神经网络基于BP网络的多层感知器实验报告

神经网络基于BP网络的多层感知器实验报告
神经网络基于BP网络的多层感知器实验报告

神经网络基于BP网络的多层感知器实验报告

二、基于BP网络的多层感知器一:实验目的:

1、理解多层感知器的工作原理

2、通过调节算法参数了解参数的变化对于感知器训练的影响

3、了解多层感知器局限性二:实验原理:BP的基本思想:信号的正向传播误差的反向传播–信号的正向传播:输入样本从输入层传入,经各隐层逐层处理后,传向输出层。

–误差的反向传播:将输入误差以某种形式通过隐层向输入层逐层反传,并将误差分摊给各层的所有单元,从而获得各层单元的误差信号来作为修正各单元权值的依据。

1、基本BP算法的多层感知器模型:

2、BP学习算法的推导:当网络输出与期望输出不等时,存在输出误差E将上面的误差定义式展开至隐层,有进一步展开至输入层,有调整权值的原则是使误差不断地减小,因此应使权值的调整量与误差的梯度下降成正比,即η∈(0,1)表示比例系数,在训练中反应学习速率 BP算法属于δ学习规则类,这类算法被称为误差的梯度下降(Gradient Descent)算法。<实验步骤>

1、用Matlab编程,实现解决该问题的单样本训练BP网络,设置一个停止迭代的误差Emin和最大迭代次数。在调试过程中,通过不断调整隐层节点数,学习率η,找到收敛速度快且误差小

的一组参数。产生均匀分布在区间[-4,4]的测试样本,输入建立的模型得到输出,与Hermit多项式的期望输出进行比较计算总误差(运行5次,取平均值),并记录下每次迭代结束时的迭代次数。(要求误差计算使用RME,Emin 设置为0、1)程序如下:function dyb %单样本程序 clc; close all; clear; x0=[1:;-4:0、08:4];%样本个 x0(1,:)=-1; x=x0'; yuzhi=0、1;%阈值

j=input('请输入隐层节点数 j = ');%隐层节点数 n=input('请输入学习效率 n = ');%学习效率 w=rand(1,j); w=[yuzhi,w]; %输出层阈值 v=rand(2,j); v(1,:)=yuzhi;%隐层阈值

err=zeros(1,); wucha=0; zhaosheng=0、01*randn(1,);%噪声erro=[]; ERRO=[];%误差,为画收敛曲线准备 Emin=0、1;

d=zeros(1,); for m=1: d(m)=hermit(x(m,2));%期望 end;

o=zeros(1,); j=zeros(1,j); =zeros(1,j); p=1; q=1; azc=0; acs=0; for z=1:5 while q<30000 Erme=0; for p=1:

y=zeros(1,j); for i=1:j j(1,i)=x(p,:)*v(:,i);

y(1,i)=1/(1+exp(-j(1,i))); end; y=[-1 y];

o(p)=w*y'+zhaosheng(p);%噪声 wucha = d(p)-o(p);

err(1,p)=1/2*wucha^2; erro=[erro,wucha]; for m=1:j+1

w(1,m)=w(1,m)+n*wucha*y(1,m); end; for m=1:j

v(:,m)=v(:,m)+n*wucha*w(1,m)*y(1,m)*(1-y(1,m))*x(p,:)'; end q=q+1; end; for t=1:; Erme=Erme+err(1,t); end;

err=zeros(1,); Erme=sqrt(Erme/); ERRO=[ERRO,Erme]; if

Erme

plot(x(:,2),d,'--r'); hold on; plot(x(:,2),o,'--b'); disp('次数:'); pjcx=1/5*acs figure(2); plot(ERRO); figure(3); plot(x(:,2),d,'--rp');endfunction F =

hermit(x)%hermit子函数 F =

1、1*(1-x+2*x^2)*exp(-x^2/2);end运行结果如下:表格

1、单样本BP算法平均最小误差学习率结点数0、0

50、0

70、

10、1

20、1

50、18

80、096

50、085

90、0195

30、094

50、087

40、0925

100、096

80、094

40、098

30、09200、082

10、09821

20、088

60、085

60、088

50、094

60、083

40、09281

50、091

50、092

70、087

80、092

40、073

80、084

42、实现解决该问题的批处理训练BP网络,调整参数如上。产生均匀分布在区间[-4,4]的测试样本,输入建立的模型得到输出,与Hermit多项式的期望输出进行比较计算总误差(运行5次,取平均值),并记录下每次迭代结束时的迭代次数。程序如下:function pcl %批处理 close all; clc; x=[-4:0、08:4];%样本个 j=input('请输入隐层节点数 j = ');%隐层节点数

n=input('请输入学习效率 n = ');%学习效率 a=0、1;%动量系数w=rand(1,j); v=rand(1,j); err=zeros(1,); wucha=0;

zhaosheng=0、01*randn(1,);%噪声 erro=[]; ERRO=[];%误差,

为画收敛曲线准备 Emin=0、1; d=zeros(1,); for m=1:

d(1,m)=hermit(x(m));%期望 end; o=zeros(1,); j=zeros(1,j); =zeros(1,j); y=zeros(1,j); p=1; q=1; azc=0; acs=0; for

z=1:5 while q<30000 Erro=0; Erme=0; for p=1: for i=1:j

j(1,i)=v(1,i)*x(1,p); y(1,i)=1/(1+exp(-j(1,i))); end;

o(1,p)=w*y'+zhaosheng(p);%噪声 wucha=d(1,p)-o(1,p);%误差

err(1,p)=1/2*wucha^2; erro=[erro,wucha]; q=q+1; end; for

t=1:; Erro=Erro+erro(t); Erme=Erme+err(1,t); end; erro=[]; for m=1:j; w(1,m)=w(1,m)+n*Erro*y(1,m);

v(1,m)=v(1,m)+n*Erro*w(1,m)*y(1,m)*(1-y(1,m))*x(1,p); end; Erme=sqrt(Erme/); ERRO=[ERRO,Erme]; if Erme

plot(x,o,'--b'); disp('平均次数:'); pjcs=1/5*acs

figure(2); plot(ERRO); figure(3); plot(x,d);endfunction F = hermit(x)

%hermit子函数 F =

1、1*(1-x+2*x^2)*exp(-x^2/2);end运行结果如下:表格

2、批处理BP算法平均最小误差学习率结点数0、0

50、0

70、

20、1 50、17 50、096 60、097 30、097 40、098 60、099 30、0913 80、097 20、093 30、091 30、097 60、092 20、0915 100、094 50、095 70、093 70、094 80、095 70、08171 20、092

50、091

10、095

20、093

70、091

53、对批处理训练BP算法增加动量项调整参数如上,记录

结果,并与没有带动量项的批处理训练BP算法的结果相比较程序

如下:function jdlx %加动量项 close all; clc; x=[-4:0、08:4];%样本个 j=input('请输入隐层节点数 j = ');%隐层节点

数 n=input('请输入学习效率 n = ');%学习效率 a=0、1;%动量

系数 w=rand(1,j); v=rand(1,j); err=zeros(1,); wucha=0; zhaosheng=0、01*randn(1,);%噪声 erro=[]; ERRO=[];%误差,

为画收敛曲线准备 Emin=0、1; d=zeros(1,); for m=1:

d(1,m)=hermit(x(m));%期望 end; o=zeros(1,); j=zeros(1,j); =zeros(1,j); y=zeros(1,j); p=1; q=1; azc=0; acs=0; for

z=1:5 while q<30000 Erro=0; Erme=0; for p=1: for i=1:j

j(1,i)=v(1,i)*x(1,p); y(1,i)=1/(1+exp(-j(1,i))); end;

o(1,p)=w*y'+zhaosheng(p);%噪声 wucha=d(1,p)-o(1,p);%误差

err(1,p)=1/2*wucha^2; erro=[erro,wucha]; q=q+1; end; for

t=1:; Erro=Erro+erro(t); Erme=Erme+err(1,t); end; erro=[]; for m=1:j; if m==1 w(1,m)=w(1,m)+n*Erro*y(1,m); else

w(1,m)=w(1,m)+n*Erro*y(1,m)+a*w(1,m-1); end

v(1,m)=v(1,m)+n*Erro*w(1,m)*y(1,m)*(1-y(1,m))*x(1,p); end; Erme=sqrt(Erme/); ERRO=[ERRO,Erme]; if Erme

plot(x,o,'--b'); disp('平均次数:'); pjcs=1/5*acs

figure(2); plot(ERRO); figure(3); plot(x,d);endfunction F = hermit(x)

%hermit子函数 F =

1、1*(1-x+2*x^2)*exp(-x^2/2);end运行结果如下:

4、对批处理BP算法改变参数:学习率η、迭代次数、隐层节点数,观察算法的收敛发散,以及测试误差的变化(对每个参

数取几个不同参数,分别运行5次,结果取平均值)。表格

3、加入动量项的批处理BP算法平均最小误差学习率结点数0、0

50、0

70、

10、1

20、1

50、17

50、093

50、094

80、099

10、091

20、098

40、0987

80、098

10、096

70、096

20、098

90、094

10、092

100、089

30、098

20、09200、089

40、092

50、09841

20、085

90、089

60、087

80、095

70、082

50、0946经网络结构图七:实验结果分析:

1、单样本训练:每输入一个样本,都要回传误差并调整权值,会导致收敛速度过慢,

2、批处理(Batch)训练:根据总误差计算各层的误差信号并调整权值,权值的校正值是在整个训练集提交训练后才决定的。

3、加动量项的批处理运算:通过引入以前运算的经验,从而使学习过程振荡减小,改善收敛性。八:附加函数:(斜黑体部分替换为pcl、dlpcl分别进行批处理BP网络计算、显示图形和增加动量项的批处理BP网络计算、显示图形)计算函数:function

[cs,wc]=jsdyb(lr,q)Emin=0、1;s1=0;s2=0;for k=1:5

[x1,x2]=dyb(lr,Emin,q); s1=s1+x1;

s2=s2+x2;endcs=s1/5;wc=s2/5;function

A=zjsdyb(lr)q=[4,5,7,8,10];format short gA=[];for

zk=1:5[cs,wc]=jsdyb(lr,q(zk));B=[cs,wc];A=[A;B];end图形显示函数:function txdyb(lr,q)%计算测试输出;Emin=0、

1;b=1;[epoch,s,Wki,Wij,Wb,Ez]=dyb(lr,Emin,q)x=linspace(-4,4,100);%给定输入:y=

1、1、*(1-x+

2、*x、^2)、*exp(-x、^2/2)+0、1*rand(1,100);for

i=1:100i=x(i)、*Wij+b*Wb;k=0;for t=1:qoi(t)=1/(1+exp(-

i(t)));k=k+Wki(t)*oi(t);end ok(i)=k; end%显示图形;figureplot(x,ok,'r')hold ony=

1、1、*(1-x+

2、*x、^2)、*exp(-x、^2/2)+0、

1*rand(1,100);plot(x,y,'b')title('Hermit多项式曲线与BP网络输出曲线')legend('BP曲线','Hermit曲线')hold offfigureplot(x,ok,'or')hold onx=

8、*rand(1,100)-4;y=

1、1、*(1-x+

2、*x、^2)、*exp(-x、^2/2)+0、

1*rand(1,100);plot(x,y,'*k')title('训练样本与测试样本

')xlabel('input x')ylabel('output y')legend('测试样本','训练样本')figureplot([1:length(Ez)],Ez)title('收敛曲线')clc

基于BP神经网络的数字字母识别系统设计——系统分析设计【开题报告】

开题报告 电气工程及其自动化 基于BP神经网络的数字字母识别系统设计——系统分析设计 一、课题研究意义及现状 随着信息科技技术的飞速发展,神经网络从当年的无人问津到现在广泛应用于各个领域,这个不是偶然而是其功能大部分能适应生产生活的各方面需求。特别是在人工智能、自动控制、计算机科学、信息处理、机器人、模式识别等方面有重大的应用。 BP神经网络已被广泛地应用于各个领域,它的基本思想是,学习过程由信号的正向传播与误差的反向传播两个过程组成。正向传播时,输入样本从输入从输入层传入,经各隐层逐层处理后,传向输出层。若输出层的实际输出与期望输出不符,则转入误差的反向传播阶段。误差反传是将输出误差以某种形式通过隐层向输入层逐层反传,并将误差分摊给各层的所有单元,从而获得各层单元的误差信号,此误差信号即作为修正各单元权值的依据。这种信号正向传播与误差反向传播的各层权值调整过程是周而复始地进行的。此过程一直进行到网络输出误差减少到可以接受的程度,或进行预先设定的学习次数为止。 本课题就是利用BP神经网络的工作原理,对0、1、2、3、4、5、6、7、8、9十个数字的图像提取特征向量作为神经网络识别输入向量的基础上,分析建立对0、1、2、3、4、5、6、7、8、9十个数字进行识别的BP神经网络拓扑结构,为程序实现识别系统创造条件。 目前,手写体字符识别是一个非常重要和活跃的研究领域,它涉及到模式识别、图像处理、人工智能、模糊数学、信息论、计算机等学科,是一门综合性技术,有广阔的应用背景与巨大的市场需求。因此,对字符识别的研究具有理论与应用的双重意义。 二、课题研究的主要内容和预期目标 (一)研究内容 (1)熟悉BP神经网络的基本原理及其算法; (2)掌握人工神经网络的拓扑结构模型,并利用该模型构建识别系统 (3)在含有噪声的情况下对识别系统的影响,并能提高识别的准确率 (4)研究出最好的方案分别使识别率,复杂度方面达到理想状态 (二)预期目标 结合自己的所学的BP神经网络知识对0到9十个数字字符进行编码,变成神经网络可以接受的输入向量形式,构建数字字符识别的BP神经网络拓扑结构模型,完成基于BP神经网络数字识别系统设计。

多层循环神经网络在动作识别中的应用

Computer Science and Application 计算机科学与应用, 2020, 10(6), 1277-1285 Published Online June 2020 in Hans. https://www.360docs.net/doc/195560574.html,/journal/csa https://https://www.360docs.net/doc/195560574.html,/10.12677/csa.2020.106132 Multilayer Recurrent Neural Network for Action Recognition Wei Du North China University of Technology, Beijing Received: Jun. 8th, 2020; accepted: Jun. 21st, 2020; published: Jun. 28th, 2020 Abstract Human action recognition is a research hotspot of computer vision. In this paper, we introduce an object detection model to typical two-stream network and propose an action recognition model based on multilayer recurrent neural network. Our model uses three-dimensional pyramid di-lated convolution network to process serial video images, and combines with Long Short-Term Memory Network to provide a pyramid convolutional Long Short-Term Memory Network that can analyze human actions in real-time. This paper uses five kinds of human actions from NTU RGB + D action recognition datasets, such as brush hair, sit down, stand up, hand waving, falling down. The experimental results show that our model has good accuracy and real-time in the aspect of monitoring video processing due to using dilated convolution and obviously reduces parameters. Keywords Action Recognition, Dilated Convolution, Long Short-Term Memory Network, Deep Learning 多层循环神经网络在动作识别中的应用 杜溦 北方工业大学,北京 收稿日期:2020年6月8日;录用日期:2020年6月21日;发布日期:2020年6月28日 摘要 人体动作识别是目前计算机视觉的一个研究热点。本文在传统双流法的基础上,引入目标识别网络,提出了一种基于多层循环神经网络的人体动作识别算法。该算法利用三维扩张卷积金字塔处理连续视频图

神经网络基于BP网络的多层感知器实验报告

神经网络基于BP网络的多层感知器实验报告 二、基于BP网络的多层感知器一:实验目的: 1、理解多层感知器的工作原理 2、通过调节算法参数了解参数的变化对于感知器训练的影响 3、了解多层感知器局限性二:实验原理:BP的基本思想:信号的正向传播误差的反向传播–信号的正向传播:输入样本从输入层传入,经各隐层逐层处理后,传向输出层。 –误差的反向传播:将输入误差以某种形式通过隐层向输入层逐层反传,并将误差分摊给各层的所有单元,从而获得各层单元的误差信号来作为修正各单元权值的依据。 1、基本BP算法的多层感知器模型: 2、BP学习算法的推导:当网络输出与期望输出不等时,存在输出误差E将上面的误差定义式展开至隐层,有进一步展开至输入层,有调整权值的原则是使误差不断地减小,因此应使权值的调整量与误差的梯度下降成正比,即η∈(0,1)表示比例系数,在训练中反应学习速率 BP算法属于δ学习规则类,这类算法被称为误差的梯度下降(Gradient Descent)算法。<实验步骤> 1、用Matlab编程,实现解决该问题的单样本训练BP网络,设置一个停止迭代的误差Emin和最大迭代次数。在调试过程中,通过不断调整隐层节点数,学习率η,找到收敛速度快且误差小

的一组参数。产生均匀分布在区间[-4,4]的测试样本,输入建立的模型得到输出,与Hermit多项式的期望输出进行比较计算总误差(运行5次,取平均值),并记录下每次迭代结束时的迭代次数。(要求误差计算使用RME,Emin 设置为0、1)程序如下:function dyb %单样本程序 clc; close all; clear; x0=[1:;-4:0、08:4];%样本个 x0(1,:)=-1; x=x0'; yuzhi=0、1;%阈值 j=input('请输入隐层节点数 j = ');%隐层节点数 n=input('请输入学习效率 n = ');%学习效率 w=rand(1,j); w=[yuzhi,w]; %输出层阈值 v=rand(2,j); v(1,:)=yuzhi;%隐层阈值 err=zeros(1,); wucha=0; zhaosheng=0、01*randn(1,);%噪声erro=[]; ERRO=[];%误差,为画收敛曲线准备 Emin=0、1; d=zeros(1,); for m=1: d(m)=hermit(x(m,2));%期望 end; o=zeros(1,); j=zeros(1,j); =zeros(1,j); p=1; q=1; azc=0; acs=0; for z=1:5 while q<30000 Erme=0; for p=1: y=zeros(1,j); for i=1:j j(1,i)=x(p,:)*v(:,i); y(1,i)=1/(1+exp(-j(1,i))); end; y=[-1 y]; o(p)=w*y'+zhaosheng(p);%噪声 wucha = d(p)-o(p); err(1,p)=1/2*wucha^2; erro=[erro,wucha]; for m=1:j+1 w(1,m)=w(1,m)+n*wucha*y(1,m); end; for m=1:j v(:,m)=v(:,m)+n*wucha*w(1,m)*y(1,m)*(1-y(1,m))*x(p,:)'; end q=q+1; end; for t=1:; Erme=Erme+err(1,t); end; err=zeros(1,); Erme=sqrt(Erme/); ERRO=[ERRO,Erme]; if

多层感知器节点使用说明

目录 1. 节点设置参数页面 (1) 1.1最大迭代次数 (2) 1.2隐藏层个数 (2) 1.3隐藏层神经元个数 (2) 1.4随机种子 (3) 1.5忽略空值 (3) 2. 节点使用过程 (3) 3. 注意事项 (4) 多层感知器节点使用说明 作者:王方舟多层感知器节点是Data Studio建模节点分类中的一个分类算法节点,该节点实现的算法是Rprop(后向传播的前馈神经网络),通过学习节点训练出神经网络模型来进行预测测试集数据的分类情况。 该算法通过指定目标变量、参与变量并设置算法的相关的模型参数:最大迭代次数、隐藏层个数、隐藏层神经元个数、随机种子、是否忽略空值等。 1.节点设置参数页面 多层感知器节点设置界面如图1所示。

图表 1 多层感知器模型设置界面 各模型参数意义将分小节介绍。 1.1最大迭代次数 最大迭代次数是指算法在未收敛之前(神经元输入输出、权重保持不变),最多迭代计算的次数,通常在10万个周期之内,算法会收敛,此节点默认值为100。 1.2隐藏层个数 隐藏层个数用来规定神经网络隐藏层的层数,默认为1层。 1.3隐藏层神经元个数 隐藏层神经元为每层隐藏层内,所包含的神经元个数,当隐藏

层神经元增多时将增高算法的执行代价,但足够多的神经元可以逼近任何函数。 1.4随机种子 随机种子是用来在算法执行开始时随机每个神经元连线的权值和偏差的,当使用同样的种子来产生随机值时,每次算法的权值和偏差都将相同。 1.5忽略空值 勾选此选项时,输入数据中的MissingCell行将被忽略。 2.节点使用过程 多层感知器节点在连接数据以后打开设置界面,选择参与变量和目标变量并设置算法参数,点击确定保存设置,点击执行即可执行多层感知器算法生成神经网络模型,点击右键可预览算法执行过程中的误差图。 执行后果将在模型视图内生成多层感知器预测节点,该节点将使用神经网络进行样本分类预测,将其拖入到工作区,连接测试样本数据,选择输出数据表是否添加输出神经元的输出值,或者只显示预测结果列。 点击执行后,右键查看数据可获得预测结果。

多层感知器的训练算法

多层感知器的训练算法 齐平 辽宁工程技术大学土木建筑工程学院,辽宁阜新 (123000) E-mail: qipingws@https://www.360docs.net/doc/195560574.html, 摘要:本文着重介绍的在人工智能中的多层感知器(MLP)是什么,是怎样构建的。多层感知器和单层感知器一样,是一种人工神经网络。单层感知器只能处理线形问题,对复杂的问题只能粗略进行近似表示。多层感知器是建立在单层感知器的基础上的,它的结构基本类似于一套级联的感知器,对输入层和输出层之间的关系进行研究。 本文侧重描述多层感知器(MLP)的逆向传递和训练过程,并给出了相应的公式和训练算法。以便了解在人工智能中,它的训练学习过程。为了简单起见用,本文中的算法是以伪代码的方式加以描述,这样,就可以用几乎任何一门语言实现它们。 关键词:神经网络,多层感知器,算法 中图分类号:tp18 1.引言 多层感知器(MLP)是一种人工神经网络,它使用输入与输出之间的多层加权连接.MLP的结构基本类似于一套级联的感知器,其中每一格处理单元都有一格相对复杂的输出函数,从而增强网络的性能. [1] 多层感知器是建立在单层感知器的基础上的. 单层感知器只能处理线形问题,而对复杂的问题只能粗略进行近似表示.多层感知器与单层感知器有两个主要的区别: 1.明确区别:多层感知器存在中间层,它们增加了感知器近似表示的能力. 2.不明确区别:对于中间层在系统中发挥的作用是必不可少的,这涉及到使用更加复杂的激 励函数. 2.多层感知器(MLP) 2.1拓扑结构 拓扑就是神经网络中处理单元的拓扑,以及它们之间如何连接在一起。一个MLP的拓扑被称为前馈(如图1),由于不存在后向的连接——也叫做回归连接。通常信息直接从输入流向输出,而MLP 的重要结构就是改善中间层。

神经网络基于BP网络的多层感知器实验报告

神经网络及应用实验报告 实验二、基于BP网络的多层感知器 一:实验目的: 1. 理解多层感知器的工作原理 2. 通过调节算法参数了解参数的变化对于感知器训练的影响 3. 了解多层感知器局限性 二:实验原理: BP的基本思想:信号的正向传播误差的反向传播 –信号的正向传播:输入样本从输入层传入,经各隐层逐层处理后,传向输出层。 –误差的反向传播:将输入误差以某种形式通过隐层向输入层逐层反传,并将误差分摊给各层的所有单元,从而获得各层单元的误差信号来作为修正各单元权值的依据。 1.基本BP算法的多层感知器模型: 学习算法的推导: 当网络输出与期望输出不等时,存在输出误差E 将上面的误差定义式展开至隐层,有 进一步展开至输入层,有 调整权值的原则是使误差不断地减小,因此应使权值的调整量与误差的梯度下降成正比,

即 η∈(0,1)表示比例系数,在训练中反应学习速率 BP算法属于δ学习规则类,这类算法被称为误差的梯度下降(Gradient Descent)算法。<实验步骤> 1. 用Matlab编程,实现解决该问题的单样本训练BP网络,设置一个停止迭代的误差E min 和最大迭代次数。在调试过程中,通过不断调整隐层节点数,学习率η,找到收敛速度快且误差小的一组参数。产生均匀分布在区间[-4,4]的测试样本,输入建立的模型得到输出,与Hermit多项式的期望输出进行比较计算总误差(运行5次,取平均值),并记录下每次迭代结束时的迭代次数。 (要求误差计算使用RME,Emin 设置为) 程序如下: function dyb %单样本程序 clc; close all; clear; x0=[1:101;-4::4];%样本101个 x0(1,:)=-1; x=x0';

多层前馈神经网络

多层前馈神经网络 5 多层前馈网络及BP算法 多层前馈网络的反向传播 (BP)学习算法,简称BP算法,是有导师的学习,它是梯度下降法在多层前馈网中的应用。 (a) 网络结构 yu 见下图,、是网络的输入、输出向量,神经元用节点表示,网络由输入层、隐层和输出层节点组成,隐层可一层,也可多层(图中是单隐层),前层至后层节点通过权联接。由于用BP学习算法,所以常称BP神经网络。 I:y:x:每个神经元(节点)的输入;每个神经元(节点)的输出;神经元j w:jji的第个输入。神经元到神经元的连接权 ij ,,y,f(x,,)节点的作用函数:, 为阈值(可设置一个偏置节点代替) 1,f可为线性函数,一般取为Sigmoid函数 , 为很小的数,如0.1 ,x/,1,e (b) BP学习算法 ? 已知网络的输入/输出样本,即导师信号。 ? BP学习算法由正向传播和反向传播组成: ? 正向传播是输入信号从输入层经隐层,传向输出层,若输出层得到了期望

的输出,则学习算法结束;否则,转至反向传播。 ? 反向传播是将误差(样本输出与网络输出之差)按原联接通路反向计算, 由梯度下降法调整各层节点的权值和阈值,使误差减小。 BP学习算法步骤如下: W(0)(1) 设置初始权值,它是较小的随机非零值。 (2) 给定输入/输出样本对,计算网络的输出。 ,,u,u,u,...,u设第p组样本输入: p1p2pnp ,,d,d,d,...,d,p,1,2,..,L 输出: p1p2pmp ypi节点在第组样本输入时,输出为 : ip ,, ,,y(t),fx(t),fw(t)I ----(1式) ,,,ipipijjpj,, Ijpi式中,是在第组样本输入时,节点的第个输入。 jp 1f(,)f(x)s取可微的型作用函数式 = -------(2式) ,x1,e可由输入层隐层至输出层,求得网络输出层节点的输出。 J(1) 计算网络的目标函数 ELp设为在第组样本输入时,网络的目标函数,取范数,则 p2 111222E(t),||d,y(t)||,[d,y(t)],e(t)--------(3式) ,,pppkpkpkp2222kk y(t)pkt式中,是在第组样本输入时,经次权值调整后网络的输出:是p k输出层第个节点。 E(t)J(t),网络的总目标函数: = ----------(4式) p p 作为对网络学习状况的评价。 (2) 判别 J(t),若 ? -------(5式)

神经网络 感知器的分类能力

作业一:感知器的分类能力 一、作业要求 已知矩阵P=[0.1 0.7 0.8 0.8 1.0 0.3 0.0 -0.3 -0.5 -1.5; 1.2 1.8 1.6 0.6 0.8 0.5 0.2 0.8 -1.5 -1.3]; T=[1 1 1 0 0 1 1 1 0 0 ; 0 0 0 0 0 1 1 1 1 1] 对以上输入、输出样本进行分类。要求画出最后的线形图。 二、分析题目要求 首先画出题目给定的点。要求设计一个二输入感知神经网络,将十个输入向为四类。 图1 给定的点 三、构建初始网络 应用newp()构造一个神经元感知器神经网络,其输入向量在[-2 2]之间。由于为2输入,故神经元数量为2。 四、训练网络 net=train(net,P,T); 设置最大训练次数为10。

五、 实验结果 5.1 本次运行的最优分类情况: 图2 分类线 5.2 误差曲线 当学习函数为感知器学习函数learnp 时,其误差曲线为图3;当学习函数为标准感知器学习函数learnp n 时,其误差曲线为图4。 图3 学习函数learnp 的误差曲线 图4 学习函数learnpn 的误差曲线 六、网络仿真 应用sim 函数来进行网络仿真,实现对任何其他输入向量的模式划分。选取 Q=[-0.4;0.9],可知其非常靠近原样本的一组数据即[-0.3 0.8],其目标输出应为为 [1 1]。现在观察网络仿真结果,发现其被划分到相应的分类中。

七、结论与心得 该感知器网络完成了一个简单的四类模式划分问题。通过此次实验,可得感知器具有根据已有数据自主学习规则的能力,这对于我们研究无固定函数表达式的输入输出有重要意义。此外,通过比较两个学习函数后,发现learnp的误差曲线更符合要求,所以选择学习函数选择learnp。 做本题前一直在思考,10组数据如何分配,哪些做学习样本,哪些做测试样本。最后决定取原样本中相近的数据来检测网络的识别能力。 八、附录: Matlab程序代码 P=[0.1 0.7 0.8 0.8 1.0 0.3 0.0 -0.3 -0.5 -1.5; 1.2 1.8 1.6 0.6 0.8 0.5 0.2 0.8 -1.5 -1.3]; T=[1 1 1 0 0 1 1 1 0 0 ; 0 0 0 0 0 1 1 1 1 1] net=newp([-2 2;-2 2],2,'hardlim','learnp'); net.trainParam.epochs=10; net=train(net,P,T); Q=[-0.4;0.9]; Y=sim(net,Q); plotpv(P,T); plotpc(net.iw{1},net.b{1});%画分类线 hold on;

基于matlab人脸识别技术 开题报告

毕业设计(论文)开题报告 毕业设计(论文)课题情况,根据所查阅的文献资料,每人撰写2500字以上的文献综述,文后应列出所查阅的文献资料。 基于matlab人脸识别技术的实现 文献综述 一、MATLAB概述 MATLAB是矩阵实验室(Matrix Laboratory)的简称,是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和Simulink两大部分。MATLAB主要面对科学计算、可视化以及交互式程序设计的高科技计算环境。它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的解决方案,并在很大程度上摆脱了传统非交互式程序设计语言(如C、Fortran)的编辑模式,代表了当今国际科学计算软件的先进水平。应用于工程计算、控制设计、信号处理与通讯、图像处理、信号检测、金融建模设计与分析等领域。而在本文中主要用到的功能是图像处理功能。 二、BP神经网络概述 人工神经网络(Artificial Neural Net works,简写为ANNs)也简称为神经网络(NNs)或称作连接模型(Connectionist Model),它是一种模范动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。 人工神经网络发展的主要历程有:20世纪50年代末,Rosenblatt提出的感知器模型和Widrow提出的自适应线性元件,出现了简单的线性分类器;1986年,Rumelhart和Mcllelland 提出了层网络“误差反向传播算法(BP)”,使有导师学习多层感知器网络(ML PN)模式分类器走向实用化,在此基础上又派生出若干前向网络,如径向基函数网络( RBFN)和函数链网络等;1982年,美国加州工学院的物理学家Hopfield提出的一种用于联想记忆和优化计算的反馈网络模型,由于引进了“能量函数” 的概念,使网络走向具体电路有了保证;20世纪70年代,Watanabe 提出了使用模式子空间的概念来设计不同类别对应的子空间,由不同类别聚类的子空间实现模式识别; Kohonen提出的自组织特征映射网络模型等都为神经网络模式识别理论提供了进一步的根据。 构成人工神经网络的三个基本要素是:神经元、络拓扑结构和网络的训练(学习)方法。神经元(节点)的作用是把若干输入加权求和,并对这种加权和进行非线性处理后输出。神经元的选择一般有以下特点:每个神经元都具有多个输入、个输出,具有闭值,采用非线性函数。 1、神经元

人工神经网络作业-单层感知器

3.5单层感知器 # include # include # define N 100 int sgn(double x) //符号运算函数 { int y; if(x>0||x==0) y=1; else y=-1; return y; } void main() { double W[4]={0.0,0.0,0.0,0.0},X[6][4]={{-1,0.8,0.5,0},{-1,0.9,0.7,0.3},{-1,1,0.8,0.5}, {-1,0,0.2,0.3},{-1,0.2,0.1,1.3},{-1,0.2,0.7,0.8}}; int err,o[6],i,j,k,num,d[6]={1,1,1,-1,-1,-1}; double n,WX; n=1.0; k=0; do { k++; num=0; for(i=0;i<6;i++) { WX=0.0; for(j=0;j<4;j++) WX=WX+W[j]*X[i][j]; o[i]=sgn(WX); err=d[i]-o[i]; for(j=0;j<4;j++) W[j]=W[j]+n*err*X[i][j]; if(err==0) num++; } }while(num!=6); printf("调整后的权值矩阵为:\n"); for(j=0;j<4;j++) printf("%f\n",W[j]); printf("分类结果为:\n"); for(i=0;i<6;i++) printf("%d\n",o[i]);

} 3.6单次训练的结果 # include # include double Sig(double x) //单极性函数 { double y; y=1.0/(1.0+exp(-x)); return y; } void main() { double x[3]={-1,1,3},V[3][3]={{0,3,-1},{0,1,2},{0,-2,0}},W[3][3]={{0,2,3},{0,1,1},{0,0,-2}}; double d[3]={0,0.95,0.05},nety[3],neto[3],Y[3],O[3],dety[3],deto[3]; double D,yita; int i,j; yita=1.0; FILE *fp; fp=fopen("out.txt","w"); fprintf(fp,"初始W矩阵:\n"); for(i=0;i<3;i++) { for(j=1;j<3;j++) fprintf(fp,"%f ",W[i][j]); fprintf(fp,"\n"); } fprintf(fp,"初始V矩阵:\n"); for(i=0;i<3;i++) { for(j=1;j<3;j++) fprintf(fp,"%f ",V[i][j]);

硕士论文开题报告(最新)

一、论文名称、课题来源、选题依据 论文名称:基于bp神经网络的技术创新预测与评估模型及其应用研究 课题来源:单位自拟课题或省政府下达的研究课题 选题依据: 技术创新预测和评估是企业技术创新决策的前提和依据。通过技术创新预测和评估, 可以使企业对未来的技术发展水平及其变化趋势有正确的把握, 从而为企业的技术创新决策提供科学的依据, 以减少技术创新决策过程中的主观性和盲目性。只有在正确把握技术创新发展方向的前提下, 企业的技术创新工作才能沿着正确方向开展,企业产品的市场竞争力才能得到不断加强。在市场竞争日趋激烈的现代商业中, 企业的技术创新决定着企业生存和发展、前途与命运, 为了确保技术创新工作的正确性,企业对技术创新的预测和评估提出了更高的要求。 二、本课题国内外研究现状及发展趋势 现有的技术创新预测方法可分为趋势外推法、相关分析法和专家预测法三大类。 (1)趋势外推法。 指利用过去和现在的技术、经济信息, 分析技术发展趋势和规律, 在分析判断这些趋势和规律将继续的前提下, 将过去和现在的趋势向未来推演。生长曲线法是趋势外推法中的一种应用较为广泛的技术创新预测方法,美国生物学家和人口统计学家raymond pearl提出的pearl曲线(数学模型为: y=l∕ [1+a?exp(-b·t)] )及英国数学家和统计学家gompertz提出的gompertz曲线(数学模型为exp(-b·t))皆属于生长曲线, 其预测值y为技术性能指标, t为时间自变量, l、a、b皆为常数。ridenour模型也属于生长曲线预测法, 但它假定新技术的成长速度与熟悉该项技术的人数成正比, 主要适用于新技术、新产品的扩散预测。 (2)相关分析法。 利用一系列条件、参数、因果关系数据和其他信息, 建立预测对象与影响因素的因果关系模型, 预测技术的发展变化。相关分析法认为, 一种技术性能的改进或其应用的扩展是和其他一些已知因素高度相关的, 这样, 通过已知因素的分析就可以对该项技术进行预测。相关分析法主要有以下几种: 导前-滞后相关分析、技术进步与经验积累的相关分析、技术信息与人员数等因素的相关分析及目标与手段的相关分析等方法。 (3)专家预测法。

基于BP神经网络的字符识别算法的实现毕业论文

一、原始依据(包括设计或论文的工作基础、研究条件、应用环境、工作目 的等。) 工作基础:了解C++的基本概念和语法,熟练使用Visual C++6.0软件。 研究条件:BP神经网络的基本原理以及图像处理的基本常识。 应用环境:基于BP神经网络的图片图像文件中的字符识别。 工作目的:掌握基于Visual C++6.0应用程序的开发。 了解人工智能的基本概念并掌握神经网络算法的基本原理。 掌握Visual C++6.0中的图片处理的基本过程。 二、参考文献 [1]人工智能原理及其应用,王万森,电子工业,2007. [2]VC++深入详解,鑫,电子工业,2006. [3]人工神经网络原理, 马锐,机械工业,2010. [4]Visual C++数字图像处理典型案例详解,晶,机械工业,2012. [5]Application of Image Processing to the Characterization of Nanostructures Manuel F. M. Costa,Reviews on Advanced Materials Science,2004. 三、设计(研究)容和要求(包括设计或研究容、主要指标与技术参数,并根据课题性质对学生提出具体要求。) 1、掌握C++的基本概念和语法。 2、掌握二维神经网络的基本原理。了解BP神经网络的基本概念。 3、完成Visual C++中对于图像的灰度、二值化等预处理。 4、完成基于样本的神经网络的训练以及图像中数字的识别,并对其性能进 行统计和总结,分析其中的不足。

指导教师(签字) 年月日 审题小组组长(签字) 年月日理工大学本科生毕业设计(论文)开题报告

人工智能–多层感知器基础知识解读

人工智能–多层感知器基础知识解读 今天我们重点探讨一下多层感知器MLP。 感知器(Perceptron)是ANN人工神经网络的一个概念,由Frank Rosenblatt于1950s第一次引入。 单层感知器(Single Layer Perceptron)是最简单的ANN人工神经网络。它包含输入层和输出层,而输入层和输出层是直接相连的。单层感知器仅能处理线性问题,不能处理非线性问题。今天想要跟大家探讨的是MLP多层感知器。 MLP多层感知器是一种前向结构的ANN人工神经网络,多层感知器(MLP)能够处理非线性可分离的问题。 MLP概念: MLP多层感知器(MulTI-layerPerceptron)是一种前向结构的人工神经网络ANN,映射一组输入向量到一组输出向量。MLP可以被看做是一个有向图,由多个节点层组成,每一层全连接到下一层。除了输入节点,每个节点都是一个带有非线性激活函数的神经元。使用BP反向传播算法的监督学习方法来训练MLP。MLP是感知器的推广,克服了感知器不能对线性不可分数据进行识别的弱点。 相对于单层感知器,MLP多层感知器输出端从一个变到了多个;输入端和输出端之间也不光只有一层,现在又两层:输出层和隐藏层。 基于反向传播学习的是典型的前馈网络,其信息处理方向从输入层到各隐层再到输出层,逐层进行。隐层实现对输入空间的非线性映射,输出层实现线性分类,非线性映射方式和线性判别函数可以同时学习。 MLP激活函数 MLP可使用任何形式的激活函数,譬如阶梯函数或逻辑乙形函数(logisTIc sigmoid funcTIon),但为了使用反向传播算法进行有效学习,激活函数必须限制为可微函数。由于具有良好可微性,很多乙形函数,尤其是双曲正切函数(Hyperbolictangent)及逻辑乙形函数,被采用为激活函数。

实验3--感知器神经网络的实现

实验3 感知器神经网络的实现 一、实验目的: 1. 理解单层感知器的工作原理 2. 通过调节算法参数了解参数的变化对于感知器训练的影响 3. 了解单层感知器局限性 二、实验内容: 1. 使用Matlab编程实现单层感知器 2. 调节学习率η,观察对于不同学习率算法的收敛速度(迭代次数) 3. 用单层感知器处理非线性分类问题,观察结果 三、实验原理: 单层感知器:只有一层处理单元的感知器: 感知器的学习算法 采用感知器学习规则,训练步骤如下: Step 1: 对各权值w0j(0), w2j(0), …, w nj(0), j=1, 2, …, m (m为计算层的节点数)赋予较小的非 零随机数,设置p=1; Step 2: 输入样本对,其中 为期望的输出向量(教师信号),上标p表示样本对的模式序号,设样本总数为P,则p = 1, 2, …, P; Step 3:

计算各节点的实际输出 Step 4: 调整各节点对应的权值, η为学习率,用于控制调整速度,η值太大会影响训练的稳定性,太小则使训练的收敛速度变慢,一般取0<η≤1; Step 5: p=p+1,如果p ≤P,返回到Step2 ,否则转到Step 6 ; Step 6: 如果感知器对所有样本的实际输出与期望输出相等,则停止;否则设置p=1,返回Step2。 实验要求: 用MATLAB/C/C++,实现上述算法 实验实例,在下面实例中任选一种进行实验。 一、用单层感知器实现“与”运算 “与”运算真值表: x1 x2 y 0 0 0 0 1 0 1 0 0 1 1 1 二、用多层感知器实现“异或”运算 “异或”运算真值表: x1 x2 y 0 0 0 0 1 1 1 0 1 1 1 0

BP神经网络的技术创新研究开题报告

BP神经网络的技术创新研究开题报告论文名称:基于BP神经网络的技术创新预测与评估模型及其应用研究 课题来源:单位自拟课题或省政府下达的研究课题 选题依据: 技术创新预测和评估是企业技术创新决策的前提和依据。通过技术创新预测和评估,可以使企业对未来的技术发展水平及其变化趋势有正确的把握,从而为企业的技术创新决策提供科学的依据,以减少技术创新决策过程中的主观性和盲目性。只有在正确把握技术创新发展方向的前提下,企业的技术创新工作才能沿着正确方向开展,企业产品的市场竞争力才能得到不断加强。在市场竞争日趋激烈的现代商业中,企业的技术创新决定着企业生存和发展、前途与命运,为了确保技术创新工作的正确性,企业对技术创新的预测和评估提出了更高的要求。 二、本课题国内外研究现状及发展趋势 现有的技术创新预测方法可分为趋势外推法、相关分析法和专家预测法三大类。 (1)趋势外推法。指利用过去和现在的技术、经济信息,分析技术发展趋势和规律,在分析判断这些趋势和规律将继续的前提下,将过去和现在的趋势向未来推演。生长曲线法是趋势外推法中的一种应用较为广泛的技术创新预测方法,美国生物学家和人口统计学家RaymondPearl提出的Pearl曲线(数学模型为:Y=L∕[1+A?exp(-B·t)])及英国数学家和统

计学家Gompertz提出的Gompertz曲线(数学模型为:Y=L·exp(-B·t))皆属于生长曲线,其预测值Y为技术性能指标,t为时间自变量,L、A、B 皆为常数。Ridenour模型也属于生长曲线预测法,但它假定新技术的成长速度与熟悉该项技术的人数成正比,主要适用于新技术、新产品的扩散预测。 (2)相关分析法。利用一系列条件、参数、因果关系数据和其他信息,建立预测对象与影响因素的因果关系模型,预测技术的发展变化。相关分析法认为,一种技术性能的改进或其应用的扩展是和其他一些已知因素高度相关的,这样,通过已知因素的分析就可以对该项技术进行预测。相关分析法主要有以下几种:导前-滞后相关分析、技术进步与经验积累的相关分析、技术信息与人员数等因素的相关分析及目标与手段的相关分析等方法。 (3)专家预测法。以专家意见作为信息来源,通过系统的调查、征询专家的意见,分析和整理出预测结果。专家预测法主要有:专家个人判断法、专家会议法、头脑风暴法及德尔菲法等,其中,德尔菲法吸收了前几种专家预测法的长处,避免了其缺点,被认为是技术预测中最有效的专家预测法。 趋势外推法的预测数据只能为纵向数据,在进行产品技术创新预测时,只能利用过去的产品技术性能这一个指标来预测它的随时间的发展趋势,并不涉及影响产品技术创新的科技、经济、产业、市场、社会及政策等多方面因素。在现代商业经济中,对于产品技术发展的预测不能

多层前馈神经网络new

5 多层前馈网络及BP 算法 多层前馈网络的反向传播 (BP )学习算法,简称BP 算法,是有导师的学习,它是梯度下降法在多层前馈网中的应用。 (a ) 网络结构 见下图,u 、 y 是网络的输入、输出向量,神经元用节点表示,网络由 输入层、隐层和输出层节点组成,隐层可一层,也可多层(图中是单隐层),前层至后层节点通过权联接。由于用BP 学习算法,所以常称BP 神经网络。 :x 每个神经元(节点)的输入;:y 每个神经元(节点)的输出;:j I 神经元 的第 j 个输入。:ij w 神经元j 到神经元i 的连接权 节点的作用函数:)(θ-=x f y , θ 为阈值(可设置一个偏置节点代替θ) f 可为线性函数,一般取为Sigmoid 函数 ξ /11x e -+, ξ为很小的数,如0.1 (b ) BP 学习算法 ? 已知网络的输入/输出样本,即导师信号。 ? BP 学习算法由正向传播和反向传播组成: ? 正向传播是输入信号从输入层经隐层,传向输出层,若输出层得到了期望的输出,则学习算法结束;否则,转至反向传播。 ? 反向传播是将误差(样本输出与网络输出之差)按原联接通路反向计算,由梯度下降法调整各层节点的权值和阈值,使误差减小。 BP 学习算法步骤如下: (1) 设置初始权值)0(W ,它是较小的随机非零值。

(2) 给定输入/输出样本对,计算网络的输出。 设第p 组样本输入:()np p p p u u u u ,...,,21= 输出:()L p d d d d m p p p p ,..,2,1,,...,,21== 节点i 在第 p 组样本输入时,输出为 ip y : ()?? ? ???==∑j jp ij ip ip I t w f t x f t y )()()( ----(1式) 式中,jp I 是在第 p 组样本输入时,节点 i 的第j 个输入。 )(?f 取可微的s 型作用函数式 )(x f = x e -+11 -------(2式) 可由输入层隐层至输出层,求得网络输出层节点的输出。 (1) 计算网络的目标函数 J 设p E 为在第 p 组样本输入时,网络的目标函数,取2L 范数,则 ∑∑=-=-= k kp k kp kp p p p t e t y d t y d t E )(21)]([21||)(||21)(2 222--------(3式) 式中, )(t y p 是在第p 组样本输入时,经t 次权值调整后网络的输出:k 是 输出层第k 个节点。 网络的总目标函数: )(t J =∑p p t E )( ----------(4式) 作为对网络学习状况的评价。 (2) 判别 若 )(t J ≤ε -------(5式) 算法结束;否则,至步骤(4)。式中,ε是预先确定的,0>ε. (3) 反向传播计算 由输出层,依据 J ,按梯度下降法反向计算,可逐层调整权值。 由式() k k k k k a a J a a ??-=+η1,取步长为常值,可得到神经元j 到神经元i 的

贵州大学开题报告

贵州大学开题报告 开题报告包含的论文提纲可以是粗线条的,是一个研究构想的基本框架。可采用整句式或整段式提纲形式。在开题阶段,提纲的目的是让人清楚论文的基本框架,没有必要像论文目录那样详细,下面是小编整理的贵州大学开题报告范文,希望能给大家带来帮助! 开题报告范文论文名称:基于BP神经网络的技术创新预测与评估模型及其应用研究 课题来源:单位自拟课题或省政府下达的研究课题 选题依据: 技术创新预测和评估是企业技术创新决策的前提和依据。通过技术创新预测和评估,可以使企业对未来的技术发展水平及其变化趋势有正确的把握,从而为企业的技术创新决策提供科学的依据,以减少技术创新决策过程中的主观性和盲目性。只有在正确把握技术创新发展方向的前提下,企业的技术创新工作才能沿着正确方向开展,企业产品的市场竞争力才能得到不断加强。在市场竞争日趋激烈的现代商业中,企业的技术创新决定着企业生存和发展、前途与命运,为了确保技术创新工作的正确性,企业对技术创新的预测和评估提出了更高的要求。 现有的技术创新预测方法可分为趋势外推法、相关分析法和专家预测法三大类。

趋势外推法。指利用过去和现在的技术、经济信息,分析技术发展趋势和规律,在分析判断这些趋势和规律将继续的前提下,将过去和现在的趋势向未来推演。生长曲线法是趋势外推法中的一种应用较为广泛的技术创新预测方法,美国生物学家和人口统计学家RaymondPearl提出的Pearl曲线])及英国数学家和统计学家Gompertz提出的Gompertz 曲线)皆属于生长曲线,其预测值Y为技术性能指标,t为时间自变量,L、A、B皆为常数。Ridenour模型也属于生长曲线预测法,但它假定新技术的成长速度与熟悉该项技术的人数成正比,主要适用于新技术、新产品的扩散预测。 相关分析法。利用一系列条件、参数、因果关系数据和其他信息,建立预测对象与影响因素的因果关系模型,预测技术的发展变化。相关分析法认为,一种技术性能的改进或其应用的扩展是和其他一些已知因素高度相关的,这样,通过已知因素的分析就可以对该项技术进行预测。相关分析法主要有以下几种:导前-滞后相关分析、技术进步与经验积累的相关分析、技术信息与人员数等因素的相关分析及目标与手段的相关分析等方法。 专家预测法。以专家意见作为信息来源,通过系统的调查、征询专家的意见,分析和整理出预测结果。专家预测法主要有:专家个人判断法、专家会议法、头脑风暴法及德尔菲法等,其中,德尔菲法吸收了前几种专家预测法的长处,

基于多小波分析的多层感知器驾驶行为识别技术

采用多小波变换和多层感知分类器的驾驶姿势识别技术 摘要 开发了以人为中心的驾驶员辅助系统(HDAS)实现自动检测和识别驾驶行为,提出了一种基于GHM的有效的驾驶姿势特征识别方式,利用多小波变换和多层感知器识别了四种预定义的驾驶姿势。从SEU创建的驾驶姿势数据库提取的特征,通过与IKSVMs 、kNN分类器和Parzen分类器相比,选用MLP分类器对驾驶姿势进行层实验和交叉验证试验。实验结果表明,基于GHM多小波变换和MLP分类器的特征提取,与IKSVMs, kNN分类器和Parzen分类器相比,使用softmax激活函数将激活层和双曲正切函数的隐层能提供最佳的分类性能。实验结果还表明,在四个预定义的分类中手机是最困难的一个,在维持和交叉验证实验中分别为83.01%和84.04%。这些结果表明以人为中心的驾驶辅助系统(HDAS)采用GHM多小波变换和MLP分类器来提取特征实现,自动检测和识别驾驶行为的方法是有效的。 1、驾驶姿势数据采集和规范化 在驾驶姿势数据收集工作使用罗技C905 CCD相机。通过10个男司机和10女司机采集驾驶姿势数,汽车在自然条件下的室外停车场,随着环境的变化改变灯光的强度。已经建立好的数据库有四种的驾驶姿势数据,即把握方向盘,变速杆操作,吃一块蛋糕和打电话。图1显示了驾驶姿势数据样本组成的80组驾驶姿势图片,每一张图片都有480×640像素的分辨率。 图一、四种驾驶姿势。(a)把握方向盘,(b)变速杆操作, (c)吃一块蛋糕,(d)打电话

为了解决驾驶姿势数据采集图像的光照变化问题,采用提高图像质量的办法。称为同态滤波器(HOMOF), 即为著名的标准化方法。利用HOMOF,图像首先转换为对数,注重频域分析。然后通过逆傅里叶变换反向转换到时域,并采取适当的指数运算。对驾驶图像感兴趣的对象主要是类似皮肤颜色的区域,如驾驶员的头部,右手和左手。这是一个事实,人的肤色无论种族都有非常相似的色性能,在一定的光照条件下肤色检测可以是相当强大。彩色像素为肤色和非肤色可以通过在RGB空间进行标准化分类工作。一个RGB的坐标(R,G,B)为每个原色0和255之间的值被标准化到坐标(R0,G0,B0),可以利用下列关系: 标准化的颜色(r0,g0,b0)被归类到肤色,如果它位于这个区域,则可以用下面的方法来标准化RGB空间。 图2显示了四个肤色分割的HOMOF图像预处理结果。 图二、肤色分割处理结果 2、用多小波变换提取特征 基于机器视觉的人体姿态识别具有挑战性,主要是由于人体的动作和空间位置变化的复杂,由于需要采用鲁棒性来评价车辆在行驶过程中的光照条件使得这一问题更加复杂了。在本节中,我们展示了利用司机裸露的皮肤,以及司机的头部和左右手的空间位置来建立驾驶员的姿态特征。在一般小波的情况下,可以允许一个多分辨率的分析{V n},n∈N, L2(R)是一个有有限函数生成的拓展函数φ(t)=( φ0(t), φ1(t), …,φm-1(t))T,m∈N和t是一个时间变量,然后利用下面的多尺

相关文档
最新文档