关于风荷载体型系数取用-2

关于风荷载体型系数取用-2
关于风荷载体型系数取用-2

关于门式刚架单层房屋体型系数的选用,目前国内主要有两种,一种是按照《门式刚架轻型房屋钢结构技术规程》CECS102:2002,一种是按照《建筑结构荷载规范》GB50009-2001(2006年版)。如何选用这两种规范的体型系数和在结构设计软件PKPM中的具体应用成了结构设计人员必须解决的问题,本文就两种规范体型系数的区别和各自的适用范围通过算例进行验证,并提出笔者的看法。

在《建筑结构荷载规范》(以下简称GB50009)中,7.1.1条明确指出,计算主要承重结构和围护结构时,分别采用7.1.1-1式和7.1.1-2式,体型系数分别采用主体结构体型系数和围护结构的局部风压体型系数。主体结构体型系数根据7.3.1条取用,而围护结构局部风压体型系数按照7.3.3条规定,考虑边角区的影响和有效受风面积的修正。在《门式刚架轻型房屋钢结构技术规程》(以下简称CECS102)中,主体结构和围护结构均采用相同的公式附录A.0.1式。刚架和围护结构等的体型系数按照表A.0.2中的相应数据。其中区分端区、中间区、边角区等,同样也有有效受风面积的修正。

GB50009已在我国沿用了50多年,积累了丰富的实际工程经验,它是面对所有结构形式的建筑房屋,因此具有通用性,也是工程设计和软件应用的主要参考依据。CECS102是参考美国金属房屋制造商协会MBMA的相关试验数据和资料编制的,主要针对门式刚架低矮房屋,已为世界多个国家采用。CSCE102有其相对较强的针对性,也就有其特定的适用范围,关于风荷载计算适用范围在CECS102附录A.0.2中已有明确表述,对于门式刚架轻型房屋,当其屋面坡度不大于10度、屋面平均高度不大于18m、房屋高宽比不大于1、檐口高度不小于房屋的最小水平尺寸时,风荷载体型系数可以按照CECS102附录A的规定进行取用。此时的风荷载计算结果是比较接近相关的试验数据的,用于工程设计是没有问题的。而试验分析同时也表明,当柱脚铰接且刚架的L/H大于2.3和柱脚刚接且L/H大于3.0时,按《荷规》风荷载体型系数计算所得控制截面的弯矩已经偏离试验数据较多,再按此风荷载体型系数取用已经严重不安全。因此,在工程设计中对于房屋高宽比不大于1的,应该严格按照CECS102的体型系数进行取用。

下面通过算例比较《荷载规范》和《门规》的风荷载体型系数的计算结果,对于主体结构,封闭式房屋中间区的体型系数:

算例一,跨度L=24m,高度H=8m,L/H=3.0, 50年一遇基本风压W0=

0.50KN/m2,地面粗糙度B类,恒载0.30KN/m2,活载0.50KN/m2。

1、按GB50009取用风荷载体型系数:

左风左柱弯矩图:

弯矩包络图:

2、按CECS102 取用风荷载体型系数:

左风左柱弯矩图:

弯矩包络图:

3、对比两种情况下弯矩内力值。

对于屋面梁构件,由于《门规》风荷载体型系数为-1.0和-0.65(风吸力)比《荷载规范》的(-0.60和-0.50)要大的多,从计算结果可以看出,风载产生的梁端

结语:

从体型上来讲,《门规》主要是针对门式刚架低矮房屋,其风荷载体型系数也是根据这一类型建筑房屋的试验数据提出的。对于《门规》风荷载体型系数取用的适用范围,《门规》附录A.0.2中有明确交代。对于门式刚架轻型房屋,当其屋面坡度不大于10度、屋面平均高度不大于18m、房屋高宽比不大于1、檐口高度不小于房屋的最小水平尺寸。符合这些条件的房屋可以按《门规》附录A相关规定进行风荷载计算。形象的讲,这些体型的房屋都是“趴”

在地面上的,对于其它体型的建筑房屋,比如“站”在地面上的房屋,其风荷载体型系数可按《荷规》规定取用。

《门规》附录A条文说明中明确指出,当柱脚铰接且刚架的L/H小于2.3和柱脚刚接且L/H 小于3.0时,采用《荷规》风荷载体型系数进行刚架设计偏于安全,而在其它情况下,按《荷规》风荷载体型系数计算所得控制截面的弯矩严重不安全。

其中有一个问题要注意,按《门规》风荷载体型系数计算时,风荷载基本风压应乘以调整系数1.05。这是因为国内外50年一遇基本风压取用差异造成的。而按《荷规》取用体型系数时,则无需再考虑1.05的调整系数。

风荷载标准值

For personal use only in study and research; not for commercial use For personal use only in study and research; not for commercial use 风荷载标准值 关于风荷载计算 风荷载是高层建筑主要侧向荷载之一,结构抗风分析(包括荷载,内力,位移,加速度等)是高层建筑设计计算的重要因素。 脉动风和稳定风 风荷载在建筑物表面是不均匀的,它具有静力作用(长周期哦部分)和动力作用(短周期部分)的双重特点,静力作用成为稳定风,动力部分就是我们经常接触的脉动风。脉动风的作用就是引起高层建筑的振动(简称风振)。 以顺风向这一单一角度来分析风载,我们又常常称静力稳定风为平均风,称动力脉动风为阵风。平均风对结构的作用相当于静力,只要知道平均风的数值,就可以按结构力学的方法来计算构件内力。阵风对结构的作用是动力的,结构在脉动风的作用下将产生风振。 注意:不管在何种风向下,只要是在结构计算风荷载的理论当中,脉动风一定是一种随机荷载,所以分析脉动风对结构的动力作用,不能采用一般确定性的结构动力分析方法,而应以随机振动理论和概率统计法为依据。 从风振的性质看顺风向和横风向风力 顺风向风力分为平均风和阵风。平均风相当于静力,不引起振动。阵风相当于动力,引起振动但是引起的是一种随机振动。也就是说顺风向风力除了静风就是脉动风,根本就没有周期性风力会引起周期性风振,绝对没有,起码从结构计算风载的理论上顺风向的风力不存在周期性风力。 横风向,既有周期性振动又有随机振动。换句话说就是既有周期性风力又有脉动风。反映在荷载上,它可能是周期性荷载,也可能是随机性荷载,随着雷诺数的大小而定。 有的计算方法 根据现有的研究成果,风对结构作用的计算,分为以下三个不同的方面: (1)对于顺风向的平均风,采用静力计算方法 (2)对于顺风向的脉动风,或横风向脉动风,则应按随机振动理论计算 (3)对于横风向的周期性风力,或引起扭转振动的外扭矩,通常作为稳定性荷载,对结构进行动力计算

风荷载总体体型系数

风荷载总体体型系数心得 《建筑结构荷载规范》第8.1.1条讲到垂直于建筑物表面的风荷载标准值应该 按照下列规定确定。 迎风面都是等效受压力面,所以为正值。相应其他面,背风面和平行面都是 负值,其实就是相当一个吸力。 对于总的体型系数,是这样求解的。首先是在 根据风向来确定建筑物最大风向投影面积,如右边的“十字形”平面结构,建筑 物边长尺寸如图所示,则总的体型系数如下: 5.028.022 6.0++?+?+?=b a b b a a u s 只要知道a 和b 的具体数值就可以按照这个公式求出风 荷载体型系数。这里公式分为2部分计算,按 照最大投影面分开(按照箭头分开),一部分是上部,另一部分称为下部。建筑 物表面上部分按照风向最大投影面分为3段,a ,b ,a 。再依据规范,+0.6,+0.8, +0.6按照边长的加权值求出上部体型系数;而红色部分代表的下部是0.5其实也 是按照边长加权求得。只是因为参考系数都是0.5所以综合加权值也是0.5. 但 是为什么公式里不论迎风面还是背风面都是加号而没有减号,有点讲不通?这 里的符合只是代表风向对建筑屋面的效果,如“+”代表迎风面“-”代表背风 面;如果你从力的方向性考虑的话,它们是同向的。因此在公式里才都是加号。 不过还有另外一种情况就是当出现“-”时是要做减法的。 一开始列出的六种 建筑平面中,有个矩形建筑背面的风荷载体型系数是一个公式, 这就说明此种情况下背风面的系数还跟建筑物的高度H 和长度L 相关。 再比如 右图不规则六边形,边长关系如图所示。 当风向不再是垂直于建筑物表面,而是有一定夹角30°。 此种情况下该建筑风荷载体型系数怎样计算。同理在划分上 下部时,最大投影面是按照与风向接触面平行的那条线,即就是 图示的箭线,仍旧是上部和下部。所以计算式如下:

关于风荷载体型系数取用-2

关于门式刚架单层房屋体型系数的选用,目前国内主要有两种,一种是按照《门式刚架轻型房屋钢结构技术规程》CECS102:2002,一种是按照《建筑结构荷载规范》GB50009-2001(2006年版)。如何选用这两种规范的体型系数和在结构设计软件PKPM中的具体应用成了结构设计人员必须解决的问题,本文就两种规范体型系数的区别和各自的适用范围通过算例进行验证,并提出笔者的看法。 在《建筑结构荷载规范》(以下简称GB50009)中,7.1.1条明确指出,计算主要承重结构和围护结构时,分别采用7.1.1-1式和7.1.1-2式,体型系数分别采用主体结构体型系数和围护结构的局部风压体型系数。主体结构体型系数根据7.3.1条取用,而围护结构局部风压体型系数按照7.3.3条规定,考虑边角区的影响和有效受风面积的修正。在《门式刚架轻型房屋钢结构技术规程》(以下简称CECS102)中,主体结构和围护结构均采用相同的公式附录A.0.1式。刚架和围护结构等的体型系数按照表A.0.2中的相应数据。其中区分端区、中间区、边角区等,同样也有有效受风面积的修正。 GB50009已在我国沿用了50多年,积累了丰富的实际工程经验,它是面对所有结构形式的建筑房屋,因此具有通用性,也是工程设计和软件应用的主要参考依据。CECS102是参考美国金属房屋制造商协会MBMA的相关试验数据和资料编制的,主要针对门式刚架低矮房屋,已为世界多个国家采用。CSCE102有其相对较强的针对性,也就有其特定的适用范围,关于风荷载计算适用范围在CECS102附录A.0.2中已有明确表述,对于门式刚架轻型房屋,当其屋面坡度不大于10度、屋面平均高度不大于18m、房屋高宽比不大于1、檐口高度不小于房屋的最小水平尺寸时,风荷载体型系数可以按照CECS102附录A的规定进行取用。此时的风荷载计算结果是比较接近相关的试验数据的,用于工程设计是没有问题的。而试验分析同时也表明,当柱脚铰接且刚架的L/H大于2.3和柱脚刚接且L/H大于3.0时,按《荷规》风荷载体型系数计算所得控制截面的弯矩已经偏离试验数据较多,再按此风荷载体型系数取用已经严重不安全。因此,在工程设计中对于房屋高宽比不大于1的,应该严格按照CECS102的体型系数进行取用。 下面通过算例比较《荷载规范》和《门规》的风荷载体型系数的计算结果,对于主体结构,封闭式房屋中间区的体型系数: 算例一,跨度L=24m,高度H=8m,L/H=3.0, 50年一遇基本风压W0= 0.50KN/m2,地面粗糙度B类,恒载0.30KN/m2,活载0.50KN/m2。 1、按GB50009取用风荷载体型系数: 左风左柱弯矩图:

风荷载体形系数

风荷载体形系数 一、有关脚手架风载体型系数计算的问题: 在计算脚手架水平风荷载标准值的时候,需要计算风载体型系数Us 二、脚手架步距1.5m,纵距1.8m,横距0.8m 第一种方法: 第一步按《建筑施工扣件式钢管脚手架安全技术规范》4.2.4规定采用,查表得敞开式脚手架的挡风面积为1.5×1.8×0.089=0.2403m2 密目网的挡风系数取0.841,敞开式脚手架挡风系数为0.089, 则在脚手架外立杆里侧挂满密目网后,脚手架综合挡风面积为: (1.5×1.8-0.2403)×0.841+0.2403=2.31m2 其综合挡风系数为φ=2.31/(1.5×1.8)=0.8556 根据规范查表4.2.4 背靠开洞墙、满挂密目网的脚手架风载体形系数为1.3φ,即Us=1.3φ=1.3×0.8556=1.112 这是一种计算方法,但我没有查处具体计算过程的依据。 另一种方法是: 密目网的挡风系数取φ1=0.841,敞开式脚手架挡风系数为φ2=0.089, 密目式安全立网封闭脚手架挡风系数 φ=φ1+φ2-φ1×φ2/1.2=0.841+0.089-0.841×0.089/1.2=0.8676 第二种方法是按照刘群主编、袁必勤为副主编的中国物价出版社出版的《建筑施工扣件式钢管脚手架构造与计算》一书P80的计算, 请问哪种比较正确??? 我个人认为第二种比较具有权威性,你呢?? 拐子马 ΨЖ:第一种计算方法错误,不符合《建筑施工扣件式钢管脚手架安全技术规范》4.2.4要求。 第二种计算方法正确,符合《建筑施工扣件式钢管脚手架安全技术规范》4.2.4要求。 袁必勤是《建筑施工扣件式钢管脚手架安全技术规范》的主要起草人,刘群是编委之一。刘

风荷载总体体型系数完整版

风荷载总体体型系数标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

风荷载总体体型系数心得 迎风面都是等效受压力面,所以为正值。相应其他面,背风面和平行面都是负值,其实就是相当一个吸力。对于总的体型系数,是这样求解的。首先是在根据风向来确定建筑物最大风向投影面积,如右边的“十字形”平面结构,建筑物边长尺寸如图所示,则总 的体型系数如下: 只要知道a和b的具体数值就可以按照这个公式求出风 荷载体型系数。这里公式分为2部分计算,按 照最大投影面分开(按照箭头分开),一部分是上部,另一部分称为下部。建筑物表面上部分按照风向最大投影面分为3段,a,b,a。再依据规范,+0.6,+0.8,+0.6按照边长的加权值求出上部体型系数;而红色部分代表的下部是0.5其实也是按照边长加权求得。只是因为参考系数都是0.5所以综合加权值也是0.5.但是为什么公式里不论迎风面还是背风面都是加号而没有减号,有点讲不通这里的符合只是代表风向对建筑屋面的效果,如“+”代表迎风面“-”代表背风面;如果你从力的方向性考虑的话,它们是同向的。因此在公式里才都是加号。不过还有另外一种情况就是当出现“-”时是要做减法的。一开始列出的六种建筑平面中,有个矩形建筑背面的风荷载体型系数是一个公式, 这就说明此种情况下背风面的系数还跟建筑物的高度H和长度L相关。再比如右图不规则六边形,边长关系如图所示。 当风向不再是垂直于建筑物表面,而是有一定夹角30°。 此种情况下该建筑风荷载体型系数怎样计算。同理在划分上 下部时,最大投影面是按照与风向接触面平行的那条线,即

就是 图示的箭线,仍旧是上部和下部。所以计算式如下: (其中a ,b ,a 分别是建筑物上部边长投影到箭线的长度 ,这里下部可以用a ’, b ’ , a ’代替;2a+b=2a ’+b ’) ' '2'5.02''2'55.0255.024.027.0b a b b a a b a a b a a b a a u s +?+?+?++?-+?++?=但是在这个公式里我们发现出现负号,不是说“-”是吸力,方向相同吗这里为什么又是减号呢其实是这样理解的,在最大投影面的同一侧如果出现不同负号,那么肯定会用加减,只是在不同侧时,“﹣”在运算过程中是当做同向处理。

风荷载计算算例

.风荷载计算 根据《建筑结构荷载规范》(GB50009-2012)规范,风荷载的计算公式为: 0k z s z w u u βω= () s u ——体型系数 z u ——风压高度变化系数 z β——风振系数 0ω——基本风压 k w ——风荷载标准值 体型系数s u 根据建筑平面形状由《建筑结构荷载规范》项次30,迎风面体型系数(压风指向建筑物内侧),背风面(吸风指向建筑外侧面),侧风面(吸风指向建筑外侧面)。 风压高度变化系数z u 根据建筑物计算点离地面高度和地面粗糙度类别,按照规范表确定。本工程结构顶端高度为+=米,建筑位于北京市郊区房屋较稀疏,由规范条地面粗糙度为B 类。 由表高度90米和100米处的B 类地面粗糙度的风压高度变化系数分别为和。 则米高度处的风压高度变化系数通过线性插值为: 对于高度大于30m 且高宽比大于的房屋,以及基本自振周期T1大于的各种高耸结构,应考虑风压脉动对结构产生顺风向风振的影响。 本工程30层钢结构建筑。基本周期估算为()1T =0.10~0.15n=3.0~4.5s ,应考虑脉动风对结构顺风向风振的影响,并由下式计算: 1012Z z gI B β=+ () 式中: g ——峰值因子,可取 10I ——10m 高度名义湍流强度,对应ABC 和D 类地面粗糙,可分别取、、和;

R ——脉动风荷载的共振分量因子 z B ——脉动风荷载的背景分量因子 脉动风荷载的共振分量因子可按下列公式计算: 式中: 1f ——结构第1阶自振频率(Hz ) w k ——地面粗糙度修正系数,对应A 、B 、C 和D 类地面粗糙,可分别取、、和; 1ζ——结构阻尼比,对钢结构可取,对有填充墙的钢结构房屋可取,对钢筋混凝土及砌体结构可取,对其他结构可根据工程经验确定。 经过etabs 软件分析,结构自振周期1 4.67f s = 脉动风荷载的背景分量因子可按下列规定确定: 式中: 1()z φ——结构第1阶振型系数 H ——结构总高度 (m ),对应A 、B 、C 和D 类地面粗糙度,H 的取值分别不能大于300m 、350m 、450m 和550m ; x ρ——脉动风荷载水平方向相关系数; z ρ——脉动风荷载竖向方向相关系数; k 、1α—— 脉动风荷载的空间相关系数可按下列规定确定: (1)竖直方向的相关系数可按下式计算: 式中: H ——结构总高度 (m );对应A 、B 、C 和D 类地面粗糙度,H 的取值分别不应大于300m 、350m 、450m 和550m ; (2) 水平方向相关系数可按下式计算: 式中:

风荷载总体体型系数

风荷载总体体型系数心得 迎风面都是等效受压力面,所以为正值。相应其他面,背风面和平行面都是负值,其实就是相当一个吸力。对于总的体型系数,是这样求解的。首先是在根据风向来确定建筑物最大风向投影面积,如右边的“十字形”平面结构,建筑物边长尺寸如图所示,则总的体型系数如下: 只要知道a 和b 的具体数值就可以按照这个公式求出风 荷载体型系数。这里公式分为2部分计算,按 照最大投影面分开(按照箭头分开)风向最大投影面分为3段,a ,b ,a 。再依据规范,+0.6,体型系数;而红色部分代表的下部是0.50.5所以综合加权值也是0.5.但是为什么公式里不论迎风面还是背风面都是加号而没有减号,有点讲不通?这里的符合只是代表风向对建筑屋面的效果,如“+”代表迎风面“-”代表背风面;如果你从力的方向性考虑的话,它们是同向的。因此在公式里才都是加号。不过还有另外一种情况就是当出现“-”时是要做减法的。一开始列出的六种建筑平面中,有个矩形建筑背面的风荷载体型系数是一个公式,这就说明此种情况下背风面的系数还跟建筑物的高度H 和长度L 相关。再比如右图不规则六边形,边长关系如图所示。 当风向不再是垂直于建筑物表面,而是有一定夹角30°。 此种情况下该建筑风荷载体型系数怎样计算。同理在划分上 下部时,最大投影面是按照与风向接触面平行的那条线,即 就是 图示的箭线,仍旧是上部和下部。所以计算式如下: (其中a ,b ,a 分别是建筑物上部边长投影到箭线的长度 ,这里下部可以用a ’,b ’,a ’代替;2a+b=2a ’+b ’) ' '25.02''2'55.0255.024.027.0b a b a a b a a b a a b a a u s +?+?+?++?-+?++?=但是在这个公式里我们发现出现负号,不是说“-”是吸力,方向相同吗?这里为什么又是减号呢?其实是这样理解的,在最大投影面的同一侧如果出现不同负号,那么肯定会用加减,只是在不同侧时,“﹣”在运算过程中是当做同向处理。

风荷载取值规范

3.1.3 风荷载 建筑物受到的风荷载作用大小,与建筑物所处的地理位置、建筑物的形状和高度等多种因素有关,具体计算按照《荷载规范》第7章执行。 1、风荷载标准值计算 垂直于建筑物主体结构表面上的风荷载标准值W K ,按照公式(3.1-2)计算: βz ——高度Z 处的风振系数,主要是考虑风作用的不规则性,按照《荷载规范》7.4要求取值。多层建筑,建筑物高度<30m ,风振系数近似取1。 (1)风荷载体型系数μS 风荷载体型系数,不但与建筑物的平面外形、高宽比、风向与受风墙面所成的角度有关,而且还与建筑物的立面处理、周围建筑物的密集程度和高低等因素有关,一般按照《荷载规 表3.1.10 建筑物体型系数取值表 注1:当计算重要且复杂的建筑物、及需要更细致地进行风荷载作用计算的建筑物,风荷载体型系数可按照《高层规程》中附录A 采用、或由风洞试验确定。 注4:当多栋或群集的建筑物相互间距离较近时,宜考虑风力相互干扰的群体作用效应。一般可将单体建筑的体型系数乘以相互干扰增大系数,该系数可参考类似条件的试验资料确定,必要时宜通过风洞试验确定。 注3:檐口、雨蓬、遮阳板、阳台等水平构件,计算局部上浮风荷载作用时,体型系数不宜小于2.0。 W W z s z k μμβ=)21.3(-

注4:验算表面围护结构及其连接的强度时,应按照《荷载规范》7.3.3规定,采用局部风压力体型系数。 (2)风压高度变化系数μz 设置风压高度变化系数,主要是考虑建筑物随着高度的增加风荷载的增大作用。 对于位于平坦或稍有起伏地形上的建筑物,其风压高度变化系数应根据场地粗糙程度按《荷载规范》7.2要求选用,表3.1.11中列出了常用风压高度变化系数的取值要求。 表3.1.11 风压高度变化系数 关于地面粗糙程度的分类: A类:近海海面、海岛、海岸、湖岸及沙漠地区; B类:田野、乡村、丛林、丘陵以及房屋比较稀疏的乡镇和城市郊区; C类:有密集建筑群的城市市区; D类:有密集建筑群和且房屋较高的城市市区。 (3)基本风压值W0 基本风压值W0,单位kN/m2,以当地比较空旷平坦场地上离地10m高、统计所得50年一遇10分钟平均最大风速为标准确定的风压值,各地的基本风压可按照《荷载规范》附录D 中的全国基本风压分布图查用,表3.1.12为浙江省主要城镇基本风压取值参考表。 2、基本风压的取值年限 《荷载规范》在附录D中分别给出了n=10年、n=50年、n=100年一遇的基本风压标准值,工程设计中根据建筑物的使用性质与功能要求,一般按照下列方法选用风压标准值的取值年限: ①临时性建筑物:取n=10年一遇的基本风压标准值; ②一般的工业与民用建筑物:取n=50年一遇的基本风压标准值; ③特别重要的建筑物、或对风压作用比较敏感的建筑物(建筑物高度大于60m):取 表3.1.12 浙江省主要城镇基本风压(kN/m2)取值参考表

风荷载总体体型系数.doc

WORD格式 风荷载总体体型系数心得 《建筑结构荷载规范》第8.1.1条讲到垂直于建筑物表面的风荷载标准值应该 按照下列规定确定。 迎风面都是等效受压力面,所以为正值。相应其他面,背风面和平行面都是 负值,其实就是相当一个吸力。对于总的体型系数,是这样求解的。首先是在 根据风向来确定建筑物最大风向投影面积,如右边的“十字形”平面结构,建筑 物边长尺寸如图所示,则总的体型系数如下: a b u 0.6 2 0.8 0.5 s 2a b 2a b 只要知道 a 和 b 的具体数值就可以按照这个公式求出风 荷载体型系数。这里公式分为 2 部分计算,按 照最大投影面分开(按照箭头分开),一部分是上部,另一部分称为下部。建筑 物表面上部分按照风向最大投影面分为 3 段, a,b,a。再依据规范, +0.6 ,+0.8 ,+0.6 按照边长的加权值求出上部体型系数;而红色部分代表的下部是0.5 其实也 是按照边长加权求得。只是因为参考系数都是0.5 所以综合加权值也是0.5. 但 是为什么公式里不论迎风面还是背风面都是加号而没有减号,有点讲不通?这 里的符合只是代表风向对建筑屋面的效果,如“+”代表迎风面“-”代表背风 面;如果你从力的方向性考虑的话,它们是同向的。因此在公式里才都是加号。 不过还有另外一种情况就是当出现“-”时是要做减法的。一开始列出的六种 建筑平面中,有个矩形建筑背面的风荷载体型系数是一个公式,

这就说明此种情况下背风面的系数还跟建筑物的高度H 和长度 L 相关。再比如右图不规则六边形,边长关系如图所示。 当风向不再是垂直于建筑物表面,而是有一定夹角30°。 此种情况下该建筑风荷载体型系数怎样计算。同理在划分上 下部时,最大投影面是按照与风向接触面平行的那条线,即 就是 图示的箭线,仍旧是上部和下部。所以计算式如下: 专业资料整理

风荷载总体体型系数

风荷载总体体型系数 This manuscript was revised by the office on December 10, 2020.

风荷载总体体型系数心得 《建筑结构荷载规范》第条讲到垂直于建筑物表面的风荷载标准值应该按照下列规定确定。 迎风面都是等效受压力面,所以为正值。相应其他面,背风面和平行面都是负值,其实就是相当一个吸力。 对于总的体型系数,是这样求解的。首先是在根据风向来确定建筑物最大风向投影面积,如右边的“十字形”平面结构,建筑物边长尺寸如图所示,则总的体型系数如下: 5.028.022 6.0++?+?+?=b a b b a a u s 只要知道a 和b 的具体数值就可以按照这个公式求出风 荷载体型系数。这里公式分为2部分计算,按 筑物表面上部分按照风向最大投影面分为3段,a ,b ,a +按照边长的加权值求出上部体型系数边长加权求得。只是因为参考系数都是所以综合加权值也是. 但是为什么公式里不论迎风面还是背风面都是加号而没有减号,有点讲不通这里的符合只是代表风向对建筑屋面的效果,如“+”代表迎风面“-”代表背风面;如果你从力的方向性考虑的话,它们是同向的。因此在公式里才都是加号。不过还有另外一种情况就是当出现“-”时是要做减法的。 一开始列出的六种建筑平面中,有个矩形建筑背面的风荷载体型系数是一个公式, 这就说明此种情况下背风面的系数还跟建筑物的高度H 和长度L 相关。 再比如右图不规则六边形,边长关系如图所示。 当风向不再是垂直于建筑物表面,而是有一定夹角30°。 此种情况下该建筑风荷载体型系数怎样计算。同理在划分上 下部时,最大投影面是按照与风向接触面平行的那条线,即 就是 图示的箭线,仍旧是上部和下部。所以计算式如下: (其中a ,b ,a 分别是建筑物上部边长投影到箭线的长度 ,这里下部可以用a ’, b ’ , a ’代替;2a+b=2a ’+b 55.0255.024.027.0b a a b a a b a a u s ++?-+?++?=为什么又是减号呢其实是这样理解的,理。

风荷载总体体型系数修订稿

风荷载总体体型系数 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

风荷载总体体型系数心得 《建筑结构荷载规范》第条讲到垂直于建筑物表面的风荷载标准值应该按照下列规定确定。 迎风面都是等效受压力面,所以为正值。相应其他面,背风面和平行面都是负值,其实就是相当一个吸力。 对于总的体型系数,是这样求解的。首先是在根据风向来确定建筑物最大风向投影面积,如右边的“十字形”平面结构,建筑物边长尺寸如图所示,则总的体型系数如下: 5.028.022 6.0++?+?+?=b a b b a a u s 只要知道a 和b 的具体数值就可以按照这个公式求出风 荷载体型系数。这里公式分为2部分计算,按 照最大投影面分开(按照箭头分开),一部分是上部,另一部分称为下部。建筑物表面上部分按照风向最大投影面分为3段,a ,b ,a 。再依据规范,+,+,+按照边长的加权值求出上部体型系数;而红色部分代表的下部是其实也是按照边长加权求得。只是因为参考系数都是所以综合加权值也是. 但是为什么公式里不论迎风面还是背风面都是加号而没有减号,有点讲不通这里的符合只是代表风向对建筑屋面的效果,如“+”代表迎风面“-”代表背风面;如果你从力的方向性考虑的话,它们是同向的。因此在公式里才都是加号。不过还有另外一种情况就是当出现“-”时是要做减法的。 一开始列出的六种建筑平面中,有个矩形建筑背面的风荷载体型系数是一个公式,

面的系数还跟建筑物的高度H 和长度L 相关。 再比如右图不规则六边形,边长关系如图所示。 当风向不再是垂直于建筑物表面,而是有一定夹角30°。 此种情况下该建筑风荷载体型系数怎样计算。同理在划分上 下部时,最大投影面是按照与风向接触面平行的那条线,即 就是 图示的箭线,仍旧是上部和下部。所以计算式如下: (其中a ,b ,a 分别是建筑物上部边长投影到箭线的长度 ,这里下部可以用a ’, b ’ , a ’代替;2a+b=2a ’+b ’) ''2'5.02''2'55.0255.024.027.0b a b b a a b a a b a a b a a u s +?+?+?++?-+?++?=但是在这个公式里我们发现出现负号,不是说“-”是吸力,方向相同吗这里为什么又是减号呢其实是这样理解的,在最大投影面的同一侧如果出现不同负号,那么肯定会用加减,只是在不同侧时,“﹣”在运算过程中是当做同向处理。

结构工程笔记之风荷载体型系数

《建筑结构荷载规范》GB50009-2010中第8章节有关风荷载体型系数学习心得 《建筑结构荷载规范》(以下简称《荷规》)第8.1.1条讲到垂直于建筑物表面的风荷载标准值应该按照下列规定确定。 1、 计算主要受力构件时, ,其中各个系数的含义如下: :风荷载标准值 (KN/㎡) :高度Z 处的风振系数 :风荷载体型系数 :风压高度变化系数 :基本风压 (KN/㎡) ,

荷载体型系数。从上面我们得知,风荷载体型系数只是跟建筑物的平面形状有关,而且每个面的系数都小于1.而且都会有一个迎风面和背风面,很显然我们可以这 样理解。迎风面都是等效受压力面,所以为正值。相应其他面,背风面和平行面都是负值,其实就是相当一个吸力。 对于已知的建筑结构,我们怎样求解总的体型系数。这是大家十分关心的问题。其实一开始我也对这方面十分困惑,因为自己比较愚钝所以也想请教建筑结构教师。可是因为已经毕业多年,当年的老师已经联系不上,所以最后还是自己一个人慢慢的琢磨,时间正面了一切。我终于在做大量相关题型以及查阅规范后弄清楚有关计算究竟是怎样一回事。 对于总的体型系数,是这样求解的。首先是在根据风向来确定建筑物最大风向投影面积,如右边的“十字形”平面结构,建筑物边长尺寸如图所示,则总的体型系数 如下: = 只要知道a 和b 的具体数值就可以按照这个公式求出风 荷载体型系数 。可能诸位看到这个或许还是不解其意,看到 我用红色字体标示的那部分吗?这里公式分为2部分计算,按 照最大投影面分开(按照箭头分开)这样规定)。公式中红色标示的0.5是下部(背风面),迎风面即就是黑体字那部分。建筑物表面上部分按照风向最大投影面分为3段,a ,b ,a 。再依据文章开 -0.7 -0.7 a a

风荷载标准值

风荷载标准值 关于风荷载计算 风荷载是高层建筑主要侧向荷载之一,结构抗风分析(包括荷载,内力,位移,加速度等)是高层建筑设计计算的重要因素。 脉动风和稳定风 风荷载在建筑物表面是不均匀的,它具有静力作用(长周期哦部分)和动力作用(短周期部分)的双重特点,静力作用成为稳定风,动力部分就是我们经常接触的脉动风。脉动风的作用就是引起高层建筑的振动(简称风振)。 以顺风向这一单一角度来分析风载,我们又常常称静力稳定风为平均风,称动力脉动风为阵风。平均风对结构的作用相当于静力,只要知道平均风的数值,就可以按结构力学的方法来计算构件内力。阵风对结构的作用是动力的,结构在脉动风的作用下将产生风振。 注意:不管在何种风向下,只要是在结构计算风荷载的理论当中,脉动风一定是一种随机荷载,所以分析脉动风对结构的动力作用,不能采用一般确定性的结构动力分析方法,而应以随机振动理论和概率统计法为依据。 从风振的性质看顺风向和横风向风力 顺风向风力分为平均风和阵风。平均风相当于静力,不引起振动。阵风相当于动力,引起振动但是引起的是一种随机振动。也就是说顺风向风力除了静风就是脉动风,根本就没有周期性风力会引起周期性风振,绝对没有,起码从结构计算风载的理论上顺风向的风力不存在周期性风力。 横风向,既有周期性振动又有随机振动。换句话说就是既有周期性风力又有脉动风。反映在荷载上,它可能是周期性荷载,也可能是随机性荷载,随着雷诺数的大小而定。 有的计算方法 根据现有的研究成果,风对结构作用的计算,分为以下三个不同的方面: (1)对于顺风向的平均风,采用静力计算方法 (2)对于顺风向的脉动风,或横风向脉动风,则应按随机振动理论计算 (3)对于横风向的周期性风力,或引起扭转振动的外扭矩,通常作为稳定性荷载,对结构进行动力计算 风荷载标准值的表达可有两种形式,其一为平均风压加上由脉动风引 起导致结构风振的等效风压;另一种为平均风压乘以风振系数。由于在结构的风振计算中,一般往往是第1振型起主要作用,因而我国与大多数国家相同,采用后一种表达形式,即采用风振系数βz,它综合考虑了结构在风荷载作用下的动力响应,其中包括风速随时间、空间的变异性和结构的阻尼特性等因素。

风荷载标准值计算方法

按老版本规范风荷载标准值计算方法: 1.1 风荷载标准值的计算方法 幕墙属于外围护构件, 按建筑结构荷载规范 (GB50009-2001 2006 年版)计算: W k =β gz μ Z μ SI w ) ……7.1.1-2[GB50009-2001 2006 年版] 上式中: W k :作用在幕墙上的风荷载标准值(MPa ); Z :计算点标高: 15.6m ; μ S1 :局部风压体型系数; 按《建筑结构荷载规范》GB50009-2001(2006年版)第7.3.3条:验算围护 构件及其连接的强度时,可按下列规定采用局部风压体型系数 μ S1: 一、外表面 1. 正压区 2. 负压区 - 对墙面, - 对墙角边, 二、内表面 对封闭式建筑物,按表面风压的正负情况取 -0.2 或 0.2。 本计算点为大面位置。 按JGJ102-2003第5.3.2条文说明:风荷载在建筑物表面分布是不均匀的, 在檐口附近、边角部位较大。 根据风洞试验结果和国外的有关资料, 在上述区域 风吸力系数可取 - 1.8 ,其余墙面可考虑 -1.0 ,由于围护结构有开启的可能, 所以 还应考虑室内压 -0.2 。 β gZ =K(1+2μ f ) 其中 K 为地面粗糙度调整系数, μ f 为脉动系数 A 类场地: β gZ =0.92 × (1+2 μ f ) 其中: μ f =0.387×(Z∕10) -0.12 B 类场地: β gZ =0.89× (1+2μ f ) 其中: μ f =0.5(Z∕10) -0.16 C 类场地: β gZ =0.85× (1+2μ f ) 其中: μ f =0.734(Z∕10) -0.22 D 类场地: β gZ =0.80×(1+2μ f ) 其中: μ f =1.2248(Z∕10) -0.3 类场地: 类场地: 类场地: 对于 B 类地形, μ z =1.000× (Z∕10) 0.24 μ Z =1.379× (Z∕10) 0.24 当 Z>300m 时,取 Z=300m 当 Z<5m 时,取 Z=5m 0.32 μ Z =(Z∕10) 0.32 当 Z>350m 时,取 Z=350m 当 Z<10πi 时,取 Z=10m 0.44 μ Z =0.616× (Z∕10) 0.44 当 Z>400m 时,取 Z=400m 当 Z<15πi 时,取 Z=15m μ Z =0.318× (Z∕10) 0.60 当 Z>450m 时,取 Z=450m 当 Z<30πi 时,取 Z=30m 15.6m 高度处风压高度变化系数: 0.32=1.1529 按表 7.3.1 采用; 取-1.0 取-1.8 β gz :瞬时风压的阵风系数; 根据不同场地类型,按以下公式计算(高度不足5m 按5m 计算): 对于B 类地形,15.6m 高度处瞬时风压的阵风系数: β gz =0.89 × (1+2 × (0.5(Z∕10) -0' 1δ ))=1.7189 μ Z :风压咼度变化系数; 根据不同场地类 型 , 按以下公式计算: 类场地:

风荷载总体体型系数

风荷载总体体型系数文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

风荷载总体体型系数心得迎风面都是等效受压力面,所以为正值。相应其他面,背风面和平行面都是负值,其实就是相当一个吸力。对于总的体型系数,是这样求解的。首先是在根据风向来确定建筑物最大风向投影面积,如右边的“十 只要知道a和b的具体数值就可以按照这个公式求出风 荷载体型系数。这里公式分为2部分计算,按 照最大投影面分开(按照箭头分开),一部分是上部,另一部分称为下部。建筑物表面上部分按照风向最大投影面分为3段,a,b,a。再依据规范,+0.6,+0.8,+0.6按照边长的加权值求出上部体型系数;而红色部分代表的下部是0.5其实也是按照边长加权求得。只是因为参考系数都是0.5所以综合加权值也是0.5.但是为什么公式里不论迎风面还是背风面都是加号而没有减号,有点讲不通?这里的符合只是代表风向对建筑屋面的效果,如“+”代表迎风面“-”代表背风面;如果你从力的方向性考虑的话,它们是同向的。因此在公式里才都是加号。不过还有另 种情况下背风面的系数还跟建筑物的高度H和长度L 不规则六边形,边长关系如图所示。 当风向不再是垂直于建筑物表面,而是有一定夹角30°。 此种情况下该建筑风荷载体型系数怎样计算。同理在划分上

下部时,最大投影面是按照与风向接触面平行的那条线,即 就是 图示的箭线,仍旧是上部和下部。所以计算式如下: (其中a ,b ,a 分别是建筑物上部边长投影到箭线的长度 ,这里下部可以用a ’,b ’,a ’代替;2a+b=2a ’+b ’) ''2'5.02''2'55.0255.024.027.0b a b b a a b a a b a a b a a u s +?+?+?++?-+?++?=但是在这个公式里我们发现出现负号,不是说“-”是吸力,方向相同吗?这里为什么又是减号呢?其实是这样理解的,在最大投影面的同一侧如果出现不同负号,那么肯定会用加减,只是在不同侧时,“﹣”在运算过程中是当做同向处理。

风荷载总体体型系数 (1)

风荷载总体体型系数心得 迎风面都是等效受压力面,所以为正值。相应其他面,背风面和平行面都是负值,其实就是相当一个吸力。对于总的体型系数,是这样求解的。首先是在根据风向来确定建筑物最大风向投影面积,如右边的“十字形”平面结构,建筑物边长尺寸如图所示,则总的体 型系数如下: 只要知道a和b的具体数值就可以按照这个公式求出风 荷载体型系数。这里公式分为2部分计算,按 照最大投影面分开(按照箭头分开),一部分是上部,另一部分称为下部。建筑物表面上部分按照风向最大投影面分为3段,a,b,a。再依据规范,+,+,+按照边长的加权值求出上部体型系数;而红色部分代表的下部是其实也是按照边长加权求得。只是因为参考系数都是所以综合加权值也是.但是为什么公式里不论迎风面还是背风面都是加号而没有减号,有点讲不通?这里的符合只是代表风向对建筑屋面的效果,如“+”代表迎风面“-”代表背风面;如果你从力的方向性考虑的话,它们是同向的。因此在公式里才都是加号。不过还有另外一种情况就是当出现“-”时是要做减法的。一开始列出的六种建筑平面中,有个矩形建筑背面的风荷载体型系数是一个公式,这就说明此种情况下背风面的系数还跟建筑物的高度H和长度L相关。再比如右图不规则六边形,边长关系如图所示。 当风向不再是垂直于建筑物表面,而是有一定夹角30°。 此种情况下该建筑风荷载体型系数怎样计算。同理在划分上 下部时,最大投影面是按照与风向接触面平行的那条线,即

就是 图示的箭线,仍旧是上部和下部。所以计算式如下: (其中a ,b ,a 分别是建筑物上部边长投影到箭线的长度 ,这里下部可以用a ’, b ’ , a ’代替;2a+b=2a ’+b ’) ' '2'5.02''2'55.0255.024.027.0b a b b a a b a a b a a b a a u s +?+?+?++?-+?++?=但是在这个公式里我们发现出现负号,不是说“-”是吸力,方向相同吗?这里为什么又是减号呢?其实是这样理解的,在最大投影面的同一侧如果出现不同负号,那么肯定会用加减,只是在不同侧时,“﹣”在运算过程中是当做同向处理。

风荷载总体体型系数

风荷载总体体型系数心得 迎风面都是等效受压力面,所以为正值。相应其他面,背风面和平行面都是负值,其实就是相当一个吸力。对于总的体型系数,是这样求解的。首先是在根据风向来确定建筑物最大风向投影面积,如右边的“十字形”平面结构,建筑物边长尺寸如图所示,则总的体型系数如下: 只要知道a 和b 的具体数值就可以按照这个公式求出风 荷载体型系数。这里公式分为2部分计算,按 照最大投影面分开(按照箭头分开),一部分是上部,另一部分称为下部。建筑物表面上部分按照风向最大投影面分为3段,a ,b ,a 。再依据规范,+0.6,+0.8,+0.6按照边长的加权值求出上部体型系数;而红色部分代表的下部是0.5其实也是按照边长加权求得。只是因为参考系数都是0.5所以综合加权值也是0.5.但是为什么公式里不论迎风面还是背风面都是加号而没有减号,有点讲不通?这里的符合只是代表风向对建筑屋面的效果,如“+”代表迎风面“-”代表背风面;如果你从力的方向性考虑的话,它们是同向的。因此在公式里才都是加号。不过还有另外一种情况就是当出现“-”时是要做减法的。一开始列出的六种建筑平面中,有个矩形建筑背面的风荷载体型系数是一个公式,这就说明此种情况下背风面的系数还跟建筑物的高度H 和长度L 相关。再比如右图不规则六边形,边长关系如图所示。 当风向不再是垂直于建筑物表面,而是有一定夹角30°。 此种情况下该建筑风荷载体型系数怎样计算。同理在划分上 下部时,最大投影面是按照与风向接触面平行的那条线,即 就是 图示的箭线,仍旧是上部和下部。所以计算式如下: (其中a ,b ,a 分别是建筑物上部边长投影到箭线的长度 ,这里下部可以用a ’,b ’,a ’代替;2a+b=2a ’+b ’) ' '2'5.02''2'55.0255.024.027.0b a b b a a b a a b a a b a a u s +?+?+?++?-+?++?=但是在这个公式里我们发现出现负号,不是说“-”是吸力,方向相同吗?这里为什么又是减号呢?其实是这样理解的,在最大投影面的同一侧如果出现不同负号,那么肯定会用加减,只是在不同侧时,“﹣”在运算过程中是当做同向处理。

风荷载例题

风荷载例题 F 面以高层建筑为例,说明顺风向结构风效应计算 由W k z s z W o 知,结构顺风向总风压为4个参数的乘积,即基本风压W 0、 风压高度变化系数 z 、风荷载体型系数S 、风振系数z 。因基本风压与风压高 度变化系数与结构类型和体型无关,以下主要讨论高层建筑体型系数和风振系数 的确定,然后通过实例说明高层建筑顺风向风效应的计算。 1高层建筑体型系数 高层建筑平面沿高度一般变化不大,可近似为等截面,且平面以矩形为多。 根据风洞试验及实验结果,并考虑到工程应用方便,一般取矩形平面高层建筑迎 风面体型系数为+0.8 (压力),背风面体型系数为-0.5 (吸力),顺风向总体型系 数为 s 1.3。 根据《高层建筑混凝土结构技术规程》 JGJ 3-2002第3.2.5条: 计算主体结构的风荷载效应时,风荷载体型系数 s 可按下列规定采用: 1圆形平面建筑取0.8 ; 2?正多边形或截角三角形平面建筑,由下式计算: 式中,n 为多边形的边数。 3. 高宽比H/B 不大于4的矩形、方形、十字形平面建筑取 1.3 ; 4. 下列建筑取1.4: 1) V 形、丫形、弧形、双十字形、井字形平面建筑; 2) L 形、槽形和高宽比H/B 大于4的十字形平面建筑; 3) 高宽比H/B 大于4,长宽比L/B 不大于1.5的矩形、鼓形平面建筑 5. 在需要更细致进行风荷载计算的场合,风荷载体型系数可按本规程附录 0.8 1.2 7n

用,或由风洞试验确定。 2. 高层建筑风振系数 高层建筑风振系数可根据《高层建筑混凝土结构技术规程》JGJ3-2002进行计算,也可参考《建筑结构荷载规范》。 3. 实例 【例1】已知一矩形平面钢筋混凝土高层建筑,平面沿高度保持不变,质量和刚度沿竖向均匀分布。H 100m , B 33m,地面粗糙度指数s= 0.22,基本风压按粗糙度指数为s 0-16的地貌上离地面高度z s = 10m处的风速确定,基本风压值为w。0.44kN/m2。结构的基本自振周期T, 2.5s。求风产生的建筑底部弯矩。 解: (1)为简化计算,将建筑沿高度划分为5个计算区段,每个区段20m高,取其中点位置的风载值作为该区段的平均风载值,。 ⑵体型系数s 1.3。 (3) 本例风压高度变化系数 在各区段中点高度处的风压高度变化系数值分别为 Z1 0.62 Z2 1 z3 1.25 z4 1.45 z5 1.62 (4) 风振系数的确定,由 2 2 2 2 W ga T i = 0.62 X 0.44 X 2.5 2= 1.71kN s2/m2 查表得脉动增大系数 1.51 计算各区段中点高度处的第1振型相对位移 11= 0.10 12= 0.30 13= 0.50 14= 0.70 15= 0.90 因建筑的高度比H/B 3,查表得脉动影响系数0.49。 将上式数据代入风振系数的计算公式,得到各区段中点高度处的风振系数:

风荷载例题

风荷载例题 下面以高层建筑为例,说明顺风向结构风效应计算。 由0k z s z W W βμμ=知,结构顺风向总风压为4个参数的乘积,即基本风压0W 、风压高度变化系数z μ、风荷载体型系数s μ、风振系数z β。因基本风压与风压高 度变化系数与结构类型和体型无关,以下主要讨论高层建筑体型系数和风振系数的确定,然后通过实例说明高层建筑顺风向风效应的计算。 1.高层建筑体型系数 高层建筑平面沿高度一般变化不大,可近似为等截面,且平面以矩形为多。根据风洞试验及实验结果,并考虑到工程应用方便,一般取矩形平面高层建筑迎风面体型系数为+0.8(压力),背风面体型系数为-0.5(吸力),顺风向总体型系数为 1.3s μ=。 根据《高层建筑混凝土结构技术规程》JGJ 3-2002第3.2.5条:

2.高层建筑风振系数 高层建筑风振系数可根据《高层建筑混凝土结构技术规程》JGJ 3-2002进行计算,也可参考《建筑结构荷载规范》。 3.实例 【例1】已知一矩形平面钢筋混凝土高层建筑,平面沿高度保持不变,质量和刚度沿竖向均匀分布。100H m =,33B m =,地面粗糙度指数s α=0.22,基本风 压按粗糙度指数为0.16s α=的地貌上离地面高度s z =10m 处的风速确定,基本风 压值为200.44/w kN m =。结构的基本自振周期1 2.5T s =。求风产生的建筑底部弯矩。 解: (1) 为简化计算,将建筑沿高度划分为5个计算区段,每个区段20m 高,取其中点位置的风载值作为该区段的平均风载值,。 (2) 体型系数 1.3s μ=。 (3) 本例风压高度变化系数 在各区段中点高度处的风压高度变化系数值分别为 10.62z μ= 21z μ= 3 1.25z μ= 4 1.45z μ= 5 1.62z μ= (4) 风振系数的确定,由 201a w T =0.62×0.44×2.52=221.71/kN s m ? 查表得脉动增大系数 1.51ξ= 计算各区段中点高度处的第1振型相对位移 11?=0.10 12?=0.30 13?=0.50 14?=0.70 15?=0.90 因建筑的高度比/3H B =,查表得脉动影响系数0.49ν=。 将上式数据代入风振系数的计算公式,得到各区段中点高度处的风振系数: 1β=1.12 2β=1.22 3β=1.30 4β=1.36 5β=1.41 (5) 计算各区段中点高度处的风压值

相关主题
相关文档
最新文档