变压器纵差动保护动作电流的整定原则

变压器纵差动保护动作电流的整定原则
变压器纵差动保护动作电流的整定原则

变压器纵差动保护动作电流的整定原则差动保护初始动作电流的整定原则,是按躲过正常工况下的最大不平衡电流来整定;拐点电流的整定原则,应使差动保护能躲过区外较小故障电流及外部故障切除后的暂态过程中产生的最大不平衡电流。比率制动系数的整定原则,是使被保护设备出口短路时产生的最大不平衡电流在制动特性的边界线之下。

为确保变压器差动保护的动作灵敏、可靠,其动作特性的整定值(除BCH型之外)如下:

Idz0=(0.4,0.5)IN,

Izd0=(0.6,0.7)IN,

Kz=0.4,0.5

式中,Idz0为差动保护的初始动作电流;I,zd0为拐点电流;Kz =tgα点电流等于零的;IN为额定电流(TA二次值)。

电流速断保护限时电流速断保护定时限过电流保护的特点

速断保护是一种短路保护,为了使速断保护动作具有选择性,一般电力系统中速断保护其实都带有一定的时限,这就是限时速断,离负荷越近的开关保护时限设置得越短,末端的开关时限可以设置为零,这就成速断保护,这样就能保证在短路故障发生时近故障点的开关先跳闸,避免越级跳闸。定时限过流保护的目的是保护回路不过载,与限时速断保护的区别在于整定的电流相对较小,而时限相对较长。这三种保护因为用途的不同,不能说各有什么优缺点,并且往往限时速断和定时限过流保护是结合使用的。

瞬时电流速断保护与限时电流速断保护的区别就是,瞬时是没有带时限的,动作值达到整定值就瞬时出口跳闸,不经过任何延时。而限时电流速断是带有延时的,动作值达到整定值后经过一定的延时才启动出口跳闸;

瞬时电流速断保护与限时电流速断保护的区别,限时电流速断保护与过电流保护有什么不同,

瞬时电流速断和限时电流速断除了时间上的区别外就是他们在整定的大小和范围的不同,瞬时速断保护的范围比限时的要小,整定动作值要比限时速断的要大。

过电流保护和限时电流速断的区别?

电流速断,限时电流速断和过电流保护都是反映电流升高而动作的保护装置。

区别:速断是按躲开某一点的最大短路电流来整定,限时速断是按照躲开下一级相邻元件电流速断保护的动作电流来整定,而过流保护是按躲开最大负荷电流来整定的。

由于电流速断不能保护线路的全长,限时电流速断又不能作为相邻元件的后备保护,因此保证迅速而又有选择的切除故障,常将三者组合使用,构成三段电流保护。

过电流保护的整定值为什么要考虑继电器的返回系数,而电流速断保护则不需要考虑,

这是综合考虑保护的灵敏性和可靠性的结果。为了保证保护的灵敏性,动作的整定值

应当尽量小,但是过电流的动作值与额定运行电流相差不大,这样有可能造成保护误动作,从而降低了供电的可靠性。所以我们为过电流保护加了时限,过电流必须要持续一定的时间才会动作,如果在时限内电流降到返回值以下,那么保护就复归不用动作了,从而在不降低灵敏性的情况下增加了可靠性。而电流速断本身动作电流比较大,且没有时间的限制,只要电流一超过速断的整定值,马上动作跳闸,所以不需要设置返回值。

何谓线路过电流保护,瞬时电流速断保护?和它们的区别,

两种保护的基本原理是相同的。

瞬时电流速断保护的启动电流较大,一旦达到这一整定数值,保护立即启动,发出指令动作开关,切断短路故障;过电流保护一是启动电流较小,二是出口加了一个延时继电器,这样,如果出现电流瞬间波动,也产会引起误切开关,同时,也是速断保护的后备保护。

由于更换新断路器,互感器一次侧不能调换,只能P2进P1出,是差动保护,能否把二次侧反接使用呢?

可以,正确接线的情况下互感器的一次侧和二次侧的相位差是几乎为零的,一次反接,二次也反接就可以了~没有任何问题~

综合保护整定原则介绍

一、电动机综合保护整定原则 1、差动电流速断保护 按躲过电动机空载投入时最大暂态电流引起的不平衡电流最大外部以及短路时的不平衡电流整定整定 一般取: I dz=KI e/n 式中:I dz:差电流速断的动作电流 I e:电动机的额定电流 K:一般取8~10 2、纵差保护 1)纵差保护最小动作电流的整定最小动作电流应大于电动机启动过程中时的不平衡电流 I dz.min=K KΔmI e/n 式中: I e:电动机的额定电流 n:电流互感器的变比 K K:可靠系数,取3~4 Δm:由于电流互感器变比未完全匹配产生的误差,一般取0.1 在工程实用整定计算中可选取I dz.min=(0.3~0.6)I e/n。 2)比率制动系数K 按最大外部短路电流下差动保护不误动的条件,计算最大制动系数 K =K K K fzq K tx K c 式中: K tx:电流互感器的同型系数,K tx=0.5 K K:可靠系数,取2~3 K c:电流互感器的比误差,取0.1 K fzq:非周期分量系数,取1.5~2.0 计算值K max=0.3,但考虑电流互感器的饱和和暂态特性畸变的影响,在工程实用整定计算中可选取K=0.3~0.6 3、电流速断保护 整定原则:躲过电动机启动时的产生的最大电流,但在正常运行中又要有足够的灵敏度; 1)Izd = K K.Istart K为可靠系数,一般地Kk=1.3 Istart为电动机启动的最大电流,该电流值可以通过启动电机时记录保护中记录的最大电流取得;或根据动机标称启动电流得到;

2)若Istart不好确定时,可根据下面推荐进行计算Istart; 单鼠笼: Istart=(6~7)Ie 双鼠笼: Istart=(4~5)Ie 绕线式: Istart=(3~4)Ie Idz=K*Izd 电动机启动过程中K=1,启动结束后K=0.5; 即当电动机启动完成后速断定值自动降低为原定值的50%。可有效地防止启动过程中因启动电流过大引起的误动,同时还能保证正常运行中保护有较高的灵敏性。 3)速断动作时间tsd 根据现场运行经验,一般取取tsd =0.05s 4、电动机启动时间tqd 按电动机的实际启动时间并留有一定裕度整定,可取tqd =1.2倍实际启动时间。(10-15S) 5、负序过流保护 负序动作电流I2dz,按躲过正常运行时允许的负序电流整定 一般地: 保护断相和反相等严重不平衡时,可取I2dz =(0.6~0.8)Ie 作为灵敏的不平衡保护时,可取I2dz =(0.2~0.4)Ie 6、接地保护 保护装置的一次动作电流,按躲过被保护分支外部单相接地故障时,从被保护元件流出的电容电流及按最小灵敏系数1.25整定 Idz ≥Kk Icx Idz ≤(Ic∑-Icx)/1.25 式中: Icx:被保护线路外部发生单相接地故障时,从被保护元件流出的电容电流 Ic∑:电网的总单相接地电容电流 Kk:可靠系数,可取Kk=4~5 7、过热保护 动作判据: (1) 电动机发热时间常数 I1 电动机实际运行电流的正序分量 I2 电动机实际运行电流的负序分量 Ie 电动机实际额定电流 Ieq 电动机实际运行电流的等效电流,计算方法动作见(2); t 电动机过热实际时间,计算方法见动作判据(1);

变压器差的动保护原理(详细)

变压器差动保护 一:这里讲的是差动保护的一种,即变压器比例制动式完全纵差保护(以下简称差动); 二:差动保护的定义 由于在各种参考书中没有找到差动保护的具体定义,这里只根据自己所掌握的知识给差动保护下一个定义:当区内发生某些短路性故障的时候,在变压器各侧电流互感器CT的二次回路中将产生大小相同,相位不同的短路电流,当这些短路电流的向量和即差流达到一定值时,跳开变压器各侧断路器的保护,就是变压器差动保护 三:下面我以两圈变变压器为例,针对以上所述变压器差动保护的定义,对差动保护进行阐述: 1、图一所示:为一两圈变变压器,具体参数如下:主变高压侧电压U高 =220KV,主变低压侧电压U低=110KV,变压器容量Sn=240000KV A, I1’:流过变压器高压侧的一次电流; I”:流过变压器低压侧的一次电流; I2’:流过变压器高压侧所装设电流互感器即CT1的二次电流; I2”:流过变压器低压侧所装设电流互感器即CT1的二次电流; nh:高压侧电流互感器CT1变比; nl:低压侧电流互感器CT2变比; nB:变压器的变比; 各参数之间的关系:I1’/ I2’= nh I”/ I2”= nl I2’= I2” I1’/ I”= nh/ nl=1/ nB 2、区内:CT1到CT2的范围之内; 3、反映故障类型:高压侧内部相间短路故障,高压侧(中性点直接接地) 单相接地故障以及匝间、层间短路故障;

四:差动的特性 1、比率制动:如图二所示,为差动保护比率特性的曲线图: 下面我们就以上图讲一下差动保护的比率特性: o:图二的坐标原点; f:差动保护的最小制动电流; d:差动保护的最小动作电流; p:比率制动斜线上的任一点; e:p点的纵坐标; b:p点的横坐标; 动作区:在of范围内,由于电流小于最小制动电流,因此在此范围内,只要电流大于最小动作电流Iopo,差动保护动作;当电流大于f点时, 由于电流大于最小制动电流,此时保护开始进行比率制动运算,曲 线抬高,此时只有当电流在比率制动曲线以上时保护动作;因此, 图中阴影部分,即差动保护的动作区; 制动区:当电流在落在曲线以下而大于最小动作电流的时候,由于受比率制动系数的制约,保护部动作,这个区域就是差动保护的制动区; 比率制动系数K:实际上比率制动系数,就是图二中斜线的斜率,因此我们只要计算出此斜线的斜率,就等于算出了比率制动系数。以p点为 例:计算出斜线pc的斜率K=pa/ac=(pb-ab)/(ob-of);举例说明一下: 差动保护有关定值整定如下:最小动作电流Iopo=2,最小制动电流 Iopo=5,比率制动系数k=0.5;按照做差动保护比率制动系数的方法, 施加高压侧电流I1=6A,180度,低压侧电流I2=6A,0度,固定I1升 I2,当I2升到9.4A的时候保护动作,计算一下此时的比率制动系数。 由于两圈变差动的制动电流为(I1+I2)/2,因此,Izd=(9.4+6)/2=7.7, 所以K=(9.4-6-2)/(7.7-5)=1.4/2.7=0.52; 2、谐波制动:当差动电流中的谐波含量达到一定值的时候,我们的装置就 判此电流为非故障电流,进行谐波闭锁。500kv一下等级的变压器之

变压器差动保护的整定_运行和动作后的判断和处理

311、有机锗(-羧乙基锗-Ge132)治疗老年智力障碍 安徽黄山市人民医院报道,治疗对象随机分成甲乙丙三组,使用小剂量、大剂量均有提高SOD作用。上海二医大药理组和上海铁道医学院药理组的动物实验提示,有机锗可提高老年小鼠对三臂等长Y型迷宫的空间分辨学习记忆能力。用慢性悬吊应激法致学习、记忆功能障碍的动物模型观察结果均表明,有机锗能提高慢性应激负荷与正常小鼠的学习与记忆能力。 312、用于皮肤护品 有机锗在含量低于1%浓度下,对皮肤无刺激作用,由于它稳定性的特点(将试剂每天3小时置于阳光下,12个月未发生分解,置于50℃环境中,观察3个月,未发生变化)对化妆品是很重要的。有机锗用于美容或化妆品可以制成不同的剂型,如乳剂、软膏、水剂、粉剂等,用含有0.5%有机锗纳盐对32-60岁有皮肤色素沉着的妇女实验,结果表明试测者皮肤变得光滑、丰润,小皱纹消失,色素及班点改善,有机锗配成霜、液加入必要的配料。涂手及面部,皮肤变得光滑而未产生过敏及其它副作用。 3.3、有机锗用于肿瘤治疗 临床研究较多的是螺旋锗治疗晚期肿瘤,但对前列腺癌、恶性黑色素瘤、晚期非何杰金氏淋巴瘤病人治疗无明显效果。日本报道,有机锗Ge-132对胰腺瓢柔毁、肺癌、胃癌及多发性骨髓瘤治疗取得一定疗效,但对喉癌疗效不佳。 4、锗的毒性 有人做过Ge-132的药代动力学实验,发现无积蓄现象;毒理实验证明毒性低;不引起畸形及生长发育障碍;急性及亚急性、慢性毒性试验,未见毒性反应;致畸试验、繁殖试验未见对胎仔生长发育有不良影响;皮肤刺激试验未见炎症、红肿及角化等异常现象。 Ge-132的各种试验都是在鼠类等小动物身上做的,它们与人类还有很大差别,在动物身上做的短期观察不等于人长期大量服用的后果,需要进一步观察服用锗化合物的迟发毒副作用,因大多数锗中毒都发生在服锗三个月至半年之后。大量吸入金属锗及氧化锗后,可引起肺部病理变化,吸入氧化锗可导致肾脏损害。日本已有几十人因服无机锗保健或营养而中毒,招致肾、血液、消化、神经系统等损害以至八人死亡。无机锗有毒,有机锗(包括Ge-132)也有毒性。三乙基锗有一定的毒性,螺锗对肝、肾、造血系统有明显毒性,Ge-132、Ge-201、CEG等有机锗服用常用剂量也会引起恶心呕吐,腹泻,心脏损伤(心肌疲劳、冠状动脉供血不足、室性早博、房室传导阻滞),长期或大量应用时,会导致肝,肾损害及震颤,干扰磷钙代谢,在日本及英国都有食物补充锗引起中毒死亡的正式报告,既使是更符合生理形式的氨基酸锗,用量过大也会使动物腹泻,活动减少,在骨中有积蓄作用。 因此,英国、德国卫生部门提醒人们注意锗的中毒,并对锗产品采取了一定的限制措施,我国卫生部也转发了世界卫生组织“药品情况”对锗的意见,美国学术组织则大声呼吁,将锗制品从市场上清除出去。 有机锗对生物体有着许多作用,由于它的药理作用,医疗效应,锗在我国目前尚作为保健促进剂,发挥辅助效能,人们对锗的研究在许多方面是未知数。如何能更好地利用锗为人民健康服务,使有机锗化合物研究和开发成为人类生物效应调节剂及体内调节平衡元素。这是尚待研究的问题,也是我们要努力的。 变压器差动保护的整定、运行和动作后的判断和处理 福建省上京矿务局供电所 蒋先进 电力变压器是厂矿供电系统中重要的电气设备之一,必须严格按照规程要求、合理配置各种保护装置,以及变压器的下列各种故障异常情况进行可靠的保持。 1、绕组及其出线的相间短路故障; 2、绕组的匝间短路故障; 3、外部相同短路引起的过电流; 4、中性点直接接地电力网中,外部接地短路引起的变压器过电流及中性过电压; 5、过负荷; 6、油面过低; 本文重点介绍变压器的差动保护鉴定、运行注意 34 科技交流 学会月刊1998年第11期

变压器保护定值整定

变压器定值整定说明 注:根据具体保护装置不同,可能产品与说明书有不符之处,以实际产品为主。 差动保护 (1)、平衡系数的计算 1 2 3 4 5 侧的二次电流。如果按上述的基准电流计算的平衡系数大于4,那么要更换基准电流I b,直到平衡系数满足 0.1

I n 为变压器的二次额定电流, K rel 为可靠系数,K rel =1.3—1.5; f i(n)为电流互感器在额定电流下的比值误差。f i(n)=±0.03(10P ),f i(n)=±0.01(5P ) ΔU 为变压器分接头调节引起的误差(相对额定电压); Δm 为TA 和TAA 变比未完全匹配产生的误差,Δm 一般取0.05。 一般情况下可取: I op.0=(0.2—0.5)I n 。 (3) I res.0(4) a I Δm 2=0.05; b 、 式中的符号与三圈变压器一样。 最大制动系数为: K res.max =res unb.max rel I I K Ires 为差动的制动电流,它与差动保护原理、制动回路的接线方式有关,对对于两圈变压器I res = I s.max 。 比率制动系数:

K= res.max res.0res.max op.0res.max /I I -1/I I -K 一般取K=0.5。 (5)、灵敏度的计算 在系统最小运行方式下,计算变压器出口金属性短路的最小短路电流I s.min ,同时计算相应的制动电流I res ;在动作特性曲线上查出相应的动作电流I op ;则灵敏系数K sen 为: K sen = op I I 要求K sen ≥(6)(7 式中:I K I e (81、低电压的整定和灵敏度系数校验 躲过电动机自起动时的电压整定: 当低电压继电器由变压器低压侧电压互感器供电时, U op=(0.5~0.6)U n 当低电压继电器由变压器高压侧电压互感器供电时, U op=0.7U n 灵敏系数校验

变压器综合整定原则

变压器综合保护整定原则 1、差动电流速断保护 按躲过变压器空载投入时励磁涌流和外部短路时流入保护的最大不平衡电流整定一般取:dz e I KI n = 式中:dz I :差动电流速断的动作电流 e I :变压器的额定电流 K :倍数 6300KVA 及以下 712: 630031500KVA : 4.57.0: 40000120000KVA : 3.0 6.0: 120000KVA 2.0 5.0: 2、纵差保护 1)纵差保护最小动作电流的整定 最小动作电流应大于变压器额定负载时的不平衡电流.min ()dz K c e I K K U m I n =+?+? 式中:e I :变压器的额定电流 n :电流互感器的变比 K K :可靠系数,取1.3 1.5: c K :电流互感器的比误差,10P 型取0.032?,5P 型和TP 型取0.012? U ?:变压器调压引起的误差,取调压范围中偏离额定值的最大值 m ?:由于电流互感器变比未完全匹配产生的误差,一般取0.05 在工程实用整定计算中可选取().min 0.30.5dz e I I n =:

2)比率制动系数K 的整定 纵差保护的动作电流应大于外部短路时流过差动回路的不平衡电流。 .max ()bph fzq tx c K I K K K U m I n =+?+? 式中:tx K :电流互感器的同型系数, 1.0tx K = .max K I :外部短路时,最大穿越短路电流周期分量 fzq K :非周期分量系数,两侧同为TP 级电流互感器取1.0,两侧同为 P 级电流互感器取1.5 2.0:。 U ?:变压器调压引起的误差,取调压范围中偏离额定值的最大值 m ?:由于电流互感器变比未完全匹配产生的误差,一般取0.05 K K :可靠系数,取1.3 1.5: 差动保护的动作电流 .max .max dz K bph I K I = 最大制动系数 max .max .max dz zd K I I = 当.max .max zd K I I =时,max .max .max K bph K K K I I = 式中:.max K I :最大短路电流 在工程实用整定计算中可60o 选取0.3 1.0K =: 3)二次谐波制动比的整定 一般取:15%20%: 4)涌流间断角的整定 闭锁角可取:6070o o :

变压器差动保护整定计算

变压器差动保护整定计算 1. 比率差动 装置中的平衡系数的计算 1).计算变压器各侧一次额定电流: n n n U S I 113= 式中n S 为变压器最大额定容量,n U 1为变压器计算侧额定电压。 2).计算变压器各侧二次额定电流: LH n n n I I 12= 式中n I 1为变压器计算侧一次额定电流,LH n 为变压器计算侧TA 变比。 3).计算变压器各侧平衡系数: b n n PH K I I K ?= -2min 2,其中)4,min(min 2max 2--=n n b I I K 式中n I 2为变压器计算侧二次额定电流,min 2-n I 为变压器各侧二次额定电流值中最小值,max 2-n I 为变压器各侧二次额定电流值中最大值。

平衡系数的计算方法即以变压器各侧中二次额定电流为最小的一侧为基准,其它侧依次放大。若最大二次额定电流与最小二次额定电流的比值大于4,则取放大倍数最大的一侧倍数为4,其它侧依次减小;若最大二次额定电流与最小二次额定电流的比值小于4,则取放大倍数最小的一侧倍数为1,其它侧依次放大。装置为了保证精度,所能接受的最小系数ph K 为,因此差动保护各侧电流平衡系数调整范围最大可达16倍。 差动各侧电流相位差的补偿 变压器各侧电流互感器采用星形接线,二次电流直接接入本装置。电流互感器各侧的极性都以母线侧为极性端。 变压器各侧TA 二次电流相位由软件调整,装置采用Δ->Y 变化调整差流平衡,这样可明确区分涌流和故障的特征,大大加快保护的动作速度。对于Yo/Δ-11的接线,其校正方法如下: Yo 侧: )0('I I I A A ? ??-= )0(' I I I B B ? ? ? -= )0('I I I C C ? ??-= Δ侧: 3/ )('c a a I I I ? ??-=

110KV主变压器综合保护整定原则

110KV 主变压器综合保护整定原则 主变差动保护里主要包括有差动速断、比例制动差动、二次谐波系数、平衡系数等定值。主要计算过程: 1、收集主变容量、额定电压、额定电流及TA 变比等参数; 2、了解保护装置原理,确认保护是发展变化 高压还是低压侧为基准侧; 3、看图确认电流互感器的二次接线方式; 4、注意主变投运后带负荷检查电流相量。 举例说明: 变压器铭牌额定容量31.5MV A ,TA 二次额定电流5A ,高压侧额定电压110KV ,高压侧TA 变比400/5,低压侧额定电压6.3KV ,低压侧TA 变比3000/5,变压器一次接线方式Y/△-11, TA 二次接线高低压均采用星形接线。 1、变压器额定电流计算: 1) 计算变压器各侧额定电流 e e e U S I 3= 式中Se -变压器最大额定容量,Ue -计算侧额 定电压 2) 计算各侧二次额定电流及平衡系数 H LH H e He n I I ..= =165.4/80=2.067A M LH M e Me n I I ..==??? L LH L e Le n I I ..= =2886/600=4.81A 式中:H e I .——高压一次额定电流, He I ——高压二次额定电流

H LH n .—高压侧CT 变比, 保护定值的确定 1、差动电流速断保护 按躲过变压器空载投入时励磁涌流和外部短路时流入保护的最大不平衡电流整定 一般取: I dz =KI e /n 式中:I dz :差电流速断的动作电流 I e :为保护基准侧额定电流;德威特公司的差动保护是以低压侧为基准侧) K :倍数 6300KV A 及以下 7~12 6300~31500KV A 4.5~7.0 40000~120000KV A 3.0~6.0 120000KV A 2.0~5.0 2、纵差保护 1) 纵差保护最小动作电流的整定 最小动作电流应大于变压器额定负载时的不平衡电流 I dz.min =K K (K c +ΔU+Δm)I e /n 式中: I e :变压器的额定电流 n :电流互感器的变比 K K :可靠系数,取1.3~1.5 K c :电流互感器的比误差,10P 型取0.03×2,5P 型和TP 型取0.01×2

变压器差动保护计算要领

变压器比率制动纵差保护 整定计算步骤及要领 1.计算制动电流启动值 正常运行中变压器负荷电流通常在额定电流I e 以下,不平衡I bp 电流很小, 无需比率制动,差动动作电流I cd 为恒定,不随制动电流的增大而增大。 所以制动电流启动值:I Zd qd =(0.8~1.0)I e /n L 式中:n L -电流互感器变比 制动电流启动值也就是一折线的拐点电流值。 2.计算差动保护启动电流值 差动保护启动电流(门槛值)现场一般取:I cd qd =(0.4~0.7)I e /n L 如果有条件,最好在现场实测变压器的不平衡电流I bph ,作为差动启动电流 整定计算的依据。 3.计算差动保护速断电流值 差动速断电流值:I cd sd =(6~8)I e /n L 4.计算比率制动系数 比率制动系数K zd 与变压器外部三相最大短路电流、制动电流启动值相关, 与差动电流启动值、速断值相关。 计算比率制动系数:K zd = e I .max )3(I e I 23.0.max )3(I 5.40--外外 5.计算制动电流 制动电流:I Zd =(I cd sd - I cd qd )/ K zd +I Zd qd 举 例 一、已知参数: 主变容量=10000KVA ;额定电压=35/10.5KV ;

计算变压器一次侧额定电流=35 310000?=165(A ); 一次侧CT 变比=300/5、CT 二次额定电流=60 165=2.75(A ) 主变阻抗电压百分比=7.33% 通过短路电流计算已知主变外部三相最大短路电流=2095(A ) 二、计算定值 1.计算制动电流启动定值:I Zd qd =1.0I e /n L =60 165=2.75(A ) 2.计算差动启动电流定值:I cd qd =0.7I 2e =0.7×2.75=1.925 取I cd qd =2.0 3.计算差动速断电流定值:I cd sd =8I e /n L =60 1658?= 22(A ) 4. 计算比率制动系数:K zd =e max )3(e .max )3(I .I I 23.0I 5.40--外外 =165 209516523.02095I 5.40-?-? =0.468 取K zd =0.5 5.计算制动电流:I Zd =(I cd sd - I cd qd )/ K zd +I Zd qd =(22-2)/0.5+2.75 =42.75A 取I Zd =43A 说明:本计算公式中的代表符号与说明书不一致,在使用时应注意。

变压器纵差动保护动作电流的整定原则是什么

变压器纵差动保护动作电流的整定原则是什么? .(1)大于变压器的最大负荷电流; (2)躲过区外短路时的最大不平衡电流; (3)躲过变压器的励磁涌流。 39.什么是自动重合闸?电力系统为什么要采用自动重合 闸? 答:自动重合闸装置是将因故障跳开后的断路器按需要自动投入的一种自动装置。电力系统运行经验表明,架空线路绝大多数的故障都是瞬时性的,永久性故障一般不到10%。因此,在由继电保护动作切除短路故障之 后,电弧将瞬间熄灭,绝大多数情况下短路处的绝缘可以自动恢复。因此,自动将断路器重合,不仅提高了供电的安全性,减少了停电损失,而且还提高了电力系统的暂态稳定水平,增大了高压线路的送电容量。所以,架空线路要采用自动重合闸装置。 什么是主保护、后备保护、辅助保护? 答:主保护是指能满足系统稳定和安全要求,以最快速度有选择地切除被保护设备和线路故障的保护。 后备保护是指当主保护或断路器拒动时,起后备作用的保护。后备保 护又分为近后备和远后备两种:(1)近后备保护是当主保护拒动时, 由本线路或设备的另一套保护来切除故障以实现的后备保护(2)远后 备保护是当主保护或断路器拒动时,由前一级线路或设备的保护来切 除故障以实现的后备保护. 辅助保护是为弥补主保护和后备保护性能的不足,或当主保护及后备 保护退出运行时而增设的简单保护。 、何谓主保护、后备保护?何谓近后备保护、远后备保护?(8分) 答:所谓主保护是指能以较短时限切除被保护线路(或元件)全长上的故障的保护装置。(2分) 考虑到主保护或断路器可能拒动而配置的保护,称为后备保护。(2分) 当电气元件的主保护拒动时,由本元件的另一套保护起后备作用,称为近后备。(2分)

变压器微机差动保护的整定计算

变压器微机差动保护的整定计算 作者:程秀娟 (扬子石油化工设计公司南京210048) 摘要:本文首先对变压器差动保护误动的原因作了初步分析,然后介绍了三段折线式比率制动特性的变压器差动保护的基本原理,并对各种参数的整定值设置进行了详细论述。 关键词:变压器差动保护三折线参数整定 1 前言 电力变压器是电力系统中十分重要的供电设备,它出现故障将对供电可靠性和系统的正常运行带来严重的影响。纵联差动保护是大容量变压器的主保护之一,然而,相对于线路保护和发电机保护来说,变压器保护的正确动作率显得较低,据各大电网的不完全统计,正确动作率尚不足70%。究其原因,就在于变压器结构及其内部独特的电磁关系。要提高变压器差动保护的动作正确率,首先必须找出误动的原因,从而在整定计算时充分考虑这些因素,才能有效地避免误动的出现。 2 变压器差动保护误动原因分析 2.1 空载投入时误动 变压器空载投入时瞬间的励磁电流可能很大,其值可达额定电流的10倍以上,该电流称为励磁涌流。其产生的根本原因是铁心中磁通在合闸瞬间不能突变,在合闸瞬间产生了非周期性分量磁通。 励磁涌流波形特征是:含有很大成分的非周期分量;含有大量的谐波分量,并以二次谐波为主;出现间断。励磁涌流的影响因素有:电源电压值和合闸初相角;合闸前铁芯磁通值和剩磁方向;系统等值阻抗值和相角;变压器绕组的接线方式和中心点接地方式;铁芯材质的磁化特性、磁滞特性等,铁芯结构型式、工艺组装水平。 为防止变压器空投时保护误动,其差动保护通常利用二次谐波作制动。原理是通过计算差动电流中的二次谐波电流分量来判断是否发生励磁涌流。当出现励磁涌流时应有:Id2 > K I d1。其中,Id1、Id2分别为差动电流中的基波和二次谐波电流的幅值;K为二次谐波制动比。但是,由于变压器磁特性的变化,某些工况下励磁涌流的二次谐波含量低,容易导致误动;而大容量变压器、远距离输电的发展,使得内部故障时暂态电流可能产生较大二次谐波,容易导致拒动。这时,就必须选用其它制动方式,如偶次谐波电流制动、判断电流间断角识别励磁涌流、半波叠加制动等。 2.2 区外短路时误动

高压电动机综合保护整定原则

电动机综合保护整定原则 1、差动电流速断保护 按躲过电动机空载投入时最大暂态电流引起的不平衡电流最大外部以及短路时的不平衡电流整定整定 一般取:I dz=KI e/n 式中:I dz:差电流速断的动作电流 I e:电动机的额定电流 K:一般取8~10 2、纵差保护 1)纵差保护最小动作电流的整定最小动作电流应大于电动机启动过程中时的不平衡电流 I dz.min=K KΔmI e/n 式中:I e:电动机的额定电流 n:电流互感器的变比 K K:可靠系数,取3~4 Δm:由于电流互感器变比未完全匹配产生的误差,一般取0.1 在工程实用整定计算中可选取I dz.min=(0.3~0.6)I e/n。 2)比率制动系数K 按最大外部短路电流下差动保护不误动的条件,计算最大制动系数 K =K K K fzq K tx K c 式中:K tx:电流互感器的同型系数,K tx=0.5

K K:可靠系数,取2~3 K c:电流互感器的比误差,取0.1 K fzq:非周期分量系数,取1.5~2.0 计算值K max=0.3,但考虑电流互感器的饱和和暂态特性畸变的影响,在工程实用整定计算中可选取K=0.3~0.6 3、电流速断保护 整定原则:躲过电动机启动时的产生的最大电流,但在正常运行中又要有足够的灵敏度; 1)Izd = K K.Istart K为可靠系数,一般地Kk=1.3 Istart为电动机启动的最大电流,该电流值可以通过启动电机时记录保护中记录的最大电流取得;或根据动机标称启动电流得到;2)若Istart不好确定时,可根据下面推荐进行计算Istart; 单鼠笼: Istart=(6~7)Ie 双鼠笼: Istart=(4~5)Ie 绕线式: Istart=(3~4)Ie Idz=K*Izd 电动机启动过程中K=1,启动结束后K=0.5; 即当电动机启动完成后速断定值自动降低为原定值的50%。可有效地防止启动过程中因启动电流过大引起的误动,同时还能保证正常运行中保护有较高的灵敏性。 3)速断动作时间tsd 根据现场运行经验,一般取取tsd =0.05s

变压器差动电流计算原理之变压器CT的接线方式

上一期我们和大家一起了解了变压器的接线组别,定量分析了变压器高低压侧一次电流的相位、幅值关系。我们的继电保护装置在进行差流计算时使用的是二次电流,因此需要经过电流互感器(CT)将一次电流转换为供保护使用的二次电流。本期我们和大家一起来讨论一下变压器CT的接线方式。 1、CT的极性 我们先来了解一下CT接线的极性问题。这就需要搞清楚几个名词:极性端、同名端、减极性。 极性端一般用“*”标记,在图中,一次侧P1为极性端,P2为非极性端,一般设计P1装于母线侧(或变压器侧),P2装于负荷侧。二次侧S1为极性端,S2为非极性端。P1和S1(P2和S2)互为同名端。 至于减极性,我们只需要简单的记住:若CT采用减极性,对于一次绕组电流从极性端流入,对于二次绕组电流从极性端流出。 如果将CT二次回路断开,将保护装置直接串联在一次回路中,流过装置的电流方向与CT减极性标注的二次电流方向相同。所以减极性标注对于判断二次电流的流向非常直观。

所以我国CT均采用减极性标注。 2、变压器两侧CT的接线方式 在模拟型变压器保护中,为了相位校正的需要CT有些情况下需要接成三角形。现在的微机型保护中,相位校正都在软件中实现,所以变压器两侧CT均使用Y接线。以下图所示的Yd-11变压器两侧CT的接线方式为例:

如图所示的CT接线形式,其高压侧及低压侧电流互感器二次绕组中,靠近变压器侧的端子连在一起,我们称为封CT的变压器侧。如果是靠近母线侧的二次绕组端子连在一起,则称为封CT的母线侧。 设高压侧电流互感器变比为nH,低压侧电流互感器变比为nL。分析流入保护装置的二次电流(Iha,Ihb,Ihc,Ila,Ilb,Ilc)与变压器一次电流(IHa,IHb,IHc,ILa,ILb,ILc)的对应关系。从图中可以看出高压侧二次电流从极性端流出,流入保护装置。低压侧二次电流从保护装置流出,从极性端流入CT二次绕组。若程序设定二次电流的方向以流入保护装置的(A,B,C)端为正方向,则有:

变压器纵差动保护动作电流的整定原则

变压器纵差动保护动作电流的整定原则差动保护初始动作电流的整定原则,是按躲过正常工况下的最大不平衡电流来整定;拐点电流的整定原则,应使差动保护能躲过区外较小故障电流及外部故障切除后的暂态过程中产生的最大不平衡电流。比率制动系数的整定原则,是使被保护设备出口短路时产生的最大不平衡电流在制动特性的边界线之下。 为确保变压器差动保护的动作灵敏、可靠,其动作特性的整定值(除BCH型之外)如下: Idz0=(0.4,0.5)IN, Izd0=(0.6,0.7)IN, Kz=0.4,0.5 式中,Idz0为差动保护的初始动作电流;I,zd0为拐点电流;Kz =tgα点电流等于零的;IN为额定电流(TA二次值)。 电流速断保护限时电流速断保护定时限过电流保护的特点 速断保护是一种短路保护,为了使速断保护动作具有选择性,一般电力系统中速断保护其实都带有一定的时限,这就是限时速断,离负荷越近的开关保护时限设置得越短,末端的开关时限可以设置为零,这就成速断保护,这样就能保证在短路故障发生时近故障点的开关先跳闸,避免越级跳闸。定时限过流保护的目的是保护回路不过载,与限时速断保护的区别在于整定的电流相对较小,而时限相对较长。这三种保护因为用途的不同,不能说各有什么优缺点,并且往往限时速断和定时限过流保护是结合使用的。 瞬时电流速断保护与限时电流速断保护的区别就是,瞬时是没有带时限的,动作值达到整定值就瞬时出口跳闸,不经过任何延时。而限时电流速断是带有延时的,动作值达到整定值后经过一定的延时才启动出口跳闸;

瞬时电流速断保护与限时电流速断保护的区别,限时电流速断保护与过电流保护有什么不同, 瞬时电流速断和限时电流速断除了时间上的区别外就是他们在整定的大小和范围的不同,瞬时速断保护的范围比限时的要小,整定动作值要比限时速断的要大。 过电流保护和限时电流速断的区别? 电流速断,限时电流速断和过电流保护都是反映电流升高而动作的保护装置。 区别:速断是按躲开某一点的最大短路电流来整定,限时速断是按照躲开下一级相邻元件电流速断保护的动作电流来整定,而过流保护是按躲开最大负荷电流来整定的。 由于电流速断不能保护线路的全长,限时电流速断又不能作为相邻元件的后备保护,因此保证迅速而又有选择的切除故障,常将三者组合使用,构成三段电流保护。 过电流保护的整定值为什么要考虑继电器的返回系数,而电流速断保护则不需要考虑, 这是综合考虑保护的灵敏性和可靠性的结果。为了保证保护的灵敏性,动作的整定值 应当尽量小,但是过电流的动作值与额定运行电流相差不大,这样有可能造成保护误动作,从而降低了供电的可靠性。所以我们为过电流保护加了时限,过电流必须要持续一定的时间才会动作,如果在时限内电流降到返回值以下,那么保护就复归不用动作了,从而在不降低灵敏性的情况下增加了可靠性。而电流速断本身动作电流比较大,且没有时间的限制,只要电流一超过速断的整定值,马上动作跳闸,所以不需要设置返回值。 何谓线路过电流保护,瞬时电流速断保护?和它们的区别, 两种保护的基本原理是相同的。

变压器差动保护的功能及定值计算

差动保护的功能及定值计算 1 微机变压器差动保护功能 1.1比率制动式差动保护 比率制动式差动保护作为变压器的主保护,能反映变压器内部相间短路故障,高压侧单相接地短路及匝间层间短路故障。当突变量大于0.25倍差动定值时投入,动作判据为; {Icd≥Icdset 当Izd≤Izdset时, Icd≥Icdset+K1(Izd-Izdset) 当Izd〉Izdset时, 电流方向以实际的功率方向为准。其中Icd为差电流: Icdset为差动保护整定计算值; Icdset为差动保护门槛计算值; Izd为保护制动电流 K1为比率制动系数(0.4~0.7)可选; H为变压器35kV侧流进差动保护实际电流; L为变压器10kV侧流进差动保护实际电流; 1. 2二次谐波闭锁功能 变压器投入时,励磁涌值为变压器额定电流的5~8倍,励磁涌中含有63%比率的二次谐波电流Im2。微机差动保护设置了二次谐波闭锁差动保护功能,来防止变压器空载投入时励磁涌流导致差动保护误动作。二次谐波制动功能的判据如下: Icd2≥K2Icd 式中,Icd为差动电流的基波分量; Icd2为差动电流中的二次谐波分量; K2为二次谐波制动系数(0.1~0.4)可选; 1.3差动速断保护 当变压器内部发生严重短路时,短路电流很大,由于铁芯饱和输出电压波形将发生畸变,为提高保护的可靠性和动作速度,差速断保护不受二次谐波闭锁条件限制直接动作,此功能由软件控制投入或退出。 1.4差流过大告警 动作判据为: Icd≥Icdset/2 式中,Icd为任一相的差动电流; Icdset为差动保护最小定值; 任一相差动电流大于差动电流定值一半时,运行超过3S后,发出差流过大告警信号。此功能由软件控制投入或退出。 1.5电流互感器二次回路断线监视功能 微机差动保护与传统常规差动保护在接线不同之处是: 为了判断电流互感器TA二次断线,差保高压侧TA必须接成星形接线,保护装置给出以下判据为: | a+ b+ c|>0.5A时,保护会发出断线警告信号,并由微机软件控制是否闭锁差动保护。此项功能均由自适应的门槛值控制,无需整定定值。 1.6变压器高压侧相位差与平衡补偿 Y,d——11组双绕组变压器,Y侧电流相位需要校正相位,常规接线高压侧TA的二次侧接成d型接线,而微机差动保护具有软件校正功能,只要投入Y/d功能即可,就校正了相位,相当于把二次接成了d型接线,TA二次输出线电流。 1.7变压器低压侧电流平衡系数 差保接线,变压器低压侧TA与高压侧TA二次电流平衡补偿,常规差保接线靠适当选择变压器两侧TA变比来实现,而微机差动保护是靠软件功能来完成,以高压侧二次电流为基

变压器的纵差动保护原理及整定方法

热电厂主变压器的纵差动保护原理及整定方法 浙江旺能环保股份有限公司 作者:周玉彩 一、构成变压器纵差动保护的基本原则 我们以双绕组变压器为例来说明实现纵差动保护的原理,如图1所示。由于变压器高压侧和低压侧的额定电流不同,因此,为了保证纵差动保护的正确工作,就必须适当选择两侧电流互感器的变比,使得在正常运行和外部故障时,两个二次电流相等,亦即在正常运行和外部故障时,差动回路的电流等于零。例如在图1中,应使 图 '2I =''2I = 。 同的。这个区别是由于线路的纵差动保护可以直接比较两侧电流的幅值和相位,而变压器的纵差动保护则必须考虑变压器变比的影响。 二、变压器纵差动保护的特点 变压器的纵差动保护同样需要躲开流过差动回路中的不平衡电流,而且由于差动回路中不平衡电流对于变压器纵差动保护的影响很大,因此我们应该对其不平衡电流产生的原因和消除的方法进行认真的研究,现分别讨论如下: 1、由变压器励磁涌流LY I 所产生的不平衡电流 变压器的励磁电流仅流经变压器的某一侧,因此,通过电流互感器反应到差动回路中不能平衡,在正常运行和外部故障的情况下,励磁电流较小,影响不是很大。但是当变压器空载投入和外部故障切除后电压恢复时,由于电磁感应的影响,可能出现数值很大的励磁电流(又称为励磁涌流)。励磁涌流有时可能达到额定电流的6~8倍,这就相当于变压器内部故障时的短路电流。因此必须想办法解决。为了消除励磁涌流的影响,首先应分析励磁涌流有哪些特点。经分析得出,励磁涌流具有以下特点: (1) 包含有很大成分的非周期分量,往往使涌流偏向于时间轴的一侧 ; (2) 包含有大量的高次谐波,而以二次谐波为主; (3) 波形之间出现间断,在一个周期中间断角为ɑ。 根据以上特点,在变压器纵差动保护中,防止励磁涌流影响的方法有: (1) 采用具有速饱和铁心的差动继电器; ?1′′ n ?1′

电动机综合保护整定原则

电动机综合保护整定原则 一、过热保护 过热保护涉及发热时间常数Tfr和散热时间Tsr二个定值。 1)发热时间常数Tfr 发热时间常数Tfr应由电动机制造厂提供,若制造厂没有提供该值,则可按下列方法之一进行估算。 A 由制造厂提供的电动机过负荷能力数据进行估算 如在X倍过负荷时允许运行t秒,则可得, Tfr =(X2-1.052)t 若有若干组过负荷能力数据,则取算出得Tfr值中最小者。 B 若已知电动机的温升值和电流密度,可用下式估算Tfr值: Tfr =(150×θe)×(θM /θe -1)/(1.05×Je2) 式中,θe:电动机定子绕组额定温升 θM:电动机所采用绝缘材料的极限温升 Je :定子绕组额定电流密度 例如:电动机采用B级绝缘,其极限温升θM =80℃,电动机定子绕组额定温升θe =45℃,定子绕组额定电流密度Je =3.5A/mm2,则: Tfr ={(150×45)/(1.05×3.52)}×(80/45-1)=408(s) C 由电动机启动电流下的定子温升决定发热时间常数 Tfr =(θ×Ist2×Ist)/θ1st 式中,θ:电动机额定连续运行时的稳定温升 Ist :电动机启动电流倍数 tst :电动机启动时间 θ1st:电动机启动时间的定子绕组温升 D 根据电动机运行规程估算Tfr值 例如:某电动机规定从冷态启动到满转速的连续启动次数不超过两次,又已知该电动机的启动电流倍数Ist和启动时间tst,则:

Tfr ≤2(Ist2-1.052)tst 2) 散热时间Tsr 按电动机过热后冷却至常态所需时间整定。 二、电动机过热禁止再启动保护 过热闭锁值θb按电动机再正常启动成功为原则整定,一般可取θb=0.5。 三、长启动保护 长启动保护涉及电动机额定启动电流Iqde 和电动机允许堵转时间tyd 二个定值。 1)电动机额定启动电流Iqde 取电动机再额定工况下启动时的启动电流(A)。 2)电动机允许堵转时间tyd 取电动机最长安全堵转时间(S)。 四、正序过流保护 正序过流保护涉及正序过流动作电流I1g1 和正序过流动作时间t1g1二个定值。 1)正序过流动作电流I1gl 一般可取I1gl=(1.5~2.0)Ie 2)正序过流动作时间t1gl 一般可取t1gl=(1.5~2.0)tyd 五、低电压保护 1)按切除不重要电动机的条件整定 低电压动作值: 对中温中压电厂Udz=60~65% Ue 对高温高压电厂Udz=65~70% 为了保护重要电动机的自起动,采用最小时限t=0.5S 2) 按躲过保证电动机自起动时供电母线的最小允许电压,并计入可靠系数及电压继电器的返回系数

变压器差动保护的平衡系数

变压器微机差动保护平衡系数说明 1、影响变压器差动保护差流计算的因素 1)、变压器高低压侧电流幅值不同造成的不平衡。由于变压器高低压侧电压等级不同,所以变压器高低压侧的电流幅值不同。 2)、变压器高低压侧电流相位不同造成的不平衡。由于变压器接线方式导致高低压侧电压的相位不同,所以变压器高低压侧的电流相位也不同。 3)、变压器高低压侧电流互感器的不匹配造成的不平衡。由于电流互感器的变比是一个标准的数值,而变压器虽然容量是一个标准值,但其额定电流是一个不规则的数,所以,电流互感器的选择并不考虑其对差流的影响。 2、消除电流不平衡的方法 1)、通过引入平衡系数消除高低压侧电流幅值不同及高低压侧电流互感器不匹配造成的不平衡。 2)、根据变压器高低压侧电流的相位关系,通过数学公式的计算,消除变压器高低压侧电流相位不同造成的不平衡。 3、平衡系数概念和计算方法 1)、概念:两个不同单位或相同单位而基准不同的物量归算到同一单位或同一基准时所用到的比例系数就是平衡系数。举例如下: a、一斤大米3元,一斤白面2元,归算到大米侧,白面的平衡系数为2/3。 b、一斤大米3元,一斤白面2元,归算到白面侧,大米的平衡系数为3/2。 c、一斤大米3元,一斤白面2元,一斤鸡蛋4元,归算到鸡蛋侧,大米的平衡系数为3/4,白面的平衡系数为1/2。 2)、计算方法

主变的型号为100000kVA-110kV/35kV,高压侧一次额定电流:Ieg1=524.9A,低压侧一次额定电流:Ie d1=1649.6A,高压侧电流互感器变比:800/5,低压侧电流互感器变比:2000/1。 a、以高压侧电流互感器为基准,把高压侧电流互感器折算到低压侧。 I12=800*110/35=2514.3A,K ph2=2000/ I12=2000/2514.3=0.80。 b、以低压侧电流互感器为基准,把低压侧电流互感器折算到高压侧。 I21=2000*35/110=636.4A,K ph1=800/ I21=800/636.4=1.26。 c、以变压器额定电流为基准,把高低压侧电流互感器折算到额定电流侧。 K ph1=800/Ieg1=800/524.9=1.52, K ph2=2000/Ie d1=2000/1649.6=1.21。 举例验证: 高压侧一次电流Ig1=450A,低压侧一次电流Id2=1414.3A。 高压侧二次电流实际采样为:Ig2=Ig1/800=450/800=0.5625; 低压侧二次电流实际采样为:I d2=I d1/2000=1414.3/2000=0.7072; a、以高压侧电流互感器为基准,把高压侧电流互感器折算到低压侧,K ph2=0.80。 I12=800*110/35=2514.3A,K ph1=2000/ I12=2000/2514.3=0.80 差流I d= Ig2*1-I d1* K ph2=0.5625*1-0.7072*0.80=0.00326≈0。 b、以低压侧电流互感器为基准,把低压侧电流互感器折算到高压侧,K ph1=1.26。 I21=2000*35/110=636.4A,K ph1=800/ I21=800/636.4=1.26 差流I d= Ig2* K ph1-I d1*1 =0.5625*1.26-0.7072*1=0.00326≈0。 c、以变压器额定电流为基准,把高低压侧电流互感器折算到额定电流侧。 差流I d= Ig2*K ph1-I d2*K ph2=0.5625*1.52-0.7072*1.21=0.000712≈0。 4、数学公式的计算方法

相关文档
最新文档