高中数学必修二直线与圆的综合问题

高中数学必修二直线与圆的综合问题
高中数学必修二直线与圆的综合问题

直线与圆一.解答题(共10小题)

1.已知直线x﹣y+3=0与圆心为(3,4)的圆C相交,截得的弦长为2.

(1)求圆C的方程;

(2)设Q点的坐标为(2,3),且动点M到圆C的切线长与|MQ|的比值为常数k(k>0).若动点M的轨迹是一条直线,试确定相应的k值,并求出该直线的方程.

2.已知直线l:y=x+2被圆C:(x﹣3)2+(y﹣2)2=r2(r>0)截得的弦AB的长等于该圆的半径.

(1)求圆C的方程;

(2)已知直线m:y=x+n被圆C:(x﹣3)2+(y﹣2)2=r2(r>0)截得的弦与圆心构成三角形CDE.若△CDE 的面积有最大值,求出直线m:y=x+n的方程;若△CDE的面积没有最大值,说明理由.

3.已知M(4,0),N(1,0),曲线C上的任意一点P满足:?=6||

(Ⅰ)求点P的轨迹方程;

(Ⅱ)过点N(1,0)的直线与曲线C交于A,B两点,交y轴于H点,设=λ1,=λ2,试问λ1+λ2是否为定值?如果是定值,请求出这个定值;如果不是定值,请说明理由.

4.已知动圆P与圆F1:(x+2)2+y2=49相切,且与圆F2:(x﹣2)2+y2=1相内切,记圆心P的轨迹为曲线C.(Ⅰ)求曲线C的方程;

(Ⅱ)设Q为曲线C上的一个不在x轴上的动点,O为坐标原点,过点F2作OQ的平行线交曲线C于M,N 两个不同的点,求△QMN面积的最大值.

5.已知动圆P过定点且与圆N:相切,记动圆圆心P的轨迹为曲线C.

(Ⅰ)求曲线C的方程;

(Ⅱ)过点D(3,0)且斜率不为零的直线交曲线C于A,B两点,在x轴上是否存在定点Q,使得直线AQ,BQ的斜率之积为非零常数?若存在,求出定点的坐标;若不存在,请说明理由.

6.如图所示,在△ABC中,AB的中点为O,且OA=1,点D在AB的延长线上,且.固定边AB,

在平面内移动顶点C,使得圆M与边BC,边AC的延长线相切,并始终与AB的延长线相切于点D,记顶点C 的轨迹为曲线Γ.以AB所在直线为x轴,O为坐标原点如图所示建立平面直角坐标系.

(Ⅰ)求曲线Γ的方程;

(Ⅱ)设动直线l交曲线Γ于E、F两点,且以EF为直径的圆经过点O,求△OEF面积的取值范围.7.已知△ABC的顶点A(1,0),点B在x轴上移动,|AB|=|AC|,且BC的中点在y轴上.

(Ⅰ)求C点的轨迹Γ的方程;

(Ⅱ)已知过P(0,﹣2)的直线l交轨迹Γ于不同两点M,N,求证:Q(1,2)与M,N两点连线QM,QN的斜率之积为定值.

8.已知圆M:x2+y2+2y﹣7=0和点N(0,1),动圆P经过点N且与圆M相切,圆心P的轨迹为曲线E.(1)求曲线E的方程;

(2)点A是曲线E与x轴正半轴的交点,点B、C在曲线E上,若直线AB、AC的斜率k1,k2,满足k1k2=4,求△ABC面积的最大值.

9.已知过点A(0,1)且斜率为k的直线l与圆C:(x﹣2)2+(y﹣3)2=1交于点M,N两点.

(1)求k的取值范围;

(2)请问是否存在实数k使得(其中O为坐标原点),如果存在请求出k的值,并求|MN|;如果不存在,请说明理由.

10.已知O为坐标原点,抛物线C:y2=nx(n>0)在第一象限内的点P(2,t)到焦点的距离为,C在点

P处的切线交x轴于点Q,直线l1经过点Q且垂直于x轴.

(1)求线段OQ的长;

(2)设不经过点P和Q的动直线l2:x=my+b交C交点A和B,交l1于点E,若直线PA,PB的斜率依次成等差数列,试问:l2是否过定点?请说明理由.

直线与圆

一.解答题(共10小题)

1.已知直线x﹣y+3=0与圆心为(3,4)的圆C相交,截得的弦长为2.

(1)求圆C的方程;

(2)设Q点的坐标为(2,3),且动点M到圆C的切线长与|MQ|的比值为常数k(k>0).若动点M的轨迹是一条直线,试确定相应的k值,并求出该直线的方程.

【分析】(1)求出圆心C到直线l的距离,利用截得的弦长为2求得半径的值,可得圆C的方程;(2)设动点M(x,y),则由题意可得=k,即=k,化简可得(k2﹣1)?x2+

(k2﹣1)?y2+(6﹣4k2)x+(8﹣6k2)y+13k2﹣9=0,若动点M的轨迹方程是直线,则k2﹣1=0,即可得出结论.

【解答】解:(1)圆心C到直线l的距离为=,

∵截得的弦长为2,

∴半径为2,

∴圆C:(x﹣3)2+(y﹣4)2=4;

(2)设动点M(x,y),则由题意可得=k,即=k,

化简可得(k2﹣1)?x2+(k2﹣1)?y2+(6﹣4k2)x+(8﹣6k2)y+13k2﹣21=0,

若动点M的轨迹方程是直线,则k2﹣1=0,∴k=1,

直线的方程为x+y﹣4=0.

【点评】本小题主要考查直线与圆的位置关系,弦长公式的应用,圆的一般式方程,属于中档题.

2.已知直线l:y=x+2被圆C:(x﹣3)2+(y﹣2)2=r2(r>0)截得的弦AB的长等于该圆的半径.

(1)求圆C的方程;

(2)已知直线m:y=x+n被圆C:(x﹣3)2+(y﹣2)2=r2(r>0)截得的弦与圆心构成三角形CDE.若△CDE 的面积有最大值,求出直线m:y=x+n的方程;若△CDE的面积没有最大值,说明理由.

【分析】(1)根据直线和圆相交得到的弦长公式求出圆的半径即可求圆C的方程;

(2)根据直线和圆相交的位置关系,结合△CDE的面积公式即可得到结论.

【解答】解:(1)设直线l与圆C交于A,B两点.

∵直线l:y=x+2被圆C:(x﹣3)2+(y﹣2)2=r2(r>0)截得的弦长等于该圆的半径,

∴△CAB为正三角形,

∴三角形的高等于边长的,

∴圆心C到直线l的距离等于边长的.

∵直线方程为x﹣y+2=0,圆心的坐标为(3,2),

∴圆心到直线的距离d==,

∴r=,∴圆C的方程为:(x﹣3)2+(y﹣2)2=6.

(2)设圆心C到直线m的距离为h,H为DE的中点,连结CD,CH,CE.

在△CDE中,

∵DE=,

∴=

∴,

当且仅当h2=6﹣h2,即h2=3,解得h=时,△CDE的面积最大.

∵CH=,

∴|n+1|=,

∴n=,∴存在n的值,使得△CDE的面积最大值为3,

此时直线m的方程为y=x.

【点评】本题主要考查直线和圆的位置关系的应用,根据弦长公式是解决本题的关键.

3.已知M(4,0),N(1,0),曲线C上的任意一点P满足:?=6||

(Ⅰ)求点P的轨迹方程;

(Ⅱ)过点N(1,0)的直线与曲线C交于A,B两点,交y轴于H点,设=λ1,=λ2,试问λ1+λ2是否为定值?如果是定值,请求出这个定值;如果不是定值,请说明理由.

【分析】(Ⅰ)求出向量的坐标,利用条件化简,即可求点P的轨迹方程;

(Ⅱ)分类讨论,利用=λ1,=λ2,结合韦达定理,即可得出结论.

【解答】解:(Ⅰ)设P(x,y),则=(﹣3,0),=(x﹣4,y),=(1﹣x,﹣y).

∵?=6||,∴﹣3×(x﹣4)+0×y=6,

化简得=1为所求点P的轨迹方程.4分

(Ⅱ)设A(x1,y1),B(x2,y2).

①当直线l与x轴不重合时,设直线l的方程为x=my+1(m≠0),则H(0,﹣).

从而=(x1,y1+),=(1﹣x1,﹣y1),由=λ1得(x1,y1+)=λ1(1﹣x1,﹣y1),

∴﹣λ1=1+

同理由得﹣λ2=1+,

∴﹣(λ1+λ2)=2+

由直线与椭圆方程联立,可得(4+3m2)y2+6my﹣9=0,

∴y1+y2=﹣,y1y2=﹣

代入得∴(λ1+λ2)=2+=,

∴λ1+λ2=﹣

②当直线l与x轴重合时,A(﹣2,0),B(2,0),H(0,0),λ1=﹣.λ2=﹣2,

∴λ1+λ2=﹣11分

综上,λ1+λ2为定值﹣.12分.

【点评】本题考查轨迹方程,考查向量知识的运用,考查直线与椭圆位置关系的运用,考查分类讨论的数学思想,属于中档题.

4.已知动圆P与圆F1:(x+2)2+y2=49相切,且与圆F2:(x﹣2)2+y2=1相内切,记圆心P的轨迹为曲线C.(Ⅰ)求曲线C的方程;

(Ⅱ)设Q为曲线C上的一个不在x轴上的动点,O为坐标原点,过点F2作OQ的平行线交曲线C于M,N 两个不同的点,求△QMN面积的最大值.

【分析】(I)由已知条件推导出|PF1|+|PF2|=8>|F1F2|=6,从而得到圆心P的轨迹为以F1,F2为焦点的椭圆,由此能求出圆心P的轨迹C的方程.

(II)由MN∥OQ,知△QMN的面积=△OMN的面积,由此能求出△QMN的面积的最大值.

【解答】解:(Ⅰ)设圆P的半径为R,圆心P的坐标为(x,y),

由于动圆P与圆F1:(x+2)2+y2=49相切,且与圆F2:(x﹣2)2+y2=1相内切,

所以动圆P与圆F1只能内切.…(1分)

所以|PF1|+|PF2|=7﹣R+R﹣1=6>|F1F2|=4.…(3分)

所以圆心圆心P的轨迹为以F1,F2为焦点的椭圆,

其中2a=6,2c=4,∴a=3,c=2,b2=a2﹣c2=5.

所以曲线C的方程为=1.…(4分)

(Ⅱ)设M(x1,y1),N(x2,y2),Q(x3,y3),直线MN的方程为x=my+2,

由可得:(5m2+9)y2+20my﹣25=0,

则y1+y2=﹣,y1y2=﹣.…(5分)

所以|MN|==…(7分)

因为MN∥OQ,∴△QMN的面积=△OMN的面积,

∵O到直线MN:x=my+2的距离d=.…(9分)

所以△QMN的面积.…(10分)

令=t,则m2=t2﹣1(t≥0),S==.

设,则.

因为t≥1,所以.

所以,在[1,+∞)上单调递增.

所以当t=1时,f(t)取得最小值,其值为9.…(11分)

所以△QMN的面积的最大值为.…(12分)

【点评】本题考查椭圆的标准方程、直线、圆、与椭圆等椭圆知识,考查推理论证能力、运算求解能力,考查函数与方程思想、化归与转化思想、数形结合思想等.

5.已知动圆P过定点且与圆N:相切,记动圆圆心P的轨迹为曲线C.

(Ⅰ)求曲线C的方程;

(Ⅱ)过点D(3,0)且斜率不为零的直线交曲线C于A,B两点,在x轴上是否存在定点Q,使得直线AQ,BQ的斜率之积为非零常数?若存在,求出定点的坐标;若不存在,请说明理由.

【分析】(Ⅰ)由题意可知丨PM丨+丨PN丨=4>丨MN丨=2,则P的轨迹C是以M,N为焦点,长轴长为4的椭圆,则a=4,c=,b2=a2﹣c2=1,即可求得椭圆方程;

(Ⅱ)将直线方程代入椭圆方程,考查韦达定理,直线的斜率公式,当且仅当,解得t=±2,代入即可求得,定点的坐标.

【解答】解:(Ⅰ)设动圆P的半径为r,由N:及,知点M在圆N 内,则有,

从而丨PM丨+丨PN丨=4>丨MN丨=2,

∴P的轨迹C是以M,N为焦点,长轴长为4的椭圆,

设曲线C的方程为:(a>b>0),则2a=4,a=4,c=,

b2=a2﹣c2=1

故曲线C的轨迹方程为;

(Ⅱ)依题意可设直线AB的方程为x=my+3,A(x1,y1),B(x2,y2).,

由,整理得:(4+m2)y2+6my+5=0,则△=36m2﹣4×5×(4+m2)>0,即m2>4,

解得:m>2或m<﹣2,

由y1+y2=﹣,y1y2=,x1+x2=m(y1+y2)+6=,

x1x2=(my1+3)(my2+3)=m2y1y2+m(y1+y2)+9=,

假设存在定点Q(t,0),使得直线AQ,BQ的斜率之积为非零常数,则

(x1﹣t)(x2﹣t)=x1x2﹣t(x1+x2)+t2=﹣t×+t2=,

∴k AQ?k BQ=?==,

要使k AQ?k BQ为非零常数,当且仅当,解得t=±2,

当t=2时,常数为=,

当t=﹣2时,常数为=,

∴存在两个定点Q1(2,0)和Q2(﹣2,0),使直线AQ,BQ的斜率之积为常数,

当定点为Q1(2,0)时,常数为;当定点为Q2(﹣2,0)时,常数为.

【点评】本题考查椭圆标准方程及简单几何性质,椭圆的定义,考查直线与椭圆的位置关系,韦达定理,直线的斜率公式,考查计算能力,属于中档题.

6.如图所示,在△ABC中,AB的中点为O,且OA=1,点D在AB的延长线上,且.固定边AB,

在平面内移动顶点C,使得圆M与边BC,边AC的延长线相切,并始终与AB的延长线相切于点D,记顶点C 的轨迹为曲线Γ.以AB所在直线为x轴,O为坐标原点如图所示建立平面直角坐标系.

(Ⅰ)求曲线Γ的方程;

(Ⅱ)设动直线l交曲线Γ于E、F两点,且以EF为直径的圆经过点O,求△OEF面积的取值范围.

【分析】(Ⅰ)确定点C轨迹Γ是以A,B为焦点,长轴长为4的椭圆,且挖去长轴的两个顶点,即可求曲线Γ的方程;

(Ⅱ)可设直线,进而表示面积,即可

求△OEF面积的取值范围.

【解答】解:(Ⅰ)依题意得AB=2,BD=1,设动圆M与边AC的延长线相切于T1,与边BC相切于T2,则AD=AT1,BD=BT2,CT1=CT2

所以AD+BD=AT1+BT2=AC+CT1+BT2=AC+CT1+CT2=AC+BC=AB+2BD=4>AB=2…(2分)

所以点C轨迹Γ是以A,B为焦点,长轴长为4的椭圆,且挖去长轴的两个顶点.则曲线Γ的方程为.…(4分)

(Ⅱ)由于曲线Γ要挖去长轴两个顶点,所以直线OE,OF斜率存在且不为0,所以可设直线

…(5分)

由得,,同理可得:,;

所以,

又OE⊥OF,所以…(8分)

令t=k2+1,则t>1且k2=t﹣1,所以

=

…(10分)

又,所以,所以,

所以,所以,

所以△OEF面积的取值范围为.…(12分)

【点评】本题考查轨迹方程,考查直线与椭圆位置关系的运用,考查三角形面积的计算,考查学生分析解决问题的能力,属于中档题.

7.已知△ABC的顶点A(1,0),点B在x轴上移动,|AB|=|AC|,且BC的中点在y轴上.

(Ⅰ)求C点的轨迹Γ的方程;

(Ⅱ)已知过P(0,﹣2)的直线l交轨迹Γ于不同两点M,N,求证:Q(1,2)与M,N两点连线QM,QN的斜率之积为定值.

【分析】(Ⅰ)利用直接法,求C点的轨迹Γ的方程;

(Ⅱ)设直线l的方程为y=kx﹣2,与抛物线方程联立,求出斜率,即可证明结论.

【解答】解:(Ⅰ)设C(x,y)(y≠0),因为B在x轴上且BC中点在y轴上,所以B(﹣x,0),由|AB|=|AC|,得(x+1)2=(x﹣1)2+y2,

化简得y2=4x,所以C点的轨迹Γ的方程为y2=4x(y≠0).

(Ⅱ)直线l的斜率显然存在且不为0,

设直线l的方程为y=kx﹣2,M(x1,y1),N(x2,y2),

由得ky2﹣4y﹣8=0,

所以,,,同理,

所以Q(1,2)与M,N两点连线的斜率之积为定值4.

【点评】本题考查轨迹方程,考查直线与抛物线位置关系的运用,考查学生的计算能力,属于中档题.8.已知圆M:x2+y2+2y﹣7=0和点N(0,1),动圆P经过点N且与圆M相切,圆心P的轨迹为曲线E.(1)求曲线E的方程;

(2)点A是曲线E与x轴正半轴的交点,点B、C在曲线E上,若直线AB、AC的斜率k1,k2,满足k1k2=4,求△ABC面积的最大值.

【分析】(1)利用圆与圆的位置关系,得出曲线E是M,N为焦点,长轴长为的椭圆,即可求曲线E 的方程;

(2)联立方程组得(1+2t2)y2+4mty+2m2﹣2=0,利用韦达定理,结合k1k2=4,得出直线BC

过定点(3,0),表示出面积,即可求△ABC面积的最大值.

【解答】解:(1)圆M:x2+y2+2y﹣7=0的圆心为M(0,﹣1),半径为

点N(0,1)在圆M内,因为动圆P经过点N且与圆M相切,

所以动圆P与圆M内切.设动圆P半径为r,则﹣r=|PM|.

因为动圆P经过点N,所以r=|PN|,>|MN|,

所以曲线E是M,N为焦点,长轴长为的椭圆.

由,得b2=2﹣1=1,

所以曲线E的方程为…(4分)

(Ⅱ)直线BC斜率为0时,不合题意

设B(x1,y1),C(x2,y2),直线BC:x=ty+m,

联立方程组得(1+2t2)y2+4mty+2m2﹣2=0,

又k1k2=4,知y1y2=4(x1﹣1)(x2﹣1)=4(ty1+m﹣1)(ty2+m﹣1)

=.

代入得

又m≠1,化简得(m+1)(1﹣4t2)=2(﹣4mt2)+2(m﹣1)(1+2t2),

解得m=3,故直线BC过定点(3,0)…(8分)

由△>0,解得t2>4,

=

(当且仅当时取等号).

综上,△ABC面积的最大值为…(12分)

【点评】本题考查圆与圆的位置关系,考查椭圆的定义与方程,考查直线与椭圆位置关系的运用,考查韦达定理,属于中档题.

9.已知过点A(0,1)且斜率为k的直线l与圆C:(x﹣2)2+(y﹣3)2=1交于点M,N两点.

(1)求k的取值范围;

(2)请问是否存在实数k使得(其中O为坐标原点),如果存在请求出k的值,并求|MN|;如果不存在,请说明理由.

【分析】(1)设出直线方程,利用直线与圆的位置关系,列出不等式求解即可.

(2)设出M,N的坐标,利用直线与圆的方程联立,通过韦达定理,结合向量的数量积,求出直线的斜率,然后判断直线与圆的位置关系求解|MN|即可.

【解答】解:(1)由题设,可知直线l的方程为y=kx+1,因为直线l与圆C交于两点,

由已知可得圆C的圆心C的坐标(2,3),半径R=1.

故由<1,解得:<k<

所以k的取值范围为得(,)

(2)设M(x1,y1),N(x2,y2).

将y=kx+1代入方程:(x﹣2)2+(y﹣3)2=1,

整理得(1+k2)x2﹣4(1+k)x+7=0.

所以x1+x2=,x1x2=,

?=x1x2+y1y2=(1+k2)(x1x2)+k(x1+x2)+1==12,

解得k=1,所以直线l的方程为y=x+1.

故圆心C在直线l上,所以|MN|=2.

【点评】本题主要考查直线和圆的位置关系的应用,以及直线和圆相交的弦长公式的计算,考查学生的计

算能力,是中档题.

10.已知O为坐标原点,抛物线C:y2=nx(n>0)在第一象限内的点P(2,t)到焦点的距离为,C在点

P处的切线交x轴于点Q,直线l1经过点Q且垂直于x轴.

(1)求线段OQ的长;

(2)设不经过点P和Q的动直线l2:x=my+b交C交点A和B,交l1于点E,若直线PA,PB的斜率依次成等差数列,试问:l2是否过定点?请说明理由.

【分析】(1)先求出p的值,然后求出在第一象限的函数,结合函数的导数的几何意义求出N的坐标即可求线段OQ的长;

(2)联立直线和抛物线方程进行消元,转化为关于y的一元二次方程,根据根与系数之间的关系结合直线斜率的关系建立方程进行求解即可.

【解答】解:(Ⅰ)由抛物线y2=nx(n>0)在第一象限内的点P(2,t)到焦点的距离为,

得2+=,∴n=2,

抛物线C的方程为y2=2x,P(2,2).…(2分)

C在第一象限的图象对应的函数解析式为y=,则y′=,

故C在点P处的切线斜率为,切线的方程为y﹣2=(x﹣2),

令y=0得x=﹣2,所以点Q的坐标为(﹣2,0).

故线段OQ的长为2.…(5分)

(Ⅱ)l2恒过定点(2,0),理由如下:

由题意可知l1的方程为x=﹣2,因为l2与l1相交,故m≠0.

由l2:x=my+b,令x=﹣2,得y=﹣,故E(﹣2,﹣)

设A(x1,y1),B(x2,y2)

由消去x得:y2﹣2my﹣2b=0

则y1+y2=2m,y1y2=﹣2b …(7分)

直线PA的斜率为,同理直线PB的斜率为,

直线PE的斜率为.

因为直线PA,PE,PB的斜率依次成等差数列,

所以+=2×…(10分)

整理得:=,

因为l2不经过点Q,所以b≠﹣2,

所以2m﹣b+2=2m,即b=2.

故l2的方程为x=my+2,即l2恒过定点(2,0).…(12分)

【点评】本题主要考查直线和抛物线的位置关系,利用直线和抛物线方程,转化为一元二次方程,结合韦达定理,利用设而不求的思想是解决本题的关键.

人教版高中数学《直线和圆的方程》教案全套

人教版高中数学《直线和圆的方程》教案全套 直线的倾斜角和斜率 一、教学目标 (一)知识教学点 知道一次函数的图象是直线,了解直线方程的概念,掌握直线的倾斜角和斜率的概念以及直线的斜率公式. (二)能力训练点 通过对研究直线方程的必要性的分析,培养学生分析、提出问题的能力;通过建立直线上的点与直线的方程的解的一一对应关系、方程和直线的对应关系,培养学生的知识转化、迁移能力. (三)学科渗透点 分析问题、提出问题的思维品质,事物之间相互联系、互相转化的辩证唯物主义思想. 二、教材分析 1.重点:通过对一次函数的研究,学生对直线的方程已有所了解,要对进一步研究直线方程的内容进行介绍,以激发学生学习这一部分知识的兴趣;直线的倾斜角和斜率是反映直线相对于x轴正方向的倾斜程度的,是研究两条直线位置关系的重要依据,要正确理解概念;斜率公式要在熟练运用上多下功夫. 2.难点:一次函数与其图象的对应关系、直线方程与直线的对应关系是难点.由于以后还要专门研究曲线与方程,对这一点只需一般介绍就可以了. 3.疑点:是否有继续研究直线方程的必要? 三、活动设计 启发、思考、问答、讨论、练习. 四、教学过程 (一)复习一次函数及其图象 已知一次函数y=2x+1,试判断点A(1,2)和点B(2,1)是否在函数图象上. 初中我们是这样解答的:

∵A(1,2)的坐标满足函数式, ∴点A在函数图象上. ∵B(2,1)的坐标不满足函数式, ∴点B不在函数图象上. 现在我们问:这样解答的理论依据是什么?(这个问题是本课的难点,要给足够的时间让学生思考、体会.) 讨论作答:判断点A在函数图象上的理论依据是:满足函数关系式的点都在函数的图象上;判断点B不在函数图象上的理论依据是:函数图象上的点的坐标应满足函数关系式.简言之,就是函数图象上的点与满足函数式的有序数对具有一一对应关系. (二)直线的方程 引导学生思考:直角坐标平面内,一次函数的图象都是直线吗?直线都是一次函数的图象吗? 一次函数的图象是直线,直线不一定是一次函数的图象,如直线x=a连函数都不是. 一次函数y=kx+b,x=a都可以看作二元一次方程,这个方程的解和它所表示的直线上的点一一对应. 以一个方程的解为坐标的点都是某条直线上的点;反之,这条直线上的点的坐标都是这个方程的解.这时,这个方程就叫做这条直线的方程;这条直线就叫做这个方程的直线. 上面的定义可简言之:(方程)有一个解(直线上)就有一个点;(直线上)有一个点(方程)就有一个解,即方程的解与直线上的点是一一对应的. 显然,直线的方程是比一次函数包含对象更广泛的一个概念. (三)进一步研究直线方程的必要性 通过研究一次函数,我们对直线的方程已有了一些了解,但有些问题还没有完全解决,如 y=kx+b中k的几何含意、已知直线上一点和直线的方向怎样求直线的方程、怎样通过直线的方程来研究两条直线的位置关系等都有待于我们继续研究. (四)直线的倾斜角 一条直线l向上的方向与x轴的正方向所成的最小正角,叫做这条直线的倾斜角,如图1-21中的α.特别地,当直线l和x轴平行时,我们规定它的倾斜角为0°,因此,倾斜角的取值范围是0°≤α<180°.

高中数学 必修内容复习(7) 直线和圆的方程

高中数学必修内容复习(7)---直线和圆的方程 一、 选择题(每题3分,共54分) 1、在直角坐标系中,直线033=-+y x 的倾斜角是( ) A . 6 π B . 3 π C . 6 5π D . 3 2π 2、若圆C 与圆1)1()2(2 2 =-++y x 关于原点对称,则圆C 的方程是( ) A .1)1()2(2 2 =++-y x B .1)1()2(2 2=-+-y x C .1)2()1(2 2 =++-y x D .1)2()1(2 2 =-++y x 3、直线0=++c by ax 同时要经过第一、第二、第四象限,则c b a 、、应满足( ) A .0,0<>bc ab B .0,0<>bc ab C .0,0>>bc ab D .0,0<--y x 表示的平面区域在直线062=--y x 的( ) A .左上方 B .右上方 C .左下方 D .左下方 6、直线0943=--y x 与圆42 2 =+y x 的位置关系是( ) A .相交且过圆心 B .相切 C .相离 D .相交但不过圆心 7、已知直线)0(0≠=++abc c by ax 与圆12 2 =+y x 相切,则三条边长分别为c b a 、、的三角形( ) A .是锐角三角形 B .是直角三角形 C .是钝角三角形 D .不存在 8、过两点)9,3()1,1(和-的直线在x 轴上的截距是( ) A .2 3 - B .3 2- C . 5 2 D .2 9、点)5,0(到直线x y 2=的距离为( ) A . 2 5 B .5 C . 2 3 D . 2 5 10、下列命题中,正确的是( ) A .点)0,0(在区域0≥+y x 内 B .点)0,0(在区域01<++y x 内 C .点)0,1(在区域x y 2>内 D .点)1,0(在区域01<+-y x 内

(完整版)高中数学直线和圆知识点总结

直线和圆 一.直线 1.斜率与倾斜角:tan k θ=,[0,)θπ∈ (1)[0,)2π θ∈时,0k ≥; (2)2πθ=时,k 不存在;(3)(,)2πθπ∈时,0k < (4)当倾斜角从0?增加到90?时,斜率从0增加到+∞; 当倾斜角从90?增加到180? 时,斜率从-∞增加到0 2.直线方程 (1)点斜式:)(00x x k y y -=- (2)斜截式:y kx b =+ (3)两点式:1 21121x x x x y y y y --=-- (4)截距式:1x y a b += (5)一般式:0C =++By Ax 3.距离公式 (1)点111(,)P x y ,222(,)P x y 之间的距离:12PP = (2)点00(,)P x y 到直线0Ax By C ++= 的距离:d = (3)平行线间的距离:10Ax By C ++=与20Ax By C ++= 的距离:d = 4.位置关系 (1)截距式:y kx b =+形式 重合:1212 k k b b == 相交:12k k ≠ 平行:1212 k k b b =≠ 垂直:121k k ?=- (2)一般式:0Ax By C ++=形式 重合:1221A B A B =且1221A C A C =且1212B C C B = 平行:1221A B A B =且1221A C A C ≠且1212B C C B ≠

垂直:12120A A B B += 相交:1221A B A B ≠ 5.直线系 1112220A x B y C A x B y C λ++++=+()表示过两直线1111:0l A x B y C ++=和2222:0l A x B y C ++=交点的所有直线方程(不含2l ) 二.圆 1.圆的方程 (1)标准形式:222 ()()x a y b R -+-=(0R >) (2)一般式:220x y Dx Ey F ++++=(2240D E F +->) (3)参数方程:00cos sin x x r y y r θθ=+??=+? (θ是参数) 【注】题目中出现动点求量时,通常可采取参数方程转化为三角函数问题去解决. (4)以11(,)A x y ,22(,)B x y 为直径的圆的方程是:()()()()0A B A B x x x x y y y y --+--= 2.位置关系 (1)点00(,)P x y 和圆222 ()()x a y b R -+-=的位置关系: 当22200()()x a y b R -+-<时,点00(,)P x y 在圆222()()x a y b R -+-=内部 当22200()()x a y b R -+-=时,点00(,)P x y 在圆222()()x a y b R -+-=上 当22200()()x a y b R -+->时,点00(,)P x y 在圆222()()x a y b R -+-=外 (2)直线0Ax By C ++=和圆222()()x a y b R -+-=的位置关系: 判断圆心(,)O a b 到直线0Ax By C ++= 的距离d = R 的大小关系 当d R <时,直线和圆相交(有两个交点); 当d R =时,直线和圆相切(有且仅有一个交点); 当d R <时,直线和圆相离(无交点);

高中数学-必修二-圆与方程-经典例题

习题精选精讲圆标准方程 已知圆心),(b a C 和半径r ,即得圆的标准方程222 )() (r b y a x =-+-;已知圆的标准方程222)()(r b y a x =-+-,即得圆心 ),(b a C 和半径r ,进而可解得与圆有关的任何问题. 一、求圆的方程 例1 (06重庆卷文) 以点)1,2(-为圆心且与直线0543=+-y x 相切的圆的方程为( ) (A)3)1()2(22=++-y x (B)3)1()2(2 2=-++y x (C)9)1() 2(22 =++-y x (D)9)1()2(22=-++y x 解 已知圆心为)1,2(-,且由题意知线心距等于圆半径,即2 243546+++= d r ==3,∴所求的圆方程为9)1()2(22=++-y x , 故选(C). 点评:一般先求得圆心和半径,再代入圆的标准方程222 )()(r b y a x =-+-即得圆的方程. 二、位置关系问题 例2 (06安徽卷文) 直线1=+y x 与圆0222=-+ay y x )0(>a 没有公共点,则a 的取值范围是( ) (A))12,0(- (B ))12,12( +- (C))12,12(+-- (D))12, 0(+ 解 化为标准方程222 )(a a y x =-+,即得圆心),0(a C 和半径a r =. ∵直线 1=+y x 与已知圆没有公共点,∴线心距a r a d =>-= 2 1,平方去分母得 2 2212a a a >+-,解得 1212-<<--a ,注意到0>a ,∴120-<r d 线圆相离;?=r d 线圆相切;?

高中文科数学直线和圆题目精选和答案

1 在直角坐标系中,直线033=-+y x 的倾斜角是( ) A . 6 π B . 3 π C . 6 5π D . 3 2π 2 若圆C 与圆1)1()2(2 2 =-++y x 关于原点对称,则圆C 的方程是( ) A .1)1()2(2 2=++-y x B .1)1()2(2 2=-+-y x C .1)2()1(2 2=++-y x D .1)2()1(2 2 =-++y x 4 已知直线22 1 :1+= x y l ,直线2l 过点)1,2(-P ,且1l 到2l 的夹角为ο45,则直线2l 的方程是( ) A .1-=x y B .5 3 31+= x y C .73+-=x y D .73+=x y 5 不等式062>--y x 表示的平面区域在直线062=--y x 的( ) A .左上方 B .右上方 C .左下方 D .左下方 6 直线0943=--y x 与圆42 2 =+y x 的位置关系是( ) A .相交且过圆心 B .相切 C .相离 D .相交但不过圆心 7 已知直线)0(0≠=++abc c by ax 与圆12 2 =+y x 相切,则三条边长分别为c b a 、、的三角形( ) A .是锐角三角形 B .是直角三角形 C .是钝角三角形 D .不存在 8 过两点)9,3()1,1(和-的直线在x 轴上的截距是( ) A .2 3- B .3 2- C . 5 2 D .2 9 点)5,0(到直线x y 2=的距离为( ) A . 2 5 B .5 C . 2 3 D . 2 5 10 下列命题中,正确的是( ) A .点)0,0(在区域0≥+y x 内 B .点)0,0(在区域01<++y x 内 C .点)0,1(在区域x y 2>内 D .点)1,0(在区域01<+-y x 内 11 由点)3,1(P 引圆92 2 =+y x 的切线的长是 ( ) A .2 B .19 C .1 D .4 12 三直线102,1034,082=-=+=++y x y x y ax 相交于一点,则a 的值是( )

高中数学必修二直线与直线方程题型归纳总结

知识点归纳概括 题型归纳分析 题型1:直线的倾斜角与斜率

考点1:直线的倾斜角 例1、过点),2(a M -和)4,(a N 的直线的斜率等于1, 则a 的值为( ) A 、1 B 、4 C 、1或3 D 、1或4 变式1:已知点)3,1(A 、)33,1(-B ,则直线AB 的倾斜角是( ) A 、?60 B 、?30 C 、?120 D 、?150 变式2:已知两点()2,3A ,()1,4-B ,求过点()1,0-C 的直线l 与线段AB 有公共点求直线l 的斜率k 的取值范围 考点2:直线的斜率及应用 斜率公式1 21 2x x y y k --= 与两点顺序无关,即两点的横纵坐标在公式中的前后次序相同; 斜率变化分两段, 2 π 是分界线,遇到斜率要特别谨慎 例1、三点共线——若三点()2,2A 、()0,a B 、()b C ,0,()0≠ab 共线,则b a 1 1+的值等于 变式1:若()3,2-A 、()2,3-B 、?? ? ??m C ,21三点在同一直线上,则m 的值为( ) A 、2- B 、2 C 、2 1 - D 、 2 1 考点3:两条直线的平行和垂直 对于斜率都存在且不重合的两条直线21l l 、,2121//k k l l =?,12121-=??⊥k k l l 。若有一条直线的斜率不存在,那么另一条直线的斜率是多少要特别注意 例、已知点()2,2M ,()2,5-N ,点P 在x 轴上,分别求满足下列条件的P 点坐标。 (1)OPN MOP ∠=∠(O 是坐标原点);(2) MPN ∠是直角

题型2:直线方程 考点1:直线方程的求法 例1、若()() 013442 2 =+?+-+?-y m m x m 表示直线,则( ) A 、2±≠m 且1≠m ,3≠m B 、2±≠m C 、1≠m 且3≠m D 、m 可取任意实数 变式1:直线0632=--y x 在x 轴上的截距为a ,在y 轴上的截距为b ,则( ) A 、2,3==b a B 、2,3-==b a C 、2,3=-=b a D 、2,3-=-=b a 变式2:过点)3,2(P ,且在两坐标轴上的截距互为相反数的直线方程是 ; 在两轴上的截距相等的直线方程 变式3:过点)1,2(-P ,在x 轴和y 轴上的截距分别为b a 、,且满足b a 3=的直线方程是 考点2:用一般式方程判定直线的位置关系 两条直线位置关系的判定,已知直线0:1111=++C y B x A l ,0:2222=++C y B x A l ,则 (1) 0//122121=-?B A B A l l 且01221≠-C A C A (2) 0212121=+?⊥B B A A l l

高中数学必修二《圆的标准方程》教案

教案说明 圆是学生比较熟悉的曲线,初中平面几何对圆的基本性质作了比较系统的研究,因此这节课的重点确定为用解析法研究圆的标准方程及其简单应用。 一、设计理念 设计的根本出发点是促进学生的发展。教师以合作者的身份参与,课堂上建立平等、互助、融洽的关系,师生共同研究,共同提高。 二、设计思路 (1)突出重点抓住关键突破难点 求圆的标准方程既是本节课的教学重点也是难点,为此我布设了由浅入深的学习环境,先让学生熟悉圆心、半径与圆的标准方程之间的关系,逐步理解三个参数的重要性,自然形成待定系数法的解题思路。在例题的设计中,我用一题多解的探究,纵向挖掘知识深度,横向加强知识间的联系,培养了学生的创新精神,并且使学生的有效思维量加大,随时对所学知识和方法产生有意注意,能力与知识的形成相伴而行,这样的设计不但突出了重点,更使难点的突破水到渠成。 (2)学生主体教师主导探究主线 本节课的设计用问题做链,环环相扣,使学生的探究活动贯穿始终。从圆的标准方程的推导到应用都是在问题的指引、我的指导下,由学生探究完成的。另外,我在例题2的教学,要求学生分组讨论,合作交流,为学生设立充分的探究空间,学生在交流成果的过程中,既体验了科学研究和真理发现的复杂与艰辛,又在我的适度引导、侧面帮助、不断肯定下顺利完成了探究活动并走向成功,他们体验到成功的快乐,感受到数学的魅力。在一个个问题的驱动下,高效的完成本节的学习任务。 三、媒体设计 本节采用powerpoint媒体,知识容量大,同时又有图形。为了在短时间内完成教学内容,故采用演示文稿的方式,增加信息量,节省时间。同时

动态演示图形,刺激学生的感官,引起更强的注意,提高课堂教学效率。

高中数学直线与圆精选题目(附答案)

高中数学直线与圆精选题目(附答案) 一、两直线的位置关系 1.求直线斜率的基本方法 (1)定义法:已知直线的倾斜角为α,且α≠90°,则斜率k =tan α. (2)公式法:已知直线过两点P 1(x 1,y 1),P 2(x 2,y 2),且x 1≠x 2,则斜率k =y 2-y 1 x 2-x 1. 2.判断两直线平行的方法 (1)若不重合的直线l 1与l 2的斜率都存在,且分别为k 1,k 2,则k 1=k 2?l 1∥l 2. (2)若不重合的直线l 1与l 2的斜率都不存在,其倾斜角都为90°,则l 1∥l 2. 3.判断两直线垂直的方法 (1)若直线l 1与l 2的斜率都存在,且分别为k 1,k 2,则k 1·k 2=-1?l 1⊥l 2. (2)已知直线l 1与l 2,若其中一条直线的斜率不存在,另一条直线的斜率为0,则l 1⊥l 2. 1.已知两条直线l 1:ax -by +4=0和l 2:(a -1)x +y +b =0,求满足下列条件的a ,b 的值. (1)l 1⊥l 2且l 1过点(-3,-1); (2)l 1∥l 2,且坐标原点到这两条直线的距离相等. [解] (1)∵l 1⊥l 2, ∴a (a -1)-b =0,① 又l 1过点(-3,-1), ∴-3a +b +4=0.② 解①②组成的方程组得??? a =2, b =2. (2)∵l 2的斜率存在,l 1∥l 2, ∴直线l 1的斜率存在. ∴k 1=k 2,即a b =1-a .③ 又∵坐标原点到这两条直线的距离相等,l 1∥l 2, ∴l 1,l 2在y 轴上的截距互为相反数,

即4 b =-(-b ).④ 由③④联立,解得??? a =2, b =-2或????? a =23 ,b =2. 经检验此时的l 1与l 2不重合,故所求值为 ??? a =2, b =-2或????? a =23 , b =2. 注: 已知两直线l 1:A 1x +B 1y +C 1=0和l 2:A 2x +B 2y +C 2=0 (1)对于l 1∥l 2的问题,先由A 1B 2-A 2B 1=0解出其中的字母值,然后代回原方程检验这时的l 1和l 2是否重合,若重合,舍去. (2)对于l 1⊥l 2的问题,由A 1A 2+B 1B 2=0解出字母的值即可. 2.直线ax +2y -1=0与直线2x -3y -1=0垂直,则a 的值为( ) A .-3 B .-4 3 C .2 D .3 解析:选D 由2a -6=0得a =3.故选D. 3.已知直线x +2ay -1=0与直线(a -1)x +ay +1=0平行,则a 的值为( ) A.32 B.32或0 C .0 D .-2 解析:选A 当a =0时,两直线的方程化为x =1和x =1,显然重合,不符合题意;当a ≠0时,a -11=a 2a ,解得a =3 2.故选A. 二、直线方程 1.直线方程的五种形式

人教版高中数学必修二圆的标准方程教学设计

4.1.1圆的标准方程 教学目标: (1)掌握圆的标准方程,会由标准方程得出圆心与半径,能根据圆 心、半径写出圆的标准方程. (2)会用待定系数法与数形结合法求圆的标准方程. (3)培养学生用解析法研究几何问题的能力,渗透数形结合思想, (4)在探索圆的知识与特点时感受数学中的对称美与和谐美. 教学重点:圆的标准方程的得出与应用. 教学难点:根据不同的已知条件,求圆的标准方程 教学方法: 启发、引导、讨论. 教学过程: 一、新课引入 1.引入语: 通过上一章的学习,我们知道直线这一平面图形可以由一个代数中的二元一次方程来表示,称此方程为直线的方程。从而,通过方程利用代数的方法研究了直线的性质与特点。事实上,这种方法是解析几何解决问题的基本方法,我们还可以采用它研究其他的一些平面图形,比如:圆。 在直角坐标系中,两点确定一条直线,或者一点和倾斜角也能确定一条直线。圆作为平面几何中的基本图形,确定它的要素又是什么呢? (圆心,半径。圆心决定位置,半径决定大小) 那么我们能否在圆心与半径确定的条件下,找到一个方程与圆对应呢?这就是我们这节课的主要任务。(书写标题) 回顾直线方程得出的过程:在直线l 上任取一点P(x,y),找到该点的横纵坐标满足的一个关系式,通过验证,称此方程为直线的方程。 类似的,我们用得出直线方程方法来探求圆的方程。 二、讲授新课 确定圆的基本条件为圆心和半径,设圆的圆心坐标为(,)A a b ,半径为r (其中a 、b 、r 都是常数,0r ).设(,)M x y 为这个圆上任意一点,

那么点M 满足的条件是(引导学生自己列出){}P M MA r ==,由两点间的距离公式让学生写出点M 适合的条 件r =① 引导学生自己 证明r =为圆的方程,得出结论. 1.若点),(00y x M 在圆上,由上述讨论可知,点M 的坐标适用方程①. 2.若),(00y x 是方程①的一组解,则以这组解为坐标的点),(00y x M 到圆心A 的距离为r ,即点M 在圆心为A 的圆上. 故方 程r =为圆的一个方程。 方程①可等价变为:222()()x a y b r -+-= ② 方程②形式较①式更为和谐美观。 方程②也是圆心为(,)A a b ,半径为r 的圆的方程,我们把它叫做圆的标准方程. 特别地,若圆心为O (0,0),则圆的标准方程为:222r y x =+ 练习1 (口答) 、求圆的圆心及半径 (1)、422=+y x (2)、1)1(22=+-y x 练习2、写出下列圆的方程 (1)、圆心在原点,半径为3; 922=+y x (2)、圆心在(-3、4),半径为5 5)4()3(22=+++y x 三、例题解析 例1 已知两点A(4,9)、B(6,3),求以AB 为直径的圆的方程 分析:可以从计算圆心与半径. 解:解:圆心C (5,6)半径r=10 所求的圆的标准方程是10)6()5(22=-+-y x 把点)7,8(1M 的坐标代入方程10)6()5(22=-+-y x ,左右两边相等,点1M 的坐标适合圆的方程,所以点1M 在这个圆上;把点)5,3(2M 的坐标代入方程10)6()5(22=-+-y x ,左右两边不相等,点2M 的坐标不适合圆的方 程,所以点2M 不在这个圆上. 是否在这个圆上?并判断点 )5,3(),7,8(21M M

高中数学直线和圆知识点总结

直线和圆 一.直线 1.斜率与倾斜角:tan k θ=,[0,)θπ∈ (1)[0, )2 π θ∈时,0k ≥; (2)2 πθ=时,k 不存在;(3)( ,)2 π θπ∈时,0k < (4)当倾斜角从0? 增加到90? 时,斜率从0增加到+∞; 当倾斜角从90? 增加到180? 时,斜率从-∞增加到0 2.直线方程 (1)点斜式:)(00x x k y y -=- (2)斜截式:y kx b =+ (3)两点式: 1 21121x x x x y y y y --=-- (4)截距式: 1x y a b += (5)一般式:0C =++By Ax 3.距离公式 (1)点111(,)P x y ,222(,)P x y 之间的距离:12PP = (2)点 00(,)P x y 到直线0Ax By C ++=的距离:d = (3)平行线间的距离: 10Ax By C ++=与20Ax By C ++=的距离:d = 4.位置关系 (1)截距式:y kx b =+形式 重合:1212 k k b b == 相交:12k k ≠ 平行:1212 k k b b =≠ 垂直:121k k ?=- (2)一般式:0Ax By C ++=形式 重合:1221A B A B =且1221A C A C =且1212B C C B = 平行:1221A B A B =且1221A C A C ≠且1212B C C B ≠

垂直:12120A A B B += 相交:1221A B A B ≠ 5.直线系 1112220A x B y C A x B y C λ++++=+()表示过两直线1111:0l A x B y C ++=和2222:0l A x B y C ++=交点的所 有直线方程(不含2l ) 二.圆 1.圆的方程 (1)标准形式:2 2 2 ()()x a y b R -+-=(0R >) (2)一般式:2 2 0x y Dx Ey F ++++=(22 40D E F +->) (3)参数方程:00cos sin x x r y y r θ θ =+?? =+?(θ是参数) 【注】题目中出现动点求量时,通常可采取参数方程转化为三角函数问题去解决. (4)以11(,)A x y ,22(,)B x y 为直径的圆的方程是:()()()()0A B A B x x x x y y y y --+--= 2.位置关系 (1)点00(,)P x y 和圆222 ()()x a y b R -+-=的位置关系: 当22200()()x a y b R -+-<时,点00(,)P x y 在圆222 ()()x a y b R -+-=部 当22200()()x a y b R -+-=时,点00(,)P x y 在圆222 ()()x a y b R -+-=上 当22200()()x a y b R -+->时,点00(,)P x y 在圆222 ()()x a y b R -+-=外 (2)直线0Ax By C ++=和圆2 2 2 ()()x a y b R -+-=的位置关系: 判断圆心(,)O a b 到直线0Ax By C ++= 的距离d =R 的大小关系 当d R <时,直线和圆相交(有两个交点); 当d R =时,直线和圆相切(有且仅有一个交点); 当d R <时,直线和圆相离(无交点); 判断直线与圆的位置关系常见的方法 (1)几何法:利用圆心到直线的距离d 和圆半径r 的大小关系. (2)代数法:联立直线与圆的方程消元后利用Δ判断. (3)点与圆的位置关系法:若直线恒过定点且定点在圆可判断直线与圆相交.

人教版高中数学必修二直线与方程题库

(数学2必修)第三章 直线与方程 [基础训练A 组] 一、选择题 1.设直线0ax by c ++=的倾斜角为α,且sin cos 0αα+=, 则,a b 满足( ) A .1=+b a B .1=-b a C .0=+b a D .0=-b a 2.过点(1,3)P -且垂直于直线032=+-y x 的直线方程为( ) A .012=-+y x B .052=-+y x C .052=-+y x D .072=+-y x 3.已知过点(2,)A m -和(,4)B m 的直线与直线012=-+y x 平行, 则m 的值为( ) A .0 B .8- C .2 D .10 4.已知0,0ab bc <<,则直线ax by c +=通过( ) A .第一、二、三象限 B .第一、二、四象限 C .第一、三、四象限 D .第二、三、四象限 5.直线1x =的倾斜角和斜率分别是( ) A .0 45,1 B .0 135,1- C .090,不存在 D .0 180,不存在 6.若方程014)()32(2 2 =+--+-+m y m m x m m 表示一条直线,则实数m 满足( ) A .0≠m B .2 3 - ≠m C .1≠m D .1≠m ,2 3 - ≠m ,0≠m 二、填空题 1.点(1,1)P - 到直线10x y -+=的距离是________________. 2.已知直线,32:1+=x y l 若2l 与1l 关于y 轴对称,则2l 的方程为__________; 若3l 与1l 关于x 轴对称,则3l 的方程为_________; 若4l 与1l 关于x y =对称,则4l 的方程为___________;

高一数学必修二《圆与方程》知识点整理

《圆与方程》知识点整理 一、标准方程()() 222 x a y b r -+-= 1.求标准方程的方法——关键是求出圆心(),a b和半径r ①待定系数:往往已知圆上三点坐标,例如教材 119 P例2 ②利用平面几何性质 往往涉及到直线与圆的位置关系,特别是:相切和相交 相切:利用到圆心与切点的连线垂直直线 相交:利用到点到直线的距离公式及垂径定理 二、一般方程 () 2222 040 x y Dx Ey F D E F ++++=+-> 1.220 Ax By Cxy Dx Ey F +++++=表示圆方程则 22 22 00 00 40 40 A B A B C C D E AF D E F A A A ? ? =≠=≠ ? ? ?? =?= ?? ??+-> ? ???? ?+-?> ? ? ????? ? 2.求圆的一般方程一般可采用待定系数法: 3.2240 D E F +->常可用来求有关参数的范围 三、圆系方程: 四、参数方程: 五、点与圆的位置关系 1.判断方法:点到圆心的距离d与半径r的大小关系 d r ?点在圆外 2.涉及最值: (1)圆外一点B,圆上一动点P,讨论PB的最值 min PB BN BC r ==- max PB BM BC r ==+ (2)圆内一点A,圆上一动点P,讨论PA的最值 m i n P A A N r A C ==- max PA AM r AC ==+ 思考:过此A点作最短的弦?(此弦垂直AC)

六、直线与圆的位置关系 1.判断方法(d 为圆心到直线的距离) (1)相离?没有公共点?0d r ? (2)相切?只有一个公共点?0d r ?=?= (3)相交?有两个公共点?0d r ?>?< 这一知识点可以出如此题型:告诉你直线与圆相交让你求有关参数的范围. 2.直线与圆相切 (1)知识要点 ①基本图形 ②主要元素:切点坐标、切线方程、切线长等 问题:直线l 与圆C 相切意味着什么? 圆心C 到直线l 的距离恰好等于半径r (2)常见题型——求过定点的切线方程 ①切线条数 点在圆外——两条;点在圆上——一条;点在圆内——无 ②求切线方程的方法及注意点... i )点在圆外 如定点()00,P x y ,圆:()()222x a y b r -+-=,[()()22 200x a y b r -+->] 第一步:设切线l 方程()00y y k x x -=- 第二步:通过d r =k ?,从而得到切线方程 特别注意:以上解题步骤仅对k 存在有效,当k 不存在时,应补上——千万不要漏了! 如:过点()1,1P 作圆22 46120x y x y +--+=的切线,求切线方程. 答案:3410x y -+=和1x = ii )点在圆上 1) 若点()00x y ,在圆222x y r +=上,则切线方程为200x x y y r += 会在选择题及填空题中运用,但一定要看清题目. 2) 若点()00x y ,在圆()()22 2x a y b r -+-=上,则切线方程为 ()()()()200x a x a y b y b r --+--= 碰到一般方程则可先将一般方程标准化,然后运用上述结果. 由上述分析,我们知道:过一定点求某圆的切线方程,非常重要的第一步就是——判断点与圆的位置关系,得出切线的条数. ③求切线长:利用基本图形,222AP CP r AP =-?= 3.直线与圆相交 (1)求弦长及弦长的应用问题 垂径定理....及勾股定理——常用

新课标高中数学必修2直线与方程

3.1知识表 直线方程的概念及直线的倾斜角和斜率 (1)直线的方程:如果以一个方程的解为坐标的点都是某条直线上的点;反之,这条直线上的点的坐标都是这个方程的解,这时,这个方程就叫做这条直线的方程,这条直线叫做这个方程的直线. (2)直线的倾斜角:一条直线向上的方向与x 轴正方向所成的最小正角叫这条直线的倾斜角.倾斜角的取值范围是0°≤α<180°. (3)直线的斜率:倾斜角不是90°的直线,它的倾斜角的正切值叫做这条直线的斜率.倾斜角是90°的直线的斜率不存在.过P 1(x 1,y 1),P 2(x 2, y 2)(x 2≠x 1)两点的直线的斜率特别地是,当12x x =, 12y y ≠时,直线与x 轴垂直,斜率k 不存在;当12x x ≠,12y y =时,直线与y 轴垂直,斜率k =0. 注意:直线的倾斜角α=90°时,斜率不存在,即直线与y 轴平行或者重合. 当α=90°时,斜率k =0;当 090α?<,随着α的增大,斜率k 也增大;当90180α?<

高中数学_直线、圆和方程压轴题[培优、提高]

高二数学第 3 讲直线与圆综合 22 1. 已知圆C:x +y +2x-3=0 . (1)求圆的圆心 C 的坐标和半径长; (2)直线l 经过坐标原点且不与y 轴重合,l 与圆 C 相交于A(x1,y1)、B(x2,y2)两点,求证: 1 1 x1 x2为定值; (3)斜率为 1 的直线m 与圆C相交于D、E两点,求直线m 的方程,使△CDE的面积最大. 2. 已知点G(5,4),圆C1:(x-1)2+(x-4)2=25,过点G 的动直线l 与圆C1相交于E、F 两点,线段EF 的中点为C. (1)求点C的轨迹C2 的方程; (2)若过点A(1,0)的直线l1与C2相交于P、Q两点,线段PQ的中点为M;又l1与l2:x+2y+2=0 的交点为N,求证|AM|?|AN| 为定值.

3. 已知点C(1,0),点A,B 是⊙ O:x2+y2=9 上任意两个不同的点,且满足AC BC 0,设M为弦AB的 中点.求点M的轨迹T 的方程; 4.已知平面直角坐标系上一动点P(x, y)到点A( 2,0) 的距离是点P 到点B(1,0) 的距离的2倍。 (1)求点P 的轨迹方程; (2)若点P与点Q关于点(2,1) 对称,点C(3,0) ,求|QA|2 |QC |2的最大值和最小值; (3)过点A的直线l 与点P的轨迹C 相交于E,F 两点,点M (2,0) ,则是否存在直线l ,使S△EFM取得最大值,若存在,求出此时l 的方程,若不存在,请说明理由。

22 5.已知圆O: x2 y2 4和点M (1,a). (1)若过点M 有且只有一条直线与圆O 相切,求正数a的值,并求出切线方程; (2)若a 2,过点M 的圆的两条弦AC ,BD 互相垂直. ①求四边形ABCD 面积的最大值;②求| AC | | BD |的最大值. 22 6. 已知过原点的动直线l 与圆C1:x +y -6x+5=0 相交于不同的两点A,B. (1)求圆C1 的圆心坐标; (2)求线段AB 的中点M的轨迹 C 的方程; (3)是否存在实数k,使得直线L:y=k(x-4)与曲线 C 只有一个交点?若存在,求出不 k 的取值范围;若存在,说明理由.

高中数学文科 直线与圆

1.直线的斜率 倾斜角:0180≤α?注意讲授每一种直线方程的使用条件,截距可正可负可为零. 3.两条直线的位置关系:1111:0l A x B y C ++=,2222:0l A x B y C ++=; ⑴相交:12210A B A B -≠ ⑵平行:12210A B A B -=且12120B C C B -≠ ⑶重合:12A A λ=,12B B λ=,12(0)C C λλ=≠ ⑷垂直:12120A A B B += 4.点到直线的距离公式 ⑴点00()P x y ,到直线:0l Ax By C ++=的距离:002 2 Ax By C d A B ++= +, ⑵两条平行线11:0l Ax By C ++=,22:0l Ax By C ++=之间的距离:122 2 C C d A B -=+. 知识点睛 11.1直线 直线与圆

高中数学必修二教案-空间中直线与直线之间的位置关系示范

2.1.2 空间中直线与直线之间的位置关系 整体设计 教学分析 空间中直线与直线的位置关系是立体几何中最基本的位置关系,直线的异面关系是本节的重点和难点.异面直线的定义与其他概念的定义不同,它是以否定形式给出的,因此它的证明方法也就与众不同.公理4是空间等角定理的基础,而等角定理又是定义两异面直线所成角的基础,请注意知识之间的相互关系,准确把握两异面直线所成角的概念. 三维目标 1.正确理解空间中直线与直线的位置关系,特别是两直线的异面关系. 2.以公理4和等角定理为基础,正确理解两异面直线所成角的概念以及它们的应用. 3.进一步培养学生的空间想象能力,以及有根有据、实事求是等严肃的科学态度和品质. 重点难点 两直线异面的判定方法,以及两异面直线所成角的求法. 课时安排 1课时 教学过程 导入新课 思路1.(情境导入) 在浩瀚的夜空,两颗流星飞逝而过(假设它们的轨迹为直线),请同学们讨论这两直线的位置关系. 学生:有可能平行,有可能相交,还有一种位置关系不平行也不相交,就像教室内的日光灯管所在的直线与黑板的左右两侧所在的直线一样. 教师:回答得很好,像这样的两直线的位置关系还可以举出很多,又如学校的旗杆所在的直线与其旁边公路所在的直线,它们既不相交,也不平行,即不能处在同一平面内.今天我们讨论空间中直线与直线的位置关系. 思路2.(事例导入) 观察长方体(图1),你能发现长方体ABCD—A′B′C′D′中,线段A′B所在的直线与线段C′C所在直线的位置关系如何?

图1 推进新课 新知探究 提出问题 ①什么叫做异面直线? ②总结空间中直线与直线的位置关系. ③两异面直线的画法. ④在同一平面内,如果两直线都与第三条直线平行,那么这两条直线互相平行.在空间这个结论成立吗? ⑤什么是空间等角定理? ⑥什么叫做两异面直线所成的角? ⑦什么叫做两条直线互相垂直? 活动:先让学生动手做题,再回答,经教师提示、点拨,对回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路. 讨论结果:①异面直线是指不同在任何一个平面内的两条直线.它是以否定的形式给出的,以否定形式给出的问题一般用反证法证明. ②空间两条直线的位置关系有且只有三种.结合长方体模型(图1),引导学生得出空间的两条直线的三种位置关系: ????????.,:; ,:;,:没有公共点不同在任何一个平面内异面直线没有公共点同一平面内平行直线有且只有一个公共点同一平面内相交直线共面直线 ③教师再次强调异面直线不共面的特点,作图时通常用一个或两个平面衬托,如图 2. 图2 ④组织学生思考: 长方体ABCD —A′B′C′D′中,如图1, BB′∥AA′,DD′∥AA′,BB′与DD′平行吗? 通过观察得出结论:BB′与DD′平行. 再联系其他相应实例归纳出公理4. 公理4:平行于同一条直线的两条直线互相平行.

相关文档
最新文档