OLED终极发光材料(精)

OLED终极发光材料(精)
OLED终极发光材料(精)

终极有机EL技术”——荧光材料实现与磷光同等的发光效率

核心提示:日本九州大学最尖端有机光电子研究中心(OPERA)宣布,开发出了使荧光材料以100%的内部量子效率发光的有机EL器件。这是将OPERA以前开发的“热活性型延迟荧光(TADF)”材料掺杂在传统荧光发光有机EL器件的发光层实现的。

日本九州大学最尖端有机光电子研究中心(OPERA)宣布,开发出了使荧光材料以100%的内部量子效率发光的有机EL器件。这是将OPERA以前开发的“热活性型延迟荧光(TADF)”材料掺杂在传统荧光发光有机EL器件的发光层实现的。与原来的TADF相比,可以用更通用、更简便的方法制作出有机EL 材料和器件,同时还具有器件耐久性高的优点。OPERA负责人安达千波矢对这次新开发的技术充满信心,甚至“被(外部技术人员等)称做有机EL的终极技术”。

九州大学开发的辅助掺杂剂和此次的发光原理。颜色为单独发光时的发光色。

有机EL器件的发光层一般要组合使用受电流激发产生激子的主体材料和直接关系到发光的掺杂剂材料。

据论文作者、OPERA的中野谷一介绍,此次有机EL器件的发光层使用的主体材料是“传统有机EL使用的通用材料”。作为发光材料(掺杂剂)使用的荧光材料为发蓝色光的TBPe、发绿色光的TTPA、发橙色光的TBRb以及发红色光的DBP等,也都是通用材料。如果直接使用这些材料,有机EL器件的外部量子效率最高只有3~4%。

元件采用的荧光发光掺杂剂材料和发光时的光谱。

OPERA在这些材料构成的发光层中,添加了TADF材料作为辅助掺杂剂,由此提高了外部量子效率,蓝色光为13.4%,绿色光为15.8%,橙色光为18.0%,红色光为17.5%。

该技术可带来两大好处。一是由于基本结构是材料设计自由度高而且在器件制造方面已经有丰富技术经验的荧光材料器件,因此可以更加简便地开发出发光效率高的有机EL器件。

另一个好处是有望大幅改善高发光效率的有机EL器件的发光寿命。这是因为,辅助掺杂剂的作用是为主体材料与掺杂剂材料之间的能量输送提供帮助。由于直接关系到发光的掺杂剂是电化学稳定性较高的荧光材料,因此“器件的驱动耐久性显著提高”(九州大学)

纳米材料的研究进展及其应用全解

纳米材料的研究进展及其应用 姓名:李若木 学号:115104000462 学院:电光院

1、纳米材料 1.1纳米材料的概念 纳米材料又称为超微颗粒材料,由纳米粒子组成。纳米粒子也叫超微颗粒,一般是指尺寸在1~100nm间的粒子,是处在原子簇和宏观物体交界的过渡区域,从通常的关于微观和宏观的观点看,这样的系统既非典型的微观系统亦非典型的宏观系统,是一种典型人介观系统,它具有表面效应、小尺寸效应和宏观量子隧道效应。当人们将宏观物体细分成超微颗粒(纳米级)后,它将显示出许多奇异的特性,即它的光学、热学、电学、磁学、力学以及化学方面的性质和大块固体时相比将会有显著不同。 1.2纳米材料的发展 自20世纪70年代纳米颗粒材料问世以来,从研究内涵和特点大致可划分为三个阶段: 第一阶段(1990年以前):主要是在实验室探索用各种方法制备各种材料的纳米颗粒粉体或合成块体,研究评估表征的方法,探索纳米材料不同于普通材料的特殊性能;研究对象一般局限在单一材料和单相材料,国际上通常把这种材料称为纳米晶或纳米相材料。 第二阶段(1990~1994年):人们关注的热点是如何利用纳米材料已发掘的物理和化学特性,设计纳米复合材料,复合材料的合成和物性探索一度成为纳米材料研究的主导方向。 第三阶段(1994年至今):纳米组装体系、人工组装合成的纳米结构材料体系正在成为纳米材料研究的新热点。国际上把这类材料称为纳米组装材料体系或者纳米尺度的图案材料。它的基本内涵是以纳米颗粒以及它们组成的纳米丝、管为基本单元在一维、二维和三维空间组装排列成具有纳米结构的体系。

2、纳米材料:石墨烯 2.1石墨烯的概念 石墨烯(Graphene)是从石墨材料中剥离出来、由碳原子组成的只有一层原子厚度的二维晶体。2004年,英国曼彻斯特大学物理学家安德烈·盖姆和康斯坦丁·诺沃肖洛夫,成功从石墨中分离出石墨烯,证实它可以单独存在,两人也因此共同获得2010年诺贝尔物理学奖。 石墨烯既是最薄的材料,也是最强韧的材料,断裂强度比最好的钢材还要高200倍。同时它又有很好的弹性,拉伸幅度能达到自身尺寸的20%。它是目前自然界最薄、强度最高的材料,如果用一块面积1平方米的石墨烯做成吊床,本身重量不足1毫克便可以承受一只一千克的猫。 石墨烯目前最有潜力的应用是成为硅的替代品,制造超微型晶体管,用来生产未来的超级计算机。用石墨烯取代硅,计算机处理器的运行速度将会快数百倍。 另外,石墨烯几乎是完全透明的,只吸收2.3%的光。另一方面,它非常致密,即使是最小的气体原子(氦原子)也无法穿透。这些特征使得它非常适合作为透明电子产品的原料,如透明的触摸显示屏、发光板和太阳能电池板。 石墨烯目前是世上最薄却也是最坚硬的纳米材料,它几乎是完全透明的,只吸收2.3%的光;导热系数高达5300 W/m·K,高于碳纳米管和金刚石,常温下其电子迁移率超过15000 cm2/V·s,又比纳米碳管或硅晶体(monocrystalline silicon)高,而电阻率只约10-6 Ω·cm,比铜或银更低,为目前世上电阻率最小的材料。 作为目前发现的最薄、强度最大、导电导热性能最强的一种新型纳米材料,石墨烯被称为“黑金”,是“新材料之王”,科学家甚至预言石墨烯将“彻底改变21世纪”。极有可能掀起一场席卷全球的颠覆性新技术新产业革命。

半导体纳米材料的光学性能及研究进展

?综合评述? 半导体纳米材料的光学性能及研究进展Ξ 关柏鸥 张桂兰 汤国庆 (南开大学现代光学研究所,天津300071) 韩关云 (天津大学电子工程系,300072) 摘要 本文综述了近年来半导体纳米材料光学性能方面的研究进展情况,着重介绍了半导体纳米材料的光吸收、光致发光和三阶非线性光学特性。 关键词 半导体纳米材料;光学性能 The Optica l Properties and Progress of Nanosize Sem iconductor M a ter i a ls Guan B ai ou Zhang Gu ilan T ang Guoqing H an Guanyun (Institute of M odern Op tics,N ankaiU niversity,T ianjin300071) Abstract T he study of nano size sem iconducto r particles has advanced a new step in the understanding of m atter.T h is paper summ arizes the p rogress of recent study on op tical p roperties of nano size sem icon2 ducto r m aterials,especially emphasizes on the op tical2abso rp ti on,pho to lum inescence,nonlinear op tical p roperties of nano size sem iconducto r m aterials. Key words nano size sem iconducto r m aterials;op tical p roperties 1 引言 随着大规模集成的微电子和光电子技术的发展,功能元器件越来越微细,人们有必要考察物质的维度下降会带来什么新的现象,这些新的现象能提供哪些新的应用。八十年代起,低维材料已成为倍受人们重视的研究领域。 低维材料一般分为以下三种:(1)二维材料,包括薄膜、量子阱和超晶格等,在某一维度上的尺寸为纳米量级;(2)一维材料,或称量子线,线的粗细为纳米量级;(3)零维材料,或称量子点,是尺寸为纳米量级的超细微粒,又称纳米微粒。随着维数的减小,半导体材料的电子能态发生变化,其光、电、声、磁等方面性能与常规体材料相比有着显著不同。低维材料开辟了材料科学研究的新领域。本文仅就半导体纳米微粒和由纳米微粒构成的纳米固体的光学性能及其研究进展情况做概括介绍。2 半导体纳米微粒中电子的能量状态 当半导体材料从体块减小到一定临界尺寸以后,其载流子(电子、空穴)的运动将受限,导致动能的增加,原来连续的能带结构变成准分立的类分子能级,并且由于动能的增加使得能隙增大,光吸收带边向短波方向移动(即吸收蓝移),尺寸越小,移动越大。 关于半导体纳米微粒中电子能态的理论工作最早是由AL.L.Efro s和A.L.Efro s开展的[1]。他们采用有效质量近似方法(E M A),根据微粒尺寸R与体材料激子玻尔半径a B之比分为弱受限(Rμa B,a B=a e+ a h,a e,a h分别为电子和空穴的玻尔半径)、中等受限(a h

稀土发光材料的研究现状与应用(综述)

稀土发光材料的研究现状与应用 材化092 班…指导老师:…. (陕西科技大学材料科学与工程学院陕西西安710021) 摘要稀土元素包括元素周期表中的镧系元素(Ln)和钪(Sc)、钇(Y),共17个元素。由于稀土离子的4f电子在不同能级之间的跃迁产生的丰富的吸收和发射光谱,使其在发光材料中具有广泛的应用。稀土元素的特殊原子结构导致它们具有优异的发光特性,用于制造发光材料、电光源材料和激光材料,其合成的发光材料充分应用在照明、显示、医学、军事、安全保卫等领域中。稀土元素在我国的储量丰富,约占全世界的40%。本文综述了稀土发光材料的发光机理、发光特性、化学合成方法、主要应用领域以及稀土矿藏的开采方面存在的问题,并预测了今后深入研究的方向。 关键词稀土,发光材料, 应用 Current Research and Applications of rare earth luminescent materials Abstract Rare earth elements, including the lanthanides (Ln) and scandium (Sc) , yttrium (Y)of the periodic table, a total of 17 elements. a plenty of absorption and emission spectra in the light-emitting materials produced by the 4f electrons of rare earth ions transiting between different energy levels lead to a wide range of applications of rare earth luminescent materials. Special atomic structure of rare earth elements lead to their excellent luminescence properties, which is used in the manufacture of luminescent materials, the electric light materials and laser materials, 1 / 8

发光材料

发光材料 连新宇豆岁阳董江涛陈阳郭欣高玮婧 北京交通大学材料化学专业100044 摘要:本文简要介绍了发光材料的发光机理,并根据机理分类介绍了几种典型的发光材料。补充介绍了新型发光材料并对发光材料的现状进行了介绍对其应用和发展前景做了展望。 关键词:发光材料分类新型展望 1 引言 发光材料已成为人们日常生活中不可缺少的材料,被广泛地用在各种显示、照明和医疗等领域,如电视屏幕、电脑显示器、X射线透射仪等。目前发光材料主要是无机发光材料,从形态上分,有粉末状多晶、薄膜和单晶等。最近,有机材料在电致发光上获得了重要应用。[1] 2 发光材料 发光是一种物体把吸收的能量,不经过热的阶段,直接转换为特征辐射的现象。发光现象广泛存在于各种材料中,在半导体、绝缘体、有机物和生物中都有不同形式的发光。 发光材料分为有机和无机两大类。通常把能在可见光和紫外光谱区发光的无机晶体称为晶态磷光体,而将粉末状的发光材料称为荧光粉。[2] 常用的发光材料按激发方式分为: (1) 光致发光材料,由紫外光、可见光以及红外光激发而发光,按照发光性能、应用范 围的不同,又分为长余辉发光材料、灯用发光材料和多光子发光材料。 (2) 阴极射线发光材料,由电子束流激发而发光的材料,又称电子束激发发光材料。 (3) 电致发光材料,由电场激发而发光的材料,又称为场致发光材料。 (4) X射线发光材料,由X射线辐射而发光的材料。 (5) 化学发光材料,两种或两种以上的化学物质之间的化学反应而引起发光的材料。 (6) 放射性发光材料,用天然或人造放射性物质辐照而发光的材料。 2.1光致发光材料 2.1.1光致发光材料的定义 发光就是物质内部以某种方式吸收能量以后,以热辐射以外的光辐射形式发射出多余的能量的过程。用光激发材料而产生的发光现象,称为光致发光。光致发光材料一个主要的应用领域是照明光源,包括低压汞灯、高压汞灯、彩色荧光灯、三基色灯和紫外灯等。其另一个重要的应用领域是等离子体显示。

稀土发光材料的研究进展

前言 当稀土元素被用作发光材料的基质成分,或是被用作激活剂、共激活剂、敏化剂或掺杂剂时,这类材料一般统称为稀土发光材料或稀土荧光材料。我国丰富的稀土资源,约占世界已探明储量的80%以上。稀土元素具有许多独特的物理化学性质,被广泛地用于各个领域,成为发展尖端技术不可缺少的特殊材料。稀土离子由于独特的电子层结构使得稀土离子掺杂的发光材料具有其它发光材料所不具有的许多优异性能,可以说稀土发光材料的研究开发相对于传统发光材料来说犹如一场革命。稀土无机发光材料方面,稀土发光材料与传统的发光材料相比具有明显的优势。就长余辉发光材料来说,稀土长余辉发光材料的发光亮度是传统发光材料的几十倍,余辉时间高达几千分钟。由于稀土发光材料所具有如此优异的性能使得发光材料的研究主要是围绕稀土发光材料而进行的。 由于稀土元素具有外层电子结构相同、内层4f 电子能级相近的电子层构型,含稀土的化合物表现出许多独特的理化性质,因而在光、电、磁领域得到广泛的应用,被誉为新材料的宝库。在稀土功能材料的发展中,尤其以稀土发光材料格外引人注目。稀土因其特殊的电子层结构,而具有一般元素所无法比拟的光谱性质,稀土发光几乎覆盖了整个固体发光的范畴,只要谈到发光,几乎离不开稀土。稀土元素的原子具有未充满的受到外界屏蔽的4f5d 电子组态,因此有丰富的电子能级和长寿命激发态,能级跃迁通道多达20 余万个,可以产生多种多样的辐射吸收和发射,构成广泛的发光和激光材料。随着稀土分离、提纯技术的进步,以及相关技术的促进,稀土发光材料的研究和应用将得到显著的发展。进入二十一世纪后,随着一些高新技术的发展和兴起,稀土发光材料科学和技术又步入一个新的活跃期,它为今后占主导地位的平板显示、第四代新照明光源、现代医疗电子设备、更先进的光纤通信等高新技术的可持续发展和源头创新提供可靠的依据和保证。所以,充分综合利用我国稀土资源库,发展稀土发光材料是将我国稀土资源优势转化为经济和技术优势的具体的重要途径。 纳米稀土发光材料是指基质粒子尺寸在1~100 纳米的发光材料。纳米粒子本身具有量子尺寸效应、小尺寸效应、表面效应和宏观量子隧道效应等。受这些结构特性的影响,纳米稀土发光材料表现出许多奇特的物理和化学和和特性,从

发光材料

发光材料 发光与发光材料的定义 什么是发光: 1、当某种物质受到激发(射线、高能粒子、电子束、外电场等)后,物质将处于激发态,激发态的能量会通过光或热的形式释放出来。如果这部分的能量是位于可见、紫外或是近红外的电磁辐射,此过程称之为发光过程。 2、发光就是物质在热辐射之外以光的形式发射出多余的能量,这种发射过程具有一定的持续时间。 什么是发光材料: 能够实现上述过程的物质叫做发光材料。物质内部以某种方式吸收能量,将其转化成光辐射(非平衡辐射)的过程称为发光;在实际应用中,将受外界激发而发光的固体称为发光材料。它们可以粉末、单晶、薄膜或非晶体等形态使用,主要组分是稀土金属的化合物和半导体材料,与有色金属关系很密切。 高纯稀土氧化物Y2O3、Eu2O3、Gd2O3、La2O3、Tb4O7等制成的各种荧光体,广泛应用于彩色电视机、彩色和黑白大屏幕投影电视、航空显示器、X射线增感屏,以及用于制作超短余辉材料、各种灯用荧光粉等。 半导体发光材料有ZnS、CdS、ZnSe和GaP、GaAs1-xPx、GaAlAs、GaN等。主要用于制造各色大中型数字符号、图案显示器、数字显示钟、X 射线图像增强屏和长寿命各色发光二极管、数码管等。可见光发光二极管,因显示响应速度快而广泛应用于仪表、计算机,年产量成倍增长,不断取代其他显示器件

固体能带基本理论 固体中的光学跃迁 固体发光材料基本知识 发光的表征 光致发光材料的应用 1.反光材料这种材料可以将照在其表面上的光迅速地反射回来。材料不同,反射的光的波长范围也就不同。反射光的颜色取决于材料吸收何种波长的光并反射何种波长的光,因此必须要有光照在材料表面,材料表面才能反射光,如各种执照牌、交通标志牌等。光致发光材料是向外发光,而不是反射光。 2.荧光材料吸收一定波长的光,立刻向外发出不同波长的光,称为荧光,当入射光消失时,荧光材料就会立刻停止发光。更确切地讲,荧光是指在外界光照下,人眼见到的一些相当亮的颜色光,如绿色、橘黄色、黄色,人们也常称它们为霓虹光。 荧光材料分无机荧光材料和有机荧光材料。 无机发光材料 无机荧光材料的代表为稀土离子发光及稀土荧光材料,其优点是吸收能力强,转换率高,稀土配合物中心离子的窄带发射有利于全色显示,且物理化学性质稳定。由于稀土离子具有丰富的能级和 4f 电子跃迁特性,使稀土成为发光宝库,为高科技领域特别是信息通讯领域提供了性能优越的发光材料。目前, 常见的无机荧光材料是以碱土金属的硫化物(如 ZnS、CaS)铝酸盐(SrAl2O4, CaAl2O4, BaAl2O4)等作为发光基质,以稀土镧系元素[铕(Eu) 、钐( Sm) 、铒(Er) 、钕(Nd)等] 作为激活剂和助激活剂。 无机荧光体的传统制备方法是高温固相法,但随着新技术的快速更新,发光材料性能指标的提高需要克服经典合成方法所固有的缺陷,一些新的方法应运而生,如燃烧法、溶胶—凝胶法[、水热沉淀法、微波法等。 有机发光材料 在发光领域中,有机材料的研究日益受到人们的重视。因为有机化合物的种类繁多,可调性好,色彩丰富,色纯度高,分子设计相对比较灵活。根据不同的分子结构,有机发光材料可分为:(1) 有机小分子发光材料;(2) 有机高分子发光材料;(3) 有机配合物发光材料。这些发光材料无论在发光机理、物理化学性能上,还是在应用上都有各自的特点。 有机小分子发光材料种类繁多,它们多带有共轭杂环及各种生色团,结构易于调整,通过引入烯键、苯环等不饱和基团及各种生色团来改变其共轭长度,从而使化合物光电性质发生变化。如恶二唑及其衍生物类,三

量子点发光材料综述

量子点发光材料综述 1.量子点简介 1.1量子点的概述 量子点(quantum dot, QD)是一种细化的纳米材料。纳米材料是指某一个维度上的尺寸小于100nm的材料,而量子点则是要求材料的尺寸在3个维度都要小于100nm[1]。更进一步的规定指出,量子点的半径必须要小于其对应体材料的激子波尔半径,其尺寸通常在1-10nm左右[2]。由于量子点半径小于对应体材料的激子波尔半径,量子点能表现出明显的量子点限域效应,此时载流子在三个方向上的运动受势垒约束,这种约束主要是由静电势、材料界面、半导体表面的作用或是三者的综合作用造成的。量子点中的电子和空穴被限域,使得连续的能带变成具有分子特性的分离能级结构[1]。这种分离结构使得量子点有了异于体材料的多种特性以及在多个领域里的特殊应用。 1.2量子点的特性 由于量子点中载流子运动受限,使得半导体的能带结构变成了具有分子原子特性的分离能级结构,表现出与对应体材料完全不同的光电特性。 1.2.1 量子尺寸效应 纳米粒子中的载流子运动由于受到空间的限制,能量发生量子化,连续能带变为分立的能级结构,带隙展宽,从而导致纳米颗粒的吸收和荧光光谱发生变化[3]。这种现象就是典型的量子尺寸效应。研究表明,随着量子点尺寸的缩小,其荧光将会发生蓝移,且尺寸越小效果越显著[4]。 1.2.2 表面效应 纳米颗粒的比表面积为A m=S V =4πR2 4 3 πR3 =3 R ,也就是说量子点比表面积随着颗 粒半径的减小而增大。量子点尺寸很小,拥有极大的比表面积,其性质很大程度上由其表面原子决定。当其表面拥有很大悬挂键或缺陷时,会对量子点的光学性质产生极大影响[5]。 1.2.3 量子隧道效应 量子隧道效应是基本的量子现象之一。简单来说,即当微观粒子(例如电子等)能量小于势垒高度时,该微观粒子仍然能越过势垒。当多个量子点形成有序阵列,载流子共同越过多个势垒时,在宏观上表现为导通状态。因此这种现象又

发光地功能化MOF材料

发光的功能化MOF材料 1.简介 金属-有机框架(MOFs)是近二十年来被学术界广泛关注的一种多孔材料[1-3],这种材料是利用有机配体与金属离子间的金属-配体配位作用而自组装形成的超分子网络结构。在MOFs 发展的早期,美国加州大学伯克利分校的O. M. Yaghi 教授、日本京都大学的S. Kitagawa 教授和美国北卡大学教堂山分校的Wenbin Lin 教授等分别对其做了更为详细的定义[4-6],通过归纳总结具体定义如下:MOFs 作为一类稳定的、可设计的、晶态的类沸石材料需具备以下条件:(1)通过配位键形成稳定结构;(2)通过设计变换有机配体(linker)和金属次级构筑单元(SBU)类型可以调控材料的空间结构;(3)具有良好的结晶性因而可精确定义其配位结构及空间构型。顾名思义,微孔金属-有机框架(MOFs)指框架中具有一定的被游离溶剂分子填充的孔道(孔径在 2 nm 以内)并能通过后续处理方法将孔道中客体分子除去而不影响框架结构的多孔材料。 MOF材料由于具有网状结构、均一孔道、孔径可调且具有巨大比表面积,以及独特的光、电、磁等性质引起了研究者的广泛关注。与传统发光材料相比,MOF发光材料具有不可比拟的优势,这些优势主要体现在它的组成、合成和性质上。 (1)组成方面 传统的发光材料,组成成分或者是有机化合物或者是无机化合物,所以其发光形式单一。而金属有机骨架是由金属离子与有机配体配位构筑而成的材料,兼具了有机材料与无机材料两种性能,从而增加了发光形式的多样性。同时易于引入功能化的组成成分,可以将发光性质、磁学特性、电学特性、催化特性等各种功能都整合到同一个MOFs材料中来实现MOFs结构的多功能设计,从而拓宽其应用范围。 (2)合成方面 无机发光材料在生产上采用的方法仍能是高温固相法。这种方法需要很高的锻烧温度,甚至高达几千摄氏度,并且保温时间比较长(24小时以上),对设备要

发光材料的发光机理以及各种发光材料的研究进展(精)

发光材料的发光机理以及各种发光材料的研究进展 罗志勇20042401143 摘要:发光材料种类繁多,自然界中很多物质都具有不同程度的发光现象。本文通过按照不同的发光机理,将现在常见的发光物质进行分类,并介绍他们的发展与研究进展。 关键词:发光材料发光机理进展 1.前言 物质的发光可由多种外界作用引起,如电磁辐射作用、电场或电流的作用、化学反应、生物过程等等。根据不同的发光原因,可以将发光材料分为光致发光材料、电致发光材料、化学发光材料等等。发光材料涉及了无机和有机功能材料和固、液、气三种聚集状态,所以又可以将发光材料分为无机固体发光材料和有机发光材料等等。现在人们研究得比较深入的有有机电致发光材料、有机光致发光材料、有机偏振发光材料、稀土高分子发光材料、无机电致发光材料、纳米稀土发光材料等等。不同的发光材料可以应用于各种光源、显示器等现代显示技术之中。 2.发光材料的发光机理 2.1光致发光材料发光机理 光致发光材料是指在一定波长的光照射,材料分子中基态电子(主要是π电子和f、d电子)被激发到高能态,电子从高能态回到激发态时,多余的能量以光的形式散发出来,达到发光的目的。这种发光材料称为荧光材料,大部分的稀土发光材料均以这种方式发光,原因是稀土元素基本都具有f电子,并且f电子的跃迁方式多样,因此稀土元素是一个丰富的发光材料宝库。 2.2电致发光材料发光机理 电致发光是在直流或交流电场的作用下,依靠电流和电场的激发使材料发光的现象,也称场致发光。电致发光的机理有本征式和注入式两种。本征式场致发光是用交变电场激励物质,使产生正空穴和电子。当电场反向时,那些因碰撞离化而被激发的电子,又与空穴复合而发光。注入式场致发光是指n-型半导体和p-型半导体接触时,在界面上形成p-n结。由于电子和空穴的扩散作用,在p-n结接触面的两侧形成空间电荷区,形成一个势垒,阻碍电子和空穴的扩散。n区电子要到达p区,必须越过势垒;反之亦然。当对p-n结施加电压时会使势垒降低。这样能量较大的电子和空穴分别进入p区和n区,分别同p区的空穴和n区的电子复合。同时以光的形式辐射出多余的能量。 2.3化学发光材料发光机理

稀土发光材料的特点及应用介绍

稀土发光材料的特点及应用介绍 专业:有机化学姓名:杨娟学号:201002121343 发光是物体把吸收的能量转化为光辐射的过程。当物质受到诸如光照、外加电场或电子束轰击等的激发后,吸收外界能量,处于激发状态,它在跃迁回到基态的过程中,吸收的能量会通过光或热的形式释放出来。如果这部分能量是以光的电磁波形式辐射出来,即为发光。 所谓的稀土元素,是指镧系元素加上同属IIIB族的钪Sc和钇Y,共17种元素。这些元素具有电子结构相同,而内层4f电子能级相近的电子层构型、电价高、半径大、极化力强、化学性质活泼及能水解等性质,故其应用十分广泛。 1稀土发光材料的发光特性 稀土是一个巨大的发光材料宝库,稀土元素无论被用作发光(荧光)材料的基质成分,还是被用作激活剂,共激活剂,敏化剂或掺杂剂,所制成的发光材料,一般统称为稀土发光材料或稀土荧光材料。 物质发光现象大致分为两类:一类是物质受热,产生热辐射而发光,另一类是物体受激发吸收能量而跃迁至激发态(非稳定态)在返回到基态的过程中,以光的形式放出能量。 因为稀土元素原子的电子构型中存在4f轨道,当4f电子从高的能级以辐射驰骋的方式跃迁至低能级时就发出不同波长的光。稀土元素原子具有丰富的电子能级,为多种能级跃迁创造了条件,从而获得多种发光性能。 稀土发光材料优点是发光谱带窄,色纯度高色,彩鲜艳;吸收激发能量的能力强,转换效率高;发射光谱范围宽,从紫外到红外;荧光寿命从纳秒跨越到毫秒6个数量级,磷光最长达十多个小时;材料的物理化学性能稳定,能承受大功率的电子束,高能射线和强紫外光的作用等。今天,稀土发光材料已广泛应用于显示显像,新光源,X射线增感屏,核物理探测等领域,并向其它高技术领域扩展。 2稀土发光材料的合成方法 稀土发光材料的合成方法包括水热合成法、高温固相合成法、微波合成法、溶胶——凝胶法、微波辐射法、燃烧合成法以及共沉淀法。 2. 1 水热合成法

稀土掺杂纳米发光材料的研究进展

稀土掺杂纳米发光材料的研究进展 姓名:雷强强学号:5901210080 班级:机电学院材成102班 中文摘要:稀土发光材料,具有荧光寿命较长,谱线强度较低、呈线状等特点,因而在照和明显示方面获得广泛的应用。同时,由于它们在近红外区的激光有许多可透过大气和光纤,从而在激光防伪,太阳能电池,测距和光通讯等方面获得应用。论文主要围绕“稀土掺杂发光纳米材料纳米发展”开展研究工作。概述了纳米稀土发光材料的研究进展,着重研究了纳米稀土发光材料的结构与性能之间的关系。光谱学的研究主要集中在发射光谱、发光强度、荧光寿命和浓度猝灭等方面。并对该类材料的应用及发展前景进行了探讨及展望。 关键词: 纳米;稀土;发光材料 1.引言 纳米材料[1] 稀土发光纳米材料[2] 应用前景及展望[3] 1.1纳米发展小史 1959年,著名物理学家、诺贝尔奖获得者理查德。费曼预言,人类可以用小的机器制作更小的机器,最后实现根据人类意愿逐个排列原子、制造产品,这是关于纳米科技最早的梦想。 1991年,美国科学家成功地合成了碳纳米管,并发现其质量仅为同体积钢的1/ 6,强度却是钢的10倍,因此称之为超级纤维.这一纳米材料的发现标志人类对材料性能的发掘达到了新的高度。1999年,纳米产品的年营业额达到500亿美元。 1.1.1什么是纳米材料 纳米材料通常被定义为组成相或晶粒结构控制在小于100nm的长度尺寸的材料,也可以说纳米材料的平均粒径或结构畴尺寸在100nm以下。纳米(nm)是长度单位,1纳米是10-9米(十亿分之一米),对宏观物质来说,纳米是一个很小的单位,不如,人的头发丝的直径一般为7000-8000nm,人体红细胞的直径一般为3000-5000nm,一般病毒的直径也在几十至几百纳米大小,金属的晶粒尺寸一般在微米量级;对于微观物质如原子、分子等以前用埃来表示,1埃相当于1个氢原子的直径,1纳米是10埃。 2.稀土发光纳米材料简介 稀土元素具有一般元素所无法比拟的光谱学性质,使稀土发光材料被广泛应用于发光、显示、光信息传递、太阳能光电转换、X射线影像、激光、闪烁体及飞点扫描等领域。据统计,稀土发光新材料中稀土的总用量不及稀土消耗量的4%,但其产值却占稀土市场总销售额的41%,是稀土行业最热门的行业[1]。纳米稀土发光材料是指基质粒子尺寸在1~lOOnm的发光材料,对其研究始于最近几年由于纳米粒子本身具有量子尺寸效应、小尺寸效应、表面效应和宏观量子

发光材料与LED综述

功能材料课报告 发光材料与LED 摘要:发光材料是一种功能材料,广泛应用于我们日常生活中,例如电视机、日光灯、发光二极管等。本文就应用于LED的两种发光方式,光致发光和电致发光,作了简单的介绍和说明,并着重介绍了LED的原理、发展历史、优点以及应用。在未来的几十年里,发光材料将继续快速向前发展,给我们的生活带来更大的变化。 关键词:发光材料;光致发光;电致发光;LED

功能材料是指通过光、电、磁、热、化学、生化等作用后具有特定功能的材料。随着时代的发展,人类将进入一个信息时代。为了解决生产告诉发展以及由此所产生的能源、环境等等一系列问题,更需要用高科技的方法和手段来生产新型的、功能性的产品,以获得各种优良的综合性能。近年来新型功能材料层出不穷,得到了突破性的进展,功能材料正在渗透到现代生活和生产的各个领域。 本文所论述的发光材料即为在不同的能量激发方式下可以发出不同波长的可见光的一种功能材料。 一.概述 物质发光现象大致分为两类:一类是物质受热,产生热辐射而发光;另一类是物体受激发吸收能量而跃迁至激发态,在返回到基态的过程中以光的形式放出能量。热辐射发光最常见的例子是太阳和白炽灯,而后一种发光方式应用也很广泛,比如阴极射线管、日光灯、发光二极管等,如图1。 图1 两种发光方式的典型例子:白炽灯和日光灯 按照激发能量方式的不同,发光材料的分类如下: 1.紫外光、可见光以及红外光激发而发光的为光致发光材料; 2.电子束流激发而发光的为阴极射线发光材料; 3.电场激发而发光的为电致发光材料; 4.X射线辐射而发光的为X射线发光材料; 5.用天然或人造放射性物质辐射而发光的为放射性发光材料。

量子点发光材料简介

量子点发光材料综述 1.1 量子点的概述 量子点(quantum dot, QD)是一种细化的纳米材料。纳米材料是指某一个维度上的尺寸小于100nm的材料,而量子点则是要求材料的尺寸在3个维度都要小于100nm[1]。更进一步的规定指出,量子点的半径必须要小于其对应体材料的激子波尔半径,其尺寸通常在1-10nm 左右[2]。由于量子点半径小于对应体材料的激子波尔半径,量子点能表现出明显的量子点限域效应,此时载流子在三个方向上的运动受势垒约束,这种约束主要是由静电势、材料界面、半导体表面的作用或是三者的综合作用造成的。量子点中的电子和空穴被限域,使得连续的能带变成具有分子特性的分离能级结构[1]。这种分离结构使得量子点有了异于体材料的多种特性以及在多个领域里的特殊应用。 1.2 量子点的特性 由于量子点中载流子运动受限,使得半导体的能带结构变成了具有分子原子特性的分离能级结构,表现出与对应体材料完全不同的光电特性。 1.2.1 量子尺寸效应 纳米粒子中的载流子运动由于受到空间的限制,能量发生量子化,连续能带变为分立的能级结构,带隙展宽,从而导致纳米颗粒的吸收和荧光光谱发生变化[3]。这种现象就是典型的量子尺寸效应。研究表明,随着量子点尺寸的缩小,其荧光将会发生蓝移,且尺寸越小效果越显著[4]。 1.2.2 表面效应 纳米颗粒的比表面积为,也就是说量子点比表面积随着颗粒半径的减小而增大。量子点尺寸很小,拥有极大的比表面积,其性质很大程度上由其表面原子决定。当其表面拥有很大悬挂键或缺陷时,会对量子点的光学性质产生极大影响[5]。 1.2.3 量子隧道效应 量子隧道效应是基本的量子现象之一。简单来说,即当微观粒子(例如电子等)能量小于势垒高度时,该微观粒子仍然能越过势垒。当多个量子点形成有序阵列,载流子共同越过多个势垒时,在宏观上表现为导通状态。因此这种现象又称为宏观量子隧道效应[6][7]。 1.2.4 介电限域效应

无机纳米发光材料的研究进展

无机纳米发光材料的研究进展 摘要:本文综述了无机纳米发光材料的研究进展,重点从材料的制备、性质进行论述,同时对材料应用进行举例,并对其发展趋势进行了展望。 关键词:纳米;发光材料;无机 纳米材料是指晶粒尺寸为纳米级的超细材料。其尺寸一般为1~100nm。是类介于原子簇和宏观物体之间的介观物质,其表面原子数与体系总原子数之比随粒径尺寸的减小而急剧增大。显示出明显的体积效应,表面效应和量子尺寸效应,因而具有独特的物理化学性质。因此纳米微粒在磁性材料、电子材料、光学材料、高致密度材料的烧结、催化、传感、陶瓷增韧等方面具有广阔的应用前景。 纳米发光材料是在纳米级范围内的发光材料,无机纳米发光材料主要包括纳米半导体发光材料以及稀土离子和过渡金属离子掺杂的纳米氧化物、硫化物、复合氧化物和各种无机盐发光材料。近年来有关掺杂离子纳米发光材料的研究逐渐深入,为纳米科学的研究开辟的新的领域,引起了广泛的重视。 1 无机纳米发光材料的制备 1.1 气相法 气相法制备无机纳米发光材料,是直接利用气体或其他手段将物质变为气体,使之在气体状态下发生反应,最后经过冷却凝聚长大形成纳米微粒。一般来说,用气相法反应制备的颗粒具有可控的尺寸和球形状态。气相法中又分有化学气相反应法、化学气相凝聚法、化学气相沉淀法等。Siever等人利用CO 辅助气溶液制备了YO∶Eu磷光体。Konrad等人用改进的化学气相沉淀法,首次报导了纳米晶YO∶Eu弱聚体的制备,其平均尺寸为10nm。 1.2 液相法 1.2.1 溶胶-凝胶法(sol-gel) 溶胶-凝胶技术是指金属有机或无机化合物经过溶液、溶胶、凝胶而固化,在经过热处理而形成氧化物或其他化合物固体的方法。改方法在制备材料初期就进行有效地控制,是颗粒均匀性可达到亚微米级、纳米级甚至是超分子级水平。以醇盐溶胶-凝胶法为例,包含2个过程:醇盐的水解和聚合。目前采用溶胶-凝胶法制备材料的具体技术或工艺过程很多,但按照机制划分可分为传统胶体型、无机聚合物型和络合物型。 此外,目前溶胶-凝胶法德起始原料也是十分灵活多变,许多无机盐也可以用作先驱物。故溶胶-凝胶法师比较常用的用来合成纳米材料的方法。例如采用溶胶-凝胶法制备ZnO:LiSiO 荧光体;纳米晶发光粉YSiO∶Eu可以用Y(NO)、Eu(NO) 和Si(OCH) 作起始物,通过溶胶-凝胶方法制备。 1.2.2 沉淀法 沉淀法即是在包含一种或者多种离子的可溶性盐溶液中,加入沉淀剂后,于一定温度下使溶液发生水解,形成不溶性的氢氧化物,水合氧化物或盐类从溶液中析出,将溶剂和溶液中原有的阴离子洗去,经热解或脱水即可获得所需的氧化物。制备发光材料的沉淀法包括直接沉淀法,共沉淀法和均匀沉淀法。直接沉淀

长余辉发光材料概述

长余辉发光材料概述 摘要 本文综述了长余辉材料的发光机理及制备方法,并简单介绍了硫化物长余辉发光材料、铝酸盐长余辉发光材料及硅酸盐长余辉发光材料。 关键词:长余辉;发光材料 1.长余辉发光材料简介 长余辉发光材料简称长余辉材料,又称夜光材料、蓄光材料。它是一类吸收太阳光或人工光源所产生的光的能量后,将部分能量储存起来,然后缓慢地把储存的能量以可见光的形式释放出来,在光源撤除后仍然可以长时间发出可见光的物质[1]。 2.长余辉发光材料的基本机理 长余辉材料被激发以后,能长时间持续发光,其关键在于有适当深度的陷阱能态(即能量存储器)。光激发时产生的自由电子(或自由空穴)落入陷阱中储存起来,激发停止后,靠常温下的热扰动而释放出被俘的陷阱电子(或陷阱空穴)与发光中心复合产生余辉光。随着陷阱逐渐被腾空,余辉光也逐渐衰减至消失。而陷阱态来源于晶体的结构缺陷,换言之,寻求最佳的晶体缺陷以形成最佳陷阱(种类、深度、浓度等)是获得长余辉的主要因素。余辉时间的长短决定于陷阱深度与余辉强度,余辉光的强度依赖于陷阱浓度、容量与释放电子(或空穴)的速率。而晶体缺陷的产生除了材料制备过程中自然形成的结构缺陷外,主要是掺杂。 长余辉发光机理实际是发光中心与缺陷中心间如何进行能量传递的过程,具体的长余辉材料有不同的发光模型,但最流行的是两类:一是载流子传输;二是隧穿效应。前者包含电子传输、空穴传输和电子空穴共传输,后者包括激发、能量存储与热激励产生发射的全程隧穿和仅是“热激励”发射的半程隧穿。除这两类外,学术界还有学者提出位形坐标[2]、能量传递、双光子吸收和Vk传输模型。至今为止,上述模型都是根据已有的实验结果提出的假设,可以解释一定的实验现象,但缺乏足够的论据,也存在若干不确定因素,难以让人信服,而发光机理的研究又是为新材料设计提供物理依据所必须的,有待进一步深入。

上转换发光材料研究进展

毕业设计(论文) 题 目 上转换发光材料研究进展 系 (院) 化学与化工系 专 业 应用化工技术 班 级 2010级4班 学生姓名 李超锋 学 号 1023100826 指导教师 刘志亮 职 称 助教 二〇一三年五月二十日

上转换发光材料研究进展 摘要 本文概述了纳米上转换发光材料的研究价值和应用前景。上转换由斯托克斯定律而来,斯托克斯定律认为材料只能受到高能量的光激发,发出低能量的光,换句话说,就是波长短的频率高的激发出波长长的频率低的光。比如紫外线激发发出可见光,或者蓝光激发出黄色光,或者可见光激发出红外线。但是后来人们发现,其实有些材料可以实现与上述定律正好相反的发光效果,于是我们称其为反斯托克斯发光,又称上转换发光。迄今为止,上转换发光都发生在掺杂稀土离子的化合物中,主要有氟化物、氧化物、含硫化合物、氟氧化物、卤化物等NaYF4是目前上转换发光效率最高的基质材料,比如NaYF4,Er,Yb,即镱铒双掺时,Er做激活剂,Yb作为敏化剂。 关键词:上转换发光;稀土离子;激活剂;敏化剂

Review of Research on Up-conversion Luminescence Materials Abstract Outlines the value of up-conversion luminescence nano-materials research and application prospects.Up-conversion by Stokes ' law, Stokes ' law of that material can only be affected by high energy light fires, a low-energy light, in other words, short wavelength high frequency excitation wavelength long low frequency light. Such as ultraviolet excitation emits visible light, or Blue-ray-induced yellow light, or visible light brings out the infrared. But as it turns out, in fact, some of the materials can be achieved with this law is the opposite of a glow effect, so we called anti-Stokes ' luminescence, also known as up-conversion. So far, the up-conversion occurs in compounds doped with rare earth ions in the main fluoride, oxide, oxides, halides, sulfur-containing compounds, fluorine NaYF4 is the current best of up-conversion luminescence efficiency matrix material, such as NaYF4,Er,Yb, that is, when erbium-ytterbium-doped, Er do activator, Yb as a sensitizer. Keywords: Up-conversion; Rare earth ions; Activator; Sensitizer

发光材料综述

结构与物性结课作业 发 光 材 料 综 述 学院:物理与电子工程学院 专业:材料物理13-01 学号:541311020102 姓名: 陈强

发光材料综述 摘要: 能够以某种方式吸收能量,将其转化成光辐射(非平衡辐射)物质叫做发光材料。发光是辐射能量以可见光的形式出现。辐射或任何其他形式的能量激发电子从价带进入导带,当其返回到价带时便发射出光子(能量为1.8~3.1eV)。如果这些光子的波长在可见光范围内,那么,便产生了发光现象。 0 引言 发光材料是国家重要战略能源,在人们的日常生活中也占据着重要地位,被广泛应用于各个领域,因此对发光材料的研制和运用受到越来越多的关注。 本文基于发光材料研究现状,分析发光材料种类和制备方式,并介绍几种不同发光材料在生活中的应用,以期推动我国发光材料研究探索,为国家建设和人们生活水平提高提供助力。发光材料是人类生活重要材料之一,在航天科技、海洋运输、医学医疗、出版印刷等各个领域被广泛应用,具有极为重要的战略地位。 随着科学技术的发展,发光材料研究已经成为了我国科学界广泛关注的焦点,其运用技术直接关系到人们日常生活质量和国防建设,因此如何推动发光材料研制,将其更加安全、合理、高效的应用于生产生活中,成为了亟待解决的问题。 1发光材料分类 发光材料按激发的方式可分为以下几类: 1.1光致发光材料 用紫外、可见及红外光激发发光材料而产生的发光称为光致发光,该发光材料称为光致发光材料。 光致发光过程分为三步:①吸收一个光子;②把激光能转移到荧光中心;③

由荧光中心发射辐射。 发光的滞后时间约为10-8s的称为荧光,衰减时间大于10-8s的称为磷光。 光致发光材料一般可分为荧光灯用发光材料、长余辉发光材料和上转换发光材料。 按发光驰豫时间分类,光致发光材料分为荧光材料和磷光材料。 图1 1.2 电致发光材料 所谓电致发光是在直流或交流电场作用下,依靠电流和电场的激发使材料发光的现象,又称场致发光。这种发光材料称为电致发光材料,或称场致发光材料。 1. 本征式场致发光 ?简单地说,本征式场致发光就是用电场直接激励电子,电场反向后电子与中心复合而发光的现象。 2. 注入式发光 注人式场致发光是由Ⅱ-Ⅳ族和Ⅲ- Ⅴ族化合物所制成的有p-n结的二极管,注人载流子,然后在正向电压下,电子和空穴分别由 n 区和 p 区注人到结区并相互复合而发光的现象。又称p-n结电致发光 目前大概可以有以下几种材料: 1.2.1 直流电压激发下的粉末态发光材料 目前常用的直流电致发光材料有Zn S:Mn,Cu,其发光亮度大约为350 c

高分子发光材料

高分子发光材料 有机发光材料与无机发光材料相比,以其易合成、易加工、成本低、质轻、发光颜色全等特点越来越受到关注。近几年以有机发光材料制备的发光器件已临近应用阶段,成为当前流行的液晶显示器件的强力竞争对手。目前研究比较活跃的有聚噻吩、聚苯胺、聚吡咯、聚芴【7】等。 2.1高分子光致发光材料 2.1.1简介 高分子光致发光材料是将荧光物质(芳香稠环、电荷转移络合物或金属)引入高分子骨架的功能高分子材料。高分子光致发材料均为含有共轭结构的高聚物材料。 2.1.2发光机理 高分子在受到可见光、紫外光、X一射线等照射后吸收光能,高分子电子壳层内的电子向较高能级跃迁或电子基体完全脱离,形成空穴和电子.空穴可能沿高分子移动,并被束缚在各个发光中心上,辐射是由于电子返回较低能量级或电子和空穴在结合所致。高分子把吸收的大部分能量以辐射的形式耗散,从而可以产生发光现象[8]。 2.1.3分类 按照引入荧光物质而分为三类 2.1.3.1高分子骨架上连接了芳香稠环结构的荧光材料,应稠环芳烃具有较大的共轭体系和平面刚性结构,从而具有较高的荧光量子效率。其中广泛应用的是芘的衍生物,如图1。 图1 芘的衍生物 2.1.3.2共轭结构的分子内电荷转移化合物有以下几类 2.1. 3.2.1两个苯环之间以一C=C一相连的共轭结构的衍生物[9]如图2。吸收光能激发至激发态时,分子内原有的电荷密度分布发生了变化。这类化合物是荧光增白剂中用量最大的荧光材料,常被用于太阳能收集和染料着色。 图2 共轭结构的衍生物 2 .1.3.2 .2香豆素衍生物[10-12]如图3。在香豆素母体上引入胺基类取代基

可调节荧光的颜色,它们可发射出蓝绿岛红色的荧光,已用作有机电致发光材料。但是,香豆索类衍 生物往往只在溶液中有高的量子效率,而在固态容易发生荧光猝灭,故常以混合掺杂形式使用。 图3 香豆素衍生物 2.1.3.3高分子金属配合物发光材料,许多配体分子在自由状态下并不发光,但与金属离子形成配合物后却能转变成强的发光物质。8一羟基喹啉与Al、Be、Ga、In、Sc、Yb、Zn、Zr等金属离子形成发光配合物[13]。 2.1.3.3.1掺杂 目前,掺杂小分子的高分光致发光材料被广泛应用于PELD中。常见用于掺杂的小分子有:发蓝光的吡唑磷衍生物、发黄光的萘酰亚胺衍生物以及发红光的DCM 等。把有机小分子稀土络合物通过溶剂溶解或熔融共混的方式掺杂到高分子体系中,一方面可以提高络合物稳定性.另一方面可以改善稀土的荧光性能。 2.1.3.3.2化学键合法 汪联辉等人先后研究了烷氧基钕,烷氧基钐单体与甲基丙烯酸甲酯、苯乙烯等共聚及其荧光性质。发现在共聚物中三价钕离子的荧光特性受其基质影响很小,且其荧光强度随钕含量增加而线性增大,在钕含量高达8%时仍未出现荧光浓度淬灭现象。 2.2电致发光高分子材料 2.2.1简介 有机半导体的电致发光现象早就被人们所熟知。电致发光高分子材料是指电流通过材料时能导致发光现象的一类功能材料。目前,有机高分子电致发光器件(PLED)材料以其独特的光电性能和易加工性吸引了众多学者的研究兴趣。 2.2.2发光机理 与光致发光的电子跃迁机理不同,电致发光是通过正负电极向发光层的最高占有轨道(HOMO)和最低空轨道(LUMO)分别注入空穴和电子,这些在电极附近生成的空

相关文档
最新文档