武汉备战中考数学专题复习平行四边形的综合题

一、平行四边形真题与模拟题分类汇编(难题易错题)

1.如图1,四边形ABCD是正方形,G是CD边上的一个动点(点G与C、D不重合),以CG为一边在正方形ABCD外作正方形CEFG,连接BG,DE.

(1)①猜想图1中线段BG、线段DE的长度关系及所在直线的位置关系,不必证明;

②将图1中的正方形CEFG绕着点C按顺时针方向旋转任意角度α,得到如图2情形.请你通过观察、测量等方法判断①中得到的结论是否仍然成立,并证明你的判断.

(2)将原题中正方形改为矩形(如图3、4),且AB=a,BC=b,CE=ka,CG=kb (a≠b,k>0),第(1)题①中得到的结论哪些成立,哪些不成立?若成立,以图4为例简要说明理由.

(3)在第(2)题图4中,连接DG、BE,且a=3,b=2,k=1

2

,求BE2+DG2的值.

【答案】(1)①BG⊥DE,BG=DE;②BG⊥DE,证明见解析;(2)BG⊥DE,证明见解析;(3)16.25.

【解析】

分析:(1)①根据正方形的性质,显然三角形BCG顺时针旋转90°即可得到三角形DCE,从而判断两条直线之间的关系;

②结合正方形的性质,根据SAS仍然能够判定△BCG≌△DCE,从而证明结论;

(2)根据两条对应边的比相等,且夹角相等可以判定上述两个三角形相似,从而可以得到(1)中的位置关系仍然成立;

(3)连接BE、DG.根据勾股定理即可把BE2+DG2转换为两个矩形的长、宽平方和.

详解:(1)①BG⊥DE,BG=DE;

②∵四边形ABCD和四边形CEFG是正方形,

∴BC=DC,CG=CE,∠BCD=∠ECG=90°,

∴∠BCG=∠DCE,

∴△BCG≌△DCE,

∴BG=DE,∠CBG=∠CDE,

又∵∠CBG+∠BHC=90°,

∴∠CDE+∠DHG=90°,

∴BG⊥DE.

(2)∵AB=a,BC=b,CE=ka,CG=kb,

∴BC CG b

==,

DC CE a

又∵∠BCG=∠DCE,

∴△BCG∽△DCE,

∴∠CBG=∠CDE,

又∵∠CBG+∠BHC=90°,

∴∠CDE+∠DHG=90°,

∴BG⊥DE.

(3)连接BE、DG.

根据题意,得AB=3,BC=2,CE=1.5,CG=1,

∵BG⊥DE,∠BCD=∠ECG=90°

∴BE2+DG2=BO2+OE2+DO2+OG2=BC2+CD2+CE2+CG2=9+4+2.25+1=16.25.

点睛:此题综合运用了全等三角形的判定和性质、相似三角形的判定和性质以及勾股定理.

2.(1)、动手操作:

如图①:将矩形纸片ABCD折叠,使点D与点B重合,点C落在点处,折痕为EF,若∠ABE=20°,那么的度数为 .

(2)、观察发现:

小明将三角形纸片ABC(AB>AC)沿过点A的直线折叠,使得AC落在AB边上,折痕为AD,展开纸片(如图②);再次折叠该三角形纸片,使点A和点D重合,折痕为EF,展平纸片后得到△AEF(如图③).小明认为△AEF是等腰三角形,你同意吗?请说明理由.

(3)、实践与运用:

将矩形纸片ABCD按如下步骤操作:将纸片对折得折痕EF,折痕与AD边交于点E,与BC 边交于点F;将矩形ABFE与矩形EFCD分别沿折痕MN和PQ折叠,使点A、点D都与点F 重合,展开纸片,此时恰好有MP=MN=PQ(如图④),求∠MNF的大

小.

【答案】(1)125°;(2)同意;(3)60°

【解析】

试题分析:(1)根据直角三角形的两个锐角互余求得∠AEB=70°,根据折叠重合的角相等,得∠BEF=∠DEF=55°,根据平行线的性质得到∠EFC=125°,再根据折叠的性质得到

∠EFC′=∠EFC=125°;

(2)根据第一次折叠,得∠BAD=∠CAD;根据第二次折叠,得EF垂直平分AD,根据等角的余角相等,得∠AEG=∠AFG,则△AEF是等腰三角形;

(3)由题意得出:∠NMF=∠AMN=∠MNF,MF=NF,由对称性可知,MF=PF,进而得出△MNF≌△MPF,得出3∠MNF=180°求出即可.

试题解析:(1)、∵在直角三角形ABE中,∠ABE=20°,

∴∠AEB=70°,

∴∠BED=110°,

根据折叠重合的角相等,得∠BEF=∠DEF=55°.

∵AD∥BC,

∴∠EFC=125°,

再根据折叠的性质得到∠EFC′=∠EFC=125°.;

(2)、同意,如图,设AD与EF交于点G

由折叠知,AD平分∠BAC,所以∠BAD=∠CAD.

由折叠知,∠AGE=∠DGE=90°,

所以∠AGE=∠AGF=90°,

所以∠AEF=∠AFE.

所以AE=AF,

即△AEF为等腰三角形.

(3)、由题意得出:∠NMF=∠AMN=∠MNF,

∴MF=NF,

由折叠可知,MF=PF,

∴NF=PF,

而由题意得出:MP=MN,

又∵MF=MF,

∴△MNF≌△MPF,

∴∠PMF=∠NMF,而∠PMF+∠NMF+∠MNF=180°,

即3∠MNF=180°,

∴∠MNF=60°.

考点:1.折叠的性质;2.等边三角形的性质;3.全等三角形的判定和性质;4.等腰三角形的判定

3.操作与证明:如图1,把一个含45°角的直角三角板ECF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点C重合,点E、F分别在正方形的边CB、CD上,连接AF.取AF中点M,EF的中点N,连接MD、MN.

(1)连接AE,求证:△AEF是等腰三角形;

猜想与发现:

(2)在(1)的条件下,请判断MD、MN的数量关系和位置关系,得出结论.

结论1:DM、MN的数量关系是;

结论2:DM、MN的位置关系是;

拓展与探究:

(3)如图2,将图1中的直角三角板ECF绕点C顺时针旋转180°,其他条件不变,则(2)中的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由.

【答案】(1)证明参见解析;(2)相等,垂直;(3)成立,理由参见解析.

【解析】

试题分析:(1)根据正方形的性质以及等腰直角三角形的知识证明出CE=CF,继而证明出

△ABE≌△ADF,得到AE=AF,从而证明出△AEF是等腰三角形;(2)DM、MN的数量关系是相等,利用直角三角形斜边中线等于斜边一半和三角形中位线定理即可得出结论.位置关系是垂直,利用三角形外角性质和等腰三角形两个底角相等性质,及全等三角形对应角相等即可得出结论;(3)成立,连接AE,交MD于点G,标记出各个角,首先证明出

MN∥AE,MN=AE,利用三角形全等证出AE=AF,而DM=AF,从而得到DM,MN数量相等的结论,再利用三角形外角性质和三角形全等,等腰三角形性质以及角角之间的数量关系得到∠DMN=∠DGE=90°.从而得到DM、MN的位置关系是垂直.

试题解析:(1)∵四边形ABCD是正方形,∴AB=AD=BC=CD,∠B=∠ADF=90°,∵△CEF

是等腰直角三角形,∠C=90°,∴CE=CF,∴BC﹣CE=CD﹣CF,即BE=DF,

∴△ABE≌△ADF,∴AE=AF,∴△AEF是等腰三角形;(2)DM、MN的数量关系是相等,DM、MN的位置关系是垂直;∵在Rt△ADF中DM是斜边AF的中线,∴AF=2DM,∵MN 是△AEF的中位线,∴AE=2MN,∵AE=AF,∴DM=MN;∵∠DMF=∠DAF+∠ADM,

AM=MD,∵∠FMN=∠FAE,∠DAF=∠BAE,∴∠ADM=∠DAF=∠BAE,

∴∠DMN=∠FMN+∠DMF=∠DAF+∠BAE+∠FAE=∠BAD=90°,∴DM⊥MN;(3)(2)中的两个结论还成立,连接AE,交MD于点G,∵点M为AF的中点,点N为EF的中点,

∴MN∥AE,MN=AE,由已知得,AB=AD=BC=CD,∠B=∠ADF,CE=CF,又

∵BC+CE=CD+CF,即BE=DF,∴△ABE≌△ADF,∴AE=AF,在Rt△ADF中,∵点M为AF的

中点,∴DM=AF,∴DM=MN,∵△ABE≌△ADF,∴∠1=∠2,∵AB∥DF,∴∠1=∠3,同理可证:∠2=∠4,∴∠3=∠4,∵DM=AM,∴∠MAD=∠5,

∴∠DGE=∠5+∠4=∠MAD+∠3=90°,∵MN∥AE,∴∠DMN=∠DGE=90°,∴DM⊥MN.所以(2)中的两个结论还成立.

考点:1.正方形的性质;2.全等三角形的判定与性质;3.三角形中位线定理;4.旋转的性质.

4.在△ABC中,AB=BC,点O是AC的中点,点P是AC上的一个动点(点P不与点A,O,C重合).过点A,点C作直线BP的垂线,垂足分别为点E和点F,连接OE,OF.(1)如图1,请直接写出线段OE与OF的数量关系;

(2)如图2,当∠ABC=90°时,请判断线段OE与OF之间的数量关系和位置关系,并说明

理由

(3)若|CF﹣AE|=2,EF=23,当△POF为等腰三角形时,请直接写出线段OP的长.

【答案】(1)OF =OE;(2)OF⊥EK,OF=OE,理由见解析;(3)OP的长为62

23

.

【解析】

【分析】(1)如图1中,延长EO交CF于K,证明△AOE≌△COK,从而可得OE=OK,再根据直角三角形斜边中线等于斜边一半即可得OF=OE;

(2)如图2中,延长EO交CF于K,由已知证明△ABE≌△BCF,△AOE≌△COK,继而可证得△EFK是等腰直角三角形,由等腰直角三角形的性质即可得OF⊥EK,OF=OE;

(3)分点P在AO上与CO上两种情况分别画图进行解答即可得.

【详解】(1)如图1中,延长EO交CF于K,

∵AE⊥BE,CF⊥BE,∴AE∥CK,∴∠EAO=∠KCO,

∵OA=OC,∠AOE=∠COK,∴△AOE≌△COK,∴OE=OK,

∵△EFK是直角三角形,∴OF=1

2

EK=OE;

(2)如图2中,延长EO交CF于K,

∵∠ABC=∠AEB=∠CFB=90°,

∴∠ABE+∠BAE=90°,∠ABE+∠CBF=90°,∴∠BAE=∠CBF,

∵AB=BC,∴△ABE≌△BCF,∴BE=CF,AE=BF,

∵△AOE≌△COK,∴AE=CK,OE=OK,∴FK=EF,

∴△EFK是等腰直角三角形,∴OF⊥EK,OF=OE;

(3)如图3中,点P在线段AO上,延长EO交CF于K,作PH⊥OF于H,

∵|CF﹣AE|=2,3AE=CK,∴FK=2,

在Rt△EFK中,tan∠3

∴∠FEK=30°,∠EKF=60°,

∴EK=2FK=4,OF=1

2

EK=2,

∵△OPF是等腰三角形,观察图形可知,只有OF=FP=2,

在Rt△PHF中,PH=1

2

PF=1,3OH=23

∴()2

2

12362

+-=

如图4中,点P 在线段OC 上,当PO=PF 时,∠POF=∠PFO=30°,

∴∠BOP=90°,

∴OP=33OE=233

, 综上所述:OP 的长为62 或

233. 【点睛】本题考查了全等三角形的判定与性质、直角三角形斜边中线等于斜边一半、等腰直角三角形的判定与性质、解直角三角形等,综合性较强,正确添加辅助线是解题的关键.

5.已知:在菱形ABCD 中,E ,F 是BD 上的两点,且AE ∥CF .

求证:四边形AECF 是菱形.

【答案】见解析

【解析】

【分析】

由菱形的性质可得AB ∥CD ,AB =CD ,∠ADF =∠CDF ,由“SAS ”可证△ADF ≌△CDF ,可得AF =CF ,由△ABE ≌△CDF ,可得AE =CF ,由平行四边形的判定和菱形的判定可得四边形AECF 是菱形.

【详解】

证明:∵四边形ABCD 是菱形

∴AB ∥CD ,AB =CD ,∠ADF =∠CDF ,

∵AB =CD ,∠ADF =∠CDF ,DF =DF

∴△ADF ≌△CDF (SAS )

∴AF =CF ,

∵AB ∥CD ,AE ∥CF

∴∠ABE=∠CDF,∠AEF=∠CFE

∴∠AEB=∠CFD,∠ABE=∠CDF,AB=CD

∴△ABE≌△CDF(AAS)

∴AE=CF,且AE∥CF

∴四边形AECF是平行四边形

又∵AF=CF,

∴四边形AECF是菱形

【点睛】

本题主要考查菱形的判定定理,首先要判定其为平行四边形,这是菱形判定的基本判定.

6.(1)如图①,在矩形ABCD中,对角线AC与BD相交于点O,过点O作直线EF⊥BD,交AD于点E,交BC于点F,连接BE、DF,且BE平分∠ABD.

①求证:四边形BFDE是菱形;

②直接写出∠EBF的度数;

(2)把(1)中菱形BFDE进行分离研究,如图②,点G、I分别在BF、BE边上,且BG=BI,连接GD,H为GD的中点,连接FH并延长,交ED于点J,连接IJ、IH、IF、IG.试探究线段IH与FH之间满足的关系,并说明理由;

(3)把(1)中矩形ABCD进行特殊化探究,如图③,当矩形ABCD满足AB=AD时,点E是对角线AC上一点,连接DE、EF、DF,使△DEF是等腰直角三角形,DF交AC于点G.请直接写出线段AG、GE、EC三者之间满足的数量关系.

【答案】(1)①详见解析;②60°.(2)IH3;(3)EG2=AG2+CE2.

【解析】

【分析】

(1)①由△DOE≌△BOF,推出EO=OF,∵OB=OD,推出四边形EBFD是平行四边形,再证明EB=ED即可.

②先证明∠ABD=2∠ADB,推出∠ADB=30°,延长即可解决问题.

(2)IH3.只要证明△IJF是等边三角形即可.

(3)结论:EG2=AG2+CE2.如图3中,将△ADG绕点D逆时针旋转90°得到△DCM,先证明△DEG≌△DEM,再证明△ECM是直角三角形即可解决问题.

【详解】

(1)①证明:如图1中,

∵四边形ABCD 是矩形,

∴AD ∥BC ,OB =OD ,

∴∠EDO =∠FBO ,

在△DOE 和△BOF 中,

EDO FBO OD OB

EOD BOF ∠∠????∠∠?

=== , ∴△DOE ≌△BOF ,

∴EO =OF ,∵OB =OD ,

∴四边形EBFD 是平行四边形,

∵EF ⊥BD ,OB =OD ,

∴EB =ED ,

∴四边形EBFD 是菱形.

②∵BE 平分∠ABD ,

∴∠ABE =∠EBD ,

∵EB =ED ,

∴∠EBD =∠EDB ,

∴∠ABD =2∠ADB ,

∵∠ABD +∠ADB =90°,

∴∠ADB =30°,∠ABD =60°,

∴∠ABE =∠EBO =∠OBF =30°,

∴∠EBF =60°.

(2)结论:IH

=3FH .

理由:如图2中,延长BE 到M ,使得EM =EJ ,连接MJ .

∵四边形EBFD 是菱形,∠B =60°,

∴EB =BF =ED ,DE ∥BF ,

∴∠JDH =∠FGH ,

在△DHJ 和△GHF 中,

DHG GHF DH GH

JDH FGH ∠∠????∠∠?

=== , ∴△DHJ ≌△GHF ,

∴DJ =FG ,JH =HF ,

∴EJ =BG =EM =BI ,

∴BE =IM =BF ,

∵∠MEJ =∠B =60°,

∴△MEJ 是等边三角形,

∴MJ =EM =NI ,∠M =∠B =60°

在△BIF 和△MJI 中,

BI MJ B M BF IM ??∠∠???

===,

∴△BIF ≌△MJI ,

∴IJ =IF ,∠BFI =∠MIJ ,∵HJ =HF ,

∴IH ⊥JF ,

∵∠BFI +∠BIF =120°,

∴∠MIJ +∠BIF =120°,

∴∠JIF =60°,

∴△JIF 是等边三角形,

在Rt △IHF 中,∵∠IHF =90°,∠IFH =60°,

∴∠FIH =30°,

∴IH

=3FH .

(3)结论:EG 2=AG 2+CE 2.

理由:如图3中,将△ADG 绕点D 逆时针旋转90°得到△DCM ,

∵∠FAD +∠DEF =90°,

∴AFED 四点共圆,

∴∠EDF =∠DAE =45°,∠ADC =90°,

∴∠ADF +∠EDC =45°,

∵∠ADF =∠CDM ,

∴∠CDM +∠CDE =45°=∠EDG ,

在△DEM 和△DEG 中,

DE DE EDG EDM DG DM ??∠∠???

=== , ∴△DEG ≌△DEM ,

∴GE =EM ,

∵∠DCM =∠DAG =∠ACD =45°,AG =CM ,

∴∠ECM =90°

∴EC 2+CM 2=EM 2,

∵EG =EM ,AG =CM ,

∴GE 2=AG 2+CE 2.

【点睛】

考查四边形综合题、矩形的性质、正方形的性质、菱形的判定和性质,等边三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形,学会转化的思想思考问题.

7.如图所示,矩形ABCD 中,点E 在CB 的延长线上,使CE =AC ,连接AE ,点F 是AE 的中点,连接BF 、DF ,求证:BF ⊥DF .

【答案】见解析.

【解析】

【分析】

延长BF ,交DA 的延长线于点M ,连接BD ,进而求证△AFM ≌△EFB ,得AM =BE ,FB =FM ,即可求得BC +BE =AD +AM ,进而求得BD =BM ,根据等腰三角形三线合一的性质即可求证BF ⊥DF .

【详解】

延长BF ,交DA 的延长线于点M ,连接BD .

∵四边形ABCD 是矩形,∴MD ∥BC ,∴∠AMF =∠EBF ,∠E =∠MAF ,又FA =FE ,∴△AFM ≌△EFB ,∴AM =BE ,FB =FM .

∵矩形ABCD 中,∴AC =BD ,AD =BC ,∴BC +BE =AD +AM ,即CE =MD .

∵CE =AC ,∴AC =CE = BD =DM .

∵FB =FM ,∴BF ⊥DF .

【点睛】

本题考查了矩形的性质,全等三角形的判定和对应边相等的性质,等腰三角形三线合一的性质,本题中求证DB =DM 是解题的关键.

8.如图,已知矩形ABCD 中,E 是AD 上一点,F 是AB 上的一点,EF ⊥EC ,且EF =EC . (1)求证:△AEF ≌△DCE .

(2)若DE =4cm ,矩形ABCD 的周长为32cm ,求AE 的长.

【答案】(1)证明见解析;(2)6cm.

【解析】

分析:(1)根据EF ⊥CE ,求证∠AEF=∠ECD .再利用AAS 即可求证△AEF ≌△DCE . (2)利用全等三角形的性质,对应边相等,再根据矩形ABCD 的周长为32cm ,即可求得AE 的长.

详解:(1)证明:∵EF ⊥CE ,

∴∠FEC=90°,

∴∠AEF+∠DEC=90°,而∠ECD+∠DEC=90°,

∴∠AEF=∠ECD .

在Rt △AEF 和Rt △DEC 中,

∠FAE=∠EDC=90°,∠AEF=∠ECD ,EF=EC .

∴△AEF ≌△DCE .

(2)解:∵△AEF ≌△DCE .

AE=CD .

AD=AE+4.

∵矩形ABCD 的周长为32cm ,

∴2(AE+AE+4)=32.

解得,AE=6(cm ).

答:AE 的长为6cm .

点睛:此题主要考查学生对全等三角形的判定与性质和矩形的性质等知识点的理解和掌握,难易程度适中,是一道很典型的题目.

9.在ABC 中,ABC 90∠=,BD 为AC 边上的中线,过点C 作CE BD ⊥于点E ,过点A 作BD 的平行线,交CE 的延长线于点F ,在AF 的延长线上截取FG BD =,连接BG ,DF .

()1求证:BD DF =;

()2求证:四边形BDFG 为菱形;

()3若AG 5=,CF 7=,求四边形BDFG 的周长.

【答案】(1)证明见解析(2)证明见解析(3)8

【解析】

【分析】

()1利用平行线的性质得到90CFA ∠=,再利用直角三角形斜边上的中线等于斜边的一半即可得证,

()2利用平行四边形的判定定理判定四边形BDFG 为平行四边形,再利用()1得结论即可得证,

()3设GF x =,则5AF x =-,利用菱形的性质和勾股定理得到CF 、AF 和AC 之间的关系,解出x 即可.

【详解】

()1证明:AG //BD ,CF BD ⊥,

CF AG ∴⊥,

又D 为AC 的中点,

1DF AC 2

∴=, 又1BD AC 2

=, BD DF ∴=, ()2证明:

BD//GF ,BD FG =, ∴四边形BDFG 为平行四边形, 又BD DF =,

∴四边形BDFG 为菱形,

()3解:设GF x =,则AF 5x =-,AC 2x =,

在Rt AFC 中,222(2x)7)(5x)=+-, 解得:1x 2=,216x (3

=-舍去), GF 2∴=,

∴菱形BDFG 的周长为8.

【点睛】

本题考查了菱形的判定与性质直角三角形斜边上的中线,勾股定理等知识,正确掌握这些定义性质及判定并结合图形作答是解决本题的关键.

10.如图,现有一张边长为4的正方形纸片ABCD,点P为正方形AD边上的一点(不与点A、点D重合),将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连接BP、BH.

(1)求证:∠APB=∠BPH;

(2)当点P在边AD上移动时,求证:△PDH的周长是定值;

(3)当BE+CF的长取最小值时,求AP的长.

【答案】(1)证明见解析.(2)证明见解析.(3)2.

【解析】

试题分析:(1)根据翻折变换的性质得出∠PBC=∠BPH,进而利用平行线的性质得出

∠APB=∠PBC即可得出答案;

(2)首先证明△ABP≌△QBP,进而得出△BCH≌△BQH,即可得出

PD+DH+PH=AP+PD+DH+HC=AD+CD=8;

(3)过F作FM⊥AB,垂足为M,则FM=BC=AB,证明△EFM≌△BPA,设AP=x,利用折叠的性质和勾股定理的知识用x表示出BE和CF,结合二次函数的性质求出最值.

试题解析:(1)解:如图1,

∵PE=BE,

∴∠EBP=∠EPB.

又∵∠EPH=∠EBC=90°,

∴∠EPH-∠EPB=∠EBC-∠EBP.

即∠PBC=∠BPH.

又∵AD∥BC,

∴∠APB=∠PBC.

∴∠APB=∠BPH.

(2)证明:如图2,过B作BQ⊥PH,垂足为Q.

由(1)知∠APB=∠BPH,

又∵∠A=∠BQP=90°,BP=BP,

在△ABP和△QBP中,

∴△ABP≌△QBP(AAS),

∴AP=QP,AB=BQ,

又∵AB=BC,

∴BC=BQ.

又∠C=∠BQH=90°,BH=BH,

在△BCH和△BQH中,

∴△BCH≌△BQH(SAS),

∴CH=QH.

∴△PHD的周长为:PD+DH+PH=AP+PD+DH+HC=AD+CD=8.

∴△PDH的周长是定值.

(3)解:如图3,过F作FM⊥AB,垂足为M,则FM=BC=AB.

又∵EF为折痕,

∴EF⊥BP.

∴∠EFM+∠MEF=∠ABP+∠BEF=90°,

∴∠EFM=∠ABP.

又∵∠A=∠EMF=90°,

在△EFM和△BPA中,

∴△EFM≌△BPA(AAS).

∴EM=AP.

设AP=x

在Rt△APE中,(4-BE)2+x2=BE2.解得BE=2+,

∴CF=BE-EM=2+-x,

∴BE+CF=-x+4=(x-2)2+3.

当x=2时,BE+CF取最小值,

∴AP=2.

考点:几何变换综合题.

相关文档
最新文档