无刷直流电机开题

无刷直流电机开题
无刷直流电机开题

论文题目 : 无刷直流电动机转矩脉动抑制的研究

姓名 :

专业名称 : 控制理论与控制工程

研究方向 : 交流传动与伺服控制

指导教师 :

日期:2011年12月30日

青岛大学硕士研究生学位论文开题报告

一选题的目的和意义

现代社会中,电能是最常用且最为普遍的二次能源。而电机作为机电能量转换装置,经过一个多世纪的发展,其应用范围已遍及现代社会和国民经济的各个领域及环节。为了适应不同的实际应用,各种类型的电机应运而生,其中包括直流电机、异步电机、同步电机、开关磁阻电机和各种其他类型的电机,其容量小到几毫瓦,大到百万千瓦。

相比之下,直流电机具有运行效率高和调速性能好等诸多优点,但是传统直流电机均采用电刷以机械方式换向,因而存在机械摩擦,使电机寿命缩短,并带来了噪音、火花以及无线电干扰等问题,且制造成本高及维修困难。

异步电机结构简单、制造方便、运行可靠、价格便宜,但其机械特性软、启动困难、功率因数低,不能经济地实现范围较广的平滑调速,且必须从电网吸收滞后的励磁电流,从而降低电网功率因数。

他控式变频同步电机具有转矩大、效率和精度高、机械特性硬等优点,但调速困难、容易“失步”等弱点大大限制了它的应用范围。

开关磁阻电机转子既无绕组也无永磁体,其结构简单、成本低廉,在低速时具有较大的转矩,控制换相时无上下桥直通等问题,但其噪声和转矩波动相对较大,这在某种程度上限制了该类型电机的推广应用。

无刷直流电机在保持传统直流电机优越的调速性能基础上,克服了原来机械换向和电刷引起的一系列问题,且具有效率高、功率密度大、功率因数高、体积小、控制精度高等明显优点。但是位置传感器的安装与使用,一般会增加电机的成本,并影响无刷直流电机控制系统的可靠性和工作寿命;另外,位置传感器装入电机内部,还可能会增大电机的体积,在汽车,航空航天,家用电器,办公自动化领域等对电机体积有严格要求与限制的行业中更适于使用无传感器无刷直流电机。

于是对于无刷无位置传感器直流电动机的转矩脉动抑制的研究就有了很大的意义。

五参考文献

[1] 夏长亮.无刷直流电机控制系统.科学出版社,2009

[2] 彭冠炎,杨向宇,张惺.无刷直流电机换相转矩脉动抑制方法综述.防爆电机.2008.5

[3] 纪志成,姜建国,沈艳霞,薛花.永磁无刷直流电动机转矩脉动及其抑制方法.微特电机.2003.5

[4] 周杰,侯燕.无刷直流电机转矩脉动抑制方法综述.机床电器.2007.6

[5] Hwang SM, Lieu DK. Reduction of torque ripple in brushless DC motors [J]. IEEE Trans. on Magnetics,1995.31 (6): 3737-3739.

[6] Yoon-Ho Kim, Yoon-Sang Kook, Yo Ko. A new technique of reducing torque ripples for BDCM drives[J]. IEEE Trans. on Industrial Electronics,1997,44 (5): 735-739.

[7] Yoon—Ho Kim,Byung—Guk Cho,Yo Ko.Generalized techniques of reducingtorque ripples in BDCM drives[C].Proceedings from IECON, 1994:514 —519.

[8] BH Ng,NF Rabmant,TS Low,et a1.An Investigation Into the Efects of Machine Parameters on Torque Pulsations in a Brushless Dc Drive[C].Proceedings from IECON,1988:749 —754.

[9] Hung JY,Ding Z.Design of currents to reduce torque ripple in brushless perm anent magnet motors[J].IEE Proceedings~ B,1993.140(4):260—266.

[10] Low TS,LeeT,TsengK,eta1.Servo performance of a BLDC drive wit Il instantaneous torque control[J].IEEE Trans.on Industry Applications,1992,28(2):45—462.

[11] Lee T,Low T,Tseng K.An intelligent indirect dynamic torque sensor for permanent magnet brushless DC drives[J].IEEE Trans.on Industrial Electronics,1994,41(2):191—200.

[12] Batzel TD,Lee KY.Commutation torque ripple minimization for permanent magnet synchronous machines with Hall efect position feedback[J].IEEE Trans.on Energy Conversion,1998,13(3):257—262.

[13] Tan Hui.Controllability analysis of torque ripple due to phase conmutation in brushless DC motors[C].Proceedings form ICEMS,200l:l3l7 一l322.

[14] Chang—hee Won,Joong—Ho Song,Ick Choy.Commutation torque ripple reduction in brushless DC motor drives using a single DC current sensor[C].Proceedings form PESC,2002:985—990.

[15] Berendsen CS,Champenois G,Pavione J.Commutation strategies for brushless DC motors influence on instant torque[J].IEEE Trans.on Power Electronics,1993,8(2):231—236.

[16] Gwang—Heon Kim,Seog—Jeo,Jong—Soo Won.Analysis of the commutation torq ue ripple efect for BLDCM fed by HCRPW MVSI(brushless DC motors)[C].Proceedings form APEC,1992:277 —284.[17] Yilmaz Sozer,David A.Torrey.Adaptive torque ripple control of permanent magnet brushless DC motors[C].Proceedings form APEC.1998:86 —92.

[18] Yoshida M,Murai Y,Takada M.Noise reduction by torque ripple suppression in brushless DC motor[C].Proceedings form PESC Record.1998:1397 — 1401

[19] Yoshihiro Mural,Yoshihim Kawase,Kazuharu Ohashi,et a1.Torque ripple improvement for brushless DC miniature motors[J].IEEE Trans.on Industry Applications,1989,25(3):44l一450.[20] Min Dai,Ali Keyhani,Tomy Sebastian.Torque ripple analysis of aperm anent magn et brushless DC motor using finite element method[C].Proceedings form IEMDC 2001,2001:241—245.

[21] Tomy Sebastian,Vineeta Gangla.Analysis of induced EMF waveforms and torque ripple in a brushless perm anent magn et machine[J].IEEE Trans.on Industry Applications,1996,32(1):195—200.

[22] Sunia Murthy,Benoit Demuane,Buyun Liu,et a1.Minimization of torque pulsations in a trapezoidal back —EMF perm anent magnet brushless DC motor[C].Proceedings form Thirty—Fourth IAS Annual Meeting,1999:1237 — 1242.

[23] Sangmoon Hwang,Dennis K Lieu.Design techniques for reduction of reluctance torque in brushless permanent magnet motors[J].IEEE Trans.on Magnetics,1994,30(6):4287—4289.

[24] Breton C,Bartolome J,Benito JA,et a1.Influence of machine symmetry on reduction of cogging torq ue in perm anent—-magnet brushless motors[J].IEEE Trans.on Magnetics,2000,36(5):3819—3823.[25] Aengns Murray.Torque and EMF ripple reduction in brushless machines[J].IEE Colloquium on Permanent Magnet Machines and Drives,1993,8(5):8/1—8/4.

[26] Takeo Ishikawa,Gordon R.Slemon.A method of reducing ripple torque in permanent magnet motors without skewing[J].IEEE Trans.on Magnetics,1993,29(2):2028—2031.

[27] Favre E,Cardoletti L,Jufer M.Permanent—magnet synchronous motors a comprehensive approach to cogging torq ue suppression[J].IEEE Trans.on Industry Applications,1993,29(6):1141一l149.[28] Fukuda T,Shibata T.Theory and application of neural networks for industrisal control system[J].IEEE Trans.on Industrial Electronics,1992,39(6):432—489.

[29] Ahmed R,Kotaru,Raj.Neural net—based robust controller design for brushless DC motor drives[J].IEEE Trans.on Applications and Review,1999,29(3):460—474.

[30] Kwok ST,Lee CK.Torque ripple reduction for brushless DC motor speed control system[C].Proceedings form PESC,1991:702—7o6.

[31] Lee CK,Kwok NM.Torque ripple reduction in BLDC motor velocity control systems using an optimal controller[C].Proceedings form Sixth International Conference on(Conf.Pub1.No.376),1993:600—605.

[32] Lee CK,Kwok NM.Torque ripple reduction in brushless DC motor velocity contro l systems using a cas cade modified mod el reference compensator[C].Proceedings form PESC,1993:458—464.

[33] Kim GwangHeon,Kang SeogJO0,Won JongSoo.Analysis of the commutation torque ripple effect for BLDCM fed by HCRPWMVSI[C].Boston,MA,USA:Applied Power Electronics Conference and Exposition,1 992,Seventh Annual,23—27 Feb.1992.

[34] 杨进,杨向宇.一种减小无刷直流电机纹波转矩的新方法[J].微电机,2005,(1).

[35] 张相军,陈伯时.无刷直流电机控制系统中PWM调制方式对换相转矩脉动的影响[J].电机与控制学报,2003,(2).

[36] 齐蓉,琳辉,陈明.无刷直流电机换相转矩脉动分析与抑制[J].电机与控制学报,2006,(3).

[37] 林平,韦鲲,张仲超.新型无刷直流电机换相转矩脉动抑制控制方法[J].中国电机工程学报,2006,(3).

[38] 邱建琪,林瑞光.永磁无刷直流电机转矩脉动抑制的SVPWM控制[J].中小型电机,2003,(2).

[39] Petrovic V,Ortega R,Stankovic AM。et a1.Design and implementation of adaptive controller for torque minimization in PM synchronous motor. IEEE Trans on power electronics,2000,(5).

[40] Parasiliti F,Petrella R,Tursini M.Torque ripple compensation in permanent magnet synchronous motor based on kalman filter.Proceedings of IEEE conference ISIE’99一bled,Slovenia,1999:1333—1338.[41]夏长亮,王娟,史婷娜,徐绍辉.无刷直流电机无位置传感器下的转矩波动抑制新策略[J].天津大学学报,2005。(5).

青岛大学硕士研究生学位论文开题报告

评议小组意见

青岛大学硕士研究生学位论文

开题报告评议表

双定子永磁无刷电机开题报告1

YANG Zhenyu, Engineering Department. The Technology Research of Double Closed-loop Control System for Permanent Magnet BLDCM[J]. Electronic Science & Technology, 2017. WANG Xiaojun, HU Changlun. Modeling and Simulation Analysis of Double-stator Permanent-magnet Motor Control System[J]. micromotors, 2016. Chai F, Chen R. Torque analysis for double-stator permanent-magnet motor[J]. 哈尔滨工业大学学报:英文版, 2002. Feng C , Shu-Kang C , Shu-Mei C . Torque analysis for double-stator permanent-magnet motor[J]. Journal of Harbin Institute of Technology, 2017, 9(4):p.411-414. 王玉彬, 程明, 花为,等. 双定子永磁无刷电机裂比的分析与优化[J]. 中国电机工程学报, 2018, 030(030):62-67. 王雅玲. 电动汽车用双定子永磁无刷电机研究[D]. 山东大学, 2014. 蒲海, 吴敏. 双定子永磁无刷电动机发电机状态有限元时步法的实现[J]. 煤矿机械, 2014, 35(8). 原腾飞. 双定子永磁无刷电机建模及其控制方法探析[J]. 科技创新导报, 2017(14):84-85. 王雅玲, 徐衍亮. 基于电动汽车驱动的双定子永磁无刷直流电机绕组换接运行分析[J]. 电工技术学报, 2014, 029(001):98-103.

毕业设计基于单片机的直流电机调速系统设计

河南科技大学 2009 届本科毕业论文 论文题目:基于单片机的直流电机调速系统设计 学生姓名: 所在院系:信息工程学院 所学专业:计算机科学与技术 导师姓名: 完成时间:2009-05-22

摘要 本文主要研究了利用MCS-51系列单片机控制PWM信号从而实现对直流电机转速进行控制的方法。文章中采用了专门的芯片组成了PWM信号的发生系统,并且对PWM信号的原理、产生方法以及如何通过软件编程对PWM信号占空比进行调节,从而控制其输入信号波形等均作了详细的阐述。此外,本文中还采用了芯片IR2110作为直流电机正转调速功率放大电路的驱动模块,并且把它与延时电路相结合完成了在主电路中对直流电机的控制。另外,本系统中使用了测速发电机对直流电机的转速进行测量,经过滤波电路后,将测量值送到A/D 转换器,并且最终作为反馈值输入到单片机进行PI运算,从而实现了对直流电机速度的控制。在软件方面,文章中详细介绍了PI运算程序,初始化程序等的编写思路和具体的程序实现。 关键词:PWM信号,测速发电机,PI运算 1

The Design of Direct Current Motor speed Regulation System Based On SCM Chenli School of Information and Engineering Abstract This article mainly introduces the method to generate the PWM signal by using MCS-51 single-chip computer to control the speed of a D.C. motor. It also clarifies the principles of PWM and the way to adjust the duty cycle of PWM signal. In addition, IR2110 has been used as an actuating device of the power amplifier circuit which controls the speed of rotation o f D.C. motor. What’s more, tachogenerator is used in this system to measure the speed of D.C. motor. The result of the measurement is sent to A/D converter after passing the filtering circuit, and finally the feedback single is stored in the single-chip computer and participates in a PI calculation. As for the software, this article introduces in detail the idea of the programming and how to make it. Key words:PWM signal,tachogenerator,PI calculation 2

驱动轮直流电机选择计算

驱动轮直流电机选择计算 The final edition was revised on December 14th, 2020.

驱动轮电机用于驱动 AGV 的运行,包括AGV 的直行及差速转弯。在选择电机时,我们通常需要计算出电机的额定功率、额定转矩、额定转速等[28]。而在驱动电机的参数计算之前首先需要明确 AGV 的各项设计要求,如表3-1 所示。 3.1.1 电动机的选择 1. 驱动力与转矩关系 AGV 在地面行驶时,轮子与地面接触,AGV 克服摩擦力向前行驶,电机输出转矩Tq 为小车提供驱动力。而Tq 经减速机减速后得到输出转矩Tt 输出至驱动轮,输出转矩Tt 为: 式中 g i ——减速机减速比; q T ——电机输出转矩; t T ——输出转矩; ——电机轴经减速机到驱动轮的效率。 驱动轮在电机驱动下在地面转动,此时相对于地将形成一个圆周力,而地面对驱动轮也将产生一个等值、反向的力t F ,该力即为驱动轮的驱动力[29] 。驱动力为: 式中 q R ——驱动轮的驱动半径。 由于驱动轮一般刚性较好,视其自由半径、静力半径、滚动半径三者相同,均为q R 。 2. 驱动力与阻力计算 小车在行驶过程中要克服各种阻碍力,这些力包括:滚动阻力f F 、空气阻力w F 、坡度阻力r F 、加速度阻力j F 。这些阻力均由驱动力t F 来克服,因此: (1) 滚动阻力f F 滚动阻力在 AGV 行驶过程中,主要由车轮轴承阻力以及车轮与道路的滚动摩擦阻力所组成,f F 大小为:

式中 F——车轮与轴承间阻力; fz F——车轮与道路的滚动摩擦阻力。 fg 其中,车轮轴承阻力 F为: fz 式中P——车轮与地面间的压力,AGV设计中,小车自重m为100kg,最大载重量 M为200kg,因此最大整车重量为300kg,一般情况下,AGV前行过程中,有三轮m ax 同时着地,满足三点决定一平面的规则,各轮的压力为P=1000N[30]; d——车轮轴直径,驱动轮在本次设计中选择8寸的工业车轮,即d=48mm; D——车轮直径,查文献[40]可知,驱动轮在本次设计中选择8 寸的工业车轮,即D=200mm; μ——车轮轴承摩擦因数,良好的沥青或混凝土路面摩擦阻力系数为—,μ =。 F为: 车轮与道路的滚动摩擦阻力 fg 式中Q——车轮承受载荷,Q=1000N; f——路面摩擦阻力系数,f=。 则: F: (2)空气阻力 w 空气阻力是 AGV 行驶过程当中,车身与空气间形成了相对运动而产生于车身上的阻力,该阻力主要由法向力以及侧向力两部分组成。空气阻力与AGV 沿行驶方向的投影面积以及车身与空气的相对运动速度有关,但由于AGV工作于室内,基本工作环境中无风,且速度不快,同时 AGV 前后方的投影面积均不大,因此认为空气阻力F[31]。 ≈ w F: (3)坡度阻力 r AGV 所实际行驶的路面并非理想化绝对平整,而是存在一定的坡度[32],当 AGV行驶到该坡度处时,重力将产生一个沿着坡度方向的阻力,这个阻力就被称之为坡度阻F,表达式为: 力 r 式中G——AGV 满载总重量; α——最大坡度。 在 GB/T 20721-2006“自动导引小车国标”中表示:路面坡度(H/L)定义为在100mm 以上的长度范围内,路线水平高度差与长度的最大比值,路面坡度的最大比值需要小于(含),对于 AGV 精确定位的停车点,路面坡度需要小于(含)[33]。取坡度: 因此: F: (4)加速度阻力 j

无刷直流电动机毕业设计绪论

无刷直流电动机 一、简介: 一种用电子换向的小功率直流电动机。又称无换向器电动机、无整流子直流电动机。它是用半导体逆变器取代一般直流电动机中的机械换向器,构成没有换向器的直流电动机。这种电机结构简单,运行可靠,没有火花,电磁噪声低,广泛应用于现代生产设备、仪器仪表、计算机外围设备和高级家用电器。 同步电动机的定子绕组多做成三相对称星形接法,同三相异步电动机十分相似。而转子上粘有已充磁的永磁体,为了检测电动机转子的极性,在电动机内装有位置传感器。驱动器由功率电子器件和集成电路等构成,其功能是:接受电动机的启动、停止、制动信号,以控制电动机的启动、停止和制动;接受位置传感器信号和正反转信号,用来控制逆变桥各功率管的通断,产生连续转矩;接受速度指令和速度反馈信号,用来控制和调整转速;提供保护和显示等等。无刷电动 机结构如图1。 图1无刷直流电动机结构图 二、特点(优点及意义): 1、全面替代直流电机调速、全面替代变频器+变频电机调速、全面替代异步电机+减速机调速; 2、可以低速大功率运行,可以省去减速机直接驱动大的负载;3 3、具有传统直流电机的所有优点,同时又取消了碳刷、滑环结构; 4、转矩特性优异,中、低速转矩性能好,启动转矩大,启动电流小; 5、无级调速,调速范围广,过载能力强; 6、体积小、重量轻、出力大; 7、软启软停、制动特性好,可省去原有的机械制动或电磁制动装置; 8、效率高,电机本身没有励磁损耗和碳刷损耗,消除了多级减速耗,综合节电率可达20%~60%,仅节电一项一年可收回购置成本;

9、可靠性高,稳定性好,适应性强,维修与保养简单;10、耐颠簸震 动,噪音低,震动小,运转平滑,寿命长;11、没有无线电干扰,不产生火花,特别适合爆炸性场所,有防爆型;12、根据需要可选梯形波磁场电机和正旋波磁场电机。i 三、发展历程: 无刷电动机的诞生标志是1955年美国D.Harrison等人首次申请了用晶体管换相电路代替机械电刷的专利。而电子换相的无刷直流电动机真正进入实用阶段,是在1978年的MAC经典无刷直流电动机及其驱动器的推出。之后,国际上对无刷直流电动机进行了深入的研究,先后研制成方波无刷电机和正弦波直流无刷电机。20多年以来,随着永磁新材料、微电子技术、自动控制技术以及电力电子技术特别是大功率开关器件的发展,无刷电动机得到了长足的发展。无刷直流电动机已经不是专指具有电子换相的直流电机,而是泛指具有有刷直流电动机外部特性的电子换相电机。 直流电动机以其优良的转矩特性在运动控制领域得到了广泛的应用,但普通的直流电动机由于需要机械换相和电刷,可靠性差,需要经常维护;换相时产生电磁干扰,噪声大,影响了直流电动机在控制系统中的进一步应用。为了克服机械换相带来的缺点,以电子换相取代机械换相的无刷电机应运而生。1955年美国D.Harrison等人首次申请了用晶体管换相电路代替机械电刷的专利,标志着现代无刷电动机的诞生。而电子换相的无刷直流电动机真正进入实用阶段,是在1978年的MAC经典无刷直流电动机及其驱动器的推出。之后,国际上对无刷直流电动机进行了深入的研究,先后研制成方波无刷电机和正弦波直流无刷电机。20多年以来,随着永磁新材料、微电子技术、自动控制技术以及电力电子技术特别是大功率开关器件的发展,无刷电动机得到了长足的发展。无刷直流电动机已经不是专指具有电子换相的直流电机,而是泛指具有有刷直流电动机外部特性的电子换相电机。ii 四、国内外无刷电机的发展现状: 1、市场:我国无刷直流电机的研制开发起于70年代初期,主要是为我国自行研制的军事装备和宇航技术发展而配套。由于需要量少,只需由某些科研单位试制提供就能满足要求。经过20多年的发展,虽然在新产品开发方面缩短了与国际先进水平的差距,但由于无刷电机产品是总和了电机、微电子、控制、计算机等技术于一身的高技术产品,受到了我国基础工业落后的制约,因此无论在产量、品种、质量及应用上与国际先进水平差距甚大。目前,国内研制的单位虽然不少,但能有一定批量的单位却屈指可数。当今日本、德国、台湾是无刷电机主要生产国和地区,日本的年产量超过8000万台,其中约50%出口海外,德国年产量约3000万台,台湾主要生产较低档次无刷电机,年产量超过1000万台。iii 2、技术:几乎所有的无刷电动机产品都是为特定用途设计制造的。试图生产一种通用系列无刷电动机来适应千变万化的市场需求,是不可能的。各公司设计制造各种特殊结构、特定用途的无刷直流电动机,在设计、结构和工艺新技术方面不断的革新,以适应不同整机市场的需求。例如: ①永磁材料技术:适应不同性能参数永磁材料,瓦型、环型表面粘接结构和

无刷直流电机数学模型(完整版)

电机数学模型 以二相导通星形三相六状态为例,分析BLDC的数学模型及电磁转矩等特性。为了便于分析,假定: a)三相绕组完全对称,气隙磁场为方波,定子电流、转子磁场分布皆对称; b)忽略齿槽、换相过程和电枢反应等的影响; c)电枢绕组在定子内表面均匀连续分布; d)磁路不饱和,不计涡流和磁滞损耗。 则三相绕组的电压平衡方程可表示为: 错误!未找到引用源。(1) 式中:错误!未找到引用源。为定子相绕组电压(V);错误!未找到引用源。为定子相绕组电流(A);错误!未找到引用源。为定子相绕组电动势(V);L为每相绕组的自感(H);M为每相绕组间的互感(H);p为微分算子p=d/dt。 三相绕组为星形连接,且没有中线,则有 错误!未找到引用源。(2) 错误!未找到引用源。(3) 得到最终电压方程: 错误!未找到引用源。(4) e c c 图.无刷直流电机的等效电路 无刷直流电机的电磁转矩方程与普通直流电动机相似,其电磁转矩大小与磁通和电流幅值成正比 错误!未找到引用源。(5) 所以控制逆变器输出方波电流的幅值即可以控制BLDC电机的转矩。为产生恒定的电磁转矩,要求定子电流为方波,反电动势为梯形波,且在每半个周期内,方波电流的持续时间为120°电角度,梯形波反电动势的平顶部分也为120°

电角度,两者应严格同步。由于在任何时刻,定子只有两相导通,则:电磁功率可表示为: 错误!未找到引用源。(6) 电磁转矩又可表示为: 错误!未找到引用源。(7) 无刷直流电机的运动方程为: 错误!未找到引用源。(8) 其中错误!未找到引用源。为电磁转矩;错误!未找到引用源。为负载转矩;B为阻尼系数;错误!未找到引用源。为电机机械转速;J为电机的转动惯量。 传递函数: 无刷直流电机的运行特性和传统直流电机基本相同,其动态结构图可以采用直流电机通用的动态结构图,如图所示: 图2.无刷直流电机动态结构图 由无刷直流电机动态结构图可求得其传递函数为: 式中: K1为电动势传递系数,错误!未找到引用源。,Ce 为电动势系数; K2为转矩传递函数,错误!未找到引用源。,R 为电动机内阻,Ct 为转矩系数;T m为电机时间常数,错误!未找到引用源。,G 为转子重量,D 为转子直径。基于MATLAB的BLDC系统模型的建立 在Matlab中进行BLDC建模仿真方法的研究已受到广泛关注,已有提出采用节点电流法对电机控制系统进行分析,通过列写m文件,建立BLDC仿真模型,

直流电动机无级调速毕业设计

毕业设计(论文)任务书 设计(论文)题目:直流电动机无级调速 1.设计(论文)的主要任务及目标 (1) 本次的设计任务就是直流电动机无级调速的设计,使其能更好的为我们的生产和生活服务。 (2) 本次的设计目的就是要求设计要使得电动机转速可以由零平滑调至额定转速,能实现高速起动,具有较高的调速精度。 2.设计(论文)的基本要求和内容 (1) 直流电动机的基本知识 (2) 直流电动机的运行原理 (3) 主电路以及控制电路的设计 3.主要参考文献 [1] 张家生.电机原理与拖动基础.北京邮电学院出版社,2006年 [2] 唐介.电机与拖动. 北京:高等教育出版社,2003年 [3] 陈世元.电机学.中国电力出版社,2004年 [4] 徐邦荃.直流调速系统与交流调速系统.华中科技大学出版社,2008年 [5] 赵影.电机与电力拖动. 北京:国防工业出版社,2006年 4.进度安排 设计(论文)各阶段名称起止日期 1 论文初稿2012年12月27日 2 第一次修改2012年12月30日 3 第二次修改2013年01月08日 4 第三次修改2013年02月17日 5 论文终稿2013年03月16日 I

直流电动机无极调速 摘要 本设计主要是运用调速系统对直流电动机进行调速,使其实现无级的效果。此调速系统由主电路和控制电路两部分组成:主电路是采用晶闸管可控整流装置进行调速;控制电路是采用双闭环速度电流调节方法进行反馈。系统采用调压调速的调速方法可以获得与电动机固有机械特性相互平行的人为机械特性,调速方向是基速以下,只要输出的电压是连续可调的,即可实现电动机的无级调速。双闭环速度电流调节这种方法虽然初次头次成本相对而言较高,但它保证了系统的性能,保证了对生产工艺要求的满足,它既兼顾了启动时的电流的动态过程,又保证稳态后速度的稳定性,在起动过程的主要阶段,只有电流负反馈,没有转速负反馈。达到稳态后,只要转速负反馈,不让电流负反馈发挥主要作用很好地满足了生产需要。 关键词:无级调速;双闭环;晶闸管 II

机器人直流无刷电机参数

机器人直流无刷电机是一种应用在智能机器人驱动上的微型电机产品,具备驱动、减速、提升扭矩功能,主要由微型直流无刷电机、齿轮箱组装而成,也称为机器人电机;这种直流无刷电机属于非标电机齿轮箱,采用定制参数、性能特点、结构方式,定制参数范围,直径规格在3.4mm-38mm之间,额定电压在3V-24V,输出力矩范围:1gf.cm到50Kgf.cm之间,减速比范围:5-1500;输出转速范围:5-2000rpm; 机器人直流无刷电机产品参数: 产品名称:儿童智能陪护机器人电机齿轮箱 电压:3V-24V 空载转速:15000 空载电流:300MA 工作温度:-20 (85) 产品说明:儿童智能陪护机器人电机齿轮箱为特定客户开发设计,只作为儿童智能陪护机器人电机齿轮箱的方案展示。 标准直流无刷电机产品参数: 产品名称:5v直流减速电机 产品分类:直流减速电机 电压:5 VDC 材质:五金 旋转方向:cw&ccw 齿轮箱回程差:≤2°(可定制) 轴承:烧结轴承;滚动轴承 轴向窜动:≤0.1mm(烧结轴承);≤0.1mm(滚动轴承) 输出轴径向负载:≤20N(烧结轴承);≤30N(滚动轴承) 输入速度:≤15000rpm 工作温度:-30 (100)

产品名称:直流无刷减速电机(齿轮电机) 产品分类:无刷减速电机 产品规格:Φ20MM产品 电压:12V 空载电流:220 mA (可定制) 负载转速:2.4-1000 rpm(可定制) 减速比:5/25/125/625:1(可定制) 机器人直流无刷电机定制参数、规格范围: 尺寸规格系列:3.4mm、4mm、6mm、8mm、10mm、12mm、16mm、18mm、20mm、22mm、24mm、28mm、32mm、38mm; 电压范围:3V-24V 功率范围:0.1W-40W 输出力矩范围:1gf.cm到50Kgf.cm 减速比范围:5-1500; 输出转速范围:5-2000rpm; 生产厂家

无刷直流电机控制系统的设计

1引言无刷直流电机最本质的特征是没有机械换向器和电刷所构成的机械接触式换向机构。现在,无刷直流电机定义有俩种:一种是方波/梯形波直流电机才可以被称为无刷直流电机,而正弦波直流电机则被认为是永磁同步电机。另一种是方波/梯形波直流电机和正弦波直流电机都是无刷直流电机。国际电器制造业协会在1987年将无刷直流电机定义为“一种转子为永磁体,带转子位置信号,通过电子换相控制的自同步旋转电机”,其换相电路可以是独立的或集成于电机本体上的。本次设计采用第一种定义,把具有方波/梯形波无刷直流电机称为无刷直流电机。从20世纪90年代开始,由于人们生活水平的不断提高和现代化生产、办公自动化的发展,家用电器、工业机器人等设备都向着高效率化、小型化及高智能化发展,电机作为设备的重要组成部分,必须具有精度高、速度快、效率高等优点,因此无刷直流电机的应用也发展迅速[1]。 1.1 无刷直流电机的发展概况 无刷直流电动机是由有刷直流电动机的基础上发展过来的。 19世纪40年代,第一台直流电动机研制成功,经过70多年不断的发展,直流电机进入成熟阶段,并且运用广泛。 1955年,美国的D.Harrison申请了用晶体管换相线路代替有刷直流电动机的机械电刷的专利,形成了现代无刷直流电动机的雏形。 在20世纪60年代初,霍尔元件等位置传感器和电子换向线路的发现,标志着真正的无刷直流电机的出现。 20世纪70年代初,德国人Blaschke提出矢量控制理论,无刷直流电机的性能控制水平得到进一步的提高,极大地推动了电机在高性能领域的应用。 1987年,在北京举办的德国金属加工设备展览会上,西门子和博世两公司展出了永磁自同步伺服系统和驱动器,引起了我国有关学者的注意,自此我国开始了研制和开发电机控制系统和驱动的热潮。目前,我国无刷直流电机的系列产品越来越多,形成了生产规模。 无刷直流电动机的发展主要取决于电子电力技术的发展,无刷直流电机发展的初期,由于大功率开关器件的发展处于初级阶段,性能差,价格贵,而且受永磁材料和驱动控制技术的约束,这让无刷直流电动机问世以后的很长一段时间内,都停

三相无刷直流电机系统结构及工作原理

三相无刷直流电机系统结构及工作原理

图2.3 直流无刷电动机的原理框图位置传感器在直流无刷电动机中起着测定转子磁极位置的作用,为逻辑开关电路提供正确的换相信息,即将转子磁钢磁极的位置信号转换成电信号,然后去控制定子绕组换相。位置传感器种类较多,且各具特点。在直流无刷电动机中常见的位置传感器有以下几种:电磁式位置传感器、光电式位置传感器、磁敏式位置接近传感器【3】。 2.4基本工作原理 众所周知,一般的永磁式直流电动机的定子由永久磁钢组成,其主要的作用是在电动机气隙中产生磁场。其电枢绕组通电后产生反应磁场。其电枢绕组通电后产生反应磁场。由于电刷的换向作用,使得这两个磁场的方向在直流电动机运行的过程中始终保持相互垂直,从而产生最大转矩而驱动电动机不停地运转。直流无刷电动机为了实现无电刷换相,首先要求把一般直流电动机的电枢绕组放在定子上,把永磁磁钢放在转子上,这与传统直流永磁电动机的结构刚好相反。但仅这样做还是不行的,因为用一般直流电源给定子上各绕组供电,只能产生固定磁场,它不能与运动中转子磁钢所产生的永磁磁场相互作用,以产生单一方向的转矩来驱动转子转动。所以,直流无刷电动机除了由定子和转子组成电动机本体以外,还要由位置传感器、控制电路以及功率逻辑开关共同构成的换相装置,使得直流无刷电动机在运行过程中定子绕组所产生的的磁场和转动中的转子磁钢产生的永磁磁场,在空间始终保持在(π/2)rad左右的电角度。 2.5无刷直流电机参数 本系统采用的无刷电机参数 ·额定功率:100W ·额定电压:24V(DC) ·额定转速:3000r/min ·额定转矩:0.23N?m ·最大转矩:0.46N?m ·定位转矩:0.01N?m ·额定电流:4.0A

基于simulink直流电机调速系统开题报告剖析

Xxxx大学 本科毕业论文开题报告 基于Simulink的直流电机转速控制仿真研究 学号: xxx 姓名: 导师: 学院: 专业: 日期:

目录 一、选题依据、目的和意义 二、国内外研究现状及发展趋势 三、研究的主要内容及实验方法 四、目标,主要特色及工作进度 五、主要参考文献

一、选题依据、目的和意义 直流电机分为有刷和无刷两种,无刷直流电机(BLDCM)是在有刷直流电动机的基础上发展来的,但它的驱动电流是不折不扣的交流;无刷直流电机又可以分为无刷速率电机和无刷力矩电机。一般地,无刷电机的驱动电流有两种,一种是梯形波(一般是“方波”),另一种是正弦波。有时候把前一种叫直流无刷电机,后一种叫交流伺服电机,确切地讲是交流伺服电动机的一种。 无刷直流电机在重量和体积上要比有刷直流电机小的多,相应的转动惯量可以减少40%—50%左右。由于永磁材料的加工问题,致使无刷直流电机一般的容量都在100kW以下。这种电动机的机械特性和调节特性的线性度好,调速范围广,寿命长,维护方便噪声小,不存在因电刷而引起的一系列问题,所以这种电动机在控制系统中有很大的应用潜力。 1.1选题依据 无刷直流电动机因卓越的性能和不可替代的技术优势倍受人们的关注,特别是自70年代后期以来伴随着永磁材料技术、计算机及控制技术等支撑技术的快速发展及微电机制造工艺水平的不断提高,无刷直流电动机在高性能中、小伺服驱动领域获得广泛应用并日趋占据主导地位。随着无刷直流电机应用领域的不断扩大,要求控制系统设计简易、成本低廉、控制算法合理。建立无刷直流电机控制系统的仿真模型,可以有效的节省控制系统设计时间,及时验证系统的控制算法,同时可以充分利用计算机仿真的优越性,很方便的改变系统的结构,加入不同的扰动和参数变化,可以更好的考察系统在不同结构和不同工况下的静、动特性。因此如何建立无刷直流电机控制系统的仿真模型成为迫切需要解决的关键问题。 1.2目的和意义 无刷直流电动机具有体积小、重量轻、效率高、惯量小和控制精度高、无滑动接触和换相火花、可靠性高、使用寿命长及噪声低等优点,在航空航天、伺服控制、数控机床、机器人、电动汽车、计算机外围设备和家用电器等方面都获得了广泛应用。随着无刷直流电机应用领域的不断扩大,要求控制系统设计简易、成本低廉、控制算法合理、开发周期短。通过建立有效的无刷直流电动机系统仿真模型,可以

电动车无刷直流电机 毕业设计论文

毕业设计(论文) 题目:无刷电机驱动的电动自行车 的控制系统设计 专业:数控技术 班级: 学号: 姓名: 指导老师:

摘要 近年来,燃油交通工具因尾气排放问题已造成城市空气的严重污染。于是发展绿色交通工具已经成为一个重要的课题。考虑到我国的国情,发展电动自行车具有重要的环保意义。随着电机技术及功率器件性能的不断提高,电动自行车的控制器发展迅速。本文设计采用无刷直流电机专用控制芯片MC33033为控制芯片,以功率器件MOSFET为开关器件驱动电机,实现对无刷直流电机的控制。设计出了电路原理图、印制板电路图和电路板实物的3维效果图。 关键词:无刷直流电机MC33033 原理图印制板电路图

Abstract In recent years, transportation fuel emission problem has been caused by urban air pollution levels. So the development of green transport has become an important issue. Taking into account China's national conditions, development of electric bicycles has important environmental significance. With the motor technology and continuously improve the performance of power devices, the rapid development of electric bicycle controller. This design uses a brushless DC motor for the control of dedicated control chip MC33033 chip, in order to power MOSFET devices as the switching device drive motor, to achieve control of the electric bike. Design a circuit diagram, PCB circuit diagrams and circuit board real 3-D renderings. Keywords:brushless DC motor MC33033 Schematic PCB circuit

无刷直流电机控制系统仿真-毕业设计

毕业论文 课题名称无刷直流电机双闭环PI控制系统仿真 系部 专业 班级 学号 姓名 指导教师

摘要 本设计基于MATLAB/SIMULINK环境,利用其自带模块,编写S-函数程序,建立无刷直流电机的闭环控制系统模型。此系统采用转速-电流PI双闭环控制策略。其中,转速环为控制外环,使用PI控制算法;电流环为控制内环,采用滞环比较PWM控制方式,使得实际电流能跟踪参考电流。在分析了无刷直流电机的物理特性之后,可以建立其数学模型,将它与控制系统数学模型结合,就可以实现电机控制。将仿真结果与理论分析对比之后,可以看到本控制系统具有良好的控制效果。 关键词:无刷直流电机;双闭环控制系统;MATLAB/Simulink;PI控制 Abstract

based on MATLAB/SIMULINK environment, using the automatic module and writing S - function program establish a model of the closed loop control system of brushless dc motor. This system USES PI speed - current double closed-loop control strategy. Among them, the speed loop as the outer ring to use PI control algorithm; Current loop to control the inner ring, using the hysteresis PWM control mode, makes the actual current can track reference current. Physical properties after the analysis of the brushless dc motor, can establish its mathematical model, combined with control system mathematical model, it can achieve motor control. After compare the simulation results and theoretical analysis, you can see this control system has good control effect. Keywords: Brushless DC Motor; double-loop control system; MATLAB/Simulink; PI control

无刷直流电机的组成及工作原理

无刷直流电机的组成及工作原理 2.1 引言 直流无刷电动机一般由电子换相电路、转子位置检测电路和电动机本体三部分组成,电子换相电路一般由控制部分和驱动部分组成,而对转子位置的检测一般用位置传感器来完成。工作时,控制器根据位置传感器测得的电机转子位置有序的触发驱动电路中的各个功率管,进行有序换流,以驱动直流电动机。下文从无刷直流电动机的三个部分对其发展进行分析。 2.2 无刷直流电机的组成 2.2.1 电动机本体 无刷直流电动机在电磁结构上和有刷直流电动机基本一样,但它的电枢绕组放在定子上,转子采用的重量、简化了结构、提高了性能,使其可*性得以提高。无刷电动机的发展与永磁材料的发展是分不开的,磁性材料的发展过程基本上经历了以下几个发展阶段:铝镍钴,铁氧体磁性材料,钕铁硼(NdFeB)。钕铁硼有高磁能积,它的出现引起了磁性材料的一场革命。第三代钕铁硼永磁材料的应用,进一步减少了电机的用铜量,促使无刷电机向高效率、小型化、节能的方向发展。 目前,为提高电动机的功率密度,出现了横向磁场永磁电机,其定子齿槽与电枢线圈在空间位置上相互垂直,电机中的主磁通沿电机轴向流通,这种结构提高了气隙磁密,能够提供比传统电机大得多的输出转矩。该类型电机正处于研究开发阶段。 2.2.2 电子换相电路 控制电路:无刷直流电动机通过控制驱动电路中的功率开关器件,来控制电机的转速、转向、转矩以及保护电机,包括过流、过压、过热等保护。控制电路最初采用模拟电路,控制比较简单。如果将电路数字化,许多硬件工作可以直接由软件完成,可以减少硬件电路,提高其可靠性,同时可以提高控制电路抗干扰的能力,因而控制电路由模拟电路发展到数字电路。 驱动电路:驱动电路输出电功率,驱动电动机的电枢绕组,并受控于控制电路。驱动电路由大功率开关器件组成。正是由于晶闸管的出现,直流电动机才从有刷实现到无刷的飞跃。但由于晶闸管是只具备控制接通,而无自关断能力的半控性开关器件,其开关频率较低,不能满足无刷直流电动机性能的进一步提高。随着电力电子技术的飞速发展,出现了全控型的功率开关器件,其中有可关断晶体管(GTO)、电力场效应晶体管(MOSFET)、金属栅双极性晶体管IGBT 模块、集成门极换流晶闸管(IGCT)及近年新开发的电子注入增强栅晶体管(IEGT)。随着这些功率器件性能的不断提高,相应的无刷电动机的驱动电路也获得了飞速发展。目前,全控型开关器件正在逐渐取代线路复杂、体积庞大、功能指标低的普通晶闸管,驱动电路已从线性放大状态转换为脉宽调制的开关状态,相应的电路组成也由功率管分立电路转成模块化集成电路,为驱动电路实现智能化、高频化、小型化创造了条件。 2.2.3 转子位置检测电路

无刷电机常用计算公式 (1)

电机转速n (r/min ); 电枢表面线速度v (m/s ); 电枢表面圆周速度Ω (rad/s ); 电枢直径D (m ); 电机的极对数P ; 频率f (Hz); 每极总磁通Φ (Wb ); a :电枢绕组并联支路对数 电枢绕组每相有效匝数W A ; T U ?:电压损耗(开关管损耗等) 电势系数e K :是当电动机单位转速时在电枢绕组中所产生的感应电势平均值。 转矩系数T K :(N.m/A) 是当电动机电枢绕组中通入单位电流时电动机所产生的平均电磁转矩值。 额定功率N P :指电动机在额定运行时,其轴上输出的机械功率(W )。 额定电压N U :是指在额定运行情况下,直流电动机的励磁绕组和电枢绕组应加的电压值,(V )。 额定电流a I :是指电动机在额定电压下,负载达到额定功率时的电枢电流和励磁电流值,(A )。 额定转速N n :是指电动机在额定电压和额定功率时每分钟的转数,单位r/min. 额定转矩N T 2:是指额定电压和额定功率时的输出转矩,单位N.m 。 电机成品的已知量:额定转速N n 、p 、a 、e K 、T K 、a R 60pn f = n D v ?=60π 60 22n p f ?=?=Ωππ a n p C e ??=60 Φ?=e e C K e T C C ?=π 260 Φ?=T T C K a T a a a R U E U I ?--= 功率P :Ω=/P T 机械特性:=n 无刷直流电动机稳态特性的4个基本公式: 电压平衡方程式:T a a a a U R I E U ?+?+= 感应电势公式:n K E e a ?= 转矩平衡方程式: 20T T T em += 电磁转矩公式: a T em I K T ?=

【VIP专享】无刷直流电机驱动电路开题报告

河南科技大学毕业设计(论文)开题报告 (学生填表) 院系:电子信息工程学院2013年03月31日 课题名称无刷直流电机驱动电路 学生姓名赵永亮专业班级自动化093课题类型硬件设计 指导教师丁喆职称副教授课题来源生产实际1. 设计(或研究)的依据与意义 电动机作为机电能量转换装置,一直在人类生产和生活中起着十分重要的作用,其应用范围遍及各个领域。电力拖动自动控制系统已经成为现代电器化及自动化的基础,而实现工业企业的电气化及自动化对于提高产品质量,改善工人的劳动条件,增加工作可靠性以及劳动生产率均有重大的意义。因多年来,人们对电动机的研究一直未停断。电动机主要分为同步电机、异步电机和直流电动机三种类型,其容量大到几万千瓦,小到几瓦。长期以来,直流电动机一直占据着速度控制和位置控制的统治地位。众所周知,直流电动机具有运行效率高、调速性能好等诸多优点,但传统的直流电动机均采用电刷换向,以机械接触方法进行换向,因而存在相应的机械摩擦,带来了火花、噪声、电磁干扰大以及寿命短等缺点,再加上制造成本高以及维修困难等缺点,大大限制了它的应用范围。因此无刷直流电动机应运而生。1955年美国的D.Harrison等人首次申请了用晶体管换向电路代替机械电刷的专利,标志着现代无刷电机的诞生,而电子换向的无刷直流电动机真正进入实用阶段,是在1978年的MAC经典无刷直流电动机及其驱动器的推出之后。 直流无刷电动机的主要特点:高效率:无刷直流电动机转子上既无铜耗也无铁耗,其效率比同容量异步电动机提高5%—12%。.启动转矩大,启动电流小:无刷直流电动机的机械特性和调节特性与他励直流电动机枢控时相应特性类似,所以它的启动转矩大,启动电流小,调节范围宽,且没有因电刷换向器引起的缺点,电子换向取代了机械换向。无刷直流电动机是一种自控式调速系统,它无需像普通同步电动机那样需要启动绕组;在负载突变时,不会产生振荡和失步。无刷直流电机具有直流电动机特性、永磁同步电动机类似的结构。适合长期低速运转、启动频繁的场合,这是变频调速器拖动Y系列电动机不太容易实现的。因此得到了广泛的应用,无论在数控机床,机器人等制造加工领域,还是家用电器如洗衣机,电脑硬盘等场合都日益受到重视。无刷直流电动机是集材料科学、电力电子技术、微电子技术和电机理论等多学科为一体的机电一体化产品,在诸多领域有着广阔的应用前景。因此,对无刷直流电机本体及其控制方法进行系统、深入的研究具有十分重要的现实意义。

无刷直流电机控制系统的设计——毕业设计

无刷直流电机控制系统的设计——毕业设计

学号:1008421057 本科毕业论文(设计) (2014届) 直流无刷电机控制系统的设计 院系电子信息工程学院 专业电子信息工程 姓名胡杰 指导教师陆俊峰陈兵兵 高工助教 2014年4月

摘要 无刷直流电机的基础是有刷直流电机,无刷直流电机是在其基础上发展起来的。现在无刷直流电机在各种传动应用中虽然还不是主导地位,但是无刷直流电机已经受到了很大的关注。 自上世纪以来,人们的生活水平在不断地提高,人们在办公、工业、生产、电器等领域设备中越来越趋于小型化、智能化、高效率化,而作为所有领域的执行设备电机也在不断地发展,人们对电机的要求也在不断地改变。现阶段的电机的要求是高效率、高速度、高精度等,由此无刷直流电机的应用也在随着人们的要求的转变而不断地迅速的增长。 本系统的设计主要是通过一个控制系统来驱动无刷直流电机,主要以DSPIC30F2010芯片作为主控芯片,通过控制电路采集电机反馈的霍尔信号和比较电平然后通过编程的方式来控制直流无刷电机的速度和启动停止。 关键词:控制系统;DSPIC30F2010芯片;无刷直流电机

Abstract Brushless dc motor is the basis of brushless dc motor, brushless dc motor is developed on the basis of its. Now in all kinds of brushless dc motor drive applications while it is not the dominant position, but the brushless dc motor has been a great deal of attention. Since the last century, constantly improve the people's standard of living, people in the office, industrial, manufacturing, electrical appliances and other fields increasingly tend to be miniaturization, intelligence, high efficiency, and as all equipment in the field of motor is in constant development, people on the requirements of the motor is in constant change. At this stage of the requirements of the motor is high efficiency, high speed, high precision and so on, so is the application of brushless dc motor as the change of people's requirements and continuously rapid growth. The design of this system mainly through a control system to drive the brushless dc motor, mainly dspic30f2010 chips as the main control chip, through collecting motor feedback control circuit of hall signal and compare and then programmatically to control the speed of brushless motor and started to stop. Keywords: Control system; dspic30f2010 chip; brushless DC motor

相关文档
最新文档