铝合金焊接接头疲劳性能研究 张禧铭

铝合金焊接接头疲劳性能研究 张禧铭
铝合金焊接接头疲劳性能研究 张禧铭

铝合金焊接接头疲劳性能研究张禧铭

摘要:测定了6061铝合金焊接件焊接接头的疲劳性能,介绍了铝合金焊接件焊

接接头的疲劳特征,分析了铝合金焊接件焊接接头中缺陷对其疲劳性能的影响。

结果表明铝合金焊接件焊接接口处气孔、夹杂物及未焊透三个焊接缺陷均会零件

的应力集中创造条件,对铝合金焊接件焊接接头疲劳性能有重大影响。气孔的大小、数量,未焊透的分布位置及形式明显地影响铝合金焊接件焊接接头的疲劳性

0.引言

铝合金由于其质量轻、强度高、无磁性、耐腐蚀性好,广泛应用于汽车、铁路、航空航天等领域。焊接是铝合金零件最常见的连接方式,在铝合金焊接零件

在重复外力作用下会发生疲劳断裂,而疲劳破坏过程又这些问题往往会给用户造

成不可估量的巨大损失[1]。通过研究发现,铝合金焊件焊接接头发生疲劳破坏是

铝合金焊接断裂的主要原因,因此对铝合金焊接件进行全面分析,找出原因并提

出解决方案,提高铝合金焊接件有着重大意义[2,3]。近些年过高校和科研院所

对铝合金焊接件焊接接口做了大量研究工作,并取得了重大成果。周进等人通过

对5A02 铝合金焊接接头的疲劳性能进行分析,得出了补焊可以降低铝合金焊接

件焊接接口的疲劳强度(下降将近20%),可作为一种可靠的补救措施[4]。王德

俊通过对铝合金焊接接头焊缝几何特征的研究,得出了十字接头焊接方式比对接

接头焊接方式应力集中更严重的结论[5]。本文以6061铝合金为研究对象,分析

焊接缺陷铝合金焊接件疲劳性能的研究。

1.试验材料及试验方法

本试验需要的材料为铝合金和焊丝,其中铝合金选用6061铝板,焊丝选用5356焊丝,铝板采用对接焊接。这两种材料的化学成分如表1所示。

试验材料化学成分/%

将铝板通过焊丝分别用MIG焊和TIG焊两种方法进行焊接,不仅仅能够保证

铝合金焊接件内部化学成分的完整性,而且也可以提高铝合金焊接件的焊接质量。

在进行全部焊接之后还需要采用合理的方法对焊接物进行验伤处理,找出其

中存在的问题,并对出现问题的原因进行全面分析。焊后进行X射线探伤检验,

找出存在的问题并找到原因及时解决,将样品进行铣削加工,去除焊缝余高。为

获得样品真实状态,将样品铣削加工后再进行X射线探伤检测。在MTS万能试验机上进行疲劳试验,用JSM-35C显微镜对断口形状进行合理观察。

2.试验结果及分析

2.1疲劳试验

试验结果如表2所示,对试验结果进行整理、对比,可以发现无论6061铝合金焊接件的焊缝有无缺陷,发生疲劳破坏的均为焊接口。但是整个焊接过程是否

存在缺陷对存在的疲劳现象和相应寿命还有很重要的作用。但焊缝有无缺陷对其

寿命有明显影响,即有焊缝缺陷的样品其寿命明显低于无焊缝缺陷的样品,并且

随着缺陷尺寸的增大,疲劳寿命下降越多。

6061铝合金焊接接头疲劳性能

2.2疲劳断口特征

按照焊接接头的断裂过程疲劳断口一般分为裂纹源、疲劳裂纹扩展和最后断

铝合金焊接接头疲劳性能研究 张禧铭

铝合金焊接接头疲劳性能研究张禧铭 摘要:测定了6061铝合金焊接件焊接接头的疲劳性能,介绍了铝合金焊接件焊 接接头的疲劳特征,分析了铝合金焊接件焊接接头中缺陷对其疲劳性能的影响。 结果表明铝合金焊接件焊接接口处气孔、夹杂物及未焊透三个焊接缺陷均会零件 的应力集中创造条件,对铝合金焊接件焊接接头疲劳性能有重大影响。气孔的大小、数量,未焊透的分布位置及形式明显地影响铝合金焊接件焊接接头的疲劳性 能 0.引言 铝合金由于其质量轻、强度高、无磁性、耐腐蚀性好,广泛应用于汽车、铁路、航空航天等领域。焊接是铝合金零件最常见的连接方式,在铝合金焊接零件 在重复外力作用下会发生疲劳断裂,而疲劳破坏过程又这些问题往往会给用户造 成不可估量的巨大损失[1]。通过研究发现,铝合金焊件焊接接头发生疲劳破坏是 铝合金焊接断裂的主要原因,因此对铝合金焊接件进行全面分析,找出原因并提 出解决方案,提高铝合金焊接件有着重大意义[2,3]。近些年过高校和科研院所 对铝合金焊接件焊接接口做了大量研究工作,并取得了重大成果。周进等人通过 对5A02 铝合金焊接接头的疲劳性能进行分析,得出了补焊可以降低铝合金焊接 件焊接接口的疲劳强度(下降将近20%),可作为一种可靠的补救措施[4]。王德 俊通过对铝合金焊接接头焊缝几何特征的研究,得出了十字接头焊接方式比对接 接头焊接方式应力集中更严重的结论[5]。本文以6061铝合金为研究对象,分析 焊接缺陷铝合金焊接件疲劳性能的研究。 1.试验材料及试验方法 本试验需要的材料为铝合金和焊丝,其中铝合金选用6061铝板,焊丝选用5356焊丝,铝板采用对接焊接。这两种材料的化学成分如表1所示。 试验材料化学成分/% 将铝板通过焊丝分别用MIG焊和TIG焊两种方法进行焊接,不仅仅能够保证 铝合金焊接件内部化学成分的完整性,而且也可以提高铝合金焊接件的焊接质量。 在进行全部焊接之后还需要采用合理的方法对焊接物进行验伤处理,找出其 中存在的问题,并对出现问题的原因进行全面分析。焊后进行X射线探伤检验, 找出存在的问题并找到原因及时解决,将样品进行铣削加工,去除焊缝余高。为 获得样品真实状态,将样品铣削加工后再进行X射线探伤检测。在MTS万能试验机上进行疲劳试验,用JSM-35C显微镜对断口形状进行合理观察。 2.试验结果及分析 2.1疲劳试验 试验结果如表2所示,对试验结果进行整理、对比,可以发现无论6061铝合金焊接件的焊缝有无缺陷,发生疲劳破坏的均为焊接口。但是整个焊接过程是否 存在缺陷对存在的疲劳现象和相应寿命还有很重要的作用。但焊缝有无缺陷对其 寿命有明显影响,即有焊缝缺陷的样品其寿命明显低于无焊缝缺陷的样品,并且 随着缺陷尺寸的增大,疲劳寿命下降越多。 6061铝合金焊接接头疲劳性能 2.2疲劳断口特征 按照焊接接头的断裂过程疲劳断口一般分为裂纹源、疲劳裂纹扩展和最后断

金属疲劳试验方法

铝合金疲劳实验 李慕姚 1351626 一﹑实验目的 1. 观察疲劳失效现象和断口特征。 2. 了解测定材料疲劳极限的方法。 二、实验设备 1. 疲劳试验机。 2. 游标卡尺。 三﹑实验原理及方法 在交变应力的应力循环中,最小应力和最大应力的比值 r=m ax m in σσ (2-16) 称为循环特征或应力比。在既定的r 下,若试样的最大应力为σ 1m ax ,经历N 1次循环后,发生疲劳失效,则N 1称为最大应力为σ1 m ax 时的疲劳寿命(简称寿 命)。实验表明,在同一循环特征下,最大应力越大,则寿命越短;随着最大应力的降低,寿命迅速增加。表示最大应力σmax 与寿命N 的关系曲线称为应力-寿命曲线或S-N 曲线。碳钢的S-N 曲线如图2-31所示。从图线看出,当应力降到某一极限值σr 时,S-N 曲线趋近于水平线。即应力不超过σr 时,寿命N 可无限增大。称为疲劳极限或持久极限。下标r 表示循环特征。 实验表明,黑色金属试样如经历107次循环仍未失效,则再增加循环次数一般也不会失效。故可把107次循环下仍未失效的最大应力作为持久极限σr 。而把N 0=107称为循环基数。有色金属的S-N 曲线在N>5×108时往往仍未趋于水平,通常规定一个循环基数N 0,例如取N 0=108,把它对应的最大应力作为“条件”持久极限。

图2-31 疲劳试验曲线图 工程问题中,有时根据零件寿命的要求,在规定的某一循环次数下,测出σmax ,并称之为疲劳强度。它有别于上面定义的疲劳极限。 用旋转弯曲疲劳实验来测定对称循环的疲劳极限σ-1.设备简单最常使用。各类旋转弯曲疲劳试验机大同小异,图2-32为这类试验机的原理示意图。试样1的两端装入左右两个心轴2后,旋紧左右两根螺杆3。使试样与两个心轴组成一个承受弯曲的“整体梁”上,它支承于两端的滚珠轴承4上。载荷P 通过加力架作用于“梁”上,其受力简图及弯矩图如图2-33所示。梁的中段(试样) 为纯弯曲,且弯矩为M=21 P ɑ。“梁”由高速电机6带动,在套筒7中高速旋转,于是试样横截面上任一点的弯曲正应力,皆为对称循环交变应力,若试样的最小直径为d min ,最小截面边缘上一点的最大和最小应力为 max σ=I Md 2min , min σ=-I Md 2min (2-17) 式中I=64π d 4 m in 。试样每旋转一周,应力就完成一个循环。试样断裂后,套筒压迫停止开关使试验机自动停机。这时的循环次数可由计数器8中读出。 四﹑实验步骤 (1)测量试样最小直径d min ; (2)计算或查出K 值;

铝合金焊接技术要点及注意事项

铝及铝合金焊接特点及焊接工艺 铝合金由于重量轻、强度高、耐腐蚀性能好、无磁性、成形性好及低温性能好等特点而被广泛地应用于各种焊接结构产品中,采用铝合金代替钢板材料焊接,结构重量可减轻50 %以上。因此,铝及铝合金除广泛的应用于航空、航天和电工等领域外,同时还越来越多的应用于石油化学工业。但是铝及铝合金在焊接过程中,易出现氧化、气孔、热裂纹、烧穿和塌陷等问题。此类材质是被公认为焊接难度较大的被焊接材料,特别是小径薄壁管的焊接更难掌握。因此,解决铝及铝合金的这些焊接缺陷是施工过程中必须解决的问题。 1铝及铝合金的焊接特点 铝材及铝合金焊接时由固态转变为液态时,没有明显的颜色变化,因此在焊接过程中给操作者带来不少困难。因此,要求焊工掌握好焊接时的加热温度,尽量采用平焊,在引(熄)弧板上引(熄)弧等。特别注意以下几点: 1.1强的氧化能力 铝与氧的亲和力很强,在空气中极易与氧结合生成致密而结实的AL2O3薄膜,厚度约为0.1μm,熔点高达2050℃,远远超过铝及铝合金的熔点,而且密度很大,约为铝的1.4倍。在焊接过程中,氧化铝薄膜会阻碍金属之间的良好结合,并易造成夹渣。氧化膜还会吸附水分,焊接时会促使焊缝生成气孔。这些缺陷,都会降低焊接接头的性能。为了保证焊接质量,焊前必须严格清理焊件表面的氧化物,并防止在焊接过程中再氧化,对熔化金属和处于高温下的金属进行有效的保护,这是铝及铝合金焊接的一个重要特点。具体的保护措施是: a焊前用机械或化学方法清除工件坡口及周围部分和焊丝表面的氧化物; b焊接过程中要采用合格的保护气体进行保护; c在气焊时,采用熔剂,在焊接过程中不断用焊丝挑破熔池表面的氧化膜。 1.2铝的热导率和比热大,导热快 尽管铝及铝合金的熔点远比钢低,但是铝及铝合金的导热系数、比热容都很大,比钢大一倍多,在焊接过程中大量的热能被迅速传导到基体金属内部,为了获得高质量的焊接接头,必须采用能量集中、功率大的热源,有时需采用预热等工艺措施,才能实现熔焊过程。 1.3线膨胀系数大 铝及铝合金的线膨胀系数约为钢的2倍,凝固时体积收缩率达6.5%-6.6%,因此易产生焊接变形。防止变形的有效措施是除了选择合理的工艺参数和焊接顺序外,采用适宜的焊接工装也是非常重要的,焊接薄板时尤其如此。另外,某些铝及铝合金焊接时,在焊缝金属中形成结晶裂纹的倾向性和在热影响区形成液化裂纹的倾向性均较大,往往由于过大的内应力而在脆性温度区间内产生热裂纹。这是铝合金,尤其是高强铝合金焊接时最常见的严重缺陷之一。在实际焊接现场中防止这类裂纹的措施主要是改进接头设计,选择合理的焊接工艺参数和焊接顺序,采用适应母材特点的焊接填充材料等。 1.4容易形成气孔 焊接接头中的气孔是铝及铝合金焊接时极易产生的缺陷,尤其是纯铝和防锈铝的焊接。氢是铝及铝合金焊接时产生气孔的主要原因,这已为实践所证明。氢的来源,主要是弧柱气氛中的水分、焊接材料及母材所吸附的水分,其中焊丝及母材表面氧化膜的吸附水分,以焊缝气孔的产生,常常占有突出的地位。 铝及铝合金的液体熔池很容易吸收气体,在高温下溶入的大量气体,在由液态凝固时,溶解度急剧下降,在焊后冷却凝固过程中来不及析出,而聚集在焊缝中形成气孔。为了防止气孔的产生,以获得良好的焊接接头,对氢的来源要加以严格控制,焊前必须严格限制所使用焊接材料(包括焊丝、焊条、熔剂、保护气体)的含水量,使用前要进行干燥处理。清理后的母材及焊丝最好在2-3小时内焊接完毕,最多不超过24小时。TIG焊时,选用大的焊

综述-铝合金疲劳及断口分析报告

文献综述 (2011级) 设计题目铝合金疲劳及断口分析 学生姓名胡伟 学号201111514 专业班级金属材料工程2011级03班指导教师黄俊老师 院系名称材料科学与工程学院 2015年4月12日

铝合金疲劳及断口分析 1 绪论 1.1 引言 7系铝合金包括Al-Zn-Mg 系和Al-Zn-Mg-Cu 系合金,此类合金具有密度低、比强度高、良好的加工性能及优良的焊接性能等一系列优点。随着应用在铝合金上的热处理工艺及微合金化技术的不断改进,其力学性能被大幅度强化,综合性能也得到了全面提升。在航空航天、建筑、车辆、、桥梁、工兵装备和大型压力容器等方面都得到了广泛的应用。 现代工业的飞速发展,对7 系铝合金的强度、韧性以及抗应力腐蚀性能等提出了更高的要求。但是,存在另外一个现象,在各行各业的领域中,铝合金设备偶尔会出现难以察觉的断裂,在断裂之前很难甚至无法察觉到一点塑性变形。这种断裂形式,对人身以及财产安全造成了不可挽回的损失。经过大量实验表明,这些断裂是由于材料的疲劳引起,材料在交变载荷的长期作用下,表面或者内部,尤其是内部会产生微观裂纹。本文主要研究铝合金疲劳引起的裂纹以及疲劳断口分析,此类研究对于日后的生产安全,有重大意义。 1.2 7系铝合金的发展历史 在20世纪20年代,德国的科学家研制出Al-Zn-Mg系合金,由于该合金抗应力腐蚀性能太差,并未得到产业内应用。在20世纪30年代初一直到二战结束期间,各个国家在研究中发现,Cu元素可以提高铝合金的抗应力腐蚀性能。在此,开发了大量Al-Zn-Mg 系合金,因此忽视了对Al-Zn-Mg 系合金的研究。德、美、苏、法等国在Al-Zn-Mg-Cu 系合金基础上成功地开发了7075 、B93 和D。T。 D683 等合金。目前正广泛应用在航空航天事业上,但是强度、韧性、抗应力腐蚀性能三者之间未能实现最佳组合状态。20世纪50年代,德国

7075_T651铝合金疲劳特性研究

第30卷 第4期 2010年8月 航 空 材 料 学 报 J OURNAL OF A ERONAUT ICAL MAT ER I A LS V o l 130,N o 14 A ugust 2010 7075-T651铝合金疲劳特性研究 韩 剑, 戴起勋, 赵玉涛, 李桂荣 (江苏大学材料科学与工程学院,江苏镇江212013) 摘要:在不同的应力幅值下测试了7075-T651铝合金的疲劳寿命,拟合试验数据得到合金S -N 曲线,估算疲劳极限为223M P a 。用扫描电镜观察高低应力幅值下的疲劳试样断口,结果表明:合金的加工缺陷或粗大夹杂处往往为裂纹源,裂纹扩展伴随着小平面断裂的发生,高应力幅下疲劳裂纹扩展区出现犁沟和轮胎花样,而低应力幅下的疲劳裂纹扩展区中除有大量疲劳条带外,还出现了疲劳台阶和二次裂纹。合金的疲劳瞬断区则存在着撕裂棱与等轴韧窝。弥散分布的微小析出相对合金的疲劳性能有着积极的影响。关键词:7075-T 651铝合金;S -N 曲线;疲劳断口DO I :1013969/j 1i ssn 11005-505312010141018 中图分类号:TG146121 文献标识码:A 文章编号:1005-5053(2010)04-0092-05 收稿日期:2009-04-21;修订日期:2009-06-16基金项目:国家863高技术研究项目(2007AA 03Z548)作者介绍:韩剑(1984)),男,硕士研究生,从事高强铝合金组织与性能方面的研究,(E -m a il)han ji an_m oon @yahoo .com .cn 通讯作者:戴起勋,男,教授,博士生导师,(E -m ail)qxda i @u j s .edu .cn 。 7075合金是美国较早开发的一种铝合金,是航空航天领域广泛使用的一种轻型结构材料。近年来,因其强度高、重量轻的特性也在其他领域得到广 泛应用,例如攀岩设备及自行车零件都普遍使用7075铝合金 [1~4] 。在对7075合金所开展的研究工 作中,其疲劳性能因与实际应用联系较为密切,是一 个极有理论意义和应用价值的课题,目前虽然已有许多科研工作者对其进行了广泛的研究 [5~8] ,但对 其疲劳断裂机理研究却不多。为了进一步深化研究,充分挖掘7075铝合金的使用潜力,本研究对时效 7075-T651铝合金材料在不同应力幅下的疲劳断裂机理进行了研究。 1 试验材料和方法 试验材料为A lcan 生产的厚度为23mm 的7075-T651铝合金成品板材,合金成分如表1所示。合金抗拉强度达到580M Pa ,屈服强度为570M Pa ,断后伸长率为8%。 表1 试验合金成分(质量分数/%) T able 1 T he component o f alu m i nu m a lloy (m ass fracti on /%) Zn M g Cu M n T i C r N i Fe S i A l 5.68 2.40 1.63 0.14 0.22 0.18 0.044 0.18 0.06 Ba.l 疲劳试验在PLA30050疲劳试验机上进行,参照GB /T 4337)1984制成标准圆棒光滑试样。试验在室温下进行,应力水平设置在518MPa 到200MPa 之间测试轴向应力疲劳性能,疲劳试验的应力比R =-1,即轴向拉压对称加载,控制波形为正弦波,循环加 载频率为20H z 。试样在机器上循环加载直至断裂,记录加载周次。将疲劳断口完整切下,浸于酒精中在超声波清洗仪中清洗,而后在JS M-7001F 型扫描电子显微镜下进行断口形貌观察和分析,并用扫描电镜自 带的I nca Ener gy 350能谱仪作EDS 分析。 2 试验结果与分析 2.1 疲劳寿命曲线 将测得的试验数据拟合得到S-N 曲线(图1),数据点基本平均分布在曲线两侧,较为吻合。S-N 曲线没有水平部分,只是随着应力的降低,循环周次不断增大。通常,如果材料应力循环107 周次不断

铝合金焊接通用工艺规范

铝合金焊接工艺规范 技术部 编制 审核 批准 ××工业有限公司

前言 本规范根据××工业有限公司,定制与实施设计规范、工艺规范、试验规范的要求,按《企业标准编写的一般规定》,为明确铝合金焊接的工艺要求而制定。 本规范是公司在铝合金焊接中的经验总结,对于生产起指导作用。 本规范编制部门:技术部 本规范制定日期:2012-6-26。 一、目的 为规范焊工操作,保证焊接质量,不断提高焊工的实际操作技术水平,特编制本规范。 二、编制依据 1. GB/T 《铝及铝合金气体保护焊推荐坡口》 2. GB/T10858-2008《铝及铝合金焊丝》 3. GB/T24598-2009《铝及铝合金熔化焊焊工技能评定》 4. GBT3199-2007 《铝及铝合金加工产品贮存及包装》 5. GBT22087-2008《铝及铝合金弧焊接头缺欠质量》 6.有关产品设计图纸 三、焊前准备 焊接材料 铝板3A21(原LF21)及铝合金型材。 焊丝:S311铝硅焊丝ER4043 直径φ2,φ3,焊丝应有制造长的质量合格证,领取 和 发放由管理员统一管理。铝硅焊丝抗裂性好,通用性大。 氩气

氩气瓶上应贴有出厂合格标签,其纯度≥%,所用流量8-16升/分钟,气瓶中的氩 气不能用尽,瓶内余压不得低于,以保证充氩纯度。氩气应符合GB/T4842-1995。 焊接工具 ①采用交流电焊机,本厂用WSME-315(J19)。 ②选用的氩气减压流量计应开闭自如,没有漏气现象。切记不可先开流量计、后开气 瓶,造成高压气流直冲低压,损坏流量计;关时先关流量计而后关氩气瓶。 ③输送氩气的胶皮管,不得与输送其它气体的胶皮管互相串用,可用新的氧气胶皮管 代用,长度不超过30米。 其它工器具 焊工应备有:手锤、砂纸、扁铲、钢丝刷、电磨工具等,以备清渣和消除缺陷。 焊前清理 ①化学清理:效率高,清理质量稳定,焊件清理范围一般为坡口及其两边各100mm 区域,用干净棉纱蘸丙酮溶液擦拭或用8%-10%的NaOH溶液浸泡,去除油污并干燥。 ②机械清理:适用于多层焊层间的清理,先用汽油、丙酮等有机溶剂进行表面脱脂, 再用直径不大于的铜丝或不锈钢丝刷刷至露出铝本色为止,也可用刮刀清理,效果 良好。 焊前预热和使用垫板 ①预热要求薄板一般可不预热。壁厚5mm以上的焊件则应进行100~300℃预热。 ②垫板使用由于铝及铝合金高温强度低,铝液流动性很好,焊接时易引起熔池塌陷, 故使用垫板承托熔池。垫板材料可为石墨、不锈钢或者普通碳钢。 焊接坡口 焊缝的坡口形式和尺寸应应符合本规范附录1的规定。切割后的坡口表面应进行清理,并达到平整光滑、无毛刺和飞边。 焊接场所与焊接环境 装配焊接应尽量在车间内干净的工作台上进行,氩气保护焊时风速应小于2m/s,风大时 作业场所要围上挡板进行焊接,其相对湿度≤90%。 四、焊接工艺要求 手工钨极氩弧焊应采用交流电源,熔化极氩弧焊应采用直流电源,焊丝接正极。 焊接前焊件表面应保持干燥,无特殊要求时可不预热。 焊接前应在试焊板上试焊,当确认无气孔后再进行正式焊接。

铝及铝合金的焊接特点

铝及铝合金的焊接特点 (1)铝在空气中及焊接时极易氧化,生成的氧化铝(Al2O3)熔点高、非常稳定,不易去除。阻碍母材的熔化和熔合,氧化膜的比重大,不易浮出表面,易生成夹渣、未熔合、未焊透等缺欠。铝材的表面氧化膜和吸附大量的水分,易使焊缝产生气孔。焊接前应采用化学或机械方法进行严格表面清理,清除其表面氧化膜。在焊接过程加强保护,防止其氧化。钨极氩弧焊时,选用交流电源,通过“阴极清理”作用,去除氧化膜。气焊时,采用去除氧化膜的焊剂。在厚板焊接时,可加大焊接热量,例如,氦弧热量大,利用氦气或氩氦混合气体保护,或者采用大规范的熔化极气体保护焊,在直流正接情况下,可不需要“阴极清理”。 (2)铝及铝合金的热导率和比热容均约为碳素钢和低合金钢的两倍多。铝的热导率则是奥氏体不锈钢的十几倍。在焊接过程中,大量的热量能被迅速传导到基体金属内部,因而焊接铝及铝合金时,能量除消耗于熔化金属熔池外,还要有更多的热量无谓消耗于金属其他部位,这种无用能量的消耗要比钢的焊接更为显着,为了获得高质量的焊接接头,应当尽量采用能量集中、功率大的能源,有时也可采用预热等工艺措施。 (3)铝及铝合金的线膨胀系数约为碳素钢和低合金钢的两倍。铝凝固时的体积收缩率较大,焊件的变形和应力较大,因此,需采取预防焊接变形的措施。铝焊接熔池凝固时容易产生缩孔、缩松、热裂纹

及较高的内应力。生产中可采用调整焊丝成分与焊接工艺的措施防止热裂纹的产生。在耐蚀性允许的情况下,可采用铝硅合金焊丝焊接除铝镁合金之外的铝合金。在铝硅合金中含硅%时热裂倾向较大,随着硅含量增加,合金结晶温度范围变小,流动性显0.5. 着提高,收缩率下降,热裂倾向也相应减小。根据生产经验,当含硅5%~6%时可不产生热裂,因而采用SAlSi条(硅含量4.5%~6%) 焊丝会有更好的抗裂性。 (4)铝对光、热的反射能力较强,固、液转态时,没有明显的色泽变化,焊接操作时判断难。高温铝强度很低,支撑熔池困难,容易焊穿。 (5)铝及铝合金在液态能溶解大量的氢,固态几乎不溶解氢。在焊接熔池凝固和快速冷却的过程中,氢来不及溢出,极易形成氢气孔。弧柱气氛中的水分、焊接材料及母材表面氧化膜吸附的水分,都是焊缝中氢气的重要来源。因此,对氢的来源要严格控制,以防止气孔的形成。 (6)合金元素易蒸发、烧损,使焊缝性能下降。 (7)母材基体金属如为变形强化或固溶时效强化时,焊接热会使热影响区的强度下降。 (8)铝为面心立方晶格,没有同素异构体,加热与冷却过程中没有相变,焊缝晶粒易粗大,不能通过相变来细化晶粒。 2. 焊接方法 几乎各种焊接方法都可以用于焊接铝及铝合金,但是铝及铝合金对

铝合金技术参数

理论上是,要看成型方法i: 压铸的左右,挤压的,锻造的

1050 食品、化学和酿造工业用挤压盘管,各种软管,烟花粉 1060 要求抗蚀性与成形性均高的场合,但对强度要求不高,化工设备是其典型用途 1100 用于加工需要有良好的成形性和高的抗蚀性但不要求有高强度的零件部件,例如化工产品、食品工业装置与贮存容器、薄板加工件、深拉或旋压凹形器皿、焊接零部件、热交换器、印刷板、铭牌、反光器具 1145 包装及绝热铝箔,热交换器 1199 电解电容器箔,光学反光沉积膜 1350电线、导电绞线、汇流排、变压器带材 2011 螺钉及要求有良好切削性能的机械加工产品 2014 应用于要求高强度与硬度(包括高温)的场合。飞机重型、锻件、厚板和挤压材料,车轮与结构元件,多级火箭第一级燃料槽与航天器零件,卡车构架与悬挂系统零件 2017 是第一个获得工业应用的2XXX系合金,它的应用范围较窄,主要为铆钉、通用机械零件、结构与运输工具结构件,螺旋桨与配件 2024 飞机结构、铆钉、导弹构件、卡车轮毂、螺旋桨元件及其他种种结构件 2036汽车车身钣金件 2048 航空航天器结构件与兵器结构零件 2124 航空航天器结构件

2218飞机发动机和柴油发动机活塞,飞机发动机汽缸头,喷气发动机叶轮和压缩机环 2219 航天火箭焊接氧化剂槽,超音速飞机蒙皮与结构零件,工作温度为-270~300℃。焊接性好,断裂韧性高,T8状态有很高的抗应力腐蚀开裂能力 2319 焊拉2219合金的焊条和填充焊料 2618 模锻件与自由锻件。活塞和航空发动机零件 2A01 工作温度小于等于100℃的结构铆钉 2A02 工作温度200~300℃的涡轮喷气发动机的轴向压气机叶片 2A06 工作温度150~250℃的飞机结构及工作温度125~250℃的航空器结构铆钉 2A10 强度比2A01合金的高,用于制造工作温度小于等于100℃的航空器结构铆钉 2A11 飞机的中等强度的结构件、螺旋桨叶片、交通运输工具与建筑结构件。航空器的中等强度的螺栓与铆钉 2A12 航空器蒙皮、隔框、翼肋、翼梁、铆钉等,建筑与交通运输工具结构件 2A14 形状复杂的自由锻件与模锻件 2A16 工作温度250~300℃的航天航空器零件,在室温及高温下工作的焊接容器与气密座舱 2A17 工作温度225~250℃的航空器零件 2A50 形状复杂的中等强度零件 2A60 航空器发动机压气机轮、导风轮、风扇、叶轮等 2A70 飞机蒙皮,航空器发动机活塞、导风轮、轮盘等 2A80 航空发动机压气机叶片、叶轮、活塞、涨圈及其他工作温度高的零件 2A90 航空发动机活塞 3003 用于加工需要有良好的成形性能、高的抗蚀性可焊性好的零件部件,或既要求有这些性能又需要有比1XXX系合金强度高的工作,如厨具、食物和化工产品处理与贮存装置,运输液体产品的槽、罐,以薄板加工的各种压力容器与管道

铝与铝合金的焊接方法

铝合金焊接的几种先进工艺:搅拌摩擦焊、激光焊、激光- 电弧复合焊、电子束焊。针对于焊接性不好和曾认为不可焊接的合金提出了有效的解决方法,几种工艺均具有优越性,并可对厚板铝合金进行焊接。 关键词:铝合金搅拌摩擦焊激光焊激光- 电弧复合焊电子束焊 1 铝合金焊接的特点 铝合金由于重量轻、比强度高、耐腐蚀性能好、无磁性、成形性好及低温性能好等特点而被广泛地应用于各种焊接结构产品中,采用铝合金代替钢板材料焊接,结构重量可减轻50 %以上。 铝合金焊接有几大难点: ①铝合金焊接接头软化严重,强度系数低,这也是阻碍铝合金应用的最大障碍; ②铝合金表面易产生难熔的氧化膜(Al2O3 其熔点为2060 ℃) ,这就需要采用大功率密度的焊接工艺; ③铝合金焊接容易产生气孔; ④铝合金焊接易产生热裂纹; ⑤线膨胀系数大,易产生焊接变形; ⑥铝合金热导率大(约为钢的4 倍) ,相同焊接速度下,热输入要比焊接钢材大2~4 倍。 因此,铝合金的焊接要求采用能量密度大、焊接热输入小、焊接速度高的高效焊接方法。 2 铝合金的先进焊接工艺 针对铝合金焊接的难点,近些年来提出了几种新工艺,在交通、航天、航空等行业得到了一定应用,几种新工艺可以很好地解决铝合金焊接的难点,焊后接头性能良好,并可以对以前焊接性不好或不可焊的铝合金进行焊接。 2. 1 铝合金的搅拌摩擦焊接 搅拌摩擦焊FSW( Friction Stir Welding) 是由英国焊接研究所TWI ( The Welding Institute) 1991 年提出的新的固态塑性连接工艺[1~2 ] 。图1为搅拌摩擦焊接示意图[3 ] 。其工作原理是用一种特殊形式的搅拌头插入工件待焊部位,通过搅拌头高速旋转与工件间的搅拌摩擦,摩擦产生热使该部位金属处于热塑性状态,并在搅拌头的压力作用下从其前端向后部塑性流动,从而使焊件压焊在一起。图2 为搅拌摩擦焊接过程[4 ] 。由于搅拌摩擦焊过程中不存在金属的熔化,是一种固态连接过程,故焊接时不存在熔焊的各种缺陷,可以焊接用熔焊方法难以焊接的有色金属材料,如铝及高强铝合金、铜合金、钛合金以及异种材料、复合材料焊接等。目前搅拌摩擦焊在铝合金的焊接方面研究应用较多。已经成功地进行了搅拌摩擦焊接的铝合金包括2000 系列(Al- Cu) 、5000 系列(Al - Mg) 、6000 系列(Al - Mg - Si) 、7000 系列(Al - Zn) 、8000 系列(Al - Li) 等。国外已经.进入工业化生产阶段,在挪威已经应用此技术焊接快艇上长为20 m 的结构件,美国洛克希德·马丁航空航天公司用该项技术焊接了铝合金储存液氧的低温容器火箭结构件。 铝合金搅拌摩擦焊焊缝是经过塑性变形和动态再结晶而形成,焊缝区晶粒细化,无熔焊的树枝晶,组织细密,热影响区较熔化焊时窄,无合金元素烧损、裂纹和气孔等缺陷,综合性能良好。与传统熔焊方法相比,它无飞溅、烟尘,不需要添加焊丝和保护气体,接头性能良好。由于是固相焊接工艺,加热温度低,焊接热影响区显微组织变化小,如亚稳定相基本保持不变,这对于热处理强化铝合金及沉淀强化铝合金非常有利。焊后的残余应力和变形非常小,对于薄板铝合金焊后基本不变形。与普通摩擦焊相比,它可不受轴类零件的限制,可焊接直焊缝、角焊缝。传统焊接工艺焊接铝合金要求对表面进行去除氧化膜,并在48 h 内进行加工,而搅拌摩擦焊工艺只要在焊前去除油污即可,并对装配要求不高。并且搅拌摩擦焊比熔化焊节省能源、污染小。 搅拌摩擦焊铝合金也存在一定的缺点:

铝合金通用焊接工艺设计规范流程

铝合金通用焊接工艺规程 1 使用围及目的 围:本规是适用于地铁铝合金部件焊接全过程的通用工艺要求。 目的:与焊接相关的作业人员按标准规作业,同时也使焊接过程检查更具可操作性。 2 焊前准备的要求 2.1 在焊接作业前首先必须根据图纸检查来料或可见的重要尺寸、形位公差和焊接质量,来料不合格不能进行焊接作业。 2.2 在焊接作业前,必须将残留在产品表面和型腔的灰尘、飞溅、毛刺、切削液、铝屑及其它杂物清理干净。 2.3 用棉布将来料或工件上的灰尘和脏物擦干净,如果工件上有油污,使用清洗液清理干净。 2.4 使用风动不锈钢丝轮将焊缝区域的氧化膜打磨干净,以打磨处呈白亮色为标准,打磨区域为焊缝两侧至少25mm以上。 2.5 焊前确认待焊焊缝区域无打磨时断掉的钢丝等杂物。 2.6 钢焊和铝焊的打磨、清理工具禁止混用。 2.7 原则上工件打磨后在48小时没有进行焊接,酸洗部件在72小时没有进行焊接,则焊前必须重新打磨焊接区域。 2.8 为保证焊丝的质量,焊丝原则上用完后再到焊丝房领用,对于晚班需换焊丝的,可以在当天白班下班前领用,禁止现场长时间(24小时以上)存放焊丝。 2.9 在焊接作业前,必须检查焊接设备和工装处于正常工作状态。焊

前应检查焊机喷嘴的实际气流量(允差为+3L/min),自动焊焊丝在8圈以下,手工焊焊丝在5圈以上,否则需要更换气体或焊丝;检查导电嘴是否拧紧,喷嘴是否需要清理。导电嘴不能只简单的采用手动拧紧,必须采用尖嘴钳拧紧。检查工装状态是否完好,若工装有损坏,应立即通知工装管理员进行核查,并组织维修,禁止在工装异常状态下进行焊接操作。 2.10 焊接前必须检查环境的温度和湿度。作业区要求温度在5℃以上,MIG焊湿度小于65%,TIG焊湿度小于70%。环境不符合要求,不能进行焊接作业。 2.11 焊接过程中不允许有穿堂风。因此,在焊接作业前必须关闭台位附近的通道门。当焊接过程中,如果有人打开台位相近处的大门,则要立即停止施焊。如果台位附近的空调风影响到焊接作业,也必须将该处空调的排风口关闭,才能进行焊接作业。 2.12 对于厚度在8mm以上(包括8mm)的铝材,焊接要预热,预热温度80℃~120℃,层间温度控制在60℃~100℃。预热时要使用接触式测温仪进行测温,工件板厚不超过50mm时,正对着焊工的工件表面,距坡口表面4倍板厚,最多不超过50mm的距离处测量,当工件厚度超过50mm时,要求的测温点应位于至少75mm距离的母材或坡口任何方向上同一的位置,条件允许时,温度应在加热面的背面上测定,严禁凭个人感觉及经验做事。 2.13 按图纸进行组装,点焊固定,点焊要满足与焊接相同的要求,不属于焊接组成部分的点焊要尽可能在焊接时完全熔化(图纸要求的点焊

铝合金焊接技术

钛合金焊接技术 日期:08-12-10 09:00:09 作者:鲜雪强川航机务部 由于钛合金低重量、强度高、耐腐蚀性优异,又具有与先进复合材料在热学、电化学方面的相容性,一直是航空、宇航工业上应用的重要结构材料。焊接作为钛合金加工中的重要手段,在提高材料利用率、减轻结构重量、降低成本等方面有独特的优势,因此有必要研究飞机结构修理中的钛合金焊接技术。关键词:焊接、疲劳性能、残余应力、疲劳寿命 一、钛合金焊接的重要性 疲劳断裂是材料在交变载荷(或应力)作用下发生的破损断裂。国内外研究表明,飞机结构疲劳破坏是飞机主要破坏形式。早期设计的飞机只考虑静强度问题,直到上个世纪五十年代,随着航空事业的不断发展,飞机性能不断提高,飞机的使用要求不断严格,飞机在使用过程中疲劳破坏与安全可靠性之间的矛盾逐渐暴露出来。 焊接是一种运用(多种情况下为局部)加热或加压手段、添加或不添加填充材料将构件不可拆卸的连接在一起,或在基材表面堆敷覆盖层的加工工艺。焊接技术广泛的应用于国民经济的各个部门,如机械工程、桥梁工程、压力容器船舶工程、航空航天等领域。焊接结构在现代工业中应用越来越广泛,无论是在航天领域还是在一般的工程领域,无论是小部件还是大型结构,都在不断扩大焊接结构的比重。例如,飞机中央翼焊接下壁板是关键承力构件,承受机翼传来的弯矩、扭矩、剪力和油箱压力的作用;在国外第四代战斗机中钛合金含量已达到40%左右。而对于钛合金焊接结构疲劳特性与寿命评估技术的研究则是为实现钛合金结构在先进飞机上的合理使用,所必不可少的前提条件之一。 二、焊接区域材料性能的确定 焊接接头由焊缝、热影响区、母材组成,是一种非均质材料,各向异性。热影响区是焊缝到母材的过渡区域,其材料性能也介于焊缝和母材之间。

铝合金焊接工艺

铝合金焊接工艺 Coca-cola standardization office【ZZ5AB-ZZSYT-ZZ2C-ZZ682T-ZZT18】

铝合金焊接工艺 铝合金具有较高的比强度、断裂韧度、疲劳强度和耐腐蚀稳定性,并且工艺成形性和焊接性能良好,MIG焊是铝合金焊接的主要方法之一。由于铝合金表面华丽的色泽等诸多优点而被广泛应用于航空、航天及其它运载工具的结构材料;如运载火箭的液体燃料箱,超音速飞机和汽车的结构件以及轻型战车的装甲等。本文主要研究了MIG焊接6063铝合金的工艺方法。 焊接材料 焊接所采用的母材为6063铝合金,焊接壁厚在3mm以上时,开V形坡口,夹角为60°~70°,空隙不得大于1mm,以多层焊完结;焊丝所用的材料为5356铝合金焊丝;壁厚在3mm以下时,不开坡口,不留空隙,不加填充丝;焊接薄铝件, 最好是用低温铝焊条WE53。 焊前准备 坡口加工 铝材可采用机械或等离子弧等方法切割下料。 坡口加工采用机械加工法。加工坡口表面高应平整、无毛刺和飞边。 坡口形式和尺寸根据接头型式,母材厚度、焊接位位置、焊接方法、有无垫板及使用条件。 焊接工艺参数的选择 应在焊接工艺规程规定的范围内正确选用焊接工艺参数

表1手工钨术氩弧焊接工艺参数 焊前清洗 首先,用丙酮等有机溶液除去油污,两侧坡口的清理范围不小于50mm,坡口及其附近(包括垫板)的表面应用机械法清理至露出金属光泽。焊丝去除油污后,应采用化学法除去氧化膜,可用5%~10%的NaOH溶液在70℃下浸泡30~60s,清水冲洗后,再用10%的HNO3常温下浸2min,清水冲洗干净后干燥处理。清理后的焊件、焊丝在4h内应尽快完成施焊。 焊接工艺要求 定位焊缝应符合下列规定: 1)焊件组对可在坡口处点焊定位,也可以坡口内点固。焊接定位焊缝时,选用的焊丝应与母材相匹配。 2)定位焊缝就有适当的长度,间距和高度,以保证其有足够的强度面不致在焊接过程中开裂。 3)定位焊缝如发现缺陷应及时处理。对作为正式焊缝一部分的根部定位焊缝,还应将其表面的黑料,氧化膜清除,并将两端修整成缓坡型。

铝及铝合金焊接

铝及铝合金的焊接

铝及铝合金是工业中应用最广泛的一类有色金属结构材料,在航空、航天、汽车、机械制造、船舶及化学工业中已大量应用。随着近年来科学技术以及工业经济的飞速发展,对铝合金焊接结构件的需求日益增多,使铝合金的焊接性研究也随之深入。铝合金的广泛应用促进了铝合金焊接技术的发展,同时焊接技术的发展又拓展了铝合金的应用领域,因此铝合金的焊接技术正成为研究的热点之一。 有色金属non-ferrous metal,狭义的有色金属又称为非铁金属,是铁、锰、铬以外的所有金属的统称。广义的有色金属还包括有色合金。有色合金是以一种有色金属为基体(通常大于50%),加入一种或几种其他元素而构成的合金。随着科学技术的发展,有色金属的应用日趋广泛。虽然有色金属只占金属总量的5%左右,但有色金属在工程应用中的重要作用确实钢铁或其他材料无法代替的。有色金属具有特殊的性能,比常规钢铁材料的焊接更复杂,这给焊接工作带来很大的困难。 铝合金是工业中应用最广泛的一类有色金属结构材料,在航空、航天、汽车、机械制造、船舶及化学工业中已大量应用。随着近年来科学技术以及工业经济的飞速发展,对铝合金焊接结构件的需求日益增多,使铝合金的焊接性研究也随之深入。铝合金的广泛应用促进了铝合金焊接技术的发展,同时焊接技术的发展又拓展了铝合金的应用领域,因此铝合金的焊接技术正成为研究的热点之一。 什么是金属盒非金属,什么是黑色金属和有色金属,什么事合什么是金属盒非金属,什么是黑色金属和有色金属,金?目前,已知的的化学元素有118 种,其中自然界只存在92 种,科学家成功研制出并已经得到承认和命名的元素有18 种,有8 种元素没有得到承认和命名。人们通常把这些元素分成金属和非金属两大类。从物理性能上来看,具有导电性、导热性、可塑性以及特殊光泽的元素叫金属,反之是非金属。常见的金属有铁、铝、铜、镁、锌等。在非金属中,常温下呈气态的有氢、氧、氩等;常温下呈液态的有溴;常温下呈固态的有碳、硼等。 金属又可分为黑色金属和有色金属两大类。黑色金属通常是指铁、铬、锰和铁基合金,其他的金属合金称为有色金属。 合金是有两种或两种以上的金属元素与非金属元素所组合成的具有合金性质的物质。3A21 就是由铝和锰组成的以铝为基的合金。 有色金属的分类有色金属按其性质、用途、产量及其在地壳中的储量状况一般分为有色轻金属、有色重金属、贵金属、稀有金属和半金属五大类。在稀有金属中,根据其物理化学性质、原料的共生关系、生产工艺流程等特点,又分稀有轻金属、稀有重金属、稀有难熔金属、稀散金属、稀土金属、稀有放射性金属。

铝合金焊接接头疲劳性能研究

铝合金焊接接头疲劳性能研究 发表时间:2019-08-07T10:24:10.000Z 来源:《基层建设》2019年第11期作者:张禧铭徐浩翔[导读] 摘要:测定了6061铝合金焊接件焊接接头的疲劳性能,介绍了铝合金焊接件焊接接头的疲劳特征,分析了铝合金焊接件焊接接头中缺陷对其疲劳性能的影响。 中车青岛四方机车车辆股份有限公司山东青岛 266000 摘要:测定了6061铝合金焊接件焊接接头的疲劳性能,介绍了铝合金焊接件焊接接头的疲劳特征,分析了铝合金焊接件焊接接头中缺陷对其疲劳性能的影响。结果表明铝合金焊接件焊接接口处气孔、夹杂物及未焊透三个焊接缺陷均会零件的应力集中创造条件,对铝合金焊接件焊接接头疲劳性能有重大影响。气孔的大小、数量,未焊透的分布位置及形式明显地影响铝合金焊接件焊接接头的疲劳性能 0.引言 铝合金由于其质量轻、强度高、无磁性、耐腐蚀性好,广泛应用于汽车、铁路、航空航天等领域。焊接是铝合金零件最常见的连接方式,在铝合金焊接零件在重复外力作用下会发生疲劳断裂,而疲劳破坏过程又这些问题往往会给用户造成不可估量的巨大损失[1]。通过研究发现,铝合金焊件焊接接头发生疲劳破坏是铝合金焊接断裂的主要原因,因此对铝合金焊接件进行全面分析,找出原因并提出解决方案,提高铝合金焊接件有着重大意义[2,3]。近些年过高校和科研院所对铝合金焊接件焊接接口做了大量研究工作,并取得了重大成果。周进等人通过对5A02 铝合金焊接接头的疲劳性能进行分析,得出了补焊可以降低铝合金焊接件焊接接口的疲劳强度(下降将近20%),可作为一种可靠的补救措施[4]。王德俊通过对铝合金焊接接头焊缝几何特征的研究,得出了十字接头焊接方式比对接接头焊接方式应力集中更严重的结论[5]。本文以6061铝合金为研究对象,分析焊接缺陷铝合金焊接件疲劳性能的研究。 1.试验材料及试验方法 本试验需要的材料为铝合金和焊丝,其中铝合金选用6061铝板,焊丝选用5356焊丝,铝板采用对接焊接。这两种材料的化学成分如表1所示。 试验材料化学成分/% 将铝板通过焊丝分别用MIG焊和TIG焊两种方法进行焊接,不仅仅能够保证铝合金焊接件内部化学成分的完整性,而且也可以提高铝合金焊接件的焊接质量。 在进行全部焊接之后还需要采用合理的方法对焊接物进行验伤处理,找出其中存在的问题,并对出现问题的原因进行全面分析。焊后进行X射线探伤检验,找出存在的问题并找到原因及时解决,将样品进行铣削加工,去除焊缝余高。为获得样品真实状态,将样品铣削加工后再进行X射线探伤检测。在MTS万能试验机上进行疲劳试验,用JSM-35C显微镜对断口形状进行合理观察。 2.试验结果及分析 2.1疲劳试验 试验结果如表2所示,对试验结果进行整理、对比,可以发现无论6061铝合金焊接件的焊缝有无缺陷,发生疲劳破坏的均为焊接口。但是整个焊接过程是否存在缺陷对存在的疲劳现象和相应寿命还有很重要的作用。但焊缝有无缺陷对其寿命有明显影响,即有焊缝缺陷的样品其寿命明显低于无焊缝缺陷的样品,并且随着缺陷尺寸的增大,疲劳寿命下降越多。 6061铝合金焊接接头疲劳性能

铝及铝合金的焊接性

铝及铝合金的焊接性。 ⑴强的氧化能力铝在空气中极易与氧结合生成致密结实的Al2O3膜薄,厚度约0.1μm。Al2O3的熔点高达2050℃,远远超过铝及铝合金的熔点(约660℃),而且体积质量大,约为铝的1.4倍。焊接过程中,氧化铝薄膜会阻碍金属之间的良好结合,并易形成夹渣。氧化膜还会吸附水分,焊接时会促使焊缝生成气孔。因此,焊前必须严格清理焊件表面的氧化物,并加强焊接区域的保护。 ⑵较大的热导率和比热容铝及铝合金的热导率和比热容约比钢大1倍,焊接过程中大量的热量被迅速传导到基体金属内部。因此,焊接铝及铝合金比钢要消耗更多的热量,焊前常需采取预热等工艺措施。 ⑶热裂纹倾向大线膨胀系数约为钢的2倍,凝固时的体积收缩率达6.5%左右,因此焊接某些铝合金时,往往由于过大的内应力而产生热裂纹。生产中常用调整焊丝成分的方法来防止产生热裂纹,如使用焊丝HS311。 ⑷容易形成气孔形成气孔的气体是氢。氢在液态铝中的溶解度为0.7mL/100g,而在660℃凝固温度时,氢的溶解度突降至0.04ml/100g,使原来溶解于液态铝中的氢大量析出,形成气泡。同时,铝和铝合金的密度小,气泡在熔池中的上升速度较慢,加上铝的导热性强,熔池冷凝快,因此,上升的气泡往往来不及逸出,留在焊缝内成为气孔。弧柱气

氛中的水分、焊接材料及母材表面氧化膜吸附的水分都是氢的主要来源,因此焊前必须严格做好焊件的表面清理工作。 ⑸接头不等强度铝及铝合金的热影响区由于受热而发生软化、强度降低使接头与母材无法达到等强度。纯铝及非热处理强化铝合金接头的强度约为母材的75%~100%;热处理强化铝合金的接头强度较小,只有母材的40%~505。 ⑹焊穿铝及铝合金从固态转变为液态时,无明显的颜色变化,所以不易判断母材温度,施焊时常会因温度过高无法察觉而导至焊穿。

6系铝合金焊接常识

6系铝合金焊接基础知识 焊丝的材质选取: 面对6005、6082、5083 等母材来说,选取牌号为5087-AlMg4. 5MnZr ,因为5087 焊丝优点:抗裂 性能好、抗气孔性能好,而且强度性能不错。 焊丝规格的选取: 选择大直径规格的焊丝。规格大的焊丝表面积小于小规格焊丝,故氧化面少,焊接质量更容易达到 要求 另外大直径焊丝的送丝过程更容易操作。对于6 毫米以下板厚的母材一般采用1. 2 毫米直径的 焊丝, 对于6 毫米及以上板厚的母材采用1. 8毫米直径的焊丝。 自动焊机采用1. 6 毫米直径的焊丝。 预热及层间温度的控制: 超过6 mm 的材料焊接时,都要焊前预热,预热温度控制在70 ℃~110 ℃之间,层间温度控制在80 ℃~ 90 ℃之间。 预热温度过高,可能对铝合金的合金性能造成影响,出现退化,焊缝成形不良等现象。并且会使 铝焊热裂纹的产生机率增加。 保护气体的选用: Ar100 %的特点是电弧稳定、引弧方便,对于6mm以下母材采用Ar100 %焊接。对于6 mm 及以上母材和气孔要求高的焊缝,采用Ar70 % + He30 %进行焊接。 氦气的特点在于:10 倍于氩气的导热性,焊接速度更快,气孔率减少,熔深增加。当然氦气是用于 比较高端的产品,一般都是用氩气保护。 焊前清理: 焊接铝合金需要最干净的准备工作,否则其抗腐蚀能力下降,而且容易产生气孔。焊接铝合金应该与焊钢的习惯彻底区分。焊钢已经用过的工具,严禁焊接铝合金时使用。清理焊缝区域的氧化膜等杂质,尽可能使用不锈钢刷或者用丙酮清洗。不能使用砂轮打磨,因为使用砂轮打磨只会使氧化膜熔合在焊材表面,而不会真正去除。而且如果使用硬质砂轮,其中的杂质会进入焊缝,导致热裂纹。此外,由于Al2O3 膜

相关文档
最新文档