变压器差动保护比率制动测试方法

变压器差动保护比率制动测试方法
变压器差动保护比率制动测试方法

变压器差动保护比率制动测试方法

以Yn ,Yn ,d11型自耦变为例,总结了几类变压器保护算法的特点,给出了相应的试验接线方法和一般性试验步骤。

1 几个基本概念

1.1 比率制动系数

采用比率差动能显著提高变压器保护的灵敏度,国产微机型变压器差动保护常采用具有两段折线形的动作特性曲线,如图1所示。

I op

I

res

I res.min

图1 比率制动特性曲线图

比率制动曲线有两大决定因素,即动作电流和制动电流,按照预定的算法计算得到动作电流和制动电流,满足比率制动曲线即可动作。 1.2 变压器的Y ,d11接线组[1]

变压器组常采用Y ,d11接线组。需要指出的是,只要是Y ,d 型接线组,就有奇数次接线组别出现,按照我国电工技术规范,规定Y ,d11接线组为变压器标准接线组。如果出现Y ,d11接线组,在进行差流运算时就必须进行相位校正,这在下文的算法分析中将做详细讨论。 1.3 TA 极性端

按照惯例,保护TA 极性端位于母线侧。对于变压器差动保护,只要确立变压器各侧母线位置,就不难确定各侧TA 的极性端。而电工学上常采用减极性标注方法对TA 极性端进行标注,照此原则就能对流入保护装置电流的方向进行准确判断。这一点对于确定进行比率差动试验时所加电流的相位很有帮助。 1.4 平衡系数

对于正常运行变压器,不计励磁电流,各侧磁势平衡。这一平衡关系反映到微机保护中,各侧的二次电流应在微机保护的算法体系下平衡。

将各侧不同的电流值折算成作用相同的电流,相当于将某一侧或两侧的电流乘以修正系数,该系数叫做平衡系数。

以Yn ,Yn ,d11型自耦变为例,差动保护TA 二次侧采用星形接线,各侧额定电压及TA 变比分别为

h h m m l l U n U n U n 、、、、、,若以高压侧为基准,则各侧流入差动保护某相的电流分别为

m l h I I I =

==(1) 式中N S 为变压器额定容量。

设以高压侧电流为基准,将其他两侧的电流折算到高压侧的平衡系数分别为bm bl K K 和。则

h m m bm m h h I U n K I U n =

= (2) h l l bl l h h

I U n K I U n == (3) 对于微机保护装置,可以理解为,在中压侧三相加入1A 正序电流,在高压侧只需要加入bm K 安培的正序电流即可使微机保护计算差流为零,低压侧同理。 1.5 动作电流与制动电流的计算

引入平衡系数以后动作电流的计算公式为

op h m bm l bl I I I K I K =++ (4) 对于三绕组变压器,制动电流有多种取法,有的取高、中、低压侧TA 二次电流幅值和的一半;有的取高、中、低压侧TA 二次电流幅值的最大值,具体取法要参看保护装置技术说明书。值得指出的是,所有动作电流、制动电流都要折算到同一侧计算比较才有意义。

2 两类相位校正算法

由于Y ,d11接线组的存在,Y ,d11两侧电流存在一定转角,在进行差流计算时需要将不同连接组别的电流转换至同一角度方可进行比较。 3.1 星形侧向三角形侧校正的算法

这种算法将各侧电流均折算到三角形侧进行计算比较。其校正算法如下:

星形侧222222222()/3()/3()/3A A B B B C C C A I I I I I I I I I ?'=-??

'=-??'=-??

(5) 三角形侧222222a a b b c c I I I I I I '?=?'=??'=? (6) 式中2B2C2A I I I 、、——星形侧TA 二次电流;

2B2C2A

I I I '''、、——星形侧校正后的各相电流; a 2b2c2I I I 、、——三角形侧TA 二次电流; a

2b2c2I I I '''、、——三角形侧校正后的各相电流。 采用此类算法的主要保护有国电南自的PST-1200、GSGT756,四方的CST31,南瑞继保的LFP-972,许继的WBZ-500H 等产品。

3.2 三角形侧向星形侧校正的算法

这种算法将各侧电流均折算到星角形侧进行计算比较。其校正算法如下:

星形侧220220220()()()A

A B

B C C I I I I I I I I I '?=-?'=-??'=-? (7) 三角形侧()()()22c22b2a 22c2b2/3/3/3

a a

b

c I I I I I I I I I ?'=-?

?'=-??

'=-?? (8)

I——星形侧零序电流二次值;其余电流含义同3.1节。

式中

采用此类算法的主要保护有南瑞继保的RCS-978,许继的WBH-800H等产品。

经过上述变换,差动回路两侧电流之间的相位一致。上述转换均通过微机算法在保护装置内部

使两侧差动电流平衡。

3 比率制动系数一般性试验方法

3.1 接线方法

采用不同的试验仪时对不同接线组进行试验时接线方法各不相同。下面从突出概念的角度出发,选取三相试验仪进行说明。三相试验仪只能提供三路电流,每侧可以加入单相或两相电流进项分相测试。设均对A相进行差动试验,Ⅰ侧为星形接线组,Ⅱ侧也为星形接线组,III侧为三角形接线组。

1)如果采用往三角形侧校正的算法3.1,利用Ⅰ侧、Ⅱ侧进行比率差动试验。则两侧电流均从A 相流入,N相流出。此时接线相当于同时对A、C两相进行试验。

2)如果采用往三角形侧校正的算法3.1,利用Ⅰ侧、III侧进行比率差动试验。则Ⅰ侧电流从A 相流入,N相流出。III侧电流从A相流入,C相流出。此时接线也相当于同时对A、C两相进行试验。

3)如果采用往星形侧校正的算法3.2,利用Ⅰ侧、Ⅱ侧进行比率差动试验。则两侧电流均从A相流入,B相流出。此时接线相当于同时对A、B两相进行试验。

4)如果采用往星形侧校正的算法3.2,利用Ⅰ侧、III侧进行比率差动试验。则Ⅰ侧电流从A相流入,B相流出。III侧电流从A相流入,N相流出。此时接线也相当于同时对A、B两相进行试验。

其余相测试类比推导。值得注意的是,所加两相测试电流相位应相反,只有这样才会既有差流又有制动电流,达到测试比率制动系数的目的。

3.2 试验步骤

1)根据比率制动曲线选取两个试验点,求取这两个试验点的坐标,注意两个试验点间隔比较远,这样求取比率系数时误差较小;

2)、选取试验侧和相别,如选择Ⅰ侧、III侧的A相进行比率差动试验;

3)根据不同保护装置的算法列出动作电流计算式和制动电流计算式,计算时可以假设某侧电流较大,且两侧电流方向相反,将相量运算化为代数运算,得到一个二元一次方成组,求解可得到计算电流;

4)将第3步得到的结果换算至试验应加的电流。将第3步所得结果除以平衡系数,如果是需要转

换的一侧,如3.1算法中的星形侧和3.2算法中的三角形侧,需要将电流乘以转换系数

需加的电流值;

5)按4.1分析接线完后,在第3步假定较大电流的一侧加入第4步计算所得试验电流值,并在另一侧加入比第4步计算电流略大的试验电流,逐步减小,直至差动保护动作,得到一组动作电流值;

6)重复上一步,得到两组动作电流后,利用第4步,将试验电流反算得到差动、制动电流;

7)利用两组临界动作电流值和计算公式,计算出动作电流和制动电流;

8)将第7步结果描点,计算得到比率制动系数。

4 算例

某500kV自耦变的接线方式为Yn,Yn,d11,额定容量为750.0MVA,高、中、低压侧额定电压分别为525.0kV、230.0kV、36.0kV,高、中、低压侧TA变比分别为3000/1、3000/1、4000/1,TA二次负载均为星形接线。保护装置为国电南自GSGT756系列产品,差动定值倍数为0.4,一折段制动电流定值倍数为0.8,二折段制动电流定值倍数为3.0,一折段斜率为0.5。

用三相试验仪测试一折段斜率的方法步骤如下:

1)选取两个测试点,坐标分别为1r I =1A ,1d I =0.5A;2r I =1.5A ,2d I =0.75A 。 2)选取Ⅰ侧、III 侧的A 相进行比率差动试验;

3)列出差动电流和制动电流(GSGT756采用变压器三侧TA 二次电流幅值的最大值作为制动电流)计算方程,求得计算电流值,以1r I =1A ,1d I =0.5A 为例,方程为:

??

?=='=='-'0.15.011111r h

d l h

I I I I I ;求得0.11='h I ,5.01='l I 。 4)由装置计算电流求解试验电流。Ⅰ侧需要转换至三角形侧进行比较,故Ⅰ侧试验电流需用装置计算乘以1.732;III 侧需除以平衡系数(0.0914)得到试验电流值。

5)利用三相试验仪,在Ⅰ侧AN 间加入电流1.73A 0∠,在III 侧AC 间加入比电流5.47A 180∠幅

值稍大的电流,不断减小III 侧电流,记录动作边界动作电流值73.11=''h I A, 5.401=''l I A ;60.22=''h

I A,8.202=''l I A 。 6)得到两组边界数据后,利用第3、4步,反算1r I 试验=0.9988,1d I 试验=0.5051,2r I 试验=1.5011,

2d I 试验=0.7516,进一步求得比率制动系数为2121d d d r r I I K I I -=

=-试验试验

试验试验试验

0.4907。

(素材和资料部分来自网络,供参考。可复制、编制,期待您的好评与关注)

变压器差动保护的比率制动特性曲线及现场测试方法

变压器差动保护的比率制动特性曲线及现场测试方法 摘要:目前变压器都安装了差动保护,并引入比率制动式差动继电器继电器AL3 AL4 ,以保障电力系统的安全运行水平。为此,介绍变压器差动保护的制动特性曲线及现场测试方法。 关键词:变压器;差动保护;制动特性;测试方法 1前言 变压器是现代电力系统中的主要电气设备之一。由于变压器发生故障时造成的影响很大,故应加强对其继电保护装置功能的调试,以提高电力系统的安全运行水平。变压器保护装置中最重要一项配置——差动保护,就是为了防御变压器内部线圈及引出线的相间及匝间短路,以及在中性点直接接地系统侧的引出线和线圈上的接地短路。同时,由于差动保护选择性好,灵敏度高,因此,我们还应该考虑该保护能躲过励磁涌流和外部短路所产生的不平衡电流,同时应在变压器过励磁时能不误动。 2差动保护中引入比率制动特性曲线 变压器在正常负荷状态下,电流互感器电流互感器LDZ1 的误差很校这时,差动保护的差回路不平衡电流也很小,但随着外部短路电流的增大,电流互感器就可能饱和,误差也随之增大,这时的不平衡电流也随之增大。当电流超过保护动作电流时,差动保护就会误动,因此,为了防止变压器区外故障发生时差动保护误动作,我们希望引入一种继电器,其动作特性是:它的动作电流将随着不平衡电流的增大而按比例增大,并且比不平衡电流增大的还要快,这样误动就不会出现。因此,我们在差动保护中引入了比率制动式差动继电器,它除了以差动电流作为动作电流外,还引入了外部短路电流作为制动电流。当外部短路电流增大时,制动电流也随之增大,使继电器的动作电流也相应增大,从而有效地防止了变压器区外故障发生时差动保护误动作,制动特性曲线见图1。 由图1可知,该保护继电器能可靠地躲过外部故障时的不平衡电流,能有效地防止变压器区外故障发生时保护误动作,因此,差动保护的制动特性曲线的精确性是决定保护装置正确动作的关键,故制动特性曲线的测试是整套保护装置的调试重点。 3制动特性曲线的测试方法 以往在实际工作中,由于试验仪器所限,我们很容易忽略比率制动特性的测试,认为制动系数装置已固有,不用测试,结果往往造成保护装置因调试工作不细致而误动作。但随着现场

主变比率制动式差动保护

主变比率制动式差动保 护 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

1.1.1. 主变比率制动式差动保护 比率制动式差动保护能反映主变内部相间短路故障、高压侧单相接地短路及匝间层间短路故障,既要考虑励磁涌流和过励磁运行工况,同时也要考虑TA 断线、TA 饱和、TA 暂态特性不一致的情况。 由于变压器联结组不同和各侧TA 变比的不同,变压器各侧电流幅值相位也不同,差动保护首先要消除这些影响。本保护装置利用数字的方法对变比和相位进行补偿,以下说明均基于已消除变压器各侧电流幅值相位差异的基础之上。 1.1.1.1. 比率差动动作方程 ? ?? ??-+-+≥-+≥>)I 6I (6.0)I I 6(S I I ) I I (S I I I I e res 0.res e 0.op op 0.res res 0.op op 0.op op ) I 6I ()I 6I I ()I I (e res e res 0.res res.0res >≤<≤ (6-3-1) op I 为差动电流,0.op I 为差动最小动作电流整定值,res I 为制动电流,0.res I 为最小制动电流整定 值,S 为动作特性折线中间段比率制动系数。op.0I ,res.0I ,S 需用户整定。 对于两侧差动: 21I I I op += (6-3-2) 2I 21res I I -= (6-3-3) 1I ,2I 分别为变压器高、低压侧电流互感器二次侧的电流。各侧电流的方向都以指向变压器为正方向。 1.1.1. 2. 比率差动动作特性 比率差动动作特性同图6-3-1所示: 图6-3-1 主变(厂变、励磁变)比率差动动作特性 注:只有主变比率差动保护动作特性才有速动区,厂变和励磁变均没有速动区。 1.1.1.3. 主比率差动启动条件 当三相最大差动电流大于倍最小动作电流时,比率制动式差动启动元件动作。 图6-3-2 主变增量差动保护动作特性图 1.1. 2. 主变差动保护逻辑图 主变差动保护逻辑如图6-3-3所示: 图6-3-3 主变(厂变、励磁变)差动保护逻辑图

比率制动式差动保护

比率制动式差动保护 变压器差动保护 :这里讲的是差动保护的一种,即变压器比例制动式完全纵差保护(以下简 称差动); 二:差动保护的定义 由于在各种参考书中没有找到差动保护的具体定义,这里只根据自己所掌握的知识给差动保护下一个定义:当区内发生某些短路性故障的时候,在变压器各侧电流互感器CT的二次回路中将产生大小相同,相位不同的短路电流,当这些短路电流的向量和即差流达到一定值时,跳开变压器各侧断路器的保护,就是变压器差动保护 :下面我以两圈变变压器为例,针对以上所述变压器差动保护的定义,对差动保护进行阐述:

1、图一所示:为一两圈变变压器,具体参数如下:主变高压侧电压U高=220KV,主变低压侧电压U低=110KV,变压器容量Sn=240000KVA, 11'流过变压器高压侧的一次电流; I ” :流过变压器低压侧的一次电流; 12'流过变压器高压侧所装设电流互感器即CT1的二次电流; I2 ”:流过变压器低压侧所装设电流互感器即CT1的二次电流; nh:高压侧电流互感器CT1变比; nl:低压侧电流互感器CT2变比; nB:变压器的变比; 各参数之间的关系:11'12 ' nh I”/12 ”= nl I2 ' I2 ” I1'/l”= nh/ n 1=1/ nB 2、区内:CT1到CT2的范围之内; 3、反映故障类型:高压侧内部相间短路故障,高压侧(中性点直接接地)

单相接地故障以及匝间、层间短路故障; 四:差动的特性 1、比率制动:如图二所示,为差动保护比率特性的曲线图: 动作电流lop 4 d Iopo 下面我们就以上图讲一下差动保护的比率特性: o:图二的坐标原点; f:差动保护的最小制动电流; d:差动保护的最小动作电流; P:比率制动斜线上的任一点; e: p点的纵坐标; b: p点的横坐标; 动作区:在of范围内,由于电流小于最小制动电流,因此在此范围内,只要电流大于最小动作电流Iopo,差动保护动作;当电流大于f点时, 由于 电流大于最小制动电流,此时保护开始进行比率制动运算,曲线抬 高,此时只有当电流在比率制动曲线以上时保护动作;因此,图中阴 影部分,即差动保护的动作区; 制动区:当电流在落在曲线以下而大于最小动作电流的时候,由于受比率制动系数的制约,保护部动作,这个区域就是差动保护的制动区;比率制动系数K:实际上比率制动系数,就是图二中斜线的斜率,因此我们只要计算岀此斜线的斜率,就等于算出了比率制动系数。以p点为例:计算出斜线pc的斜率K=pa/ac=(pb-ab)/(ob-of);举例说明一下: 差动保护有关定值整定如下:最小动作电流Iopo=2撮小制动电流Iopo=5,比率制动系数k=0.5;按照做差动保护比率制动系数的方法, 施加高压侧电流Il=6A,180度,低压侧电流I2=6A,0度,固定II升12,当12升到9.4A的时候保护动作,计算一下此时的比率制动系数。 由于两圈变差动的制动电流为(11+12) /2,因此,Izd=(9.4+6)/2=7.7, 所以K=(9.4-6-2)/(7.7-5)= 1.4/2.7=0.52; 2、谐波制动:当差动电流中的谐波含量达到一定值的时候,我们的装置就 f Ires, o 图二 b 制动电流Ires

比率制动差动保护

1比率制动差动保护特性 随着计算机技术在继电保护领域日益广泛的应用,比率制动特性的差动保护作为双圈及三圈变压器的主保护具有动作可靠,实时数据采集、计算、比较、判断等较为方便简单等优点,得到用户的认可。 所谓比率制动特性差动保护简单说就是使差动电流定值随制动电流的增大而成某一比率的提高。使制动电流在不平衡电流较大的外部故障时有制动作用。而在内部故障时,制动作用最小。 图1 图1中曲线1为差动回路的不平衡电流,它随着短路电流的增大而增大。根据差动回路接线方法的不同,在整定时,通过调整不平衡比例系数使得计算机在实时计算时的Ibp最小。 曲线2是无制动时差动保护的整定电流,它是按躲过最大不平衡电流Ibpmax来整定的。曲线3为变压器差动保护区内短路时的差电流,它随短路电流的增大而线性的增大。 曲线4为具有制动特性的差动继电器的差动保护特性。 在无制动时,曲线3与曲线2相交于B点,这时保护的不动作区为0B,即保护区内短路时的短路电流必须大于0B所代表的电流值时,保护才能动作。 在有制动时,曲线3与曲线4相交于A点,短路电流只要大于0A所代表的电流值,保护即能动作。OA <0B这说明在同样的保护区内短路状态下,有制动特性的差动保护比无制动特性的差动保护灵敏度要高。 在实际的变压器差动保护装置中,其比率制动特性如下图2所示: 图2中平行于横坐标的AB段称为无制动段,它是由启动电流和最小制动电流构成的,动作值不随制动电流变化而变化。我们希望制动电流小于变压器额定电流时无制动作用,通常选取制动电流等于被保护变压器高压侧的额定电流的二次值。即:lzd=le/nLH 图2中斜线的斜率为基波制动斜率,当区外故障时短路电流中含有大量生产非周期分量,制动Izdo增大,当动作电流Idzo大于启动电流时,制动电流和动作电流的交点D必落在制动区内。当区内故障时,差电流即动作电流为全部短路电流,制动电流则为流过非电源侧的短路电流,数值较小,平行于纵、横轴的二直线交点必落在动作区内,差动保护可靠动作。 2比率制动式差动保护的整定在比率制动式差动保护的整定计算时,通常按以下原则选取: 2.1 Icdsd即差动速断电流 当变压器空载投入或变压器外部故障切除后电压恢复时,励磁涌流高达额定电流的6? 8 倍,当差动保护电流互感器选择合适时,变压器外部短路流过差动回路的不平衡电流小于

差动保护的比率制动特性曲线及现场测试方法

差动保护是许多电气设备的必备保护,变压器的差动保护由于有变比误差和星角变换问题,相对其他电气设备的差动保护较为复杂,常规的变压器差动保护为了保证星角接线方式的变压器保护差流的平衡,一般将星侧的CT接角形,而将角侧的CT接成星形。而现代的微机变压器差动保护已开始采用将变压器两侧CT均接成星形进入装置,由装置内部软件完成星角转换。做常规变压器差动保护制动特性时,可用一个三相试验台通过调整角度输出两相电流,模拟区内或区外故障两侧CT的同名相的电流加入装置,分别做每相的制动特性。如何用一个三相试验台做微机变压器差动保护比率制动曲线呢?下面以 Y/△-11接线的两卷变压器为例进行说明。 假定变压器星侧二次电流为IH,角侧二次电流为IL。确定输入装置的CT电流极性为: 当一次电流流入变压器时,装置的感应电流都为正极性电流流入装置(如图1),这样在正常运行或区外故障时,星侧流入装置的电流与一次同向,角侧流入装置的电流与一次反向,但又由于星角变换而使一次星侧电流滞后角侧30度,所以最后流入装置的二次电流为星侧超前角侧150度,向量如图2,进入装置后,软件通过以下计算完成转角:

图2 图3 即星侧电流 通过以上转换之后,两侧电流大小未变,方向相反,但由于变压器变比和CT变比问题,进入装置的两侧电流大小不相等,所以还要加上平衡系数,最后计算差电流的算法为: 经过以上运算,可以得出,在区外故障和正常运行时,装置算得的差流为零。这就是国内微机变压器差动保护的算法。 由于星角变换由软件进行,所以在做单相比率制动特性时就不一样了。可以看到,如果在星侧加入A相电流I,而软件却计算出星侧: 这时,要做A相比率制动特性,首先要在角侧加入C相电流,方向与星侧所加A相电流相同,大小适当,平衡掉C相差流,否则C相总能使差动保护先动作。之后,在角侧A相加入与星侧A相方向相反的电流,调整电流大小,就可以作出差动保护的比率制动特性曲线。B相和C相做法与此相同。以此类推,也可以得出其他星角接线方式的变压器的微机差动保护比率制动特性曲线的做法。

比率差动试验方法

比率差动保护实验方法 汉川供电公司石巍 主题词比率差动实验方法 随着综合自动化装置的普遍推广使用,变压器比率差动保护得到了广泛的使用,但是由于厂家众多,计算方法和保护原理略有差异,而且没有统一的实验方法,尤其是比率制动中制动特性实验不准确,给运行和维护带来了不便,下面介绍两种比较简单和实用的,用微机继电保护测试装置测试差动保护的实验方法。 一、比率差动原理简介: 差动动作方程如下: Id>Icd (IrIcd+k*(Ir-Ird) (Ir>Ird) 式中:Id——差动电流 Ir——制动电流 Icd——差动门槛定值(最小动作值) Ird——拐点电流定值 k——比率制动系数 多数厂家采用以下公式计算差动电流; Id=︱?h+?l︱(1)

制动电流的公式较多,有以下几种: Ir=︱?h-?l︱/2 (2) Ir=︱?h-?l︱(3) Ir=max{︱?1︱,︱?2︱,︱?3︱…︱?n︱}(4) 为方便起见,以下就采用比较简单常用的公式(3)。 由于变压器差动保护二次CT为全星形接线,对于一次绕组为Y/?,Y/Y/?,Y/?/?,Y形接线的二次电流与?形接线的二次电流有30度相位差,需要软件对所有一次绕组为Y形接线的二次电流进行相位和幅值补偿,补偿的方式为:?A=(?A’—?B’)/1.732/K hp ?B=(?B’—?C’)/1.732/K hp ?C=(?C’—?A’)/1.732/K hp 其中?A、?B、?C为补偿后的二次电流(即保护装置实时显示的电流),?A’、?B’、?C’为未经补偿的二次电流,相当与由CT输入保护装置的实际的电流。K hp为高压的平衡系数(有的保护装置采用的是乘上平衡系数),一般设定为1。 这样经过软件补偿后,在一次绕组为Y形的一侧加入单相电流时,保护会同时测到两相电流,加入A相电流,则保护同时测到A、C两相电流;加入B相电流,则保护同时测到B、A两相电流;加入C相电流,则保护同时测到C、B两相电流。 对于绕组为?形接线的二次电流就不需要软件补偿相位,只要对由于CT变比不同引起的二次电流系数进行补偿了,电流计算公式为: ?a=?a’ /K lp ?a’为未经补偿的二次电流,相当与由CT输入保护装置的实际的电流;?a为补偿后的二次电流(即保护装置实时显示的电流)。唯一要注意的是保护装置要求低压侧电流与高压侧电流反相位输入,高压侧的A相与低压侧的A相间应相差150度。K lp为低压的平衡系数(有的保护装置采用的是乘上平衡系数),与保护用的CT

比率差动保护原理

故障分量差动保护 摘要深入地研究了基于故障分量的数字式差动保护的基本原理,并与传统的比率制动差动保护作了详细比较,讨论了故障分量差动保护的动作判据,最后介绍了基于该原理的保护在实际中的应用。 关键词故障分量差动保护微机保护发电机变压器 0 引言 基于故障分量(也称增量)来实现保护的原理最早可以追溯到突变 量原理的保护,但真正受到人们普遍关注和广泛研究则是出现微机保护技术之后。微机具有长记忆功能和强大的数据处理能力,可以获取稳定的故障分量,从而促进了故障分量原理保护的发展[1]。近20年来,陆续提出了基于故障分量的差动保护、方向保护、距离保护、故障选相等许多新原理,并在元件保护、线路保护各个领域得到了成功的应用。本文针对在发电机、变压器中广泛使用的比率制动式差动保护,讨论故障分量保护的基本原理、判据和应用中的一些问题。 1 故障分量比率差动保护原理 故障分量电流是由从故障后电流中减去负荷分量而得到的,可以由它来构成比率差动保护。习惯上常用“Δ”表示故障分量,故也有人称之为“Δ差动继电器”[2]。以两侧纵联差动保护为例,若两侧电流假定正向均取为流入被保护设备,故障分量比率差动保护的动作方程可表示为: (1) 式中;下标L表示正常负荷分量;下 标Ⅰ,Ⅱ则分别表示被保护设备两侧的电量。 在故障分量比率差动保护中,令,分别表示动作量(差动量)和制动量,即

(2) 因正常运行时有,故传统比率差动保护的动作量 d 可表示为: 和制动量 r (3) 比较式(2)与式(3)可见,忽略变压器两侧负荷电流的误差之后,两种差动保护原理的动作量相同,主要不同之处表现在制动量上。发生内部轻微故障(如单相高阻接地或小匝数匝间短路)时,可能出现 L决定,从 ,这时式(3)中制动量主要由2I Ⅰ 而使得传统比率差动保护方案因制动量太大而降低了灵敏度。利用降低K值来改善灵敏度是有限的。因为必须保证外部严重故障时有足够的制动量不使保护误动,发生外部严重故障时,一般有 ,因此两种原理差 ,制动量主要决定于Δ r 动保护的制动量相当,不会引起误动。由以下进一步的分析可更清楚地看到这一点。 设一单相变压器发生对地高阻抗接地故障,现用一简化的具有两端电源的T形网络来表征,如图1所示。 图1 单相变压器内部故障简化等值电路 Fig.1 The simplified equivalent circuit of single-phase transformer with internal fault 短路阻抗为Z 。按照叠加原理,可将图1所示电路分解为正常网络 f 和故障附加网络。由故障附加网络推导出式(1)的另一种形式为:

比率制动差动保护

1 比率制动差动保护特性 随着计算机技术在继电保护领域日益广泛的应用,比率制动特性的差动保护作为双圈及三圈变压器的 主保护具有动作可靠,实时数据采集、计算、比较、判断等较为方便简单等优点,得到用户的认可。 所谓比率制动特性差动保护简单说就是使差动电流定值随制动电流的增大而成某一比率的提高。使制 动电流在不平衡电流较大的外部故障时有制动作用。而在内部故障时,制动作用最小。 图1 图1中曲线1为差动回路的不平衡电流,它随着短路电流的增大而增大。根据差动回路接线方法的不同,在整定时,通过调整不平衡比例系数使得计算机在实时计算时的Ibp最小。 曲线2是无制动时差动保护的整定电流,它是按躲过最大不平衡电流Ibpmax来整定的。 曲线3为变压器差动保护区内短路时的差电流,它随短路电流的增大而线性的增大。 曲线4为具有制动特性的差动继电器的差动保护特性。 在无制动时,曲线3与曲线2相交于B点,这时保护的不动作区为OB′,即保护区内短路时的短路电流必须大于OB′所代表的电流值时,保护才能动作。 在有制动时,曲线3与曲线4相交于A点,短路电流只要大于OA′所代表的电流值,保护即能动作。OA′

比率制动式差动保护

比率制动式差动保护

变压器差动保护 一:这里讲的是差动保护的一种,即变压器比例制动式完全纵差保护(以下简称差动); 二:差动保护的定义 由于在各种参考书中没有找到差动保护的具体定义,这里只根据自己所掌握的知识给差动保护下一个定义:当区内发生某些短路性故障的时候,在变压器各侧电流互感器CT的二次回路中将产生大小相同,相位不同的短路电流,当这些短路电流的向量和即差流达到一定值时,跳开变压器各侧断路器的保护,就是变压器差动保护 三:下面我以两圈变变压器为例,针对以上所述变压器差动保护的定义,对差动保护进行阐述: 1、图一所示:为一两圈变变压器,具体参数如下:主变高压侧电压U高 =220KV,主变低压侧电压U低=110KV,变压器容量Sn=240000KV A, I1’:流过变压器高压侧的一次电流; I”:流过变压器低压侧的一次电流; I2’:流过变压器高压侧所装设电流互感器即CT1的二次电流; I2”:流过变压器低压侧所装设电流互感器即CT1的二次电流; nh:高压侧电流互感器CT1变比; nl:低压侧电流互感器CT2变比; nB:变压器的变比; 各参数之间的关系:I1’/ I2’= nh I”/ I2”= nl I2’= I2”I1’/ I”= nh/ nl=1/ nB 2、区内:CT1到CT2的范围之内; 3、反映故障类型:高压侧内部相间短路故障,高压侧(中性点直接接地)

单相接地故障以及匝间、层间短路故障; 四:差动的特性 1、比率制动:如图二所示,为差动保护比率特性的曲线图: 下面我们就以上图讲一下差动保护的比率特性: o:图二的坐标原点; f:差动保护的最小制动电流; d:差动保护的最小动作电流; p:比率制动斜线上的任一点; e:p点的纵坐标; b:p点的横坐标; 动作区:在of范围内,由于电流小于最小制动电流,因此在此范围内,只要电流大于最小动作电流Iopo,差动保护动作;当电流大于f点时, 由于电流大于最小制动电流,此时保护开始进行比率制动运算,曲 线抬高,此时只有当电流在比率制动曲线以上时保护动作;因此, 图中阴影部分,即差动保护的动作区; 制动区:当电流在落在曲线以下而大于最小动作电流的时候,由于受比率制动系数的制约,保护部动作,这个区域就是差动保护的制动区; 比率制动系数K:实际上比率制动系数,就是图二中斜线的斜率,因此我们只要计算出此斜线的斜率,就等于算出了比率制动系数。以p点为 例:计算出斜线pc的斜率K=pa/ac=(pb-ab)/(ob-of);举例说明一下: 差动保护有关定值整定如下:最小动作电流Iopo=2,最小制动电流 Iopo=5,比率制动系数k=0.5;按照做差动保护比率制动系数的方法, 施加高压侧电流I1=6A,180度,低压侧电流I2=6A,0度,固定I1升 I2,当I2升到9.4A的时候保护动作,计算一下此时的比率制动系数。 由于两圈变差动的制动电流为(I1+I2)/2,因此,Izd=(9.4+6)/2=7.7, 所以K=(9.4-6-2)/(7.7-5)=1.4/2.7=0.52; 2、谐波制动:当差动电流中的谐波含量达到一定值的时候,我们的装置就

比率制动纵联差动保护

我厂3#和4#机组用的是比率制动式纵联差动保护,采用的装置分别是珠海优特的UT-9931C和北京紫光的DCAP-3040A,动作原理基本相似,下面以4#机为例说明。 1定义: 发电机比率制动纵联差动保护简称比率纵差保护,是一种比较发电机两端电流大小和方向的保护,它能很灵敏的反应并切除发电机绕组及引出线相间短路故障,是发电机相间短路的主保护。[1] 2基本原理: 将发电机两端流过方向相同、大小相等的电流称为穿越性电流,而方向相反的电流称为非穿越性电流。作为主保护,发电机比率制动差动保护是以非穿越性电流作为动作量、以穿越性电流作为制动量,来区分被保护元件的正常状态,故障状态和非正常运行状态的。 正常运行状态,穿越性电流即为负荷电流,非穿越性电流理论为零。 内部相间短路状态,非穿越性电流剧增。 当外部故障时,穿越性电流剧增。 3特点: 该保护采用机端电流If作为制动电流,动作电流随外部短路电流的增大而增大,即可保证外部短路时不误动,同时内部短路又有较高的灵敏度。 4动作条件:

Icd>IcdO (IfIcdO+k(If-Igd) (If 〉Igd) Icd-----差动电流 IcdO-----差动最小动作电流 Iqd-----拐点电流,规定为0.9倍的发电机二次侧额定电流 If------机端电流 Isd-----差动速度动作值 K------比率制动系数 (1) 差动速断 差动速断保护实质上是反映差动电流的过电流保护,不经任何闭锁回路,直接快速动作于出口。 动作判据:任一相差动电流大于差动速断定值。

(2) 比率差动 比率制动式差动保护的特点是,动作电流随外部短路电流的增大而增大,既可保证外部短路不误动,同时对于内部短路又有较高的灵敏度。 (3) 差流越限告警 当任一相的差流大于差流越限定值时,经延时发差流越限告警信号。

差动保护和比率差动保护

差动保护主要就是内部短路的保护,但当外部故障时有不平衡电流可能穿越差动保护电流互感器,造成差动保护误动作。因此为了躲过外部故障时不平衡电流引起差动保护动作,采用了制动电流来平衡穿越电流引起差动保护的启动电流。 发电机采用机端电流作为制动电流,能在外部短路时取得足够的制动电流,又能在内部短路时减少中性点电流的制动作用。变压器采用二次谐波作为励磁涌流闭锁判据。 一般设有CT断线闭锁保护。如下图: 图中Ie为额定电流, Icdqd为启动电流, Ir为制动电流, Kb1为比率制动系数。 阴影部分为动作区

差动保护灵敏度与启动电流、制动系数与原理之间的关系摘要:分析了差动保护的有关整定原则,明确提出了差动保护的灵敏度与许多因素有关,如定值、原理与实现方式等。不能仅改变某一个因素(如定值)来提高灵敏度,而需要综合考虑各个因素的影响,否则适得其反。 0 引言 随着继电保护技术的不断发展与进步,技术人员对保护的认识越来越深刻,对许多继电保护约定俗成的做法开始了反思。如规程上对差动保护规定:使用比率制动原理的差动保护,不要校核灵敏度,其灵敏度自然满足。那么这个“自然满足”的灵敏度就是什么灵敏度呢?其实对发电机差动保护而言,就就是在发电机机端发生两相短路,该差动继电器的灵敏度校验结果肯定能够满足要求;在现场运行过程中,经常有人将保护中的比率制动系数与比率制动斜率混淆,究竟这两个概念有什么区别,又有什么联系?标积制动原理对提高差动保护的灵敏度有什么有利的地方,它与比率制动之间又有什么关系,它们之间从根本上就是否一致呢?本文就这些用户所关心的问题展开深入的分析与讨论,并阐明作者自己的观 点[1,2] 。 1 差动保护灵敏度系数的定义与校验 设流入发电机的电流为正方向,取继电电器差动电流Id为:

二次谐波制动比率差动的原理

二次谐波制动比率差动的原理 摘要:对国内几起微机型主变差动保护误动原因分析,对新建变电站、运行中变电站、改造变电站主变差动保护误动原因,提出了防范措施。 关键词:差动保护;误动;暂态特性;线路纵差保护 电力系统中,主变是承接电能输送主要设备,作为主设备主保护微 机型纵联差动(简称纵差或差动)保护,不断改进,还存“原因不 明”误动作情况,这将造成主变非正常停运,影响大面积区供电,是造成系统振荡,对电力系统供电稳定运行是很不利。对新建变电站、运行中变电站、改造变电站主变差动保护误动原因进行分析,并提出了防止主变差动误动对策。 1主变差动保护 主变差动保护一般包括:差动速断保护、比率差动保护、二次(五次)谐波制动比率差动保护,哪种保护功能差动保护,其差动电流都是主变各侧电流向量和到,主变正常运行保护区外部故障时,该差动电流近似为零,当出现保护区内故障时,该差动电流增大。现以双绕组变压器为例进行说明。 1.1比率差动保护动作特性 比率差动保护动作特性见图1。当变压器轻微故障时,例如匝间短路圈数很少时,不带制动量,使保护变压器轻微故障时具有较高灵敏度。而较严重区外故障时,有较大制动量,提高保护可靠性。 二次谐波制动主要区别是故障电流励磁涌流,主变空载投运时会产生比较大励磁涌流,并伴随有二次谐波分量,使主变不误动,采用谐波制动原理。判断二次谐波分量,是否达到设定值来确定是主变故障主变空载投运,决定比率差动保护是否动作。二次谐波制动比一般取0.12~0.18。 有些大型变压器,增加保护可靠性,也有采用五次谐波制动原理。 1.2差动速断作用 差动速断是较严重区内故障情况下,快速跳开变压器各侧断路器,切除故障点。差动速断定值是按躲过变压器励磁涌流,和最大运行方式下穿越性故障引起不平衡电流,两者中较大者。定值一般取(4~14)Ie。 2主变差动保护误动作原因分析 主变差动保护误动作可能性大小,大致分为新建变电站、运行中变 电站、改造变电站三个方面进行说明,这种分类方法并绝对相互区别, 便于分析问题时优先考虑现实问题。 2.1新建变电站主变差动保护误动作原因分析 新建变电站主变差动保护误动作,主变差动保护误动作中占了较大 比例,但这种情况误动作,一般大多主变投运带负荷试运行72h就会被发现。现场经验,可以总结以下几方面。 2.1.1定值不合理造成主变差动保护误动作 差动速断定值和二次谐波制动比率差动定值选择不正确造成误动作。 差动速断是较严重区内故障情况下,快速跳开变压器各侧断路器,切除故障点。差动速断定值是按躲过变压器励磁涌流和最大运行方式下,穿越性故障引起不平衡电流,两者中较大者。定值一般取(4~14)Ie。保护定值计算部门,特别是非电力系统定值计算部门,往往运行经验,将差动速断定值取为(5~6)Ie。这样,就会造成主变空载合闸时断路器出现误跳。 比率差动是当变压器内部出现轻微故障时,保护不带制动量动作跳开各侧

比率制动差动原理

对于比率制动差动原理得疑问? 对于变压器比率制动原理我看不懂,特别是三段折线制动特性得第一段,为什么随着制动量的增加差动量却是水平线,而且书上称此水平线的差动量为不带制动时差动电流的最小动作值(此时制动量已经在增加了)。望各位高手帮忙!!!谢谢!!! 变压器差动保护作为变压器的主保护,目前电网中的110kV变压器的差动保护大多采用比率差动保护。之所以采用比率制动特性,是为了防止区外故障引起不平衡的差动电流造成保护误动。比率差动保护的动作特性如下图所示 以南瑞RCS-9000变电站综合自动化系统为例,其主变的差动保护采用三折线比率差动原理其动作方程如下: Id > Icdqd ……(Ir<=0.5Ie) Id - Icdqd > Kbl*(Ir-0.5Ie) ……(0.5Ie Ir - 3Ie ……(Ir>3Ie) 其中Id为差动保护动作电流,Ir为制动电流,Icdqp为差动保护电流启动值,Kbl为比率差动制动系数,Ie为变压器的额定电流,Ir=0.5*(|I1|+|I2|+|I3|),图中的阴影部分为保护动作区。 水平线的差动量为不带制动时差动电流的最小动作值,在Ir<=0.5Ie的范围内,只有Id > Icdqd 比率差动才动作,也就是说在Ir<=0.5Ie的范围内动作的临界点都是Icdqd,这个值也就是我们设定的差动启动定值,所以是一条直线 这样来理解一下. 以上图为例. 外部故障时:假设故障电流在不断增加.由于是外部故障,制动电流也在不断增大,差流(这时为不平衡电流)也在很小的增加.当差流要接近启动设定点时,由于制动电流已超过第一拐点,因此差流的动作值就相应提高了.而后随着外部故障电流的加大,差流(不平衡电流)增加. 但制动电流增加更多, 因此差动动作电流始终被压在曲线的下方非动作区.从而保证外部故障,差动不误动. 而内部故障时,差流很大,制动很小.曲线上的动作区,可以让内部故障时,差动可靠动作. 你如果要问为什么.当差流要接近启动设定点Icdqd时,由于制动电流已超过第一拐点,因此差流的动作值就相应提高了.这就是保护整定的问题了.

比率制动式差动保护

变压器差动保护 一:这里讲的是差动保护的一种,即变压器比例制动式完全纵差保护 (以下简称 差动); 二:差动保护的定义 由于在各种参考书中没有找到差动保护的具体定义, 这里只根据自己所 掌握的知识给差动保护下一个定义:当区发生某些短路性故障的时候,在变 压器各侧电流互感器CT 的二次回路中将产生大小相同,相位不同的短路电 流,当这些短路电流的向量和即差流达到一定值时,跳开变压器各侧断路器 的保护,就是变压器差动保护 三:下面我以两圈变变压器为例,针对以上所述变压器差动保护的定义, 对差动 保 护进行阐述: 高 ------ p 11' CT1 p2 nh nB nl CT2 汁2 -I 11'' 图一 1、 图一所示:为一两圈变变压器,具体参数如下:主变高压侧电压 U 高 =220KV,主变低压侧电压 U 低=110KV ,变压器容量Sn=240000KVA, I1 '流过变压器高压侧的一次电流; I ” :流过变压器低压侧的一次电流; I2'流过变压器高压侧所装设电流互感器即 CT1的二次电流; 12” :流过变压器低压侧所装设电流互感器即 CT1的二次电流; nh :高压侧电流互感器CT1变比; nl :低压侧电流互感器CT2变比; nB :变压器的变比; 各参数之间的关系:I1 'I2 ' nh I”/I2”= nl I2 ' I2 ” 11'/1”= nh/ n 1=1/nB I2'-I2" la In In' Ia'

2、 区:CT1到CT2的围之; 3、 反映故障类型:高压侧部相间短路故障,高压侧(中性点直接接地)单 相接地故障以及匝间、层间短路故障; 四:差动的特性 1比率制动:如图二所示,为差动保护比率特性的曲线图: 下面我们就以上图讲一下差动保护的比率特性: 0:图二的坐标原点; f :差动保护的最小制动电流; d :差动保护的最小动作电流; p :比率制动斜线上的任一点; e : p 点的纵坐标; b : p 点的横坐标; 动作区:在of 围,由于电流小于最小制动电流,因此在此围,只要电流大 于最 小动作电流Iopo ,差动保护动作;当电流大于 f 点时,由于电 流大于最小制动电流,此时保护开始进行比率制动运算,曲线抬咼, 此时只有当电流在比率制动曲线以上时保护动作;因此,图中阴影 部分,即差动保护的动作区; 制动区:当电流在落在曲线以下而大于最小动作电流的时候,由于受比率制 动系数的制约,保护部动作,这个区域就是差动保护的制动区; 比率制动系数K :实际上比率制动系数,就是图二中斜线的斜率,因此我们 只要计算出此斜线的斜率,就等于算出了比率制动系数。以 p 点为 例:计算出斜线pc 的斜率K=pa/ac=(pb-ab)/(ob-of);举例说明一下: 差动保护有关定值整定如下:最小动作电流 Iopo=2,最小制动电流 Iopo=5,比率制动系数k=0.5;按照做差动保护比率制动系数的方法, 施加高压侧电流I 仁6A,180度,低压侧电流l2=6A,0度,固定I1升 12,当I2升到9.4A 的时候保护动作,计算一下此时的比率制动系数。 由于两圈变差动的制动电流为(I1+I2) /2,因此,lzd=(9.4+6)/2=7.7, 所以 K=(9.4-6-2)/(7.7-5)=1.4/2.7=0.52; 动作电流

电动机差动保护及差动速断保护的整定计算

电动机差动保护及差动速断保护的整定计算 目前,国内生产及应用的微机型电动机的差动保护,由差动速断元件和具有比率制动特性的差动元件构成。差动速断元件没有制动特性,实质上是差流越限的高定值元件。与发电机差动保护一样,差动元件的动作特性为具有二段折线式的比率制动特性。对电动机差动保护的整定计算,就是要整定计算差动元件的初始动作电流Idz0、拐点电流Izd0、比率制动系数及差动速断元件的动作电流。 1、差动元件的初始动作电流Idz0 与发电机差动保护相同,电动机差动元件的初始动作电流,应按照躲过电动机额定工况下的最大不平衡电流来整定。即:Idz0= Krel×IHeδmax=Krel(K1+K2)IN IHeδmax-最大不平衡电流 Krel-可靠系数,取~2 IN-电动机的额定电流 K1-两侧TA变比误差,由于电动机的TA通常精度较低,可取。 K2-通道调整及传输误差,取。 综上所述,得Idz0=(~)IN,实取(TA二次值)。 2、拐点电流Izd0 在厂用电压切换的暂态过程中,由于电动机两侧差动TA二次回路中的暂态过程不一致,将在差动回路产生较大的差流。因此,为防止电动

机差动保护误动,应减少拐点电流。为此拐点电流可取Izd0=(~)IN。(TA二次值) 3、比率制动系数KZ 电动机的启动电流很大,最大启动电流高达电动机额定电流的8倍以上。另外电动机电源回路上发生短路故障时,电动机将瞬间供出较大的电流。 为了防止在上述过程中差动保护误动,差动元件的比率制动系数KZ 应按躲过电动机启动及电源回路故障时产生的最大不平衡电流来整定。 KZ=Krel×(IHeδmax/Imax) Krel-可靠系数,取~ IHeδma x-最大不平衡电流,它等于(K1+K2+K3)Imax Imax-电动机启动或电源回路故障时电动机的最大电流,取8IN。 K1-两侧TA变比误差,由于电动机的TA通常精度较低,可取。 K2-通道调整及传输误差,取。 K3-暂态特性系数,可取~。 综上所述,KZ=(~)×(++=~ 实际可取KZ=。 要说明的是,在电动机自启动的瞬间,由于两侧差动TA二次回路负载相差很大,可能造成两侧电流之间的相位变化较大,因此,若按此时的差流来整定差动元件,则差动元件的动作灵敏度将大大降低。为此,要求电动机差动元件速度不要太快,可增加(80~100)ms的延时。 4、差动速断元件Uhdz的整定

比率制动式差动

摘要:目前变压器都安装了差动保护,并引入比率制动式差动继电器继电器AL3 AL4 ,以保障电力系统的安全运行水平。为此,介绍变压器差动保护的制动特性曲线及现场测试方法。 关键词:变压器;差动保护;制动特性;测试方法 1前言 变压器是现代电力系统中的主要电气设备之一。由于变压器发生故障时造成的影响很大,故应加强对其继电保护装置功能的调试,以提高电力系统的安全运行水平。变压器保护装置中最重要一项配置——差动保护,就是为了防御变压器内部线圈及引出线的相间及匝间短路,以及在中性点直接接地系统侧的引出线和线圈上的接地短路。同时,由于差动保护选择性好,灵敏度高,因此,我们还应该考虑该保护能躲过励磁涌流和外部短路所产生的不平衡电流,同时应在变压器过励磁时能不误动。 2差动保护中引入比率制动特性曲线 变压器在正常负荷状态下,电流互感器电流互感器LDZ1 的误差很校这时,差动保护的差回路不平衡电流也很小,但随着外部短路电流的增大,电流互感器就可能饱和,误差也随之增大,这时的不平衡电流也随之增大。当电流超过保护动作电流时,差动保护就会误动,因此,为了防止变压器区外故障发生时差动保护误动作,我们希望引入一种继电器,其动作特性是:它的动作电流将随着不平衡电流的增大而按比例增大,并且比不平衡电流增大的还要快,这样误动就不会出现。因此,我们在差动保护中引入了比率制动式差动继电器,它除了以差动电流作为动作电流外,还引入了外部短路电流作为制动电流。当外部短路电流增大时,制动电流也随之增大,使继电器的动作电流也相应增大,从而有效地防止了变压器区外故障发生时差动保护误动作,制动特性曲线见图1。 由图1可知,该保护继电器能可靠地躲过外部故障时的不平衡电流,能有效地防止变压器区外故障发生时保护误动作,因此,差动保护的制动特性曲线的精确性是决定保护装置正确动作的关键,故制动特性曲线的测试是整套保护装置的调试重点。 3制动特性曲线的测试方法 以往在实际工作中,由于试验仪器所限,我们很容易忽略比率制动特性的测试,认为制动系数装置已固有,不用测试,结果往往造成保护装置因调试工作不细致而误动作。但随着现场试验仪器的不断先进,我们必须把这项工作做好。常规保护测试制动特性曲线可以在差动绕组和制动绕组分别通入动作电流及制动电流,经重复多次试验后,即可得出特性曲线。但是,随着变压器微机保护在电力系统中的广泛应用,我们又如何测试微机保护的比率制动特性曲线呢?笔者根据在现场对变压器微机保护多次调试总结出的经验看,微机差动保护制动系统只能在高、低压侧模拟区外故障通入电流,并经过计算动作电流和制动电流来求得。现介绍一种简单可靠且精确性高的测试方法,供大家参考,测试接线见图2。 为了方便计算,我们可以先假设变压器接线组分别为Y、y0,电流互感器变比的电流补偿系数为1,并根据现场变压器绕组的不同分为两类。 第一类,两绕组制动特性差动保护。 用两个电流源(可定为IA、Ia相,两相电流夹角为180°)将IA相、Ia相电流分别接在保护装置的高、低压侧,调整两相电流,令IA=Ia,此时Id=0。然后模拟区外故障,Ia相电流恒定不变,IA相电流增大使差动电流Id 增大直致保护动作。此时: 动作电流Id=IA-Ia;制动电流Ir=IA+Ia; 则制动系数(即求出图1中的曲线斜率)Kb1为: Kb1=(Id-Icd)/(Ir-IB) 式中Icd为最小动作电流;IB为拐点电流。 重复上述试验,固定不同的Ia值,调整不同的IA值,使其可进行保护动作,即可求得曲线。由此可使计算出的Kb1值与整定的Kb1值相符。 第二类:多绕组制动特性差动保护。 这时,动作电流为各侧电流同极性相加,制动电流取各侧电流中的最大值电流。当发生区外故障时,差动电流为不平衡电流,制动电流为最大侧的故障电流。此时,测试方法与第一类相同,可假设Ia恒定不变,减小IA 电流来增大差动电流Id,即: 动作电流Id=Ia-IA;制动电流Ir=Ia; 则制动系数Kb1=(Id-Icd)/(Ir-IB) 计算出制动系数Kb1与装置整定值Kb1相符。 以上介绍的测试方法只考虑了变压器接线绕组为Y、y0,电流互感器变比的电流补偿系数为1的情况。但在现场工作中,可能会碰到变压器接线绕组为Y、Δ,电流互感器变比的电流补偿系数不为1的情况,这时,我们需要考虑其他补偿系数的影响。 4结论 经过笔者在现场对不同型号的变压器微机保护的制动系数的测试,发现此方法简单易行,精确度高,值得向大

变压器差动保护整定计算

变压器差动保护整定计算 Prepared on 24 November 2020

变压器差动保护整定计算 1. 比率差动 装置中的平衡系数的计算 1).计算变压器各侧一次额定电流: 式中n S 为变压器最大额定容量,n U 1为变压器计算侧额定电压。 2).计算变压器各侧二次额定电流: 式中n I 1为变压器计算侧一次额定电流,LH n 为变压器计算侧TA 变比。 3).计算变压器各侧平衡系数: b n n PH K I I K ?=-2min 2,其中)4,min(min 2max 2--=n n b I I K 式中n I 2为变压器计算侧二次额定电流,min 2-n I 为变压器各侧二次额定电流值中最小值,max 2-n I 为变压器各侧二次额定电流值中最大值。 平衡系数的计算方法即以变压器各侧中二次额定电流为最小的一侧为基准,其它侧依次放大。若最大二次额定电流与最小二次额定电流的比值大于4,则取放大倍数最大的一侧倍数为4,其它侧依次减小;若最大二次额定电流与最小二次额定电流的比值小于4,则取放大倍数最小的一侧倍数为1,其它侧依次放大。装置为了保证精度,所能接受的最小系数ph K 为,因此差动保护各侧电流平衡系数调整范围最大可达16倍。 差动各侧电流相位差的补偿 变压器各侧电流互感器采用星形接线,二次电流直接接入本装置。电流互感器各侧的极性都以母线侧为极性端。

变压器各侧TA 二次电流相位由软件调整,装置采用Δ->Y 变化调整差流平衡,这样可明确区分涌流和故障的特征,大大加快保护的动作速度。对于Yo/Δ-11的接线,其校正方法如下: Yo 侧: Δ侧: 式中:a I ?、b I ?、c I ?为Δ侧TA 二次电流,a I '?、b I '?、c I '? 为Δ侧校正后的各相电流;A I ?、B I ? 、C I ? 为Yo 侧TA 二次电流,a I '?、b I '?、c I '? 为Yo 侧校正后的各相电流。其它接线方式可以类推。装置中可通过变压器接线方式整定控制字(参见装置系统参数定值)选择接线方式。 差动电流起动定值 cdqd I 为差动保护最小动作电流值,应按躲过正常变压器额定负载时的最大不平衡电流整定,即: 式中:e I 为变压器二次额定电流;rel K 为可靠系数(一般取~);er K 为电流互感器的比误差(10P 型取×2,5P 型和TP 型取×2);△U 为变压器调压引起的误差,取调压范围中偏离额定值的最大值(百分值);△m 为由于电流互感器变比未完全匹配产生的误差,可取为。在工程实用整定计算中可选取e cdqd I I )5.0~2.0(=,并应实测最大负载时差回路中的不平衡电流。 拐点电流的选取 对于稳态比率差动的两个拐点电流,装置分别取为和6Ie 。 斜率的整定

相关文档
最新文档