4.2复随机过程

随机过程作业

第三章 随机过程 A 简答题: 3-1 写出一维随机变量函数的均值、二维随机变量函数的联合概率密度(雅克比行列式)的定义式。 3-2 写出广义平稳(即宽平稳)随机过程的判断条件,写出各态历经随机过程的判断条件。 3-3 平稳随机过程的自相关函数有哪些性质功率谱密度有哪些性质自相关函数与功率谱密度之间有什么关系 3-4 高斯过程主要有哪些性质 3-5 随机过程通过线性系统时,输出与输入功率谱密度之间的关系如何 3-6 写出窄带随机过程的两种表达式。 3-7 窄带高斯过程的同相分量和正交分量的统计特性如何 3-8 窄带高斯过程的包络、正弦波加窄带高斯噪声的合成包络分别服从什么分布 3-9 写出高斯白噪声的功率谱密度和自相关函数的表达式,并分别解释“高斯”及“白”的含义。 3-10 写出带限高斯白噪声功率的计算式。 B 计算题: 一、补充习题 3-1 设()()cos(2)c y t x t f t πθ=?+,其中()x t 与θ统计独立,()x t 为0均值的平稳随机过程,自相关函数与功率谱密度分别为:(),()x x R P τω。 ①若θ在(0,2π)均匀分布,求y()t 的均值,自相关函数和功率谱密度。 ②若θ为常数,求y()t 的均值,自相关函数和功率谱密度。 3-2 已知()n t 是均值为0的白噪声,其双边功率谱密度为:0 ()2 N P ω= 双,通过下图()a 所示的相干解调器。图中窄带滤波器(中心频率为c ω)和低通滤波器的传递函数1()H ω及2()H ω示于图()b ,图()c 。

试求:①图中()i n t (窄带噪声)、()p n t 及0()n t 的噪声功率谱。 ②给出0()n t 的噪声自相关函数及其噪声功率值。 3-3 设()i n t 为窄带高斯平稳随机过程,其均值为0,方差为2 n σ,信号[cos ()]c i A t n t ω+经过下图所示电路后输出为()y t ,()()()y t u t v t =+,其中()u t 是与cos c A t ω对应的函数,()v t 是与()i n t 对应的输出。假设()c n t 及()s n t 的带宽等于低通滤波器的通频带。 求()u t 和()v t 的平均功率之比。

中国科学大学随机过程(孙应飞)复习题及答案

(1) 设}0),({≥t t X 是一个实的零均值二阶矩过程,其相关函数为 t s s t B t X s X E ≤-=),()}()({,且是一个周期为T 的函数,即0),()(≥=+τττB T B ,求方差函数)]()([T t X t X D +-。 解:由定义,有: )(2)0()0()}()({2)0()0()]} ()()][()({[2)] ([)]([)]()([=-+=+-+=+-+--++=+-T B B B T t X t X E B B T t EX T t X t EX t X E T t X D t X D T t X t X D (2) 试证明:如果}0),({≥t t X 是一独立增量过程,且0)0(=X ,那么它必是一个马 尔可夫过程。 证明:我们要证明: n t t t <<<≤? 210,有 } )()({})(,,)(,)()({11112211----=≤=====≤n n n n n n n x t X x t X P x t X x t X x t X x t X P 形式上我们有: } )()(,,)(,)({} )()(,,)(,)(,)({} )(,,)(,)({} )(,,)(,)(,)({})(,,)(,)()({1122221111222211112211112211112211--------------========≤= ======≤=====≤n n n n n n n n n n n n n n n n n n n n x t X x t X x t X x t X P x t X x t X x t X x t X x t X P x t X x t X x t X P x t X x t X x t X x t X P x t X x t X x t X x t X P 因此,我们只要能证明在已知11)(--=n n x t X 条件下,)(n t X 与2 ,,2,1,)(-=n j t X j 相互独立即可。 由独立增量过程的定义可知,当2,,2,1,1-=<<<-n j t t t a n n j 时,增量 )0()(X t X j -与)()(1--n n t X t X 相互独立,由于在条件11)(--=n n x t X 和0)0(=X 下,即 有)(j t X 与1)(--n n x t X 相互独立。由此可知,在11)(--=n n x t X 条件下,)(n t X 与 2,,2,1,)(-=n j t X j 相互独立,结果成立。 (3) 设随机过程}0,{≥t W t 为零初值(00=W )的、有平稳增量和独立增量的过程, 且对每个0>t ,),(~2t N W t σμ,问过程}0,{≥t W t 是否为正态过程,为什么? 解:任取n t t t <<<≤? 210,则有: n k W W W k i t t t i i k ,,2,1][1 1 =-=∑=-

随机过程习题答案A

随机过程习题解答(一) 第一讲作业: 1、设随机向量的两个分量相互独立,且均服从标准正态分布。 (a)分别写出随机变量和的分布密度 (b)试问:与是否独立?说明理由。 解:(a) (b)由于: 因此是服从正态分布的二维随机向量,其协方差矩阵为: 因此与独立。 2、设和为独立的随机变量,期望和方差分别为和。 (a)试求和的相关系数; (b)与能否不相关?能否有严格线性函数关系?若能,试分别写出条件。 解:(a)利用的独立性,由计算有: (b)当的时候,和线性相关,即 3、设是一个实的均值为零,二阶矩存在的随机过程,其相关函数为 ,且是一个周期为T的函数,即,试求方差 函数。 解:由定义,有: 4、考察两个谐波随机信号和,其中:

式中和为正的常数;是内均匀分布的随机变量,是标准正态分布的随机变量。 (a)求的均值、方差和相关函数; (b)若与独立,求与Y的互相关函数。 解:(a) (b) 第二讲作业: P33/2.解: 其中为整数,为脉宽 从而有一维分布密度: P33/3.解:由周期性及三角关系,有: 反函数,因此有一维分布: P35/4. 解:(1) 其中 由题意可知,的联合概率密度为:

利用变换:,及雅克比行列式: 我们有的联合分布密度为: 因此有: 且V和相互独立独立。 (2)典型样本函数是一条正弦曲线。 (3)给定一时刻,由于独立、服从正态分布,因此也服从正态分布,且 所以。 (4)由于: 所以因此 当时, 当时, 由(1)中的结论,有: P36/7.证明: (1) (2) 由协方差函数的定义,有:

P37/10. 解:(1) 当i =j 时;否则 令 ,则有 第三讲作业: P111/7.解: (1)是齐次马氏链。经过次交换后,甲袋中白球数仅仅与次交换后的状态有关,和之前的状态和交换次数无关。 (2)由题意,我们有一步转移矩阵: P111/8.解:(1)由马氏链的马氏性,我们有: (2)由齐次马氏链的性质,有: (2)

第1章随机信号概论特征函数随机过程统计特性

1.4 随机变量的特征函数 引言:分布函数:反映随机变量的统计规律性。 数字特征:反映、掌握分布函数的某些特征。矩是最主要的特征,但随着矩的阶数的 增高,计算机较麻烦,寻求一种有效的方法来计算。 特征函数:一种计算各阶矩的有效工具。特别是计算、处理多个随机变量,特征函数 显示其优越性一。 1.4.1 特征函数的定义 (1) 设X 是定义在概率空间),,(P F S 上的随机变量,它的分布函数为)(x F ,称juX e 的 数学期望)(juX e E 为X 的特征函数,记为)(u C X 。 当X 为离散型随机变量时,其特征函数为: ∑∞ ====1 )()()(i i jux juX X x X P e e E u C i 当X 为连续型随机变量时,其特征函数为: ?+∞ ∞ -==dx x p e e E u C jux juX X )()()( (2) 利用特征函数求概率密度函数 ? +∞ ∞ --= du u C e x p X jux )(21 )(π 证明:利用傅里叶变换与反变换关系可证明。 举例: 例1:求标准正态分布)1,0(N 的特征函数。 2 2 2221)()(u jux x juX X e dx e e e E u C - ∞ +∞ -- ===? π 1.4.2 特征函数的性质 (1) 1)(≤u C X 1)0(=X C (2) 两两相互独立的随机变量之和的特征函数等于各个随机变量的特征函数之积,即: 若∑== n k k X Y 1 ,式中n X X X Λ,,21为n 个两两相互独立的随机变量,则 ∏==n k X Y u C u C k 1 )()(

第三章_随机过程教案

第三章随机过程 本节首先介绍利用matlab现有的库函数根据实际需要直接产生均分分布和高斯分布随机变量的方法,然后重点讲解蒙特卡罗算法。 一、均匀分布的随机数 利用MATLAB库函数rand产生。rand函数产生(0,1)内均匀分布的随机数,使用方法如下: 1)x=rand(m);产生一个m×m的矩阵,所含元素取值均为在(0,1)内均匀分布的随机数。 2)x=rand(m,n);产生一个m×n的矩阵,所含元素取值均为在(0,1)内均匀分布的随机数。 3)x=rand;产生一个随机数。 举例:1、产生一个5×5服从均匀分布的随机矩阵,所含元素取值均为在(0,1)内均匀分布的随机数。 x=rand(5) 2、产生一个5×3服从均匀分布的随机矩阵,所含元素取值均为在(0,1)内均匀分布的随机数。 x=rand(5,3) 二、高斯分布的随机数 randn函数产生均值为0,方差为1的高斯分布的随机数,使用方法如下: 1)x=randn(m);产生一个m×m的矩阵,所含元素都是均值

为0,方差为1的高斯分布的随机数。 2)x=randn(m,n);产生一个m×n的矩阵,所含元素都是均值为0,方差为1的高斯分布的随机数。 3)x=randn;产生一个均值为0,方差为1的高斯分布的随机数。 举例:1、产生一个5×5的矩阵,所含元素都是均值为0,方差为1的高斯分布的随机数。 x=randn(5) 2、产生一个5×3的矩阵,所含元素都是均值为0,方差为1的高斯分布的随机数。 x=randn(5,3) 3、产生一个5×3的矩阵,所含元素都是均值为0,方差为4的高斯分布的随机数。 x=2×randn(5,3) 三、蒙特卡罗仿真 1、蒙特卡罗算法 蒙特卡罗估计是指通过随机实验估计系统参数值的过程。蒙特卡罗算法的基本思想:由概率论可知,随机实验中实验的结果是无法预测的,只能用统计的方法来描述。故需进行大量的随机实验,如果实验次数为N,以 N表示事件A发 A 生的次数。若将A发生的概率近似为相对频率,定义为 N N。 A 这样,在相对频率的意义下,事件A发生的概率可以通过重

随机过程参考题

2014-2015随机过程参考题 一.判断题 1.若随机变量的特征函数存在,则可以用它来刻画随机变量的概率分布. ( ) 2.对于独立的随机变量1,,n X X ,都有[]11 n n k k k k E X E X ==??=????∏∏. ( ) 3.若12(,, )n F x x x 是随机向量1=, ,)n X X X (的联合分布函数,则它对每个变量都是 单调不减的. ( ) 4.一个随机过程的有限维分布具有对称性和相容性. ( ) 5.非齐次泊松过程一定具有独立增量性和平稳增量性. ( ) 6.参数为λ的泊松过程第n 次与第1n -次事件发生的时间间隔n X 服从参数为n 和n λ的Γ分布. ( ) 7.复合P o i s s o n 过 程一定是计数过程. ( ) 8.若随机变量X 服从周期为d 的格点分布,则对自然数n 总有{}0P X nd =>.( ) 9.设,i j 是离散时间马氏链的两个互通的状态,则它们的周期相等. ( ) 10.离散时间马尔科夫链的转移矩阵的行和列的和均为1 . ( ) 11.一个随机变量的分布函数和特征函数相互唯一确定. ( ) 12.对独立的随机变量1, ,n X X ,都有[]1 1n n k k k k Var X Var X ==??=????∑∏. ( ) 13.一个随机过程的有限维分布族一定是具有对称性和相容性的分布族。 ( ) 14.若一个随机过程的协方差函数,s t γ()只与时间差t s -有关,则它一定是宽平稳过 程. ( ) 15.参数为λ的泊松过程中,第n 次事件发生的时刻n T 服从参数为λ的指数分布.( ) 16.非齐次泊松过程不具有独立增量性,但具有平稳增量性. ( ) 17.更新过程在有限时间内最多只能发生有限次更新. ( ) 18.更新过程的更新函数()M t 是t 的单调不增函数. ( ) 19.马尔科夫链具有无后效性. ( ) 20.Poisson 过程是更新过程. ( ) 具有对称性和相容性的分布族一定是某个随机过程的有限维分布族。 ( ) 21.若一个随机过程是宽平稳的,则它一定是严平稳的。 ( )

第三章随机过程作业

第三章随机过程作业 1.设A、B是独立同分布的随机变量,求随机过程的 均值函数、自相关函数和协方差函数。 2.设是独立增量过程,且,方差函数为。记随机过程 ,、为常数,。 (1)证明是独立增量随机过程; (2)求的方差函数和协方差函数。 3.设随机过程,其中是相互独立的随机变量且均值为 0、方差为1,求的协方差函数。 4.设U是随机变量,随机过程. (1) 是严平稳过程吗为什么 (2) 如果,证明:的自相关函数是常数。 5.设随机过程,其中U与V独立同分布 。 (1) 是平稳过程吗为什么 (2) 是严平稳过程吗为什么 6.设随机变量的分布密度为, 令, 试求的一维概率分布密度及。

7.若从t = 0开始每隔1/2分钟查阅某手机所接收的短信息 , 令 试求:的一维分布函数 8.设随机过程, 其中是相互独立的随 机变量 , 且, 试求的均值与协方差函数 . 9.设其中为常数 , 随机变量 , 令 , 试求 :和 。 10.设有随机过程,并设x是一实数,定义另一个随机过程 试证的均值和自相关函数分别为随机过程的一维和二维分布函数。11.设有随机过程,,其中为均匀分布 于间的随机变量,即试证: (1)自相关函数 (2)协相关函数 12.质点在直线上作随机游动,即在时质点可以在轴上往右或往左作 一个单位距离的随机游动。若往右移动一个单位距离的概率为,往左移动一个单位距离的概率为,即

,且各次游动是相互统计独立的。经过n 次游动,质点所处的位置为。 (1)的均值; (2)求的相关函数和自协方差函数和。 13.设,其中服从上的均匀分布。试证 : 是宽平稳序列。 14.设其中服从上的均匀分布. 试 证 :既不是宽平稳也不是严平稳过程 . 15.设随机过程和都不是平稳的,且 其中和是均值为零的相互独立的平稳过程,它们有相同的相关函数,求证 是平稳过程。 16.设是均值为零的平稳随机过程。试 证 : 仍是一平稳随机过程 , 其中为复常数,为整数。 17.若平稳过程满足条件,则称是周 期为的平稳过程。试证是周期为的平稳过程的充分必要条件是其自相关函数必为周期等于的周期函数。

随机过程试题及答案

1.设随机变量X 服从参数为λ的泊松分布,则X 的特征函数为 。 2.设随机过程X(t)=Acos( t+),-t t 则 {(5)6|(3)4}______P X X === 9.更新方程()()()()0t K t H t K t s dF s =+-?解的一般形式为 。 10.记()(),0n EX a t M M t μ=≥→∞-→对一切,当时,t +a 。 二、证明题(本大题共4道小题,每题8分,共32分) P(BC A)=P(B A)P(C AB)。 2.设{X (t ),t ≥0}是独立增量过程, 且X (0)=0, 证明{X (t ),t ≥0}是一个马尔科夫过程。 3.设{}n X ,n 0≥为马尔科夫链,状态空间为I ,则对任意整数n 0,1

北大随机过程课件:第 3 章 第 2 讲 马尔可夫过程

马尔可夫过程 ?1马尔可夫过程概论 6 1.1马尔可夫过程处于某个状态的概率 6 1.2马尔可夫过程的状态转移概率 6 1.3参数连续状态离散马尔可夫过程的状态转移的切普曼-柯尔莫哥洛夫方程 切普曼-柯尔莫哥洛夫方程 齐次切普曼-柯尔莫哥洛夫方程 转移概率分布函数、转移概率密度函数 6 1.4马尔可夫过程状态瞬时转移的跳跃率函数和跳跃条件分布函数 瞬时转移概率分布函数 6 1.5确定马尔可夫过程Q矩阵 跳跃强度、转移概率Q矩阵 ?2参数连续状态离散马尔可夫过程的前进方程和后退方程 柯尔莫哥洛夫-费勒前进方程(利用Q矩阵可以导出、转移概率的微分方程)福克-普朗克方程(状态概率的微分方程) 柯尔莫哥洛夫-费勒后退方程(利用Q矩阵可以导出、转移概率的微分方程)?3典型例题 排队问题、机器维修问题、随机游动问题的分析方法 ?4马尔可夫过程的渐进特性 稳态分布存在的条件和性质 稳态分布求解 ?5马尔可夫过程的研究 1概论 1.1 定义及性质 1.2 状态转移概率 1.3 齐次马尔可夫过程的状态转移概率 1.5跳跃强度、转移概率Q矩阵 2 前进方程和后退方程 2.1 切普曼-柯尔莫哥洛夫方程 2.2柯尔莫哥洛夫-费勒前进方程 2.2福克-普朗克方程 2.3柯尔莫哥洛夫-费勒后退方程 3典型的马尔可夫过程举例 例1 例2 例3 例4,随机游动 4马尔可夫过程的渐进特性 4.1 引理1 4.2 定理2 4.3 定理

5马尔可夫过程的研究 6关于负指数分布的补充说明:

1概论 1.1定义:马尔可夫过程 ()t ξ: 参数域为T ,连续参数域。以下分析中假定[0,)T =∞; 状态空间为I ,离散状态。以下分析中取{0,1,2,}I ="; 对于T t t t t m m ∈<<<<+121",若在12m t t t T <<<∈"这些时刻观察到随机过程的值是12,,m i i i ",则 1m m t t T +>∈时刻的条件概率满足: {}{}1111()/(),,()()/(), m m m m m m P t j t i t i P t j t i j I ξξξξξ++======∈" 则称这类随机过程为具有马尔可夫性质的随机过程或马尔可夫过程。 1.2 定义:齐次马尔可夫过程 对于马尔可夫过程()t ξ,如果转移概率{}21()/()P t j t i ξξ==只是时间差12t t ?=τ的函数,这类马尔可夫过程称为齐次马尔可夫过程。 1.3 性质 马尔可夫过程具有过程的无后效性; 参数连续状态离散的马尔可夫过程的条件转移概率为: {}{}212112()/()0()/(),,P t j t t t P t j t i t t i j I ξξξξ′′=≤≤===≤∈ 马尔可夫过程的有限维联合分布律可以用转移概率来表示 {} {}{}{}32132211123(),(),()()/()()/()(),,,P t k t j t i P t k t j P t j t i P t i t t t i j k I ξξξξξξξξ=========≤≤∈ 马尔可夫过程的有限维条件分布律可以用转移概率来表示

第二章随机过程的基本概念

第二章随机过程的基本概念 §1随机过程及其概率分布 、随机过程概念: 一、随机过程概念: 初等概率论所研究的随机现象,基本上可以用随机变量或随机向量来描述.但在实际中有些随机现象要涉及(可列或非可列)无穷多个随机变量.

例1.某人扔一枚硬币,无限制的重复地扔下去,要表示无限多次扔的结果,我们不妨记正面为1,反面为0.第次扔的结果是一个,其分布,无限多次扔n n r vX ?{}{}1012n n P X P X ====,无限制的重复地扔,要表示无限多次扔的结果,我们不妨反面为其分布无限多次扔的结果是一个随机过程,可用一族相互独 立,,或表示.r v ?1X ,2X {},1n X n ≥

n n X 0n n 0 1 2 3 4 5 6 7 8 910 ……

例2.当固定时,电话交换站在时间内来到的呼叫次数是,记, ,其中是单位时间内平均来到的呼叫次数,而,若从变到,时刻来到的呼叫次数需用一族随机变量表 它为非降的阶,在有呼唤来到的时刻阶跃地增加,假定在任一呼唤来到的时刻不可能来到多)(0)t t ≥[0,] t r v ?()X t ()()X t P t λ λ0λ>t 0∞t {}(),[0,)X t t ∈∞()X t ,电话交换站在记,若时刻示, 是一个随机过程. 对电话交换站作一次观察可得到一条表示以前来到的呼唤曲线,它为非降的阶梯曲线,在有呼唤来到的时刻阶跃地增加,(假定在任一呼唤来到的时刻不可能来到多于一次呼唤). E t 1()x t

同理,第二次观察,得到另一条阶梯形曲线; 同理,第n 次观察,得到另一条阶梯形曲线. 2()x t ()n x t ,第二次观察,得到另一条阶梯形曲,第,得到另一条阶梯形曲 总之,一次试验得到阶梯形曲线形状具有随机性

随机过程复习提纲

第一章: 1. 填空 若X 1,X 2,…,X n 是相互独立的随机变量,且g i (t)是X i 的特征函数,i=1,2,…,n)则X=X 1+X 2+…X n 的特征函数g(t)= _g 1(t) g 2(t)…g n (t) 2.设P(S)是X 的母函数,试证: (1)若E(X)存在,则EX=P ′(1) (2)若D(X)存在,则 DX = P"(1)+ P ′(1)-[ P ′(1)]2 证明:(1)因为p (s )=s p k k k ∑ ∞ =0,则p ′(s )=s kp k k k 1 1 -∞ =∑,令s ↑1,得EX==∑∞ =1 k k kp p ′(1)。 (2)同理可证DX=p 〞(1)+ p ′(1) —[p ′(1)] 2 3.设X 服从B(n,p),求X 的特征函数g(t)及EX,EX 2,DX. 解:X 的分布列为P(X=k)=1k k n n C p q -,q=1-p ,k=0,1,2,...n, ()00 k n n n itk k k n k k it n k it g t e C p q C pe q pe q n n k k ? ??? ? ? ? ? ? ? --===+∑∑== 由性质得 ()() np it dt d i i EX t n q e p g =-=-==+0 , ()()() p n q e p dt d g i EX npq it i t n 2 2 2 2" 2 2 0+=-===+- ()npq DX EX EX =- = 2 2 4. 设X~N(0,1),求特征函数g(t). 解dx x t g e itx ?∞ +∞ --= 2 2 21)(π 由于e e x x x ix itx 22 2 2 =-,且 ?+∞?∞ +∞ --dx x e itx 2 2 21π ,故由积分号下求导公式有 ??? ?????-= =-∞ +∞-∞ +∞ --??de e ixe g x i dx x t ixt itx 22' 2 2 221)(π π

随机过程知识点

第一章:预备知识 §1.1 概率空间 随机试验,样本空间记为Ω。 定义1.1 设Ω是一个集合,F 是Ω的某些子集组成的集合族。如果 (1)∈ΩF ; (2)∈A 若F ,∈Ω=A A \则F ; (3)若∈n A F , ,,21 =n ,则 ∞ =∈1 n n A F ; 则称F 为-σ代数(Borel 域)。(Ω,F )称为可测空间,F 中的元素称为事件。 由定义易知: . 216\,,)5)4(1 1 1 F A A A i F A F B A F B A F i i n i i n i i i ∈=∈∈∈∈?∞ === ,,则,,,)若(; 则若(; 定义1.2 设(Ω,F )是可测空间,P(·)是定义在F 上的实值函数。如果 ()()()()∑∞=∞==???? ???=?≠=Ω≤≤∈1 121,,,31210,)1(i i i i j i A P A P A A j i A A P A P F A 有 时,当)对两两互不相容事件(;)(; 任意 则称P 是()F ,Ω上的概率,(P F ,,Ω)称为概率空间,P(A)为事件A 的概率。 定义1.3 设(P F ,,Ω)是概率空间,F G ?,如果对任意G A A A n ∈,,,21 , ,2,1=n 有: (),1 1 ∏===??? ? ??n i i n i i A P A P 则称G 为独立事件族。 §1.2 随机变量及其分布 随机变量X ,分布函数)(x F ,n 维随机变量或n 维随机向量,联合分布函数, {}T t X t ∈,是独立的。 §1.3随机变量的数字特征 定义1.7 设随机变量X 的分布函数为)(x F ,若 ? ∞ ∞ -∞<)(||x dF x ,则称 )(X E =?∞ ∞ -)(x xdF 为X 的数学期望或均值。上式右边的积分称为Lebesgue-Stieltjes 积分。 方差,()()[]EY Y EX X E B XY --=为X 、Y 的协方差,而 DY DX B XY XY =ρ 为X 、Y 的相关系数。若,0=XY ρ则称X 、Y 不相关。 (Schwarz 不等式)若,,2 2 ∞<∞

第2章 随机过程习题及答案

第二章 随机过程分析 1.1 学习指导 1.1.1 要点 随机过程分析的要点主要包括随机过程的概念、分布函数、概率密度函数、数字特征、通信系统中常见的几种重要随机过程的统计特性。 1. 随机过程的概念 随机过程是一类随时间作随机变化的过程,它不能用确切的时间函数描述。可从两种不同角度理解:对应不同随机试验结果的时间过程的集合,随机过程是随机变量概念的延伸。 2. 随机过程的分布函数和概率密度函数 如果ξ(t )是一个随机过程,则其在时刻t 1取值ξ(t 1)是一个随机变量。ξ(t 1)小于或等于某一数值x 1的概率为P [ ξ(t 1) ≤ x 1 ],随机过程ξ(t )的一维分布函数为 F 1(x 1, t 1) = P [ξ(t 1) ≤ x 1] (2-1) 如果F 1(x 1, t 1)的偏导数存在,则ξ(t )的一维概率密度函数为 1111111 (,) (, ) (2 - 2)?=?F x t f x t x 对于任意时刻t 1和t 2,把ξ(t 1) ≤ x 1和ξ(t 2) ≤ x 2同时成立的概率 {}212121122(, ; , )(), () (2 - 3)F x x t t P t x t x ξξ=≤≤ 称为随机过程ξ (t )的二维分布函数。如果 2212122121212 (,;,) (,;,) (2 - 4)F x x t t f x x t t x x ?=??? 存在,则称f 2(x 1, x 2; t 1, t 2)为随机过程ξ (t )的二维概率密度函数。 对于任意时刻t 1,t 2,…,t n ,把 {}n 12n 12n 1122n n ()(),(), ,() (2 - 5) =≤≤≤F x x x t t t P t x t x t x ξξξ,,,;,,,称为随机过程ξ (t )的n 维分布函数。如果 n n 12n 12n n 12n 12n 12n (x ) () (2 - 6)?=???F x x t t t f x x x t t t x x x ,,,;,,,,,,;,,, 存在,则称f n (x 1, x 2, …, x n ; t 1, t 2, …, t n )为随机过程ξ (t )的n 维概率密度函数。 3. 随机过程的数字特征 随机过程的数字特征主要包括均值、方差、自相关函数、协方差函数和互相关函数。 随机过程ξ (t )在任意给定时刻t 的取值ξ (t )是一个随机变量,其均值为 []1()(, )d (2 - 7)E t xf x t x ξ∞ -∞ =?

随机过程习题答案

随机过程习题解答(一)第一讲作业: 1、设随机向量的两个分量相互独立,且均服从标准正态分布。 (a )分别写出随机变量和的分布密度 (b )试问:与是否独立?说明理由。 解:(a) (b)由于: 因此是服从正态分布的二维随机向量,其协方差矩阵为: 因此与独立。 2、设和为独立的随机变量,期望和方差分别为和。 (a )试求和的相关系数; (b )与能否不相关?能否有严格线性函数关系?若能,试分别写出条件。解:(a )利用的独立性,由计算有: (b )当的时候,和线性相关,即 3、 设是一个实的均值为零,二阶矩存在的随机过程,其相关函数 为 ,且是一个周期为T 的函数,即, 试求方差函数 。 解:由定义,有: 4、考察两个谐波随机信号和,其中: 式中和为正的常数;是内均匀分布的随机变量,是标准正态分布的随机变量。 (a )求的均值、方差和相关函数; (b )若与独立,求与Y的互相关函数。 解:(a ) (b ) 第二讲作业: P33/2.解:

其中为整数, 为脉宽 从而有一维分布密度: P33/3.解:由周期性及三角关系,有: 反函数 ,因此有一维分布: P35/4. 解: (1) 其中 由题意可知, 的联合概率密度为: 利用变换: ,及雅克比行列式: 我们有 的联合分布密度为: 因此有: 且 V 和 相互独立独立。 (2)典型样本函数是一条正弦曲线。 (3)给定一时刻,由于 独立、服从正态分布,因此 也服从正态分布,且 所以 。 (4) 由于: 所以 因此 当时, 当 时, 由(1)中的结论,有: P36/7.证明: (1) (2) 由协方差函数的定义,有: P37/10. 解:(1) 当i =j 时 ;否则 令 ,则有 (2)

随机过程习题和答案

一、设二维随机变量(,)的联合概率密度函数为: 试求:在时,求。 解: 当时, = = 设离散型随机变量X 服从几何分布: 试求的特征函数,并以此求其期望与方差。 解: 所以: 袋中红球,每隔单位时间从袋中有一个白球,两个任取一球后放回,对每 对应随机变量一个确定的t ?????=时取得白球如果对时取得红球 如果对t e t t t X t 3)( .维分布函数族试求这个随机过程的一 设随机过程,其中是常数,与是相互独立的随机变量,服从区间上的均匀分 布,服从瑞利分布,其概率密度为 试证明为宽平稳过程。 解:(1) 与无关

(2) , 所以 (3) 只与时间间隔有关,所以为宽平稳过程。 是随机变量,且,其中设随机过程U t U t X 2cos )(=求:,.5)(5)(==U D U E .321)方差函数)协方差函数;()均值函数;(( 是其中,设有两个随机过程U Ut t Y Ut t X ,)()(32==.5)(=U D 随机变量,且 数。试求它们的互协方差函 ,试求随机过程是两个随机变量设B At t X B A 3)(,,+=的均值),(+∞-∞=∈T t 相互独若函数和自相关函数B A ,.),()(),2,0(~),4,1(~,21t t R t m U B N A X X 及则且立 为多少? 一队学生顺次等候体检。设每人体检所需的时间服从均值为2分钟的 指数分布并且与其他人所需时间相互独立,则1小时内平均有多少学生接受过体检在这1小时内最多有40名学生接受过体检的概率是多少(设学生非常多,医生不会空闲) 解:令()N t 表示(0,)t 时间内的体检人数,则()N t 为参数为30的

随机过程第3章

第三章 随机过程 一. 随机过程的基本概念 1.1 随机过程的定义 设(Ω,F ,P )为给定的概率空间,T 为一指标集,对于任意t T ∈,都存在定义在(),,P ΩF 上,取值于E 的随机变量()(),X t ωω∈Ω与它相对应,则称依赖于t 的一族随机变量(){},:X t t T ω∈为随机过程,简记(){}t X ω,{}t X 或(){}X t 注:随机过程(){}:,t X t T ωω∈Ω∈是时间参数t 和样本点 ω的二元函数,对于给定的时间0t ,是0(,)X t ω是概率空 间(),,P ΩF 上的随机变量;对于给定样本点0ω∈Ω, 0(,)X t ω是定义在T 上的实函数,此时称它为随机过程 对应于0ω的一个样本函数,也成为样本轨道或实现。 E 称为随机过程的相空间,也成为状态空间,通常用 “t X x =”表示t X 处于状态x 1.2随机过程t X 按照时间和状态是连续还是离散可以 分为四类:连续型随机过程、离散型随机过程、连续型随机序列、离散型随机序列

1.3 有穷维分布函数 设随机过程{}t X ,在任意n 个时刻1,,n t t 的取值 1,,n t t X X 构成n 维随机向量()1,,n t t X X ,其n 维联合分布 函数为: ()()1 1 ,,11,,,,n n t t n t t n F x x P X x X x =≤≤ 其n 维联合密度函数记为()1 ,,1,,n t t n f x x 。 我们称(){}1 ,,11,,:1,,,n t t n n F x x n t t T ≥∈ 为随机过程 {}t X 的有穷维分布函数。 二.随机过程的数字特征 2.1 数学期望 对于任何一个时间t T ∈,随机过程{}t X 的数学期望定义为 ()()t X t t E X xdF x μ +∞ -∞ ==? ()t E X 是时间t 的函数 2.2 方差与矩 随机过程{}t X 的二阶中心矩

北大随机过程课件:第 3 章 第 6 讲 特征函数与母函数

特征函数、母函数、矩母函数 确定随机变量的概率密度函数/分布律 方便求解独立随机变量和的分布函数一类问题 可以通过微分运算求随机变量的数字特征 1.特征函数: 设随机变量ξ的分布函数为F(x), 概率密度函数为f(x), 称: (){}()()jt jtx jtx t E e e dF x e f x dx ξ∞∞?∞?∞ Φ===∫∫ 为随机变量ξ的分布函数的特征函数,或ξ的特征函数,特征函数是概率密度函数的付氏变换。 特征函数的性质: 1.特征函数与概率密度函数相互唯一地确定; 2.两个相互统计独立的随机变量和的特征函数等于各个随机变量特征函数的积; 3.特征函数与随机变量的数字特征的关系:()0()|{}k k k t t j E ξ=Φ= 典型随机变量的特征函数 1. 两点分布的特征函数:()jt t q pe Φ=+ 2. 二项式分布的特征函数:()()n jt t q pe Φ=+ 3. 几何分布:()1jt jt pe t qe Φ=? 4. 泊松分布(λ):(1)()jt e t e λ??Φ= 5. 正态分布2(,)N σ?:22 ()exp{}2t t j t σΦ=?? 6. 均匀分布[0,1]:1()jt e t jt ?Φ= 7. 负指数分布:()t jt λ λΦ=?

2.母函数 研究分析非负整值随机变量时,可以采用母函数法: 对于一个取非负整数值n=0,1,2,……,的随机变量x ,,其相应的矩生成函数定义为: 0()()n n z p x n z ∞ =Φ==?∑ (1/)z Φ是序列()p x n =的正常的z 变换 母函数的性质: 1. 两个相互统计独立的随机变量和的母函数等于各个随机变量的母函数的积。 2. 随机个独立同分布的非负整值随机变量和的矩生成函数是原来两个母函数的复合(见附 合泊松过程的应用) 3.()000(),()!1,2,k k z z z p z k p k ==Φ=Φ==" 通过母函数有理分式的幂级数展开等方法,得到随机变量的概率分布表达式。 3. ()1(){(1)(1)}1,2,k z z E X X X k k =Φ=??+="" 通过矩生成函数的微分可以得到随机变量的数字特征: 均值: '1{}()|z E X z ==Φ 方差: 22''''2111{}{}[{}]()|()|[()|]z z z D X E X E X z z z ====?=Φ+Φ?Φ 典型随机变量的母函数 1. 两点分布的母函数:()z q pz Φ=+ 2. 二项式分布的母函数:()()n z q pz Φ=+ 3. 泊松分布(λ):(1)()z z e λ??Φ= 4. 几何分布:()1pz z qz Φ=?

随机过程第15讲 习题课2

随机过程习题解答(二) P228/1. 证明:由于,有 t s <{}{}{} {}{} n t N P k n s t N P k s N P n t N P n t N k s N P n t N k s N P =?=??== = ==== ==)(})({)()()(,)()()( 其中 {}) ()!())((! )(})({)(s t k n s k e k n s t e k s k n s t N P k s N P ???????= ?=??=λλλλ {}t n e n t n t N P λλ?==! )()( 所以 {}k n k k n k n k k t n s t k n s k k s k s k n k n k n t s t t s e n t e k n s t e k s n t N k s N P ???????? ? =??=???= ==1)!(!! )(!)()! ())((!)()(/)() (λλλλλλ 证毕。 P229/3. 解:(1)因为{是一Poission 过程,由母函数的定义,有: }0),(≥t t N ()( ) ()(( )() ) ()(})({})({})({})({})({})({})({})({})({})({})({)()()(0 0000000 )(s s s j t N P s l t N P s l k t N P s l t N P s l k t N P s l t N P s l k t N P s l t N P s l k t N P l t N P s k t t N P s t N t N j j l l l k l k l l l l k l k l k k l l k l k k k l k k t t N ?∞ =∞=∞ =?∞ =∞ =∞=?∞ ==?∞ ==∞ =?+Ψ?Ψ=?=??==??=??== ??=???== ??=???==? ?=??==?=?+=Ψ∑∑∑∑∑∑∑∑∑∑∑) (2)由上面(1)的结果,可得:

随机过程题库1

随机过程综合练习题 一、填空题(每空3分) 第一章 1.n X X X ,,21是独立同分布的随机变量,i X 的特征函数为)(t g ,则 n X X X 21的特征函数是 。 2. )(Y X E E 。 3. X 的特征函数为)(t g ,b aX Y ,则Y 的特征函数为 。 4.条件期望)(Y X E 是 的函数, (是or 不是)随机变量。 5.n X X X ,,21是独立同分布的随机变量,i X 的特征函数为)(t g i ,则 n X X X 21的特征函数是 。 6.n 维正态分布中各分量的相互独立性和不相关性 。 第二章 7.宽平稳过程是指协方差函数只与 有关。 8.在独立重复试验中,若每次试验时事件A 发生的概率为)10( p p ,以)(n X 记进行到n 次试验为止A 发生的次数, 则},2,1,0),({ n n X 是 过程。 9.正交增量过程满足的条件是 。 10.正交增量过程的协方差函数 ),(t s C X 。 第三章 11. {X(t), t ≥0}为具有参数0 的齐次泊松过程,其均值函数为 ; 方差函数为 。 12.设到达某路口的绿、黑、灰色的汽车的到达率分别为1 ,2 ,3 且均为泊松过程,它们相互独立,若把这些汽车合并成单个输出过程(假定无长度、无延时),相邻绿色汽车之间的不同到达时间间隔的概率密度是 ,汽车之间的不同到达时刻间隔的概率密度是 。 13.{X(t), t ≥0}为具有参数0 的齐次泊松过程,

n s X s t X P )()( 。 ,1,0 n 14.设{X(t), t ≥0}是具有参数0 的泊松过程,泊松过程第n 次到达时间W n 的数学期望是 。 15.在保险的索赔模型中,设索赔要求以平均2次/月的速率的泊松过程到达保险公司.若每次赔付金额是均值为10000元的正态分布,求一年中保险公司的平均赔付金额 。 16.到达某汽车总站的客车数是一泊松过程,每辆客车内乘客数是一随机变量.设各客车内乘客数独立同分布,且各辆车乘客数与车辆数N(t)相互独立,则在[0,t]内到达汽车总站的乘客总数是 (复合or 非齐次)泊松过程. 17.设顾客以每分钟2人的速率到达,顾客流为泊松流,求在2min 内到达的顾客不超过3人的概率是 . 第四章 18. 无限制随机游动各状态的周期是 。 19.非周期正常返状态称为 。 20.设有独立重复试验序列}1,{ n X n 。以1 n X 记第n 次试验时事件A 发生,且 p X P n }1{,以0 n X 记第n 次试验时事件A 不发生,且p X P n 1}0{,若有 1,1 n X Y n k k n ,则}1,{ n Y n 是 链。 答案 一、填空题 1.)(t g n ; 2.EX ; 3.)(at g e ibt 4.;Y 是 5. n i i t g 1 )(; 6.等价 7.时间差; 8.独立增量过程; 9. 0)()()()(3412 t X t X t X t X E 10.}),(min{2 t s X 11.t t ;; 12. 000 )(11t t e t f t 00)()()(321321t t e t f t 13. t n e n t !)( 14. n 15.240000 16.复合; 17.43 71 e

相关文档
最新文档