人教版八年级数学-三角形-知识点+考点+典型例题(含答案)

人教版八年级数学-三角形-知识点+考点+典型例题(含答案)
人教版八年级数学-三角形-知识点+考点+典型例题(含答案)

第七章三角形

【知识要点】

一.认识三角形

1.关于三角形的概念及其按角的分类

定义:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

2.三角形的分类:

①三角形按角的大小分为三类:锐角三角形、直角三角形、钝角三角形。

②三角形按边分为两类:等腰三角形和不等边三角形。

2.关于三角形三条边的关系(判断三条线段能否构成三角形的方法、比较线段的长短)

根据公理“两点之间,线段最短”可得:

三角形任意两边之和大于第三边。

三角形任意两边之差小于第三边。

3.与三角形有关的线段

..:三角形的角平分线、中线和高

三角形的角平分线:三角形的一个角的平分线与对边相交形成的线段;

三角形的中线:连接三角形的一个顶点与对边中点的线段,三角形任意一条中线将三角形分成面积相等的两个部分;

三角形的高:过三角形的一个顶点做对边的垂线,这条垂线段叫做三角形的高。

注意:①三角形的角平分线、中线和高都是线段,不是直线,也不是射线;

②任意一个三角形都有三条角平分线,三条中线和三条高;

③任意一个三角形的三条角平分线、三条中线都在三角形的部。但三角形的高却有不同的位置:锐角三角形的三条高都在三角形的部;直角三角形有一条高在三角形的部,另两条高恰好是它两条直角边;钝角三角形一条高在三角形的部,另两条高在三角形的外部。

④一个三角形中,三条中线交于一点,三条角平分线交于一点,三条高所在的直线交于一点。(三角形的三条高(或三条高所在的直线)交与一点,锐角三角形高的交点在三角形的部,直角三角形高的交点是直角顶点,钝角三角形高(所在的直线)的交点在三角形的外部。)

4.三角形的角与外角

(1)三角形的角和:180°

引申:①直角三角形的两个锐角互余;

②一个三角形中至多有一个直角或一个钝角;

③一个三角中至少有两个角是锐角。

(2)三角形的外角和:360°

(3)三角形外角的性质:

①三角形的一个外角等于与它不相邻的两个角的和;——常用来求角度

②三角形的一个外角大于任何一个与它不相邻的角。——常用来比较角的大小

5.多边形的角与外角

多边形的角和与外角和(识记)

(1)多边形的角和:(n-2)180° (2)多边形的外角和:360° 引申:(1)从n 边形的一个顶点出发能作(n-3)条对角线;

(2)多边形有

2

)

3(-n n 条对角线。 (3)从n 边形的一个顶点出发能将n 边形分成(n-2)个三角形; ※6.镶嵌

(1)同一种正三边形、正四边形、正六边形可以进行平面镶嵌;

(2)正三角形与正四边形、正三角形与正六边形……可以进行平面镶嵌; (1)同一种任意三角形、任意四边形可以进行镶嵌。 【典型例题】 三角形的分类

例题1:具备下列条件的三角形中,不是直角三角形的是( B )。 A :∠A+∠B=∠C B :∠A=∠B= ∠C C :∠A=90°-∠B D :∠A-∠B=90 例题2:等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为( D ). A .60° B .120° C .60°或150° D .60°或120°

如图,∠1+∠2+∠3+∠4等于多少度;(280°)

练习:

1、如图,下列说法错误的是( A )

A 、∠

B >∠ACD B 、∠B+∠ACB =180°-∠A

C 、∠B+∠ACB <180°

D 、∠HEC >∠B

2、若一个三角形的一个外角小于与它相邻的角,则这个三角形是( C ). A 、直角三角形 B 、锐角三角形 C 、钝角三角形 D 、无法确定 三角形的角和、外角和相关的计算与证明

例题1:若三角形的三个外角的比为3:4:5,则这个三角形为( B ). A .锐角三角形 B .直角三角形 C .等边三角形 D .钝角三角形 例题2:已知等腰三角形的一个外角为150°,则它的底角为_______. 练习:

1、如图,若∠AEC=100°,∠B=45°,∠C=38°,则∠DFE 等于( A ) A. 125° B. 115° C. 110° D. 105°

图4

2、如图,∠1=______.

3、如图,则∠1=______,∠2=______,∠3=______,

4、已知等腰三角形的一个外角是120°,则它是( C )

A.等腰直角三角形

B.一般的等腰三角形

C.等边三角形

D.等腰钝角三角形

5、如果三角形的一个外角和与它不相邻的两个角的和为180°,那么与这个外角相邻的角的度数为( C )

A. 30°

B. 60°

C. 90°

D. 120°

6、已知三角形的三个外角的度数比为2∶3∶4,则它的最大角的度数( D ).

A. 90°

B. 110°

C. 100°

D. 120°

例7. 如图(1)所示,△中,的平分线交于点,

求证:.

(1)(2)(3)

变式1:如图(2)所示,△中,角和外角的平分线交于点,

求证:.

变式2:如图(3)所示,△中,外角的平分线交于点,

求证:.

分析:本题已知△的角平分线和外角平分线,从而想到可利用三角形角平分线的性质,三角形的角和定理以及外角与角的关系证题。

解答:如图(1),∵在△中,

又∵的平分线交于点,

_3题图

_150?

_50?

_3

_2

_1

_2题图

_140?

_80?

_1

_1题图

_F

_A

_C

_B

_D

变式1:∵是△的一个外角,∴

∵平分,平分,且是△的外角,

∴,即

变式2:在△中,

在△中,

∵平分,且三点共线,

∴,同理可证

例5. 已知:如图,在△中,,分别是边上的高,相交于,求的度数。

分析:由已知可求,在△中,故先求和。

解答:∵

∴设,则

∴,解得

∵为边上的高,∴

∴在中,

同理

∴在△中,

例题1:若一个多边形的角和与外角和相等,则这个多边形是(A)

A.三角形B.六边形C.五边形D.四边形

例题2:下列说法错误的是( A )

A.边数越多,多边形的外角和越大B.多边形每增加一条边,角和就增加180°

C.正多边形的每一个外角随着边数的增加而减小D.六边形的每一个角都是120°

例题3:一个多边形角和与其中一个外角的总和为1360°这个多边形的边数为9 .

例题4:一个多边形的每一个外角都是24°,则此多边形的角和(B)

A.2160°B.2340°C.2700°D.2880°

练习:

1.一个多边形角和是10800,则这个多边形的边数为( B )

A、 6

B、 7

C、 8

D、 9

2.一个多边形的角和是外角和的2倍,它是( C )

A、四边形

B、五边形

C、六边形

D、八边形

3.一个多边形的边数增加一倍,它的角和增加( A )

A. 180°

B. 360°

C. (n-2)·180°

D. n·180

4、若一个多边形的角和与外角和相加是1800°,则此多边形是( B )

A、八边形

B、十边形

C、十二边形

D、十四边形

5、正方形每个角都是_90°_____,每个外角都是 ___90°____。

6、多边形的每一个角都等于150°,则从此多边形一个顶点出发引出的对角线有9 条。

7、正六边形共有___9____条对角线,角和等于____720°______,每一个角等于__120°_____。

8、角和是1620°的多边形的边数是_11_____。

9、如果一个多边形的每一外角都是24°,那么它是__15____边形。

10、将一个三角形截去一个角后,所形成的一个新的多边形的角和___180°或360°_。

11、一个多边形的角和与外角和之比是5∶2,则这个多边形的边数为__8____。

12、一个多边形截去一个角后,所得的新多边形的角和为2520°,则原多边形有_15或16或17___条边。

13.已知一个十边形中九个角的和的度数是12900,那么这个十边形的另一个角为150 度.

考点六:镶嵌

例题1:装饰大世界出售下列形状的地砖:○1正方形;○2长方形;○3正五边形;○4正六边形。若只选购其中某一种地砖镶嵌地面,可供选用的地砖有( B )

A. ○1○2○3

B. ○1○2○4

C. ○2○3○4

D. ○1○3○4

例题2:边长相等的下列两种正多边形的组合,不能作平面镶嵌的是( B )

A.正方形与正三角形

B.正五边形与正三角形

C.正六边形与正三角形

D.正八边形与正方形练习:

1. 下列正多边中,能铺满地面的是( B )

A、正方形

B、正五边形

C、等边三角形

D、正六边形

2. 下列正多边形的组合中,不能够铺满地面的是( D ).

A.正六边形和正三角形

B.正三角形和正方形

C.正八边形和正方形

D.正五边形和正八边形

3. 用正三角形和正十二边形镶嵌,可能情况有( B )种.

A、1

B、2

C、3

D、4

4. 某装饰公司出售下列形状的地砖:①正方形;②长方形;③正五边形;④正六边形.若只选购其中某一种地砖镶嵌地面,可供选用的地砖共有( C )种.

A、1

B、2

C、3

D、4

5. 小家装修地面,已有正三角形形状的地砖,现打算购买另一种不同形状的正多边形地砖,与正三角形地砖在同一顶点处作平面镶嵌,则小不应购买的地砖形状是( C )

A、正方形

B、正六边形

C、正八边形

D、正十二边形

6. 用正三角形和正四边形作平面镶嵌,在一个顶点周围,可以有_3__个正三角形和_2__个正四边形。

7. 如图,第n个图案中有白色地砖_(4n+2)____块.

8.多边形的角和与某一个外角的度数总和为,求多边形的边数。

分析:利用多边形的角和公式来求,另外此题隐含边数为正整数这个条件。

解答:设边数为,这个外角为,则,依题意有:

∵为正整数,∴()必为180的倍数。

又∵,∴,∴

_第1个_第3个

_第?2个

相似三角形经典大题(含答案)

相似三角形经典大题解析 1.如图,已知一个三角形纸片ABC ,B C 边的长为8,B C 边上的高为6,B ∠和C ∠都为锐角,M 为A B 一动点(点M 与点A B 、不重合),过点M 作M N B C ∥,交A C 于点N ,在A M N △中,设M N 的长为x ,M N 上的高为h . (1)请你用含x 的代数式表示h . (2)将AMN △沿M N 折叠,使A M N △落在四边形B C N M 所在平面,设点A 落在平面的点为1A ,1A M N △与四边形B C N M 重叠部分的面积为y ,当x 为何值时,y 最大,最大值为多少? 【答案】解:(1)M N B C ∥ A M N A B C ∴△∽△ 68 h x ∴= 34 x h ∴= (2)1AM N A M N △≌△ 1A M N ∴△的边M N 上的高为h , ①当点1A 落在四边形B C N M 内或B C 边上时, 1A M N y S =△= 2 11332 2 4 8 M N h x x x = = ·· (04x <≤) ②当1A 落在四边形B C N M 外时,如下图(48)x <<, 设1A EF △的边E F 上的高为1h , 则132662h h x =-= - 11EF M N A EF A M N ∴ ∥△∽△ 11A M N ABC A EF ABC ∴ △∽△△∽△

12 16A EF S h S ??= ??? △△ABC 168242 A B C S = ??= △ 2 2 3632241224 62EF x S x x ?? - ?∴==?=-+ ? ??? 1△A 112 223 3912241224828A M N A EF y S S x x x x x ??=-= --+=-+- ??? △△ 所以 2 91224 (48)8 y x x x =- +-<< 综上所述:当04x <≤时,2 38 y x =,取4x =,6y =最大 当48x <<时,2 912248 y x x =-+-, 取163 x = ,8y =最大 86> ∴当163 x = 时,y 最大,8y =最大 M N C B E F A A 1

第十一章三角形知识点归纳

第十一章三角形知识点归纳 考点一:三角形的三边关系 1、三角形两边的和 第三边 2、三角形两边的差 第三边 3、判断三边能组成三角形的方法:最小两数之和大于第三边 4、已知三角形两边的长度为a 和b ,则第三边的取值范围是 两边之差<第三边<两边之和 例:下列长度的三条线段能组成三角形的是( ) A.5,6,10 B.5,6,11 C.3,4,8 D.4,4,8 例:已知三角形的两边分别是7和12,则第三边长得取值范围为( ) 考点二:5、三角形具有 性,四边形具有 性 例:下列图形具有稳定性的是( ) A.正方形 B.矩形 C.平行四边形 D.直角三角形 考点三: 1. 三角形的高 从△ABC 的顶点向它的对边BC 所在的直线画垂线,垂足为D , 那么线段AD 叫做△ABC 的边BC 上的高。 注:三角形面积=底×底边上的高 例:AD 是△ABC 的高,∠ADB=∠ADC= 例:AD 是△ABC 的高,AD=3,BC=5,则△ABC 的面积是 2. 三角形的中线 连接△ABC 的顶点A 和它所对的对边BC 的中点D , 所得的线段AD 叫做△ABC 的边BC 上的中线。 几何语言: AD 是△ABC 的中线 BD=CD=2 1BC 注:三角形的中线可以将三角形分为面积相等的两个小三角形

D 例:AD 是△ABC 的中线 ,BD=3,则CD= ,BC= , 若△ABC 的面积是18,则△ABD 的面积等于 。 3. 三角形的角平分线 ∠A 的平分线与对边BC 交于点D ,那么线段AD 叫做三角形的角平分线。 几何语言: AD 是△ABC 的角平分线 ∴∠BAD=∠CAD=2 1∠BAC 例:AD 是△ABC 的角平分线,∠BAC=70度,则∠BAD= ,∠CAD= 考点四:三角形内角和定理 三角形三个内角的和等于 几何语言:∠A+∠B+∠C= 例:在△ABC 中,∠B=45度,∠C=55度,则∠A= 考点五:三角形的外角 1、定义:三角形的一边与另一边的延长线组成的角叫做三角形的外角。 2. 性质:三角形的一个外角等于与它不相邻的两个内角之和。 几何语言: ∠ACD 是△ABC 的外角 ∴∠ACD=∠A+∠B 例:如图,已知∠ACD=120度,∠B=50度,则∠A= 考点六:n 边形的内角和公式等于 例:计算五边形的内角和是 例:一个多边形的内角和是720度,则这个多边形的边数是 考点七:多边形的外角和等于 例:十二边形的外角和等于 例:正多边形的每个外角的度数都是40度,则这个正多边形的边数是

初三数学相似三角形典型例题(含问题详解)

初三数学相似三角形 (一)相似三角形是初中几何的一个重点,同时也是一个难点,本节复习的目标是: 1. 理解线段的比、成比例线段的概念,会根据比例线段的有关概念和性质求线段的长或两线段的比,了解黄金分割。 2. 会用平行线分线段成比例定理进行有关的计算、证明,会分线段成已知比。 3. 能熟练应用相似三角形的判定和性质解答有关的计算与证明题。 4. 能熟练运用相似三角形的有关概念解决实际问题 本节的重点内容是相似三角形的判定定理和性质定理以及平行线分线段成比例定理。 本节的难点内容是利用判定定理证明两个三角形相似以及相似三角形性质的应用。 相似三角形是平面几何的主要内容之一,在中考试题中时常与四边形、圆的知识相结合构成高分值的综合题,题型常以填空、选择、简答或综合出现,分值一般在10%左右,有时也单独成题,形成创新与探索型试题;有利于培养学生的综合素质。 (二)重要知识点介绍: 1. 比例线段的有关概念: 在比例式 ::中,、叫外项,、叫内项,、叫前项,a b c d a b c d a d b c a c ==() b 、d 叫后项,d 叫第四比例项,如果b=c ,那么b 叫做a 、d 的比例中项。 把线段AB 分成两条线段AC 和BC ,使AC 2 =AB ·BC ,叫做把线段AB 黄金分割,C 叫做线段AB 的黄金分割点。 2. 比例性质: ①基本性质: a b c d ad bc =?= ②合比性质: ±±a b c d a b b c d d =?= ③等比性质: ……≠……a b c d m n b d n a c m b d n a b ===+++?++++++=()0 3. 平行线分线段成比例定理: ①定理:三条平行线截两条直线,所得的对应线段成比例,如图:l 1∥l 2∥l 3。 则 ,,,…AB BC DE EF AB AC DE DF BC AC EF DF ===

初二数学练习题.经典题型

八 年 级 数 学 试 题 姓名: 一、选择题:本大题共12 个小题.每小题4分;共48分. 1.下列方程中是二元一次方程的是 ( ) A. 32=+ y x B. 2 23y x =+ C. 022=-y x D.31-=+y x 2.和数轴上的点一一对应的数是……………………… ( ) A.整数 B.有理数 C.无理数 D.实数 3. 下列各组数中不能作为直角三角形的三边长的是………………………… ( ) A. 6,8,10 B. 9,12,15 C. 1,2,3 D. 7,24,25 4.如图,所示是直线y kx b =+的图象,那么有( ) A .k >0,b >0 B .k >0,b <0 C .k <0,b <0 D .k <0,b >0 5.多边形的每个外角都是36°,则它的边数是( ). A .15 B .13 C .10 D .7 y 6.抽查初三年级8名学生一周做数学作业用的时间分别为(单位:小时)5,4,6,7,6,6,7,8.这组数据中,中位数为 ( ) A.6 B.6.5 C.7 D.7.5 7.如图所示,△ABC 沿射线AC 的方向平移5厘米后成为△A 'B 'C ' ,则BB ' 的长度是( ) A.10cm B.2.5cm C.5cm D.不能确定 8. 菱形的对角线的长分别为6和8,则它的周长为 ( ) A.5 B.10 C.20 D.40 9.一次函数y kx k =+,不论k 取何非零实数,函数图象一定会过点 ( ) A .(1,1-) B .(-1,0) C .(1,0) D .(1-,1) 10.如图,AOB △中, 30B =o ∠.将AOB △绕点O 顺时针旋转52o 得到A OB ''△,边A B ''与边OB 交于点C (A '不在OB 上),则A CO '∠的度数为( ) A .22o B .52o C .60o D .82o 11.甲、乙两名学生运动的一次函数图象如图所示,图中s 和t 分 别表示与出发地的距离和时间,根据图象可知,快者的速度比慢 者的速度每秒快( ) A .2.5米 B .1.5米 C .2米 D .1米 12.如图,四边形ABCD 是正方形,BF ∥AC ,四边形AEFC 是菱形, 则∠ACF 与∠F 的度 数比是 ( )A .3 B.4 C.5 D.不是整数 A A ' B C O B ' 64 t/秒 12 s/米 O 8

相似三角形压轴经典大题(含答案)

相似三角形压轴经典大题解析 1.如图,已知一个三角形纸片ABC ,BC 边的长为8,BC 边上的高为6,B ∠和C ∠都为锐角,M 为AB 一动点(点M 与点A B 、不重合),过点M 作MN BC ∥,交AC 于点N ,在AMN △中,设MN 的长为x ,MN 上的高为h . (1)请你用含x 的代数式表示h . (2)将AMN △沿MN 折叠,使AMN △落在四边形BCNM 所在平面,设点A 落在平面的点为1A , 1A MN △与四边形BCNM 重叠部分的面积为y ,当x 为何值时,y 最大,最大值为多少? 【答案】解:(1) MN BC ∥ AMN ABC ∴△∽△ 68 h x ∴= 34 x h ∴= (2)1AMN A MN △≌△ 1A MN ∴△的边MN 上的高为h , ①当点1A 落在四边形BCNM 内或BC 边上时, 1A MN y S =△=211332248MN h x x x ==··(04x <≤) ②当1A 落在四边形BCNM 外时,如下图(48)x <<, 设1A EF △的边EF 上的高为1h , 则13 2662 h h x =-= - 11EF MN A EF A MN ∴∥△∽△ 11A MN ABC A EF ABC ∴△∽△△∽△

12 16A EF S h S ??= ??? △△ABC 1 68242 ABC S =??=△ 2 2 363224122 462EF x S x x ??- ?∴==?=-+ ? ? ?? 1△A 1122233912241224828A MN A EF y S S x x x x x ?? =-= --+=-+- ??? △△ 所以 2 91224(48)8 y x x x =- +-<< 综上所述:当04x <≤时,2 38 y x =,取4x =,6y =最大 当48x <<时,2 912248 y x x =-+-, 取16 3x = ,8y =最大 86> ∴当16 3 x =时,y 最大,8y =最大 2.如图,抛物线经过(40)(10)(02)A B C -,,,,,三点. (1)求出抛物线的解析式; (2)P 是抛物线上一动点,过P 作PM x ⊥轴,垂足为M ,是否存在P 点,使得以A ,P ,M 为顶点的三角形与OAC △相似?若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由; M N C B E F A A 1

(完整版)数学四年级下三角形知识点总结

三角形 由三条线段围成的图形(每相邻两条线段的端点相连)叫做三角形。 从三角形的一个顶点到它的对边做一条垂线,顶点和垂足之间的线段叫做三角形的高,这条对边叫做三角形的底。 三角形具有稳定性 三角形内角和是180° 组成三角形的两个条件: 三角形任意两边之和大于第三边 三角形任意两边之差小于第三边 三角形分类 按角来分 锐角(0°

锐角三角形的三条高(三条虚线) 直角三角形的三条高(一条虚线加两条直角边) 钝角三角形的三条高(三条虚线) 按边分 底 直角边 C B A 直角边C B A C B A 底 边 等边三角形(三条边都相等,每个角都是60°) 等腰三角形(两条边相等,两个底角相等)

※已知三角形两条边各长a、b(a>=b),求第三边长度c的范围 方法:a-b5 能(等边三角形/正三角形) 例:已知三条线段分别是10cm、10cm、20cm,它们能不能组成三角形? 10+10=20 不能 ※多边形内角和问题

相似三角形经典模型总结与例题分类(超全)

相似三角形经典模型总结 经典模型 【精选例题】“平行型” 【例1】 如图,111EE FF MM ∥∥,若AE EF FM MB ===, 则1 11 1 1 1 :::_________AEE EE F F FF M M MM CB S S S S ?=四边形四边形四边形 【例2】 如图,AD EF MN BC ∥∥∥,若9AD =, 18BC =,::2:3:4AE EM MB =,则 _____EF =,_____MN = 【例3】 已知,P 为平行四边形ABCD 对角线,AC 上一点,过点P 的 直线与AD ,BC ,CD 的延长线,AB 的延长线分别相交于点E ,F ,G ,H 求证: PE PH PF PG = M 1F 1E 1M E F A B C M N A B C D E F P H G F E D C B A

【例4】 已知:在ABC ?中,D 为AB 中点,E 为AC 上一点,且 2AE EC =,BE 、CD 相交于点F , 求BF EF 的值 【例5】 已知:在ABC ?中,12AD AB = , 延长BC 到F ,使1 3 CF BC =,连接FD 交AC 于点E 求证:①DE EF = ②2AE CE = 【例6】 已知:D ,E 为三角形ABC 中AB 、BC 边上的点,连接DE 并延长交AC 的延长线于点F ,::BD DE AB AC = 求证:CEF ?为等腰三角形 【例7】 如图,已知////AB EF CD ,若AB a =,CD b =,EF c =,求证: 111c a b =+. F E D C B A 【例8】 如图,找出ABD S ?、BED S ?、BCD S ?之间的关系,并证明你的结论. F E D C B A 【例9】 如图,四边形ABCD 中,90B D ∠=∠=?,M 是AC 上一点,ME AD ⊥于点E ,MF BC ⊥于点F 求证: 1MF ME AB CD += F E D C B A A B C D F E F E D C B A

相似三角形典型模型及例题

1:相似三角形模型 一:相似三角形判定的基本模型 (一)A 字型、反A 字型(斜A 字型) A B C D E C B A D E (平行) (不平行) (二)8字型、反8字型 J O A D B C A B C D (蝴蝶型) (平行) (不平行) (三)母子型 A B C D C A D (四)一线三等角型: 三等角型相似三角形是以等腰三角形(等腰梯形)或者等边三角形为背景,一个与等腰三角形的底角相等的顶点在底边所在的直线上,角的两边分别与等腰三角形的两边相交如图所示:

(五)一线三直角型: 三直角相似可以看着是“一线三等角”中当角为直角时的特例,三直角型相似通常是以矩形或者正方形形为背景,或者在一条直线上有一个顶点在该直线上移动或者旋转的直角,几种常见的基本图形如下: 当题目的条件中只有一个或者两个直角时,就要考虑通过添加辅助线构造完整的三直角型相似,这往往是很多压轴题的突破口,进而将三角型的条件进行转化。 (六)双垂型: C A D 二:相似三角形判定的变化模型 旋转型:由A字型旋转得到8字型拓展 C B E D A 共享性 一线三等角的变形 G A B C E F

一线三直角的变形 2:相似三角形典型例题 (1)母子型相似三角形 例1:如图,梯形ABCD 中,AD ∥BC ,对角线AC 、BD 交于点O ,BE ∥CD 交CA 延长线于E . 求证:OE OA OC ?=2 . 例2:已知:如图,△ABC 中,点E 在中线AD 上, ABC DEB ∠=∠. 求证:(1)DA DE DB ?=2 ; (2)DAC DCE ∠=∠. 例3:已知:如图,等腰△ABC 中,AB =AC ,AD ⊥BC 于D ,CG ∥AB ,BG 分别交AD 、AC 于E 、F . 求证:EG EF BE ?=2 . 1、如图,已知AD 为△ABC 的角平分线,EF 为AD 的垂直平分线.求证:FC FB FD ?=2 . 2、已知:AD 是Rt △ABC 中∠A 的平分线,∠C=90°,EF 是AD 的垂直平分线交AD 于M ,EF 、BC 的延 A C D E B

中考 三角形知识点复习归纳总结

D C B A 中考三角形知识点复习归纳总结 ⒈ 三角形的定义:由不在同一直线上的三条线段首尾顺次相接组成的图形叫做三角形. 三角形有三条边,三个内角,三个顶点.组成三角形的线段叫做三角形的边;相邻两边所组成的角叫做三角形的内角; 相邻两边的公共端点是三角形的顶点, 三角形ABC 用符号表示为△ABC ,三角形ABC 的边AB 可用边AB 所对的角C 的小写字母c 表示,AC 可用b 表示,BC 可用a 表示. ⒉ 三角形的分类: (1)按边分类: (2)按角分类: ⒊ 三角形的主要线段的定义: (1)三角形的中线 三角形中,连结一个顶点和它对边中点的线段. 表示法:1.AD 是△ABC 的BC 上的中线. 2.BD=DC=12 BC. 注意:①三角形的中线是线段; ②三角形三条中线全在三角形的内部; ③三角形三条中线交于三角形内部一点; ④中线把三角形分成两个面积相等的三角形. 三角形 等腰三角形 不等边三角形 底边和腰不相等的等腰三角形 等边三角形 三角形 直角三象形 斜三角形 锐角三角形 钝角三角形

21D C B A D C B A (2)三角形的角平分线 三角形一个内角的平分线与它的对边相交,这个角顶点与交点之间的线段 表示法:1.AD 是△ABC 的∠BAC 的平分线. 2.∠1=∠2=12∠BAC. 注意:①三角形的角平分线是线段; ②三角形三条角平分线全在三角形的内部; ③三角形三条角平分线交于三角形内部一点; ④用量角器画三角形的角平分线. (3)三角形的高 从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段. 表示法:1.AD 是△ABC 的BC 上的高线. 2.AD ⊥BC 于D. 3.∠ADB=∠ADC=90°. 注意:①三角形的高是线段; ②锐角三角形三条高全在三角形的内部,直角三角形有两条高是边,钝角三角形有两条高在形外; ③三角形三条高所在直线交于一点. ⒋ 在画三角形的三条角平分线,三条中线,三条高时应注意: (1)如图3,三角形三条角平分线交于一点,交点都在三角形内部. (2)如图4,三角形的三条中线交点一点,交点都在三角形内部.

(完整)人教版八年级数学上册知识整理与经典例题

第十一章全等三角形 一、全等形 能够完全重合的两个图形叫做全等形。 二、全等三角形 注意:(1)两个三角形全等,互相重合的顶点叫做对应点,互相重合的边叫做对应边,互相重合的角叫做对应角。 (2)“能够完全重合”是指在一定的叠放下,能够完全重合。 △ABC与△A′B′C′全等记作△ABC≌△A′B′C′,“≌”读作“全等于”。 注意:(1)两个三角形全等时,通常把对应顶点的字母写在对应的位置上,这样对应的两个字母为端点的线段是对应边;对应的三个字母表示的角是对应角(若用一个字母表示一个角亦是如此)。 (2)对应角夹的边是对应边,对应边的夹角是对应角。 (3)对应边、对应角是对两个三角形而言的,指两条边、两个角的关系,而对边、对角是指同一个三角形的边和角的位置关系,对边是与角相对的边,对角是与边相对的角。 全等三角形的对应边相等,对应角相等。 (1)三边对应相等的两个三角形全等,简写成“边边边”和“SSS”。 (2)两边和他们的夹角对应相等的两个三角形全等,简写成“边角边”和“SAS”。 (3)两角和他们的夹边对应相等的两个三角形全等,简写成“角边角”和“ASA”。 (4)两个角和其中一个角的对边对应相等的两个三角形全等,简写成“角角边”和“AAS”。 (5)斜边和一条直角边对应相等的两个直角三角形全等,简写成“斜边、直角边”和“HL”。 注意:SSA、AAA不能识别两个三角形全等,识别两个三角形全等时,必须有边的参与,如果有两边和一角对应相等时,角必须是两边的夹角。 找夹角——SAS (1)已知两边都是直角三角形——HL 找另一边——SSS 找边的对角——AAS (2)已知一边一角找夹角的另一边——SAS 找夹边的另一角——ASA (3)已知两角找夹边——ASA 找其他任意一边——AAS 一个图形与另一个图形的形状一样,大小相等,只是位置不同,我们称这个图形是另一个图形的全等变换,三种基本全等变换:(1)旋转;(2)翻折;(3)平移。 三、角平分线的性质定理及逆定理 1、性质定理:角平分线上的点到角的两边距离相等。 注意:(1)定理作用:a.证明线段相等;b.为证明三角形全等准备条件。 (2)点到直线的距离,即点到直线的垂线段的长度。 2、逆定理:在角的内部,到角的两边距离相等的点在角平分线上。 3、三角形的内心 利用角的平分线的性质定理可以导出:三角形的三个内角的角平分线交于一点,此点叫做三角形的内心,它到三边的距离相等。

相似三角形经典题型

相似三角形知识点与经典题型 知识点1 有关相似形的概念 (1)形状相同的图形叫相似图形,在相似多边形中,最简单的是相似三角形. (2)如果两个边数相同的多边形的对应角相等,对应边成比例,这两个多边形叫做相似多 边形.相似多边形对应边长度的比叫做相似比(相似系数). 知识点2 比例线段的相关概念 (1)如果选用同一单位量得两条线段b a ,的长度分别为n m ,,那么就说这两条线段的比是 n m b a =,或写成n m b a ::=.注:在求线段比时,线段单位要统一。 (2)在四条线段d c b a ,,,中,如果b a 和的比等于d c 和的比,那么这四条线段d c b a ,,,叫做成比例线段,简称比例线段. 注:①比例线段是有顺序的,如果说a 是d c b ,,的第四比例项,那么应得比例式为:a d c b =. ②()a c a b c d b d ==在比例式::中,a 、d 叫比例外项,b 、c 叫比例内项, a 、c 叫比例前项,b 、 d 叫比例后项,d 叫第四比例项,如果b=c ,即 a b b d =::那么b 叫做a 、d 的比例中项, 此时有2b ad =。 (3)黄金分割:把线段AB 分成两条线段)(,BC AC BC AC >,且使AC 是BC AB 和的比例中项,即2AC AB BC =?,叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中AB AC 2 1 5-=≈0.618AB .即 512AC BC AB AC -== 简记为:51 2 -长短==全长 注:黄金三角形:顶角是360的等腰三角形。黄金矩形:宽与长的比等于黄金数的矩形 知识点3 比例的性质(注意性质立的条件:分母不能为0) (1) 基本性质: ①bc ad d c b a =?=::;②2::a b b c b a c =?=?. 注:由一个比例式只可化成一个等积式,而一个等积式共可化成八个比例式,如bc ad =,除 了可化为d c b a ::=,还可化为d b c a ::=,b a d c ::=,c a d b ::=,c d a b ::=,b d a c ::=,a b c d ::=,a c b d ::=. (2) 更比性质(交换比例的内项或外项):()() ()a b c d a c d c b d b a d b c a ?=?? ?=?=?? ?=?? , 交换内项,交换外项. 同时交换内外项 (3)反比性质(把比的前项、后项交换): a c b d b d a c =?=.

有关三角形知识点总结

有关三角形知识点总结

————————————————————————————————作者:————————————————————————————————日期:

三角形知识点汇总 1、三角形 一、三角形三边的关系 1、三角形的任意两边之和大于第三边,三角形的任意两边之差小于第三边。(判断三条线段能否组成三角形的依据) 2、已知三角形两边的长度分别为a,b,求第三边长度的范围:|a-b|<c<a+b 3、给出等腰三角形的两边长度,要求等腰三角形的底边和腰的长(提示:一定要记得分类讨论) 方法:因为不知道这两边哪条边是底边,哪条边是腰,所以要分类讨论,讨论完后要写“综上”,将上面讨论的结果做个总结。 二、三角形的高、中线、角平分线 1、三角形的高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角 形的高.(90°角和互余关系) 锐角三角形锐角三角形的三条高都在三角形的内部,三条高的交点也在三角形内部. 直角三角形直角三角形的三条高交于直角顶点. 钝角三角形钝角三角形有两条高落在三角形外部,一条在三角形内部,三条高所在直线交于三角形外一点。

2 、三角形的中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线.三角形的三 条中线交于一点,这一点叫做“三角形的重心”。 三角形的中线可以将三角形分为面积相等的两个小三角形。 3、三角形的角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线. 三角形三条角平分线的交于一点,这一点叫做“三角形的内心”。 要区分三角形的“角平分线”与“角的平分线”,其区别是:三角形的角平分线是条线段;角的平分线是条射线。 4、方法利用:求三角形中未知的高或者底边的长度,可利用“等积法”将三角形的面积用两种方式表达,求其中未知的高或者底边的长度 三、三角形具有稳定性 1. 三角形具有稳定性 2. 四边形及多边形不具有稳定性 要使多边形具有稳定性,方法是将多边形分成多个三角形,这样多边形就具有稳定性了。 四、与三角形有关的角 1. 三角形的内角和定理:三角形的内角和为180°,与三角形的形状无关。

初三数学相似三角形典型例题(含标准答案)

初三数学相似三角形典型例题(含答案)

————————————————————————————————作者:————————————————————————————————日期:

初三数学相似三角形 (一)相似三角形是初中几何的一个重点,同时也是一个难点,本节复习的目标是: 1. 理解线段的比、成比例线段的概念,会根据比例线段的有关概念和性质求线段的长或两线段的比,了解黄金分割。 2. 会用平行线分线段成比例定理进行有关的计算、证明,会分线段成已知比。 3. 能熟练应用相似三角形的判定和性质解答有关的计算与证明题。 4. 能熟练运用相似三角形的有关概念解决实际问题 本节的重点内容是相似三角形的判定定理和性质定理以及平行线分线段成比例定理。 本节的难点内容是利用判定定理证明两个三角形相似以及相似三角形性质的应用。 相似三角形是平面几何的主要内容之一,在中考试题中时常与四边形、圆的知识相结合构成高分值的综合题,题型常以填空、选择、简答或综合出现,分值一般在10%左右,有时也单独成题,形成创新与探索型试题;有利于培养学生的综合素质。 (二)重要知识点介绍: 1. 比例线段的有关概念: 在比例式::中,、叫外项,、叫内项,、叫前项,a b c d a b c d a d b c a c ==() b 、d 叫后项,d 叫第四比例项,如果b=c ,那么b 叫做a 、d 的比例中项。 把线段AB 分成两条线段AC 和BC ,使AC 2=AB ·BC ,叫做把线段AB 黄金分割,C 叫做线段AB 的黄金分割点。 2. 比例性质: ①基本性质:a b c d ad bc =?= ②合比性质:±±a b c d a b b c d d =?= ③等比性质: ……≠……a b c d m n b d n a c m b d n a b ===+++?++++++=()0

(完整版)八年级数学几何经典题【含答案】

F 八年级数学几何经典题【含答案】 1、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长 线交MN 于E 、F . 求证:∠DEN =∠F . 2、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG , 点P 是EF 的中点. 求证:点P 到边AB 的距离等于AB 的一半. 3、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F . 求证:CE =CF . . 4、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F . 求证:AE =AF . B

5、设P 是正方形ABCD 一边BC 上的任一点,PF ⊥AP ,CF 平分∠DCE . 求证:PA =PF . 6、平行四边形ABCD 中,设E 、F 分别是BC 、AB 上的一点,AE =CF .求证:∠DPA =∠DPC . 7如图,△ABC 中,∠C 为直角,∠A=30°,分别以AB 、AC 为边在△ABC 的外侧作正△ABE 与正△ACD ,DE 与AB 交于F 。 求证:EF=FD 。 8如图,正方形ABCD 中,E 、F 分别为AB 、BC 的中点,EC 和DF 相交于G ,连接AG ,求证:AG=AD 。 9、已知在三角形ABC 中,AD 是BC 边上的中线,E 是AD 上的一点,且BE=AC,延长BE 交AC 与F,求证AF=EF D F E P C B A F P D E C B A

全等三角形知识点总结

全等三角形 一、知识框架: 二、知识概念: 1.基本定义: ⑴全等形:能够完全重合的两个图形叫做全等形. ⑵全等三角形:能够完全重合的两个三角形叫做全等三角形. (注意对应的顶点写在对应的位置上) ⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点. ⑷对应边:全等三角形中互相重合的边叫做对应边. ⑸对应角:全等三角形中互相重合的角叫做对应角. 夹边就是三角形中相邻两角的公共边,夹角就是三角形中有公共端点的两边所成的角。 两个三角形的形状、大小、都一样时,其中一个可以经过平移、旋转、对称等运动(或称变换)使之与另一个重合,一个三角形经过平移、翻折、旋转可以得到它的全等形。 2、全等三角形的性质和表示 性质: (1):全等三角形的对应边相等、对应角相等。 (2):全等三角形的周长相等、面积相等。 (3):全等三角形的对应边上的对应中线、角平分线、高线分别相等。 表示: 全等用符号“≌”表示,读作“全等于”。如△ABC≌△DEF,读作“三角形ABC 全等于三角形DEF”。 注:记两个全等三角形时,通常把表示对应顶点的字母写在对应的位置上。3.全等三角形的判定定理:

⑴边边边(SSS):三边对应相等的两个三角形全等. ⑵边角边(SAS):两边和它们的夹角对应相等的两个三角形全等. ⑶角边角(ASA):两角和它们的夹边对应相等的两个三角形全等. ⑷角角边(AAS):两角和其中一个角的对边对应相等的两个三角形全等. ⑸斜边、直角边(HL):斜边和一条直角边对应相等的两个直角三角形全等. (只适用于两个直角三角形) 4、学习全等三角形应注意以下几个问题: (1):要正确区分“对应边”与“对边”,“对应角”与“对角”的不同含义; (2):表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;(3):“有三个角对应相等”或“有两边及其中一边的对角对应相等”的两个三角形不一定全等; (4):时刻注意图形中的隐含条件,如“公共角”、“公共边”、“对顶角”5、全等变换 只改变图形的位置,二不改变其形状大小的图形变换叫做全等变换。 全等变换包括一下三种: (1)平移变换:把图形沿某条直线平行移动的变换叫做平移变换。 (2)对称变换:将图形沿某直线翻折180°,这种变换叫做对称变换。 (3)旋转变换:将图形绕某点旋转一定的角度到另一个位置,这种变换叫做旋转变换。 6.证明两三角形全等或利用它证明线段或角的相等的基本方法步骤:①、确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的边角关系),②、回顾三角形判定,搞清我们还需要什么,③、正确地书写证明格式(顺序和对应关系从已知推导出要证明的问题). 7.角平分线: ⑴画法:(课本48页,必须要掌握) ⑵性质定理:角平分线上的点到角的两边的距离相等. (在做题时,只要满足条件就可以直接运用定理) ⑶性质定理的逆定理:角的内部到角的两边距离相等的点在角的平分线上. 7.证明命题基本方法: ⑴明确命题中的已知和求(包括隐含条件,如公共边、公共角、对顶角、角平 分线、中线、高、等腰三角形等所隐含的边角关系) ⑵根据题意,画出图形,并用数字符号表示已知和求证. ⑶经过分析,找出由已知推出求证的途径,写出证明过程.

相似三角形经典习题

相似三角形 一.选择题 1.如图,D、E分别是AB、AC上两点,CD与BE相交于点O,下列条件中不能使△ABE和△ACD相似的是() A.∠B=∠C B.∠ADC=∠AEB C.BE=CD,AB=AC D.AD:AC=AE:AB 2.如图,△ACD和△ABC相似需具备的条件是() A. B. C.AC2=AD?AB D.CD2=AD?BD 3.如图,在等边三角形ABC中,D为AC的中点,,则和△AED(不包含△AED)相似的三角形有() A.1个 B.2个 C.3个 D.4个 4.如图,已知点P是Rt△ABC的斜边BC上任意一点,若过点P作直线PD与直角边AB或AC相交于点D,截得的小三角形与△ABC相似,那么D点的位置最多有() A.2处 B.3处 C.4处 D.5处 5.如图,在矩形ABCD中,E、F分别是CD、BC上的点.若∠AEF=90°,则一定有() A.△ADE∽△ECF B.△BCF∽△AEF C.△ADE∽△AEF D.△AEF∽△ABF 6.在△ABC中,∠ACB=90°,用直尺和圆规在AB上确定点D,使△ACD∽△CBD,根据作图痕迹判断,正确的是()

A. B. C. D. 7.如图,点D,E分别在△ABC的AB,AC边上,增加下列条件中的一个:①∠AED=∠B,②∠ADE=∠C,③,④,⑤AC2=AD?AE,使△ADE与△ACB一定相似的有() A.①②④ B.②④⑤ C.①②③④ D.①②③⑤ 8.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为() A.3:4 B.9:16 C.9:1 D.3:1 9.如图,正方形ABCD中,M为BC上一点,ME⊥AM,ME交AD的延长线于点E.若AB=12,BM=5,则DE的长为() A.18 B.C. D. 10.如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连接BD、DP,BD与CF相交于点H,给出下列结论: ①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PH?PC 其中正确的是() A.①②③④ B.②③ C.①②④ D.①③④ :S 11.如图,在平行四边形ABCD中,E为CD上一点,连接AE、BE、BD,且AE、BD交于点F,S △DEF =4:25,则DE:EC=() △ABF

人教版八年级数学分式知识点和典型例题(最新整理)

a ● ÷ 第十六章分式知识点和典型例习题 【知识网络】 【思想方法】 1. 转化思想 转化是一种重要的数学思想方法,应用非常广泛,运用转化思想能把复杂的问题转化为简单问题,把生疏的问题转化为熟悉问题,本章很多地方都体现了转化思想,如,分式除法、分式乘法;分式加减运算的基本思想:异分母的分式加减法、同分母的分式加减法;解分式方程的基本思想:把分式方程转化为整式方程,从而得到分式方程的解等. 2. 建模思想 本章常用的数学方法有:分解因式、通分、约分、去分母等,在运用数学知识解决实际问题时,首先要构建一个简单的数学模型,通过数学模型去解决实际问题,经历“实际问题— ——分式方程模型———求解———解释解的合理性”的数学化过程,体会分式方程的模型思想,对培养通过数学建模思想解决实际问题具有重要意义. 3. 类比法 本章突出了类比的方法,从分数的基本性质、约分、通分及分数的运算法则类比引出了分式的基本性质、约分、通分及分式的运算法则,从分数的一些运算技巧类比引出了分式的一些运算技巧,无一不体现了类比思想的重要性,分式方程解法及应用也可以类比一元一次方程. 第一讲 分式的运算 【知识要点】1.分式的概念以及基本性质; 2. 与分式运算有关的运算法则 3. 分式的化简求值(通分与约分) 4. 幂的运算法则 【主要公式】1.同分母加减法则: b ± c = b ± c (a ≠ 0) a a a b d bc da bc ± da 2. 异分母加减法则: ± = ± = a c ac ac ac (a ≠ 0, c ≠ 0) ; 3. 分式的乘法与除法: b ? d = bd a c ac , b ÷ c = b ? d = bd a d a c ac 4. 同底数幂的加减运算法则:实际是合并同类项 5. 同底数幂的乘法与除法;a m a n =a m+n ; a m a n =a m -n 6. 积的乘方与幂的乘方:(ab)m = a m b n , (a m ) n = mn 7. 负指数幂: a -p = 1 a p a 0=1

三角形知识点总结

第四章图形的初步认识 考点一、线段垂直平分线,角的平分线,垂线 1、线段垂直平分线的性质定理及逆定理 垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线。 线段垂直平分线的性质定理:线段垂直平分线上的点和这条线段两个端点的距离相等。 逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上。 2、角的平分线及其性质 一条射线把一个角分成两个相等的角,这条射线叫做这个角的平分线。 角的平分线有下面的性质定理: (1)角平分线上的点到这个角的两边的距离相等。 (2)到一个角的两边距离相等的点在这个角的平分线上。 3垂线的性质: 性质1:过一点有且只有一条直线与已知直线垂直。 性质2:直线外一点与直线上各点连接的所有线段中,垂线段最短。简称:垂线段最短。 考点二、平行线 1、平行线的概念 在同一个平面内,不相交的两条直线叫做平行线。同一平面内,两条直线的位置关系只有两种:相交或平行。 4、平行线的性质 (1)两直线平行,同位角相等;(2)两直线平行,内错角相等;(3)两直线平行,同旁内角互补。考点三、投影与视图 1、投影 投影的定义:用光线照射物体,在地面上或墙壁上得到的影子,叫做物体的投影。 平行投影:由平行光线(如太阳光线)形成的投影称为平行投影。 中心投影:由同一点发出的光线所形成的投影称为中心投影。 2、视图 当我们从某一角度观察一个实物时,所看到的图像叫做物体的一个视图。物体的三视图特指主视图、俯视图、左视图。 主视图:在正面内得到的由前向后观察物体的视图,叫做主视图。 俯视图:在水平面内得到的由上向下观察物体的视图,叫做俯视图。 左视图:在侧面内得到的由左向右观察物体的视图,叫做左视图,有时也叫做侧视图。 第二章三角形 1、三角形的概念 由不在同意直线上的三条线段首尾顺次相接所组成的图形叫做三角形。组成三角形的线段叫做三角形的边;相邻两边的公共端点叫做三角形的顶点;相邻两边所组成的角叫做三角形的内角,简称三角形的角。 2、三角形中的主要线段 (1)三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段叫做三角形的角平分线。 (2)在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。 (3)从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。 3、三角形的稳定性

相似三角形典型例题精选

相似三角形的判定与性质综合运用经典题型 考点一:相似三角形的判定与性质: 例1、如图,△PCD是等边三角形,A、C、D、B在同一直线上,且∠APB=120°. 求证:⑴△PAC∽△BPD;⑵ CD2 =AC·BD. 例2、如图,在等腰△ABC中, ∠BAC=90°,AB=AC=1,点D是BC边上的一个动点(不与B、C 重合),在AC上取一点E,使∠ADE=45° (1)求证:△ ABD∽△DCE; (2)设BD=x,AE=y,求y关于x函数关系式及自变量x值范围,并求出当x为何值时AE 取得最小值? (3)在AC上是否存在点E,使得△ADE为等腰三角形若存在,求AE的长;若不存在,请说明理由 例3、如图所示,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B: 1)求证:△ADF∽△DEC; 2)若AB=4,3 3 AD,AE=3,求AF的长。 A B C D F

考点二:射影定理: 例4、如图,在RtΔABC中,∠ACB=90°,CD⊥AB于D,CD=4cm,AD=8cm,求AC、BC及BD的长。 例5、如图,已知正方形ABCD,E是AB的中点,F是AD上的一点,且AF= 1 4 AD,EG⊥CF于点G, (1)求证:△AEF∽△BCE;(2)试说明:EG2=CG·FG. 例6、已知:如图所示的一张矩形纸片ABCD(AD>AB),将纸片折叠一次,使点A与点C重合,再展开,折痕EF交AD边于E,交BC边于F,分别连结AF和CE. (1)求证:四边形AFCE是菱形; (2)若AE=10cm,△ABF的面积为24cm2,求△ABF的周长; (3)在线段AC上是否存在一点P,使得2AE2=AC·AP若存在,请说明点P的位置,并予以证明;若不存在,请说明理由. A B C D E F G

相关文档
最新文档