三角函数线的解题功能(教师版)

三角函数线的解题功能(教师版)
三角函数线的解题功能(教师版)

三角函数线的解题功能

一.求三角函数的定义域

例1.求下列函数的定义域:

分析: 首先作出单位圆,然后根据各问题的约束条件利用三角函数线画出角x 满足条件的终边范围.

解: (1)如图1,

(2)如图2,

点评: 三角函数线的主要作用是解三角不等式,比较大小及求函数定义域.

二.解三角不等式

例2.已知|cos θ|≤|sin θ|,求θ的取值范围.

分析: 我们可以在单位圆中作出正弦线和余弦线绝对值相等的角,再找出满足|cos θ|≤|sin θ|的θ角范围.

解:如图3所示,根据|cos θ|=|sin θ|,即θ角正弦线的绝对值和θ角余弦线的绝对值相等,则θ角的终边落在y=x 和y=-x 上,满足|cos θ|≤|sin θ|的θ角的终边落在阴影部分,

点评:本题主要考查根据正弦线和余弦线作出角θ的范围,再写出角θ的集合.

三. 比较大小

例3.比较下列各组数的大小:

分析:我们可以考虑利用三角函数线,根据正弦线、余弦线、正切线来比较它们的大小.

解:(1)如下图所示,在单位圆中作出的余弦线OM 2和OM 1,

∵OM 1

(2)如下图所示,sin =MP ,tan =AT ,

图1 x=

2

1

图2

∵MP

点评: 本题主要考查正弦线、余弦线、正切线的应用比较大小的.

四.证明三角不等式

例4.利用三角函数线证明:|sin α|+|cos α|≥1.

分析:找出角α的正余弦线,数形结合易证.

证明:当角α的终边在坐标轴上时,正弦线(余弦线)变成一个点,而余弦线(正弦线)的长等于r(r=1).

所以|sin α|+|cos α|=1.

当角α的终边落在一个象限时,如图所示,利用三角形两边之和大于第三边有: |sin α|+|cos α| =|MP|十|OM|>1.

综上有|sin α|+|cos α|≥1.

点评:本题利用三角函数定义,把三角问题转化为代数问题而获解决,这种方法,值得重视.对于sin θ+cos θ>1,也可以利用三角函数线来证明,此外该结论还可推广,若θ为任意角,则有|sin θ|+| cos θ|≥1.

[三角函数线基础练习一]

1、=

2205sin

A .

2

1

B .2

1-

C .

2

2

D .2

2-

2、角α(0<α<2π)的正、余弦线的长度相等,且正、余弦符号相异.那么α的值为( ) A .π4 B .3π4 C .7π4 D .3π4 或 7π4

3、若0<α<2π,且sin α<

2

3

, cos α> 12 .利用三角函数线,得到α的取值范围是( )

A .(-π3 ,π3 )

B .(0,π3 )

C .(5π3 ,2π)

D .(0,π3 )∪(5π

3 ,2π)

4、若π4 <θ < π

2 ,则下列不等式中成立的是 ( )

A .sin θ>cos θ>tan θ

B .cos θ>tan θ>sin θ

C . tan θ>sin θ>cos θ

D .sin θ>tan θ>cos θ

5、函数|

tan |tan cos |cos ||sin |sin x x

x x x x y ++=的值域是

A .{1}

B .{1,3}

C .{-1}

D .{-1,3}

6、依据三角函数线,作出如下四个判断: ①sin

π6 =sin 7π6 ;②cos (-π4 )=cos π4 ;③tan π8 >tan 3π8

;④sin 3π5 >sin 4π

5 .其中判断正确的有 ( )

A .1个

B .2个

C .3个

D .4个

7、若-2π3 ≤θ≤π

6 ,利用三角函数线,可得sin θ的取值范围是 .

8、若∣cos α∣<∣sin α∣,则∈α . 9、利用三角函数线,写出满足下列条件的角x 的集合. ⑴ sin x ≥

2

2

;⑵ cos x ≤ 12 ;⑶ tan x ≥-1 ;(4)21sin ->x 且21cos >x .

基础练习一参考答案

CDDCDB ??

??

?

?

-21,1; Z k k k ∈???

??++,43,4ππππ。

(1)

()Z k k k ∈??

?

???++-ππππ243,24; (2)

()Z k k k ∈???

???++ππππ235,23; (3)

()Z k k ∈??

?

???∞++-,4ππ; (4)()Z k k k ∈??

?

??++-ππππ23,26。

[三角函数线基础练习二]

1.下列命题中为真命题的是( )

A .三角形的内角必是第一象限角或第二象限角

B .角α的终边在x 轴上时,角α的正弦线、正切线分别变成一个点

C .终边在第二象限的角是钝角

D .终边相同的角必然相等 [答案] B

[解析] 三角形的内角有可能是π

2

,属非象限角;

终边在第二象限的角不一定是钝角;终边相同的角不一定相等,故A 、C 、D 都不正确. 2.已知角α的正弦线是单位长度的有向线段,那么角α的终边( )

A .在x 轴上

B .在y 轴上

C .在直线y =x 上

D .在直线y =x 或y =-x 上 [答案] B

[解析] ∵sin α=1或sin α=-1,∴角α的终边在y 轴上.

3.利用正弦线比较sin1,sin1.2,sin1.5的大小关系是( )

A .sin1>sin1.2>sin1.5

B .sin1>sin1.5>sin1.2

C .sin1.5>sin1.2>sin1

D .sin1.2>sin1>sin1.5 [答案] C

[解析] 数形结合可知,C 正确.

4.已知θ∈? ??

??π4,π2,在单位圆中角θ的正弦线、余弦线、正切线分别是a 、b 、c ,则它

们的大小关系是( )

A .a >b >c

B .c >a >b

C .c >b >a

D .b >c >a

[答案] B

[解析] 如图,AT >MP >OM ,即c >a >b .

5.若α是三角形的内角,且sin α+cos α=2

3

,则这个三角形是( )

A .等边三角形

B .直角三角形

C .锐角三角形

D .钝角三角形 [答案] D

[解析] 当0<α≤π

2时,由单位圆中的三角函数线知,sin α+cos α≥1,而sin α+

cos α=2

3

,∴α必为钝角.

6.a =sin 2π7,b =cos 2π7,c =tan 2π

7

,则( )

A .a

B .a

C .b

D .b

[答案] D

[解析] ∵π4<2π7<π2,作出角2π7的三角函数线如图可知, cos 2π7

∴选D.

7.已知sin α>sin β,那么下列命题成立的是( )

A .若α、β是第一象限角,则cos α>cos β

B .若α、β是第二象限角,则tan α>tan β

C .若α、β是第三象限角,则cos α>cos β

D .若α、β是第四象限角,则tan α>tan β [答案] D

[解析] 如图(1),α、β的终边分别为OP 、OQ ,sin α=MP >NQ =sin β,此时OM

如图(2),OP 、OQ 分别为角α、β的终边,MP >NQ ,∴AC NQ 即sin α>sin β,∴ON >OM ,即cos β>cos α,故C 错,∴选D.

8.若α∈[0,2π),且cos α≥

3

2

,则α的取值范围是______. [答案] [0,π6]∪[11π

6

,2π)

[解析] 如图,OM 为[0,2π)内的角π6和11π6的余弦线,欲使cos α≥3

2,角α的余弦

≥OM ,当OM 伸长时,OP 与OQ 扫过部分为扇形POQ ,∴0≤α≤π6或11π

6

α

<2π

.

9.若θ∈?

????3π4,3π2,则sin θ的取值范围是________.

[答案] ?

??

??-1,

22 [解析] 如图可知sin 3π4=22,sin 3π

2

=-1,

∴-1

22

. 10.已知点P (tan α,sin α-cos α)在第一象限,且0≤α≤2π,则角α的取值范围是______________________.

[答案] ? ????π4,π2∪? ????π,5π4 [解析] ∵点P 在第一象限,

∴?

??

??

tan α>0, (1)

sin α-cos α>0, (2)

由(1)知0<α<π2或π<α<3π

2,(3)

由(2)知sin α>cos α,

作出三角函数线知,在[0,2π]内满足sin α>cos α的

α∈? ????π4

,5π4,(4) 由(3)、(4)得α∈? ????π4,π2∪?

????π,5π4. [点评] 要准确应用单位圆中的三角函数线求解简单的三角不等式须熟记以下几种情形:

11.利用单位圆写出满足sin α<2

2

,且α∈(0,π)的角α的集合是

__________________________.

[答案] ?

????0,π4∪?

??

??3

π

4

π

[解析] 作出正弦线如图.

MP =NQ =

2

2

, 当sin α<

2

2

时,角α对应的正弦线MP 、NQ 缩短, ∴0<α<π4或3π

4

<α<π.

12.利用三角函数线比较下列各组数的大小 :

(1)sin 2π3与sin 4π

5;

(2)tan 2π3与tan 4π

5

.

[解析] 如图所示,角2π

3的终边与单位圆的交点为P ,其反向延长线与单位圆的过点A

的切线的交点为T ,作PM ⊥x 轴,垂足为M ,sin 2π3=MP ,tan 2π

3

=AT ;

5

的终边与单位圆的交点为P ′,其反向延长线与单位圆的过点A 的切线交点为T ′,作P ′M ′⊥x 轴,垂足为M ′,则sin 4π5=M ′P ′,tan 4π

5

=AT ′,

由图可见,MP >M ′P ′>0,AT

∴(1)sin 2π3>sin 4π

5.

(2)tan 2π3

5.

13.求下列函数的定义域:

(1)y =2cos x -1; (2)y =lg(3-4sin 2

x ). [解析] 如图(1). ∵2cos x -1≥0,∴cos x ≥1

2

.

∴函数定义域为????

??-π3+2k π,π3+2k π(k ∈Z ).

(2)如图(2).

∵3-4sin 2x >0,∴sin 2

x <34,∴-32

∴函数定义域为? ????-π3+2k π,π3+2k π∪? ? 2π

3

+2k π

?

??4π

3+2k π(k ∈Z ),即? ??

??-π3+k π,π3+k π(k ∈

Z

).

14.利用单位圆中的三角函数线解不等式(组):

(1)3tan α+3>0;

(2)??

?

2sin x -2>0

2cos x ≤1

.

[解析] (1)要使3tan α+3>0,即tan α>-33

. 由正切线知k π-π6<α

2

,k ∈Z .

∴不等式的解集为?

????k π-π6,k π+π2,k ∈Z .

(2)不等式组即为???

??

sin x >2

2

cos x ≤12

区域(Ⅰ)为sin x >

22

区域(Ⅱ)为cos x ≤1

2

.

区域(Ⅰ)与(Ⅱ)公共部分为不等式组的解,即不等式组解集为?

?????2k π+π3,2k π+3π4,k ∈Z .

15.已知角α的终边落在直线y =2x 上,求sin α,cos α,tan α的值.

[解析] (1)当角α的终边在第一象限时,在角α的终边上取点A (1,2),

由r =|OA |=12

+22

=5得, sin α=

2

5=255,cos α=15=55

,tan α=2.

(2)当角α的终边在第三象限时,在角α的终边上取点B (-1,-2), 由r =|OB |=(-1)2

+(-2)2

=5得,

sin α=-25=-255,cos α=-15

=-5

5,tan α=2.

(人教版初中数学)锐角三角函数

锐角三角函数 一.〖基础训练〗 1、在△ABC 中,∠C =90°,则sinA= ,cosA= tanA= cotA= . 2、根据直角三角形的 元素(至少有一个边),求出 其它所有元素的过程,即解直角三角形 3.Rt △ABC 中,若sinA =45 ,AB =10,那么BC = ,tanB = 4.写出适合条件的锐角α Sin600= , tan300= ,cos α=32 ,α= , 5、在△ABC 中,∠C =90°,AC=6,BC=8,那么sinA= 6、sin300+tan450= . 7、若sin α=cos70°,则角α等于 A .70°; B .60°; C .45°; D .20°. 8、(讲解)若∠A 为锐角,且cosA ≤ 12 ,那么( ) A 、00≤A ≤600 B 、600≤A ≤900 C 、00≤A ≤300 D 、300≤A ≤90 0 二.〖中考在线〗(讲解) 1、(2004年中考题).在△ABC 中,∠C =90°,sinA =35 ,则cosA 的值是( ) (A ) 35 (B )45 (C )925 (D )1625 2、如图,(2003年第21题)在△ABC 中,AD 是BC 边上的高,tanB=cos ∠DAC. (1)求证:AC=BD (2)若sinC=1213 ,BC=12,求AD 的长. 三.〖考点训练〗 1.Rt △ABC 中,∠C =90°,AB =6,AC =2,则sinA =( ) (A ) 13 (B )23 (C )23 2 (D )23 2.已知∠A +∠B =90°,则下列各式中正确的是( ) A B C D

求锐角三角函数值的经典题型+方法归纳(超级经典好用)

求锐角三角函数值的经典题型+方法归纳(超级经典好用)

求锐角三角函数值的几种常用方法 一、定义法 当已知直角三角形的两条边,可直接运用锐角三角函数的定义求锐角三角函数的值. 例1 如图1,在△ABC 中,∠C =90°,AB =13,BC =5,则sin A 的值是( ) (A )513 (B )1213 (C )512 (D )13 5 对应训练: 1.在Rt △ABC 中,∠ C =90°,若BC =1,AB 5,则tan A 的值为 ( ) A . 5 B 25 C .1 2 D .2 二、参数(方程思想)法 锐角三角函数值实质是直角三角形两边的比值,所以解题中有时需将三角函数转化为线 段比,通过设定一个参数,并用含该参数的代数式表示出直角三角形各边的长,然后结合相关条件解决问题. 例2 在△ABC 中,∠C =90°,如果tan A =5 12,那么sin B 的值是 . 对应训练: 1.在△ABC 中,∠C =90°,sin A=5 3,那么tan A 的值等于( ). A .35 B . 45 C . 34 D . 43 2.已知△ ABC 中, ο 90=∠C ,3cosB=2, AC=5 2 ,则 AB= . 3.已知Rt △ABC 中,,12,4 3 tan ,90==?=∠BC A C 求AC 、AB 和cos B .

4.已知:如图,⊙O 的半径OA =16cm ,OC ⊥AB 于C 点,?=∠4 3sin AOC 求:AB 及OC 的长. 三、等角代换法 当一个锐角的三角函数不能直接求解或锐角不在直角三角形中时,可将此角通过等 角转换到能够求出三角函数值的直角三角形中,利用“两锐角相等,则三角函数值也相等” 来解决. 例3 在Rt △ABC 中,∠BCA =90°,CD 是AB 边上的中线,BC =5,CD =4,则cos ∠ACD 的值为 . 对应训练 1.如图,O ⊙是ABC △的外接圆,AD 是O ⊙的直径, 若O ⊙的半径为32,2AC =,则sin B 的值是( )A .2 3

三角函数题型总结-教师版

三角函数题型总结-教师版

111111 cos sin sin 2224 S x y = =?=ααα, …… …………7分 2221112||[cos()]sin()sin(2)223343 S x y πππ = =-+?+=-+ααα. … …………9分 依题意得 2sin 22sin(2)3π=-+αα, 整 理得 cos20 =α. ………………11分 因为 62 ππ<<α, 所以 23π <<πα, 所 以 22 π= α, 即 4 π = α. …… …………13分 2、三角形中求值 〖例〗(2013年高考北京卷(理))在△ABC 中,a =3,b 6,∠B =2∠A . (I)求cosA 的值; (II)求c 的值. 【答案】 解:(I)因为a =3,b =2 ,∠B =2∠A . 所以在△ABC

中,由正弦定理得3sin sin 2A A =.所以2sin cos sin 3A A A =.故cos 3 A =. (II)由(I)知 cos A = ,所以 sin A == .又因为 ∠B=2∠A,所以2 1cos 2cos 13 B A =-= .所以2sin 1cos B B = -= . 在△ABC 中,53sin sin()sin cos cos sin C A B A B A B =+=+=所以sin 5sin a C c A ==. 【举一反三】 (2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对)) 设ABC ?的内角 ,,A B C 的对边分别为,,a b c ,()()a b c a b c ac ++-+=. (I)求B (II)若31 sin sin 4 A C = ,求C . 【答案】 ③三角不等式

三角函数-模型解题法

模型解题法:三大核心:理清概念,抓住本质,寻找联系。三大思想:数形结合,分类讨论,方程-函数-不等式转化 专题一:角与角函数 模型一:边-角互化解三角形模型 本质:运用正余弦定理,边角互化。转化成角关系,走三角变形之路;转化成边关系,走代数变形之路。 边-角联系: 题型一:边化角 三角函数模型 一;三角函数值模型 本质;用三角函数有界性,主要将表达式变形为,然后借助有界性求取值范围或构造不等式(求解参数范围)。 求以下函数的值

则M应满足什么条件。 二,三角函数对称性模型 对称性包括中心对称和轴对称 本质:将表达式变形为或,正弦函数:对称轴 对称中心:。对称轴是在最大值或最小值取得。对称中心是在平衡位置取得。 三,三角函数单调性模型 本质:将表达式整理成或,然后将带入单调区间。 四,三角函数图象 本质:理解,各参数的含义,,, 以及函数图像的变换 平移变换:口诀,左右平移变换(左加右减) (针对自变量),上下平移变换(上加下减)(针对函数值整体). 伸缩变换 对称变换:包括中心对称和轴对称 ①y=f(x)与y=-f(x)关于x轴对称;②y=f(x)与y=f(-x)关于y轴对称; ③y=f(x)与y=-f(-x)关于原点对称;④y=f(x)与y=f -1(x)关于y=x对称; ⑤y=f(x)与y=-f -1(x)关于y=-x对称;⑥y=f(x)与y=f(2a-x)关于x=a对称; ⑦y=f(x)与y=|f(x)|,保留x轴上方的图象,将x轴下方的图象沿x轴翻折上去,x轴下方图象删去; ⑧y=f(x)与y=f(|x|),保留y轴右方的图象,将y轴右方的图象沿y轴翻折到左边,原来y轴左方图象删去. 角模型:1单角模型

苏教版数学中考总复习[中考总复习:锐角三角函数综合复习--重点题型巩固练习](提高)

苏教版中考数学总复习 重难点突破 知识点梳理及重点题型巩固练习 中考总复习:锐角三角函数综合复习—巩固练习(提高) 【巩固练习】 一、选择题 1. 在△ABC 中,∠C =90°,cosA =3 5,则tan A 等于 ( ) A .3 5 B .45 C .34 D .43 2.在Rt △ABC 中,∠C=90°,把∠A 的邻边与对边的比叫做∠A 的余切,记作cotA= a b .则下列关系式中不成立的是( ) A .tanA?cotA=1 B .sinA=tanA?cosA C .cosA=cot A?sinA D .tan 2A+cot 2 A=1 第2题 第3题 3.如图,在四边形ABCD 中,E 、F 分別是AB 、AD 的中点,若EF=2,BC=5,CD=3,则tanC 等于( ) A . 34 B .43 C .35 D .45 4.如图所示,直角三角形纸片的两直角边长分别为6、8,现将△ABC 如图那样折叠,使点A 与点B 重合,折痕为DE ,则tan ∠CBE 的值是( ) A . 247 B .3 C .724 D .1 3 5.如图所示,已知∠α的终边OP ⊥AB ,直线AB 的方程为y x ,则cos α等于 ( ) A . 1 2 B C D

6.(2015?南充)如图,一艘海轮位于灯塔P的北偏东55°方向,距离灯塔2海里的点A处,如果海轮沿正南方向航行到灯塔的正东方向,海轮航行的距离AB长是() A.2海里B.2sin55°海里C.2cos55°海里D.2tan55°海里 二、填空题 7.设θ为锐角,且x2+3x+2sinθ=0.则θ=. 8.如图,在矩形ABCD中,点E在AB边上,沿CE折叠矩形ABCD,使点B落在AD边上的点F处,若AB=4,BC=5,则tan∠AFE的值为 . 9.已知△ABC的外接圆O的半径为3,AC=4,则sinB= . 第8题第9题第11题 10.当0°<α<90的值为. 11.如图,点E(0,4),O(0,0),C(5,0)在⊙A上,BE是⊙A上的一条弦.则tan∠OBE=.12.(2015?牡丹江)在△ABC中,AB=12,AC=13,cos∠B=,则BC边长为 . 三、解答题 13.(2015?泰州)如图,某仓储中心有一斜坡AB,其坡度为i=1:2,顶部A处的高AC为4m,B、C在同一水平地面上. (1)求斜坡AB的水平宽度BC; (2)矩形DEFG为长方体货柜的侧面图,其中DE=2.5m,EF=2m,将该货柜沿斜坡向上运送,当BF=3.5m 时,求点D离地面的高.(≈2.236,结果精确到0.1m)

锐角三角函数的图文解析

锐角三角函数的图文解析 一、选择题 1.如图,菱形ABCD 中,AC 交BD 于点O ,DE ⊥BC 于点E ,连接OE ,∠DOE =120°,DE =1,则BD =( ) A .3 B .23 C .63 D .33 【答案】B 【解析】 【分析】 证明△OBE 是等边三角形,然后解直角三角形即可. 【详解】 ∵四边形ABCD 是菱形,∴OD =OB ,CD =BC . ∵DE ⊥BC ,∴∠DEB =90°,∴OE =OD =OB . ∵∠DOE =120°,∴∠BOE =60°,∴△OBE 是等边三角形,∴∠DBC =60°. ∵∠DEB =90°,∴BD = 23sin603 DE =?. 故选B . 【点睛】 本题考查了解直角三角形,菱形的性质,等边三角形的判定和性质,直角三角形斜边的中线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型. 2.如图,为了加快开凿隧道的施工进度,要在小山的两端同时施工.在AC 上找一点B ,取145ABD ∠=o ,500BD m =,55D ∠=o ,要使A ,C ,E 成一直线,那么开挖点E 离点D 的距离是( ) A .500sin55m o B .500cos55m o C .500tan55m o D .500cos55m o 【答案】B 【解析】 【分析】 根据已知利用∠D 的余弦函数表示即可. 【详解】

在Rt△BDE中,cosD=DE BD , ∴DE=BD?cosD=500cos55°. 故选B. 【点睛】 本题主要考查了解直角三角形的应用,正确记忆三角函数的定义是解决本题的关键. 3.菱形ABCD的周长为20cm,DE⊥AB,垂足为E,sinA=3 5 ,则下列结论正确的个数有() ①DE=3cm; ②BE=1cm; ③菱形的面积为15cm2; ④BD=210cm. A.1个B.2个C.3个D.4个【答案】C 【解析】 【分析】 根据菱形的性质及已知对各个选项进行分析,从而得到答案 【详解】 ∵菱形ABCD的周长为20cm ∴AD=5cm ∵sinA=3 5 ∴DE=3cm(①正确) ∴AE=4cm ∵AB=5cm ∴BE=5﹣4=1cm(②正确) ∴菱形的面积=AB×DE=5×3=15cm2(③正确) ∵DE=3cm,BE=1cm ∴10(④不正确) 所以正确的有三个. 故选C. 【点睛】 本题考查了菱形的性质及锐角三角函数的定义,熟练掌握性质是解题的关键 4.一个物体的三视图如图所示,其中主视图和左视图是全等的等边三角形,俯视图是圆,根据图中所示数据,可求这个物体的表面积为()

高考数学导数与三角函数压轴题综合归纳总结教师版

导数与三角函数压轴题归纳总结 近几年的高考数学试题中频频出现含导数与三角函数零点问题,内容主要包括函数零点个数的确定、根据函数零点个数求参数范围、隐零点问题及零点存在性赋值理论.其形式逐渐多样化、综合化. 一、零点存在定理 例1.【2019全国Ⅰ理20】函数,为的导数.证明: (1)在区间 存在唯一极大值点; (2)有且仅有2个零点. 【解析】(1)设()()g x f x '=,则()()() 2 11 cos ,sin 11g x x g x x x x '=- =-+++. 当1,2x π??∈- ???时,单调递减,而()00,02g g π?? ''>< ??? , 可得在1,2π?? - ?? ?有唯一零点,设为. 则当()1,x α∈-时,()0g x '>;当,2x πα?? ∈ ??? 时,. 所以在()1,α-单调递增,在,2πα?? ???单调递减,故在1,2π?? - ???存在唯一极大 值点,即()f x '在1,2π?? - ?? ?存在唯一极大值点. (2)()f x 的定义域为. (i )由(1)知, ()f x '在()1,0-单调递增,而()00f '=,所以当时, ,故()f x 在单调递减,又,从而是()f x 在的唯 一零点. ()sin ln(1)f x x x =-+()f x '()f x ()f x '(1,)2 π-()f x ()g'x ()g'x α()0g'x <()g x ()g x (1,)-+∞(1,0)x ∈-()0f 'x <(1,0)-(0)=0f 0x =(1,0]-

(ii )当0,2x π?? ∈ ??? 时,由(1)知,在单调递增,在单调递减,而 ,02f π??'< ???,所以存在,2πβα?? ∈ ???,使得,且当时, ;当,2x πβ??∈ ???时,.故在单调递增,在,2πβ?? ???单调递 减.又,1ln 1022f ππ???? =-+> ? ???? ?,所以当时,. 从而()f x 在0,2π?? ??? 没有零点. (iii )当,2x ππ??∈ ???时,()0f x '<,所以()f x 在,2ππ?? ???单调递减.而 ()0,02f f ππ??>< ??? ,所以()f x 在,2ππ?? ??? 有唯一零点. (iv )当时,()l n 11x +>,所以<0,从而()f x 在没有零点. 综上, ()f x 有且仅有2个零点. 【变式训练1】【2020·天津南开中学月考】已知函数3()sin (),2 f x ax x a R =-∈且 在,0,2π?? ????上的最大值为32π-, (1)求函数f (x )的解析式; (2)判断函数f (x )在(0,π)内的零点个数,并加以证明 【解析】(1)由已知得()(sin cos )f x a x x x =+对于任意的x∈(0, 2 π), 有sin cos 0x x x +>,当a=0时,f(x)=? 3 2 ,不合题意; 当a<0时,x∈(0, 2π),f′(x)<0,从而f(x)在(0, 2 π )单调递减, 又函数3 ()sin 2f x ax x =- (a∈R)在[0, 2 π]上图象是连续不断的, 故函数在[0, 2 π ]上的最大值为f(0),不合题意; ()f 'x (0,)α,2απ?? ???(0)=0f '()0f 'β=(0,)x β∈()0f 'x >()0f 'x <()f x (0,)β(0)=0f 0,2x ?π?∈ ???()0f x >(,)x ∈π+∞()f x (,)π+∞

三角函数模型的简单应用试题含答案

一、选择题 1.函数的2cos 3cos 2y x x =-+最小值为( ) A .2 B .0 C .4 1 - D .6 2.2sin 5cos )(+-?=x x x x f ,若a f =)2(,则)2(-f 的值为( ). A .-a B .2+a C .2-a D .4 -a 3.设A 、B 都是锐角,且cosA >sinB 则A+B 的取值是 ( ) A .?? ? ??ππ,2 B .()π,0 C .?? ? ? ?2,0π D .?? ? ??2,4ππ 4.若函数)(x f 是奇函数,且当0x 时,)(x f 的表达式为( ) A .x x 2sin 3cos + B .x x 2sin 3cos +- C .x x 2sin 3cos - D .x x 2sin 3cos -- 5.下列函数中是奇函数的为( )

A .y=x x x x cos cos 22-+ B .y= x x x x cos sin cos sin -+ C .y=2cosx D .y=lg(sinx+x 2sin 1+) 二、填空题 6.在满足 x x 4 πtan 1πsin +=0的x 中,在数轴上求离点6最近的那个整数值是 . 7.已知( )sin 4f x a x =+(其中a 、b 为常数),若()52=f ,则 ()2f -=__________. 8.若?>30cos cos θ,则锐角θ的取值范围是_________. 9.由函数?? ? ??≤ ≤=656 3sin 2ππ x x y 与函数y =2的图象围成一个封闭图形,这个封闭图形的面积是_________. 10.函数1sin(2)2 y x θ=+的图象关于y 轴对称的充要条件是 三、解答题 11.如图,表示电流强度I 与时间t 的关系式

人教版初中数学锐角三角函数的难题汇编及解析

人教版初中数学锐角三角函数的难题汇编及解析 一、选择题 1.如图,一艘轮船位于灯塔P 的北偏东60°方向,与灯塔P 的距离为30海里的A 处,轮船沿正南方向航行一段时间后,到达位于灯塔P 的南偏东30°方向上的B 处,则此时轮船所在位置B 与灯塔P 之间的距离为( ) A .60海里 B .45海里 C .3 D .3 【答案】D 【解析】 【分析】 根据题意得出:∠B=30°,AP=30海里,∠APB=90°,再利用勾股定理得出BP 的长,求出答案. 【详解】 解:由题意可得:∠B=30°,AP=30海里,∠APB=90°, 故AB=2AP=60(海里), 则此时轮船所在位置B 处与灯塔P 之间的距离为:22303AB AP -= 故选:D . 【点睛】 此题主要考查了勾股定理的应用以及方向角,正确应用勾股定理是解题关键. 2.在半径为1的O e 中,弦AB 、AC 32,则BAC ∠为( )度. A .75 B .15或30 C .75或15 D .15或45 【答案】C 【解析】 【分析】 根据题意画出草图,因为C 点位置待定,所以分情况讨论求解. 【详解】 利用垂径定理可知:32 2 AE = .

sin∠AOD= 3 2 ,∴∠AOD=60°; sin∠AOE= 2 2 ,∴∠AOE=45°; ∴∠BAC=75°. 当两弦共弧的时候就是15°. 故选:C. 【点睛】 此题考查垂径定理,特殊三角函数的值,解题关键在于画出图形. 3.如图,在△ABC中,AC⊥BC,∠ABC=30°,点D是CB延长线上的一点,且BD=BA,则tan∠DAC的值为() A.23B.3C.33D.3 【答案】A 【解析】 【分析】 【详解】 设AC=x,在Rt△ABC中,∠ABC=30°,即可得AB=2x,3, 所以BD=BA=2x,即可得33)x, 在Rt△ACD中,tan∠DAC= (32) 32 CD x AC + ==, 故选A. 4.直角三角形纸片的两直角边长分别为6,8,现将ABC V如图那样折叠,使点A与点B 重合,折痕为DE,则tan CBE ∠的值是()

苏教版:锐角三角函数 经典基础题型归类复习

同学个性化教学设计 年 级: 教 师: 科 目: 班 主 任: 日 期: 时 段: 教学内容 锐角三角函数 经典基础题型归类复习 教学目标 重难点透视 薄弱点分析 考点分析 教学过程 反馈、反思 知识考点: 本节知识的考查一般以填空题和选择题的形式出现,主要考查锐角三角函数的意义,即运用sin a 、cos a 、tan a 、cot a 准确表示出直角三角形中两边的比(a 为锐角),考查锐角三角函数的增减性,特殊角的三角函数值以及互为余角、同角三角函数间的关系。 精典例题: 【例1】在Rt △ABC 中,∠C =900,AC =12,BC =15。 (1)求AB 的长; (2)求sinA 、cosA 的值; (3)求A A 22cos sin +的值; (4)比较sinA 、cosB 的大小。 变式:(1)在Rt △ABC 中,∠C =900,5=a ,2=b ,则sinA = 。 (2)在Rt △ABC 中,∠A =900,如果BC =10,sinB =0.6,那么AC = 。 【例2】计算:020045sin 30cot 60sin +? 注意:熟记00、300、450、600、900角的三角函数值,并能熟练进行运算。 【例3】已知,在Rt △ABC 中,∠C =900,2 5tan =B ,那么cosA ( ) A 、 25 B 、35 C 、5 52 D 、32 变式:已知α为锐角,且5 4cos = α,则ααcot sin += 。

【例4】已知3cot tan =+αα,α为锐角,则αα22cot tan += 。 变式:【问题】已知009030<<<βα,则αβαβcos 12 3cos )cos (cos 2-+---= 。 变式:若太阳光线与地面成α角,300<α<450,一棵树的影子长为10米,则树高h 的范围是( )(取7.13=) A 、3<h <5 B 、5<h <10 C 、10<h <15 D 、h >15 【例5】某市正在进行商业街改造, 商业街起点在古民居P 的南偏西60度方向上的A 处, 现已改造至古民居P 的南偏西30度方向上的B 处,A 与B 相距150米, 且B 在A 的正东方向 .为了不破坏古民居的风貌,按有关规定,在古民居的周围100 米内不得修建现代化商业街,若工程队继续向正东方向修建200米商业街到C 处, 则 对于从B 到 C 的商业街改造是否违反有关规定? 专项训练: 一、选择题: 1、在Rt △ABC 中,∠C =900,若4 3tan = A ,则sinA =( ) A 、34 B 、43 C 、35 D 、53 2、已知cos α<0.5,那么锐角α的取值范围是( ) A 、600<α<900 B 、00<α<600 C 、300<α<900 D 、00<α<300 3、若1)10tan(30=+α,则锐角α的度数是( ) A 、200 B 、300 C 、400 D 、500 4、在Rt △ABC 中,∠C =900,下列式子不一定成立的是( ) A 、cosA =cos B B 、cosA =sinB C 、cotA =tanB D 、2cos 2sin B A C += 5、在Rt △ABC 中,∠C =900,3 1tan =A ,AC =6,则BC 的长为( ) A 、6 B 、5 C 、4 D 、2 6、某人沿倾斜角为β的斜坡前进100米,则他上升的最大高度为( ) A 、βsin 100米 B 、βsin 100米 C 、β cos 100米 D 、βcos 100米 7、计算0030cot 3 360cos +的值是( )

三角函数概念x教师版

角的概念、定义 一、知识清单 1. 终边相同的角 ①与α(0°≤α<360°)终边相同的角的集合(角α与角β的终边重合): {} Z k k ∈+?=,360 |αββο ; ②终边在x 轴上的角的集合:{}Z k k ∈?=,180|οββ; ③终边在y 轴上的角的集合:{}Z k k ∈+?=,90180|οοββ; ④终边在坐标轴上的角的集合:{}Z k k ∈?=,90|οββ. 2. 角度与弧度的互换关系:360°=2π 180°=π 1°=0.01745 1=57.30°=57°18′ 注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零, 熟记特殊角的弧度制. 3.弧度制下的公式 扇形弧长公式r =l α,扇形面积公式211 ||22 S R R α==l ,其中α为弧所对圆心 角的弧度数。 4.三角函数定义: 利用直角坐标系,可以把直角三角形中的三角函数推广到任意角的三角数.在α终边上任取一点(,)P x y (与原点不重合),记22||r OP x y ==+, 则sin y r α=,cos x r α=,tan y x α=,cot x y α=。 注: ⑴三角函数值只与角α的终边的位置有关,由角α的大小唯一确定,∴三角函数是以角为自变量,以比值为函数值的函数. ⑵根据三角函数定义可以推出一些三角公式: ①诱导公式:即 2 k π αα±→或902k αα±→o 之间函数值关系()k Z ∈,其规律是“奇变偶不变,符号看象限” ;如sin(270)α-=o cos α- ②同角三角函数关系式:平方关系,倒数关系,商数关系. ⑶重视用定义解题.

(必修4)第一章三角函数

三角函数 一、基本内容串讲 本章主干知识:三角函数的定义、图象、性质及应用,函数()?ω+=x A y sin 的图象,三角函数模型在解决具有周期变化规律问题中的应用。 1.任意角和弧度制 从运动的角度,在旋转方向及旋转圈数上引进负角及大于3600的角。在直角坐标系中,当角的终边确定时,其大小不一定(通常使角的顶点与原点重合,角的始边与x 轴非负半轴重合)。为了把握这些角之间的联系,引进终边相同的角的概念,凡是与终边α相同的角,都可以表示成α+k ·3600 (k ∈Z )的形式,特例,终边在x 轴上的角的集合为{α|α=k ·1800 ,k ∈Z},终边在y 轴上的角的集合为{α|α=900 +k ·18000 ,k ∈Z},终边在坐标轴上的角的集合为{α|α=k ·900,k ∈Z}。另外,角的终边落在第几象限,就说这个角是第几象限的角。 弧度制是角的度量的重要表示法,能正确地进行弧度与角度的换算,熟记特殊角的弧度制。在弧度制下,扇形弧长公式=|α|R ,扇形面积公式||R 2 1R 2 1S 2α== ,其中α为 弧所对圆心角的弧度数。 2.任意角的三角函数 利用直角坐标系,可以把直角三角形中的三角函数推广到任意角的三角函数。设P(x ,y)是角α终边上任一点(与原点不重合),记22y x |OP |r +==,则r y sin =α,r x cos = α,x y tan = α。 3.同角三角函数的基本关系式 (1)平方关系:22sin cos 1αα+= (2)商数关系:sin tan cos α αα = 4.三角函数的诱导公式 利用三角函数定义,可以得到诱导公式:即πα2 k +与α之间函数值的关系(k ∈Z ), 其规律是“奇变偶不变,符号看象限”。 5.三角函数的图象与性质 函数 y=sinx y=cosx y=tanx 图象 定义域 R R },2 |{Z k k x x ∈+ ≠π π

人教版初中数学锐角三角函数的知识点复习

人教版初中数学锐角三角函数的知识点复习 一、选择题 1.南洞庭大桥是南益高速公路上的重要桥梁,小芳同学在校外实践活动中对此开展测量活动.如图,在桥外一点A 测得大桥主架与水面的交汇点C 的俯角为α,大桥主架的顶端D 的仰角为β,已知测量点与大桥主架的水平距离AB =a ,则此时大桥主架顶端离水面的高CD 为( ) A .asinα+asinβ B .acosα+acosβ C .atanα+atanβ D .tan tan a a αβ + 【答案】C 【解析】 【分析】 在Rt △ABD 和Rt △ABC 中,由三角函数得出BC =atanα,BD =atanβ,得出CD =BC+BD =atanα+atanβ即可. 【详解】 在Rt △ABD 和Rt △ABC 中,AB =a ,tanα= BC AB ,tanβ=BD AB , ∴BC =atanα,BD =atanβ, ∴CD =BC+BD =atanα+atanβ, 故选C . 【点睛】 本题考查了解直角三角形﹣仰角俯角问题;由三角函数得出BC 和BD 是解题的关键. 2.如图,△ABC 内接于半径为5的⊙O ,圆心O 到弦BC 的距离等于3,则∠A 的正切值等于( ) A .35 B .45 C .34 D .43 【答案】C 【解析】

试题分析:如答图,过点O作OD⊥BC,垂足为D,连接OB,OC,∵OB=5,OD=3,∴根据勾股定理得BD=4. ∵∠A=1 2 ∠BOC,∴∠A=∠BOD. ∴tanA=tan∠BOD= 4 3 BD OD . 故选D. 考点:1.垂径定理;2.圆周角定理;3.勾股定理;4.锐角三角函数定义. 3.同学们参加综合实践活动时,看到木工师傅用“三弧法”在板材边角处作直角,其作法是:如图: (1)作线段AB,分别以点A,B为圆心,AB长为半径作弧,两弧交于点C; (2)以点C为圆心,仍以AB长为半径作弧交AC的延长线于点D; (3)连接BD,BC. 根据以上作图过程及所作图形,下列结论中错误的是() A.∠ABD=90°B.CA=CB=CD C.sinA= 3 2 D.cosD= 1 2 【答案】D 【解析】 【分析】 由作法得CA=CB=CD=AB,根据圆周角定理得到∠ABD=90°,点C是△ABD的外心,根据三角函数的定义计算出∠D=30°,则∠A=60°,利用特殊角的三角函数值即可得到结论. 【详解】 由作法得CA=CB=CD=AB,故B正确; ∴点B在以AD为直径的圆上, ∴∠ABD=90°,故A正确; ∴点C是△ABD的外心,

人教版 高中数学必修4 三角函数知识点

高中数学必修4知识点总结 第一章 三角函数(初等函数二) ?? ?? ?正角:按逆时针方向旋转形成的角1、任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角 2、角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角. 第一象限角的集合为{} 36036090,k k k αα?<, 则sin y r α= ,cos x r α= ,()tan 0y x x α= ≠. 10、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正. 11、三角函数线:sin α=M P ,cos α=O M ,tan α=AT . 12、同角三角函数的基本关系:()2 2 1sin cos 1αα+=

三角函数10道大题(带答案)

三角函数大题转练 1.已知函数()4cos sin()16 f x x x π =+-. (Ⅰ)求 ()f x 的最小正周期; (Ⅱ)求()f x 在区间[,]64 ππ -上的最大值和最小值. 2、已知函数.,1cos 2)3 2sin()32sin()(2R x x x x x f ∈-+-++=π π · (Ⅰ)求函数)(x f 的最小正周期; (Ⅱ)求函数)(x f 在区间]4 ,4[ππ-上的最大值和最小值. 3、已知函数()tan(2),4 f x x =+π (Ⅰ)求()f x 的定义域与最小正周期; (II )设0,4?? ∈ ? ? ? πα,若()2cos 2,2 f =αα求α的大小 : 4、已知函数x x x x x f sin 2sin )cos (sin )(-= . (1)求)(x f 的定义域及最小正周期; (2)求)(x f 的单调递减区间.

5、 设函数2())sin 4 f x x x π = ++. (I )求函数()f x 的最小正周期; ; (II )设函数()g x 对任意x R ∈,有()()2 g x g x π+=,且当[0,]2 x π ∈时, 1 ()()2 g x f x = -,求函数()g x 在[,0]π-上的解析式. 6、函数()sin()16 f x A x π ω=-+(0,0A ω>>)的最大值为3, 其图像相 邻两条对称轴之间的距离为2 π, (1)求函数()f x 的解析式; (2)设(0,)2 πα∈,则()22 f α =,求α的值. ' 7、设426 f (x )cos(x )sin x cos x π =ω- ω+ω,其中.0>ω (Ⅰ)求函数y f (x )= 的值域 (Ⅱ)若y f (x )=在区间322,ππ?? -???? 上为增函数,求 ω的最大 值.

苏教版初三数学《锐角三角函数》7.2 正弦余弦

7.2正弦余弦(1) 1.在Rt△ABC中,∠C=90°, AC=7.AB=25.则sinA=_____ cosB=_______tanB=_______.2.在Rt△ABC中,∠C=90°,BC=3,sinA=0.6,则AC=______AB=________ tanB=__________. 3.在Rt△ABC中,∠C=90°,AC=2,cosA=0.8,则BC=______ cos B=______ tanA=_____.4.在Rt△ABC中,锐角A的对边和邻边同时扩大100倍,sinA的值()A.扩大100倍B.缩小100倍C.不变D.不能确定 5.已知∠A,∠B为锐角 (1)若∠A=∠B,则sinA sinB; (2)若∠A<∠B,则sinA sinB;cosA cosB;tanA tanB 6.如图,在Rt△ABC中,∠C=90°,BC=10,cos A=12 13 ,求:AB、sinB 7.如图:在Rt△ABC中,∠C=90°,BC=20,sinA=4 5 , 求△ABC的周长. 8.在Rt△ABC中,∠C=90°, cosA=3 5 ,BC=12,求斜边AB上的中线CD长. A B A B C

答案 1.24247 ,, 252525 2. 4,5,4 3 3. 1.5,3 5 , 3 4 4.C 5.=,<,>,< 6.AB=26,sinB=12 13 7.60 8.15 2 7.2正弦余弦(2)

1.已知Rt △ABC 中,∠C =90°,AB =m ,40B ∠=,则BC 的长是( ) A .sin 40m B .cos 40m C .tan 40m D . tan 40 m 2.如图,为了测量河两岸A 、B 两点的距离,在与AB 垂直的方向点C 处测得AC =a ,∠ACB =α,那么 AB 等于( ) A .a ·sin α B .a ·tan α C .a ·cos α D .αtan a 3.在Rt △ABC 中,∠C =900,∠A 、∠B 的对边分别是a 、b ,且满足022 =--b ab a ,则tanA 等于 ( ) 151515 1222 A B C D -+±?? ?? 4.以直角坐标系的原点O 为圆心,以1为半径作圆.若点P 是该圆上第一象限内的一点,且OP 与x 轴正方向组成的角为α,则点P 的坐标为 ( ) A .(cos α,1) B .(1,sin α) C .(si n α,cos α) D .(cos α,sin α) 5.如图,在△ABC 中,∠C =90°,AC =8cm ,AB 的垂直平分线MN 交AC 于D ,连结BD ,若cos ∠BDC = 5 3 ,则BC 的长是 ( ) A 、4cm B 、6cm C 、8cm D 、10cm 二、填空题(每题5分,共25分) 6.在Rt △ABC 中,∠ACB =900,SinB = 27 则cosB . 7.某人想沿着梯子爬上高4米的房顶,梯子的倾斜角(梯子与地面的夹角)不能大于60°,否则就有危 险,那么梯子的长至少为_________米. 8.在Rt △ABC 中, ∠C =90?,AB =4,AC =1,则cos A 的值是_______. 9.已知α是锐角,s in α= a+2,则a 的取值范围是 10.一等腰三角形的两边长分别为4cm 和6cm ,则其底角的余弦值为________. A B C a α B N A C D M

人教版初中数学锐角三角函数的经典测试题附答案

人教版初中数学锐角三角函数的经典测试题附答案 一、选择题 1.如图,在矩形ABCD 中,4,AB DE AC =⊥,垂足为E ,设ADE α∠=,且 3 cos 5 α= ,则AC 的长为( ) A .3 B . 163 C . 203 D . 165 【答案】C 【解析】 【分析】 根据同角的余角相等求出∠ADE=∠ACD ,再根据两直线平行,内错角相等可得∠BAC=∠ACD ,然后求出AC . 【详解】 解:∵DE ⊥AC , ∴∠ADE+∠CAD=90°, ∵∠ACD+∠CAD=90°, ∴∠ACD=∠ADE=α, ∵矩形ABCD 的对边AB ∥CD , ∴∠BAC=∠ACD , ∵cos α=3 5,35 AB AC ∴ =, ∴AC= 520433?=. 故选:C . 【点睛】 本题考查了矩形的性质,勾股定理,锐角三角函数的定义,同角的余角相等的性质,熟记各性质并求出BC 是解题的关键. 2.如图,4个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点,己知菱形的一个内角为60°,A 、B 、C 都是格点,则tan ABC ∠=( )

A . 39 B . 36 C . 33 D . 32 【答案】A 【解析】 【分析】 直接利用菱形的对角线平分每组对角,结合锐角三角函数关系得出EF,的长,进而利用 EC tan ABC BE ∠= 得出答案. 【详解】 解:连接DC ,交AB 于点E . 由题意可得:∠AFC=30°, DC ⊥AF, 设EC=x,则EF= x =3x tan 30? , ∴BF AF 2EF 23x === EC 3 tan ABC BE 23x 3x 33= === +∠, 故选:A 【点睛】 此题主要考查了菱形的性质以及解直角三角形,正确得出EF 的长是解题关键. 3.如图,为了加快开凿隧道的施工进度,要在小山的两端同时施工.在AC 上找一点 B ,取145ABD ∠=o ,500BD m =,55D ∠=o ,要使A , C ,E 成一直线,那么开挖 点E 离点D 的距离是( )

人教版数学必修四三角函数复习讲义

第一讲 任意角与三角函数诱导公式 1. 知识要点 角的概念的推广: 平面内一条射线绕着端点从一个位置旋转到另一个位置所的图形。按逆时针方向旋转所形成的角叫正角,按顺时针方向旋转所形成的角叫负角,一条射线没有作任何旋转时,称它形成一个零角。射线的起始位置称为始边,终止位置称为终边。 象限角的概念: 在直角坐标系中,使角的顶点与原点重合,角的始边与x 轴的非负半轴重合,角的终边在第几象限,就说这个角是第几象限的角。如果角的终边在坐标轴上,就认为这个角不属于任何象限。 终边相同的角的表示: α终边与θ终边相同(α的终边在θ终边所在射线上)?2()k k αθπ=+∈Z 。 注意:相等的角的终边一定相同,终边相同的角不一定相等. α终边在x 轴上的角可表示为:,k k Z απ=∈; α终边在y 轴上的角可表示为:,2 k k Z π απ=+∈; α终边在坐标轴上的角可表示为:,2 k k Z π α= ∈. 角度与弧度的互换关系:360°=2π 180°=π 1°= 1=°=57°18′ 注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零. α与2 α的终边关系: 任意角的三角函数的定义: 设α是任意一个角,P (,)x y 是α的终边上的任意一点(异于原点),

它与原点的距离是0r =>,那么sin ,cos y x r r αα==, ()tan ,0y x x α= ≠,cot x y α=(0)y ≠,sec r x α=()0x ≠,()csc 0r y y α=≠。 三角函数值只与角的大小有关,而与终边上点P 的位置无关。 三角函数线的特征:正弦线MP“站在x 轴上(起点在x 轴上)”、余弦线OM“躺在x 轴上(起点是原点)”、正切线AT“站在点(1,0)A 处(起点是A )” 同角三角函数的基本关系式: 1. 平方关系:222222sin cos 1,1tan sec ,1cot csc αααααα+=+=+= 2. 倒数关系:sin αcsc α=1,cos αsec α=1,tan αcot α=1, 3. 商数关系:sin cos tan ,cot cos sin αα αααα = = 注意:1.角α的任意性。 2.同角才可使用。 3.熟悉公式的变 形形式。 三角函数诱导公式:“ (2 k πα+)”记忆口诀: “奇变偶不变,符号看象限” 典型例题 例1.求下列三角函数值: (1)cos210o; (2)sin 4 5π 例2.求下列各式的值: (1)sin(-3 4π ); (2)cos(-60o)-sin(-210o) 例3.化简 ) 180sin()180cos() 1080cos()1440sin(?--?-?-?-?+?αααα

相关文档
最新文档