负载之间插入具有特定功能的DC-DC变换器,使输入电流波形尽可能接近正弦波,构成有源功率因素校正电路(APFC)。该技术优点是:电路体积小,校正后的PF接近1;输入电压变化范围大,目前支持全电压范围(90V~265V)的APFC电路技术非常成熟、应用也很普及,因此在输出功率为20W~300W的AC-DC 变换器中使用APFC电路来改善电流波形THD(总谐波失真)参数较为合适。缺点是:该电

功率因数校正电路设计

课程设计任务书 学生姓名:专业班级: 指导教师:工作单位: 题目: 功率因数校正电路设计 初始条件: 输入交流电源:单相220V,频率50Hz。 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) 1、基于CCM-BOOST方式实现功率因数校正。 2、输出直流电压:400V。 3、输出功率250W。 4、完成总电路设计和参数设计。 时间安排: 课程设计时间为两周,将其分为三个阶段。 第一阶段:复习有关知识,阅读课程设计指导书,搞懂原理,并准备收集设计资料,此阶段约占总时间的20%。 第二阶段:根据设计的技术指标要求选择方案,设计计算。 第三阶段:完成设计和文档整理,约占总时间的40%。 指导教师签名:年月日 系主任(或责任教师)签名:年月日

武汉理工大学《电力电子》课程设计说明书 目录 摘要 ························································································································································· 1 1. 功率因数 ······································································································································· 2 1.1 功率因数定义 ··························································································································· 2 1.2 电流谐波总畸变率 TH (2) 2 功率因数校正技术 ························································································································ 3 2.1 功率因数校正技术分类 ············································································································ 3 2.2 有源功率因数校正原理 (3) 2.2.1 单相功率因数校正........................................................................................................... 3 2.2.2 单级PFC 变换器 .. (4) 2.3 BOOST 型有源功率因数校正的一般方法 (5) 2.3.1 电流峰值控制法(Peak Current Model Control ) ........................................................... 5 2.3.2 滞环电流控制法(Hysteresis Current Control ).............................................................. 7 2.3.3 平均电流控制法(Average Current Mode Contro1) .. (9) 3 基于CCM-BOOST 方式的功率因数校正电路设计 ······································································ 10 3.1 功率因数校正芯片UC3854 (10) 3.1.1 UC3854简要介绍 ........................................................................................................... 10 3.1.2 UC3854引脚功能 ........................................................................................................... 11 3.1.3 UC3854内部结构 .. (13) 3.2 功率因数校正电路设计 (15) 3.2.1 系统的主要性能指标 ..................................................................................................... 15 3.2.2 方案选择 ........................................................................................................................ 15 3.2.3 元器件参数设计 (16) 3.3 控制电路设计 (22) 3.3.1 UC3854主要参数设置 ··································································································· 22 3.3.2 外围主要参数设置········································································································· 23 3.3.3 设计完成的校正总体电路 (24) 结论及心得体会..................................................................................................................................... 25 参考文献 ................................................................................................................................................ 26 附录 . (27)

相关文档
最新文档