变频器和电机的距离确定电缆和布线方法

变频器和电机的距离确定电缆和布线方法
变频器和电机的距离确定电缆和布线方法

变频器和电机的距离确定电缆和布线方法;

I.变频器和电机的距离应该尽量的短。这样减小了电缆的对地电容,减少干扰的发射源。

II. 控制电缆选用屏蔽电缆,动力电缆选用屏蔽电缆或者从变频器到电机全部用穿线管屏蔽。

III.电机电缆应独立于其它电缆走线,其最小距离为500mm。同时应避免电机电缆与其它电缆长距离平行走线,这样才能减少变频器输出电压快速变化而产生的电磁干扰。如果控制电缆和电源电缆交叉,应尽可能使它们按90度角交叉。与变频器有关的模拟量信号线与主回路线分开走线,即使在控制柜中也要如此。

IV. 与变频器有关的模拟信号线最好选用屏蔽双绞线,动力电缆选用屏蔽的三芯电缆(其规格要比普通电机的电缆大档)或遵从变频器的用户手册。

3) 变频器控制原理图;

I.主回路:电抗器的作用是防止变频器产生的高次谐波通过电源的输入回路返回到电网从而影响其他的受电设备,需要根据变频器的容量大小来决定是否需要加电抗器;滤波器是安装在变频器的输出端,减少变频器输出的高次谐波,当变频器到电机的距离较远时,应该安装滤波器。虽然变频器本身有各种保护功能,但缺相保护却并不完美,断路器在主回路中起到过载,缺相等保护,选型时可按照变频器的容量进行选择。可以用变频器本身的过载保护代替热继电器。

II. 控制回路:具有工频变频的手动切换,以便在变频出现故障时可以手动切工频运行,因输出端不能加电压,固工频和变频要有互锁。

4) 变频器的接地;

变频器正确接地是提高系统稳定性,抑制噪声能力的重要手段。变频器的接地端子的接地电阻越小越好,接地导线的截面不小于4mm,长度不超过5m。变频器的接地应和动力设备的接地点分开,不能共地。信号线的屏蔽层一端接到变频器的接地端,另一端浮空。变频器与控制柜之间电气相通。

变频器控制柜设计:

变频器应该安装在控制柜内部,控制柜在设计时要注意以下问题

1) 散热问题:变频器的发热是由内部的损耗产生的。在变频器中各部分损耗中主要以主电路为主,约占98%,控制电

2) 电磁干扰问题:

I.变频器在工作中由于整流和变频,周围产生了很多的干扰电磁波,这些高频电磁波对附近的仪表、仪器有一定的干扰,而且会产生高次谐波,这种高次谐波会通过供电回路进入整个供电网络,从而影响其

他仪表。如果变频器的功率很大占整个系统25%以上,需要考虑控制电源的抗干扰措施。

II.当系统中有高频冲击负载如电焊机、电镀电源时,变频器本身会因为干扰而出现保护,则考虑整个系统的电源质量问题。

3) 防护问题需要注意以下几点:

I.防水防结露:如果变频器放在现场,需要注意变频器柜上方不的有管道法兰或其他漏点,在变频器附近不能有喷溅水流,总之现场柜体防护等级要在IP43以上。

II. 防尘:所有进风口要设置防尘网阻隔絮状杂物进入,防尘网应该设计为可拆卸式,以方便清理,维护。防尘网的网格根据现场的具体情况确定,防尘网四周与控制柜的结合处要处理严密。

III.防腐蚀性气体:在化工行业这种情况比较多见,此时可以将变频柜放在控制室中。

变频器接线规范:

信号线与动力线必须分开走线:使用模拟量信号进行远程控制变频器时,为了减少模拟量受来自变频器和其它设备的干扰,请将控制变频器的信号线与强电回路(主回路及顺控回路)分开走线。距离应在

30cm以上。即使在控制柜内,同样要保持这样的接线规范。该信号与变频器之间的控制回路线最长不得超过50m。

信号线与动力线必须分别放置在不同的金属管道或者金属软管内部:连接PLC和变频器的信号线如果不放置在金属管道内,极易受到变频器和外部设备的干扰;同时由于变频器无内置的电抗器,所以变频器的输入和输出级动力线对外部会产生极强的干扰,因此放置信号线的金属管或金属软管一直要延伸到变频器的控制端子处,以保证信号线与动力线的彻底分开。

1) 模拟量控制信号线应使用双股绞合屏蔽线,电线规格为0.75mm2。在接线时一定要注意,电缆剥线要尽可能的短(5-7mm左右),同时对剥线以后的屏蔽层要用绝缘胶布包起来,以防止屏蔽线与其它设备接触引入干扰。

2) 为了提高接线的简易性和可靠性,推荐信号线上使用压线棒端子。

变频器的运行和相关参数的设置:

变频器的设定参数多,每个参数均有一定的选择范围,使用中常常遇到因个别参数设置不当,导致变频器不能正常工作的现象。

控制方式:即速度控制、转距控制、PID控制或其他方式。采取控制方式后,一般要根据控制精度,需要进行静态或动态辨识。 

最低运行频率:即电机运行的最小转速,电机在低转速下运行时,

其散热性能很差,电机长时间运行在低转速下,会导致电机烧毁。而且低速时,其电缆中的电流也会增大,也会导致电缆发热。

最高运行频率:一般的变频器最大频率到60Hz,有的甚至到400 Hz,高频率将使电机高速运转,这对普通电机来说,其轴承不能长时间的超额定转速运行,电机的转子是否能承受这样的离心力。

载波频率:载波频率设置的越高其高次谐波分量越大,这和电缆的长度,电机发热,电缆发热变频器发热等因素是密切相关的。

电机参数:变频器在参数中设定电机的功率、电流、电压、转速、最大频率,这些参数可以从电机铭牌中直接得到。

跳频:在某个频率点上,有可能会发生共振现象,特别在整个装置比较高时;在控制压缩机时,要避免压缩机的喘振点。

常见故障分析:

1) 过流故障:过流故障可分为加速、减速、恒速过电流。其可能是由于变频器的加减速时间太短、负载发生突变、负荷分配不均,输出短路等原因引起的。这时一般可通过延长加减速时间、减少负荷的突变、外加能耗制动元件、进行负荷分配设计、对线路进行检查。如果断开负载变频器还是过流故障,说明变频器逆变电路已环,需要更换变频

器。 

2) 过载故障:过载故障包括变频过载和电机过载。其可能是加速时间太短,电网电压太低、负载过重等原因引起的。一般可通过延长加速时间、延长制动时间、检查电网电压等。负载过重,所选的电机和变频器不能拖动该负载,也可能是由于机械润滑不好引起。如前者则必须更换大功率的电机和变频器;如后者则要对生产机械进行检修。

3) 欠压:说明变频器电源输入部分有问题,需检查后才可以运行。 小结:

1) 总之,在设计、安装、使用变频器时一定要遵从变频器使用说明书的指导。

2) 各电气设计人员,现场电气调试人员可以在此基础上完善此变频器参考

如何为电机选择变频器

A.请问如何选变频器,比如我的电机功率5.5千瓦,4级的1470转 型号:WGB2-5.5KW/3是什么意思 答: 1.看功率选就行,电机5.5Kw,选变频器就选6Kw的。必须多一点。这样变 频器不爱坏! 2.220V单相进线,380V三相出线 3.选变频器要看你用的场合,一般你选5.5KW就行,要是用到机床,提升机 等地方就要增加了。 4.我决的主要问题是在选电机上,因为它要考虑负载 变频器的选型,注意两点就OK了 1.电机的额定电流 2.电机的功率 2.电机的极数 补充知识,Other answer: 1.变频器一般向下兼容两个功率等级, 比如7.5kw的变频器兼容3.7kw到7.5kw之间的电机, 但是只有当7.5kw的变频器带7.5kw的电机,发挥性能才是最佳的, 一般来说,随着变频器带的电机功率越来越小,性能会逐渐变差。 所以为保证性能,一般不用变频器带两个功率等级以下的电机。 2.电机的容量是变频器的50%-100%的都可以用,选容量大一些儿的不易出现过载,可以提高启动转矩,尤其是起重上用 B.变频器选型风机用电机功率28KW 电流55A ----question 要求是风机专用变频器,比如西门子mm430就是,然后再选择功率,可以选择大于等于这个输出功率和输出电流的变频器即可。 C.变频器如何控制电机功率 电机在变频器的控制下以低频率运行时,变频器的输出电压会随着频率的降低而降低,但电机定子阻值不变,为什嬷电流却和工频运行时差不多,与频率有关系吗?望各位高手赐教,不胜感激! 问题补充: 比如V/F控制时以10赫兹运行,变频器的输出电压只有75~80伏左右,但电流却和工频时差不多,为什么? Answer: 1.变频器控制的电机基本都是交流电机,交流电机转速是由电压频率决定的,国内都是50HZ,所以普通电机转速都是50转/秒。也就是3000转/分,有一定误差。变频器原理就是先把交流变成直流,然后再用单片机控制6个晶闸管把直流再变回交流,根据你的设定值来决定这6个晶闸管开关的速度,来输出不同频率的交流电,从而控制电机转速。 所以电压应该不会变,只是频率变了。电压不变电流也就不会变。 2.当电机转矩一定时,电机的输出功率与转速成正比,当频率降低时,电机的输出功率自然降低。

变频器控制电机转速的方法

变频器主要由整流(交流变直流)、滤波、逆变(直流变交流)、制动单元、驱动单元、检测单元微处理单元等组成的。 1. 电机的旋转速度为什么能够自由地改变?? 电机旋转速度单位:r/min ? 每分钟旋转次数,也可表示为rpm. ? 例如:2极电机50Hz 3000 [r/min] ? 4极电机50Hz 1500 [r/min] ? 结论:电机的旋转速度同频率成比例? 感应式交流电机(以后简称为电机)的旋转速度近似地确决于电机的极数和频率。由电机的工作原理决定电机的极数是固定不变的。由于该极数值不是一个连续的数值(为2的倍数,例如极数为2,4,6),所以一般不适合通过改变该值来调整电机的速度。? 另外,频率能够在电机的外面调节后再供给电机,这样电机的旋转速度就可以被自由的控制。? 因此,以控制频率为目的的变频器,是做为电机调速设备的优选设备。? n = 60f/p ? n: 同步速度? f: 电源频率? p: 电机极对数? 如果仅改变频率而不改变电压,频率降低时会使电机处于过电压(过励磁),导致电机可能被烧坏。因此变频器在改变频率的同时必须要同时改变电压。输出频率在额定频率以上时,电压却不可以继续增加,最高只能是等于电机的额定电压。?

例如:为了使电机的旋转速度减半,把变频器的输出频率从50Hz改变到25Hz,这时变频器的输出电压就需要从400V改变到约200V。 2. 当电机的旋转速度(频率)改变时,其输出转矩会怎样?? 变频器驱动时的起动转矩和最大转矩要小于直接用工频电源驱动。? 电机在工频电源供电时起动和加速冲击很大,而当使用变频器供电时,这些冲击就要弱一些。工频直接起动会产生一个大的起动起动电流。而当使用变频器时,变频器的输出电压和频率是逐渐加到电机上的,所以电机起动电流和冲击要小些。? 通常,电机产生的转矩要随频率的减小(速度降低)而减小。减小的实际数据在有的变频器手册中会给出说明。? 通过使用磁通矢量控制的变频器,将改善电机低速时转矩的不足,甚至在低速区电机也可输出足够的转矩。? 3. 当变频器调速到大于50Hz频率时,电机的输出转矩将降低? 通常的电机是按50Hz电压设计制造的,其额定转矩也是在这个电压范围内给出的。因此在额定频率之下的调速称为恒转矩调速。(T=Te, P<=Pe) ? 变频器输出频率大于50Hz频率时,电机产生的转矩要以和频率成反比的线性关系下降。? 当电机以大于50Hz频率速度运行时,电机负载的大小必须要给予考虑,以防止电机输出转矩的不足。? 举例:电机在100Hz时产生的转矩大约要降低到50Hz时产生转矩的1/2。? 因此在额定频率之上的调速称为恒功率调速。(P=Ue*Ie) ? 4. 变频器50Hz以上的应用情况?

伺服电机接线方式

富士伺服电机 富士伺服电机电子齿轮比计算: 伺服电机旋转1周时的机械系统移动量 131072脉冲/转 例如:电机旋转一圈的机械移动量等于单位量下,转一圈需2500脉冲 N α(分母) N 131072 β(分子) 2500 α(分母) 131072 32768 β(分子) 2500 625 I/O 信号接线 P24 1 24V 电源 19 24V cont1 2 激磁 *CA 8 脉冲 *CB 21 方向 M24 14 0V OUT1 17 报警 16 到位结束 编码器接线方式(smart 系统、w 系列、A5) 驱动器 电机端 P5 1 7 P5 M5 2 8 M5 SIG+ 5 5 SIG+ SIG- 6 4 SIG- BAT+ 3 1 BAT+ BAT- 4 2 BAT- GND 外壳 3 地线 旧版富士驱动器参数设置 新版富士驱动器参数设置 1# 16384(分子) 1# 0 2# 125(分母) 3# 0(脉冲+方向控制模式) 3# 0(脉冲+方向控制模式) 4# 1(方向) 4# 1(方向) 6# 65536(分子) 7# 15(刚性) 7# 125(分母) 19# 250 8# 15# 14(刚性) 松下伺服电机 松下A5 I/O 接线说明: 1、2、7 24V 36、41 0V × = = =

4 脉冲 6 方向 29 使能ON 37 报警 松下A5编码器接线说明: 驱动器马达 1 4 2 5 5 2 6 3 外壳 6(GND) 松下A5驱动器参数设置Pr0、** 0# 方向 1# 控制模式 0 7#指令脉冲形式 3 8#电机旋转一圈指令脉冲数 台达伺服电机 台达电子齿轮比计算公式: 马达转一圈脉冲数(F)=1、280、000÷分子(N)/分母(M) 台达编码器接线说明: 驱动器接头端马达端 5 1 4 4 14、16 7 13、16 8 屏蔽线 9 台达伺服电机I/O控制说明: 9 使能ON 28 报警 30 停止 37 方向 41 脉冲 35、1 24V 27、4、45、49 0V 5 定位结束 台达驱动器参数设定: P1-00 2(脉冲+方向) P1-44 分子(1280000) P1-45 分母(1000) P2-31 刚性 P2-32 增益调整方向 P2-19 105 P1-54 256(如马达转一圈1000脉冲设为256,表示偏差10个脉冲)

变频器的VF控制与矢量控制

变频器的V/F控制与矢量控制 U/f=C的正弦脉宽调制(SPWM)控制方式其特点是控制电路结构简单、成本较低,机械特性硬度也较好,能够满足一般传动的平滑调速要求,已在产业的各个领域得到广泛应用。但是,这种控制方式在低频时,由于输出电压较低,转矩受定子电阻压降的影响比较显著,使输出最大转矩减小。另外,其机械特性终究没有直流电动机硬,动态转矩能力和静态调速性能都还不尽如人意,且系统性能不高、控制曲线会随负载的变化而变化,转矩响应慢、电机转矩利用率不高,低速时因定子电阻和逆变器死区效应的存在而性能下降,稳定性变差等。因此人们又研究出矢量控制变频调速。 矢量控制(VC)方式 矢量控制变频调速的做法是将异步电动机在三相坐标系下的定子电流Ia、Ib、Ic、通过三相-二相变换,等效成两相静止坐标系下的交流电流Ia1Ib1,再通过按转子磁场定向旋转变换,等效成同步旋转坐标系下的直流电流Im1、It1(Im1相当于直流电动机的励磁电流;It1相当于与转矩成正比的电枢电流),然后模仿直流电动机的控制方法,求得直流电动机的控制量,经过相应的坐标反变换,实现对异步电动机的控制。其实质是将交流电动机等效为直流电动机,分别对速度,磁场两个分量进行独立控制。通过控制转子磁链,然后分解定子电流而获得转矩和磁场两个分量,经坐标变换,实现正交或解耦控制。矢量控制方法的提出具有划时代的意义。然而在实际应用中,由于转子磁链难以准确观测,系统特性受电动机参数的影响较大,且在等效直流电动机控制过程中所用矢量旋转变换较复杂,使得实际的控制效果难以达到理想分析的结果。 V/F控制与矢量都是恒转矩控制。U/F相对转矩可能变化大一些。而矢量是根据需要的转矩来调节的,相对不好控制一些。对普通用途。两者一样。 1、矢量控制方式 矢量控制,最简单的说,就是将交流电机调速通过一系列等效变换,等效成直流电机的调速特性,就这么简单,至于深入了解,那就得深入了解变频器的数学模型,电机学等学科。 矢量控制原理是模仿直流电动机的控制原理,根据异步电动机的动态数学模型,利用一系列坐标变换把定子电流矢量分解为励磁分量和转矩分量,对电机的转矩电流分量和励磁分量分别进行控制。 在转子磁场定向后实现磁场和转矩的解耦,从而达到控制异步电动机转矩的目的,使异步电机得到接近他励直流电机的控制性能。具体做法是将异步电动机的定子电流矢量分解为产生磁场的电流分量(励磁电流)和产生转矩的电流分量(转矩电流)分别加以控制,并同时控制两分量间的幅值和相位,即控制定子电流矢量,所以称这种控制方式称为矢量控制方式。 2、V/F控制方式 V/F控制,就是变频器输出频率与输出电压的比值为恒定值或成比例。例如,50HZ时输出电压为380V的话,则25HZ时输出电压为190V。 变频器采用V/F控制方式时,对电机参数依赖不大,V/f控制是为了得到理想的转矩-速度特性,基于在改变电源频率进行调速的同时,又要保证电动机的磁通不变的思想而提出的,通用型变频器基本上都采用这种控制方式。V/f控制变频器结构非常简单,但是这种变

识别变频器电机的方法

做快速调试时,一定要遵循手册给出的引导流程进行,特别是电机铭牌数据必须要正确输进。假如电机的铭牌数据输进有误,电机建模就不会精确,控制起来也不会有好的运行效果。电机的铭牌数据包括:额定电压、额定电流、额定功率、额定转速、额定功率因数。假如是矢量控制,还有一个额定励磁电流需要确定。 其中额定转速,我国的电机标准中规定铭牌数据不包含此项,所以这个参数必须向电机制造商索取,要正确的滑差或者额定转速值,功率因数这个参数,一旦电机确定,根据铭牌数据可以计算,或者向电机制造商索取正确数值。额定励磁电流,可以通过快速调试自动计算,在r0331中显示,但是一般这个内部计算的参数并不正确,实测的要更接近电机的真实数据。具体怎么确定,比较罗索,还是自己仔细的解读说明说的相关论述。 总之,正确地确定电机名牌数据,比较麻烦的就是矢量控制以及磁化电流的测取。假如是V/F控制、抛物线控制,就很简单了。不论是简单的还是复杂的,正确设置电机铭牌数据至关重要。这是装置辨识电机的基础。在手册里,有一个电机的等效电路,实在,装置对电机的辨识,就是为了确定那个等效电路里的参数,这就是所谓的建模。 对于V/F、抛物线控制而言,快速调试中的P3900=1/2/3必须要真正的PASS,然后紧接着 P1910=1,ON合闸命令以后,自动地完成识别,其间没有故障P0041发生。就可以以为顺利地通过了识别。而对于矢量控制P1300=20/21 /22/23,不仅要P1910=1必须自动得PASS,P1910=3也必须自动得PASS,还必须P1960=1自动得PASS。才算顺利地通过了自识别工作。 检验自识别的效果,就是将电机在整个的转速范围内空载运行,用手、用耳朵判别电机运行过程中是不是没有明显的电磁噪声、振动。一般在正确地完成上述所说的两项辨识工作以后,电机运行是很平滑稳定的,除非机械上有题目,或者电机的动平衡不好,造成机械振动和机械噪声。区分机械噪声与电磁噪声的办法,自己往解析吧,这里不累述。 若矢量控制时,对于大惯性滚筒同轴连接,MM4还可以做惯性补偿,具体的设置与调试参见说明的有关功能图和参数表说明,这里省略。一句话,电机实际运行效果,是对调试工作优劣的最好检验。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有 10年工业用品电子商务领域研究,以

变频器常用的几种控制方式

变频器常用的几种控制方式 变频调速技术就是现代电力传动技术的重要发展方向,而作为变频调速系统的核心—变频器的性能也越来越成为调速性能优劣的决定因素,除了变频器本身制造工艺的“先天”条件外,对变频器采用什么样的控制方式也就是非常重要的。本文从工业实际出发,综述了近年来各种变频器控制方式的特点,并展望了今后的发展方向。 1、变频器简介 1、1 变频器的基本结构 变频器就是把工频电源(50Hz或60Hz)变换成各种频率的交流电源,以实现电机的变速运行的设备,其中控制电路完成对主电路的控制,整流电路将交流电变换成直流电,直流中间电路对整流电路的输出进行平滑滤波,逆变电路将直流电再逆变成交流电。对于如矢量控制变频器这种需要大量运算的变频器来说,有时还需要一个进行转矩计算的CPU以及一些相应的电路。 1、2 变频器的分类 变频器的分类方法有多种,按照主电路工作方式分类,可以分为电压型变频器与电流型变频器;按照开关方式分类,可以分为PAM控制变频器、PWM控制变频器与高载频PWM控制变频器;按照工作原理分类,可以分为V/f控制变频器、转差频率控制变频器与矢量控制变频器等;按照用途分类,可以分为通用变频器、高性能专用变频器、高频变频器、单相变频器与三相变频器等。 2、变频器中常用的控制方式 2、1 非智能控制方式 在交流变频器中使用的非智能控制方式有V/f协调控制、转差频率控制、矢量控制、直接转矩控制等。 (1) V/f控制 V/f控制就是为了得到理想的转矩-速度特性,基于在改变电源频率进 行调速的同时,又要保证电动机的磁通不变的思想而提出的,通用型变频器基本上都采用这种控制方式。V/f控制变频器结构非常简单,但就是这种变频器采用开环控制方式,不能达到较高的控制性能,而且,在低频时,必须进行转矩补偿,以改变低频转矩特性。 (2) 转差频率控制 转差频率控制就是一种直接控制转矩的控制方式,它就是在V/f控制的基础上,按照知道异 步电动机的实际转速对应的电源频率,并根据希望得到的转矩来调节变频器的输出频率,就可以使电动机具有对应的输出转矩。这种控制方式,在控制系统中需要安装速度传感器,有时还加有电流反馈,对频率与电流进行控制,因此,这就是一种闭环控制方式,可以使变频器具有良好的稳定性,并对急速的加减速与负载变动有良好的响应特性。 (3) 矢量控制 矢量控制就是通过矢量坐标电路控制电动机定子电流的大小与相位,以达到对电动机在d、q、0坐标轴系中的励磁电流与转矩电流分别进行控制,进而达到控制电动机转矩的目的。通过控制各矢量的作用顺序与时间以及零矢量的作用时间,又可以形成各种PWM波,达到各种不同的控制目的。例如形成开关次数最少的

变频器的选型和使用

变频器得选型与使用 作者:佚名发布日期:2008-5-30 17:33:09 (阅1624次) 所属频道:继电保护关键词: 变频变频器 通用变频器得选择包括通用变频器得型式选择与容量选择两个方面,选择得原则就就是:首先其功能特性能保证可靠地事项工艺要求,其次就就是获得较好得性能价格比。通用变频器类型得选择要根据负载特性进行。对于风机、泵类等平方转矩,低速下负载转矩较小,通常可选择专用或普通功能型通用变频器。对于恒转矩类负载或有较高静态转速精度要求得机械应选用具有转矩控制功能得高功能型通用变频器,这种通用变频器低速转矩、静态机械特性硬度大,不怕负载冲击,具有挖土机特性。为了实现大调速比得恒转矩调速,常采用加大通用变频器容量得办法。对于要求精度高、动态性能好、速度响应快得生产机械(如造纸机械、注塑机、轧钢机等),应采用矢量控制或直接转矩控制型通用变频器。 1、电机得规格指标参数 变频器在使用过程中带动得就就是电机,所以,变频器得选型可以从电机得角度来选择型号、规格。那首先,我们就必须先了解电机得各项规格指标参数。

每台电机都有它自己出厂得铭牌,从铭牌上,我们不难找到电机得各项参数。这些参数中,我们需要了解得主要参数有:电机得额定电压、额定电流、额定频率、额定转速等。 电机得额定电压:电机得额定电压一般有110V、220V、380V、690V、1140V、6kV等。 我公司现生产得变频器电压等级有:220V、380V、690V、1140V。如有其它非标准得电压等级,请及时咨询生产厂家或各地办事处及经销商。 电机得额定电流:电机得额定电流根据电机得功率不同而不同。选择变频器时,变频器得额定电流应大于或等于电机得额定电流,特殊情况应将变频器功率档次放大一档。 电机得额定频率:普通电机得额定频率一般就就是50~60Hz,高速电机有1000~3000Hz等。CH_100系列可满足0~600Hz电机得需要,如需更高频率,请选用CH_150系列变频器。 电机得额定转速:电机有分为2极、4极、6极、8极等,极数越高,转速越低,同功率电流也越大。我们一般用得电机得额定转速就就是1500rpm对应4极电机。变频器也就就是根据4极电机来设计得。2极对应3000rpm、6极对应960rpm、8极对应720rpm左右。2、温度与湿度

变频器和电机的距离确定电缆和布线方法

变频器和电机的距离确定电缆和布线方法; I.变频器和电机的距离应该尽量的短。这样减小了电缆的对地电容,减少干扰的发射源。 II. 控制电缆选用屏蔽电缆,动力电缆选用屏蔽电缆或者从变频器到电机全部用穿线管屏蔽。 III.电机电缆应独立于其它电缆走线,其最小距离为500mm。同时应避免电机电缆与其它电缆长距离平行走线,这样才能减少变频器输出电压快速变化而产生的电磁干扰。如果控制电缆和电源电缆交叉,应尽可能使它们按90度角交叉。与变频器有关的模拟量信号线与主回路线分开走线,即使在控制柜中也要如此。 IV. 与变频器有关的模拟信号线最好选用屏蔽双绞线,动力电缆选用屏蔽的三芯电缆(其规格要比普通电机的电缆大档)或遵从变频器的用户手册。 3) 变频器控制原理图; I.主回路:电抗器的作用是防止变频器产生的高次谐波通过电源的输入回路返回到电网从而影响其他的受电设备,需要根据变频器的容量大小来决定是否需要加电抗器;滤波器是安装在变频器的输出端,减少变频器输出的高次谐波,当变频器到电机的距离较远时,应该安装滤波器。虽然变频器本身有各种保护功能,但缺相保护却并不完美,断路器在主回路中起到过载,缺相等保护,选型时可按照变频器的容量进行选择。可以用变频器本身的过载保护代替热继电器。 II. 控制回路:具有工频变频的手动切换,以便在变频出现故障时可以手动切工频运行,因输出端不能加电压,固工频和变频要有互锁。 4) 变频器的接地; 变频器正确接地是提高系统稳定性,抑制噪声能力的重要手段。变频器的接地端子的接地电阻越小越好,接地导线的截面不小于4mm,长度不超过5m。变频器的接地应和动力设备的接地点分开,不能共地。信号线的屏蔽层一端接到变频器的接地端,另一端浮空。变频器与控制柜之间电气相通。 变频器控制柜设计: 变频器应该安装在控制柜内部,控制柜在设计时要注意以下问题 1) 散热问题:变频器的发热是由内部的损耗产生的。在变频器中各部分损耗中主要以主电路为主,约占98%,控制电 2) 电磁干扰问题: I.变频器在工作中由于整流和变频,周围产生了很多的干扰电磁波,这些高频电磁波对附近的仪表、仪器有一定的干扰,而且会产生高次谐波,这种高次谐波会通过供电回路进入整个供电网络,从而影响其

变频器控制方式选型(精)

变频器控制方式选型 概述:本文介绍了通用变频器的控制方式,以及在实际应用中如何选择合理的型号。 关键词:控制方式选型 1引言 变频技术是应交流电机无级调速的需要而诞生的。20世纪60年代以后,电力电子器件经历了SCR(晶闸管)、GTO(门极可关断晶闸管)、BJT(双极型功率晶体管)、MOSFET(金属氧化物场效应管)、SIT(静电感应晶体管)、SITH(静电感应晶闸管)、MGT(MOS控制晶体管)、MCT(MOS控制晶闸管)、IGBT(绝缘栅双极型晶体管)、HVIGBT(耐高压绝缘栅双极型晶闸管)的发展过程,器件的更新促进了电力电子变换技术的不断发展。20世纪70年代开始,脉宽调制变压变频(PWM-VVVF)调速研究引起了人们的高度重视。20世纪80年代,作为变频技术核心的PWM模式优化问题吸引着人们的浓厚兴趣,并得出诸多优化模式,其中以鞍形波PWM模式效果最佳。20世纪80年代后半期开始,美、日、德、英等发达国家的VVVF变频器已投入市场并获得了广泛应用。 2变频器控制方式 低压通用变频输出电压为380~690V,输出功率为0.75~560kW,工作频率为0~500Hz,它的主电路都采用交直交电路。其控制方式经历了以下四代。 2.1U/f=C的正弦脉宽调制(SPWM)控制方式 其特点是控制电路结构简单、成本较低,机械特性硬度也较好,能够满足一般传动的平滑调速要求,已在产业的各个领域得到广泛应用。但是,这种控制方式在低频时,由于输出电压较低,转矩受定子电阻压降的影响比较显著,使输出最大转矩减小。另外,其机械特性终究没有直流电动机硬,动态转矩能力和静态调速性能都还不尽如人意,且系统性能不高、控制曲线会随负载的变化而变化,转矩响应慢、电机转矩利用率不高,低速时因定子电阻和逆变器死区效应的存在而性能下降,稳定性变差等。因此人们又研究出矢量控制变频调速。 2.2电压空间矢量(SVPWM)控制方式 它是以三相波形整体生成效果为前提,以逼近电机气隙的理想圆形旋转磁场轨迹为目的,一次生成三相调制波形,以内切多边形逼近圆的方式进行控制的。经实践使用后又有所改进,即引入频率补偿,能消除速度控制的误差;通过反馈估算磁链幅值,消除低速时定子电阻的影响;将输出电压、电流闭环,以提高动态的精度和稳定度。但控制电路环节较多,且没有引入转矩的调节,所以系统性能没有得到根本改善。 2.3矢量控制(VC)方式 矢量控制变频调速的做法是将异步电动机在三相坐标系下的定子电流Ia、Ib、Ic、通过三相-二相变换,等效成两相静止坐标系下的交流电流 Ia1Ib1,再通过按转子磁场定向旋转变换,等效成同步旋转坐标系下的直流电流Im1、It1(Im1相当于直流电动机的励磁电流;It1相当于与转矩成正比的电枢电流),然后模仿直流电动机的控制方法,求得直流电动机的控制量,经过相应的坐标反变换,实现对异步电动机的控制。其实质是将交流电动机等效为直流电动机,分别对速度,磁场两个分量进行独立控制。通过控制转子磁

变频调速电机的选型

变频调速电机的选型

————————————————————————————————作者:————————————————————————————————日期:

变频调速电机的选型 变频调速电机一般均选择4级电机,基频工作点设计在50Hz,频率0-50Hz(转速0-1480r/min)范围内电机作恒转矩运行,频率50-100Hz(转速1480-2800r/min)范围内电机作恒功率运行,整个调速范围为(0-2800r/min),基本满足一般驱动设备的要求,其工作特性与直流调速电机相同,调速平滑稳定。如果在恒转矩调速范围内 要提高输出转矩,也可以选择6级或8级电机,但电机的体积相对要大一点。 由于变频调速电机的电磁设计运用了灵活的CAD 设计软件,电机的基频设计点可以随时进 行调整,我们可以在计算机上精确的模拟电机在各基频点上的工作特性,由此也就扩大了 电机的恒转矩调速范围,根据电机的实际使用工况,我们可以在同一个机座号内把电机的 功率做的更大,也可以在使用同一台变频器的基础上将电机的输出转矩提的更高,以满足 在各种工况条件下将电机的设计制造在最佳状态。变频调速电机可以另外选配附加的转速 编码器,可实现高精度转速、位置控制、快速动态特性响应的优点。也可配以电机专用的 直流(或交流)制动器以实现电机快速、有效、安全、可靠的制动性能。由于变频调速电 机的基频可调性设计,我们也可以制造出各种高速电机,在高速运行时保持恒转矩的特性 ,在一定程度上替代了原来的中频电机,而且价格低廉。变频调速电机为三相交流同步或 异步电动机,根据变频器的输出电源有三相380V或三相220V,所以电机电源也有三相380V 或三相220V的不同区别,一般4KW以下的变频器才有三相220V可,由于变频电机是以电机 的基频点(或拐点)来划分不同的恒功率调速区和恒转矩调速区的,所以变频器基频点和 变频电机基频点的设置都非常重要。 同步变频与异步变频调速电机的区别 异步变频调速电机是由普通异步电机派生而来,由于要适应变频器输出电源的特性,电机在转子槽型,绝缘工艺 ,电磁设计校核等作了很大的改动,特别是电机的通风散热,它在一般情况下附加了一个独立式强迫冷却风机, 以适应电机在低速运行时的高效散热和降低电机在高速运行时的风摩耗。变频器的输出一般显示电源的输出频率 ,转速输出显示为电机的极数和电源输出频率的计算值,与异步电机的实际转速有很大区别,使用一般异步变频 电动机时,由于异步电机的转差率是由电机的制造工艺决定,故其离散性很大,并且负载的变化直接影响电机的 转速,要精确控制电机的转速只能采用光电编码器进行闭环控制,当单机控制时转速的精度由编码器的脉冲数决 定,当多机控制时,多台电机的转速就无法严格同步。这是异步电机先天所决定的。 同步变频调速电机的转子内镶有永磁体,当电机瞬间起动完毕后,电机转入正常运行,定子旋转磁场带动镶有永 磁体的转子进行同步运行,此时电机的转速根据电机的极数和电机输入电源频率形成严格的对应关系,转速不受 负载和其他因数影响。同样同步变频调速电机也附加了一个独立式强迫冷却风机,以适应电机在低速运行时的高 效散热和降低电机在高速运行时的风摩耗。由于电机的转速和电源频率的严格对应关系,使得电机的转速精度主 要就取决于变频器输出电源频率的精度,控制系统简单,对一台变频器控制多台电机实现多台电机的转速一致, 也不需要昂贵的光学编码器进行闭环控制。 TYP 变频调速永磁同步电机具有的三大优点: 1、高效节能与异步变频调速电机相比,高效节能。同规格相比,该系列电机效率比异步变频电机效率高 3~10个百分点。以1.5kW为利,两者效率差近7个百分点; 2、可精确调速与异步变频系统相比,无需编码器即可进行准确的速度控制; 3、高功率因数既可减少无功能量的消耗,又能降低变压器的容量

变频器和电机的选型

变频器和电机的选型 一、电机的选择: 首先应该根据负载运动时所需要的平均功率、最高功率,折算到电机轴侧(可能有减速机、皮带轮等减速装置)选择电机的功率,同时也要考虑电机的过载能力。电机厂商可以提供电机的力矩特性曲线,不同温度下电机特性会变化。 顺便说:选型的顺序当然是先选电机再根据电机选择变频器,因为控制的最终目的不是变频器也不是电机,而是机械负载。 二、变频器的选型: 第一应该强调的是,应该根据电流选型。对于一般负载,可以根据电机的额定电流选择变频器,即变频器额定电流(即常规环境下的最大持续工作电流)大于电机额定电流即可。但是必须要考虑极限状况的出现。因此变频器还需要可以提供短时间的过载电流。 (注意:电机的电流是由机械负载决定的) 变频器有一条过载电流曲线,是一条反时限曲线,描述了过载电流和时间的关系。这就是变频器厂商经常说得过载能力可以达到150%额定电流2秒、180%额定电流2秒云云,实际上是一条曲线。因此,只要电机的电流曲线在变频器的过载电流曲线之内,就是正确的选型。这就是为什么有时候变频器功率要大于电机功率1档或2档(比如起重应用),有时候小功率变频器仍然可以驱动大功率电机(比如输送带)的原因。 另一个必须注意的:在非正常环境下,比如高海拔、高环境温度(例如大于50度小于60度环境)、并排安装方式(有些变频器并排安装不降容,有些要降容,根据变频器设计决定)等情况下,要考虑变频器的降容。这方面的资料变频器厂商都可以提供。 结果是:变频器的额定功率可能大于电机功率,也可以小于电机功率,事实上变频器的选型也是根据机械负载决定的。 结论:变频器选型的最终依据,是变频器的电流曲线包罗机械负载的电流曲线。 三、Y型电机和变频电机 Y型电机,应该就是普通异步电机(印象中是,不太确定)。 变频器的根本功能就是改变电源频率,从而改变电机转速。因此理论上讲,不管是什么电机,只要可以通过改变频率调速的,都可以使用变频器。 如上面某位朋友所说,变频电机有着特殊的设计,更适合变频使用,我同意。 因此,并不是有个独立风扇就是所谓变频电机了。 普通异步电机使用变频器控制时,需要注意的是: 1、低频时(一般小于25hz),由于电机采用同轴风扇,低速时散热效果会很差,电机发热后,力矩特性变软,从而出现速度不稳、电流大等问题。

变频器控制电机运行最常用的两种方式

变频器控制电机运行最常用的两种方式 当变频器主电路接好电源线之后,要控制电动机的运行,还需要给有关端子接上外围接控制电路,并且将变频器的启动方式参数设为外部操作模式。 变频器控制电动机运转,常见的有两种方式,分别是开关控制方式和继电器控制方式: 一、开关控制的正转控制电路 开关控制的转控制电路如下图所示,它是依靠手动操作变频器STF端子外接开关SA,来对电动机进行正转控制。

电路工作原理说明如下: 1、启动准备:按下按钮SB2,接触器KM线圈得电,KM常开辅助触点和主触点均闭合,常开辅助触点闭合锁定KM线圈得电自锁,KM主触点闭合为变频器接通主电源。 2、正转控制:按下变频器STF端子外接开关SA,STF、SD端子接通,相当于STF端子输、输入正转控制信号,变频器U、V、W端子输出正转电源电压,驱动电动机正向运转。调节端子外电位器R,变频器输出电源频率会发生改变,电动机转速也随之变化。 3、变频器异常保护:若变频器运行期间出现异常或故障,变频器B、C端子间内部等效的常闭开关断开,接触器KM线圈失电,KM主触点断开,切断变频器输入电源,对变频器进行保护。 4、停转控制:在变频器正常工作时,将开关SA断开,STF、SD端子断开,变频器停止输出电源,电动机停转。

若要切断变频器输入主电源,可按下按钮SB1,接触器KM线圈失电,KM 主触点断开,变频器输入电源被切断。 二、继电器控制的正转控制电路 继电器控制的正转控制电路如下图所示 电路工作原理说明如下: 1、启动准备:按下按钮SB2,接触器KM线圈得电,KM主触点和两个常开辅助触点均闭合,KM主触点闭合为变频器接通主电源,一个KM常开辅助触点闭合,锁定KM线圈得电,另一个KM常开辅助触点闭合,为继电器K中间A线圈得电作准备。 2、正转控制:按下按钮SB4,继电器KA线圈得电,3 个KA常开触点均闭合,一个常开触点闭合锁定KA线圈得电,一个常开触点闭合将按钮SB1短接,还有一个常开触点闭合将STF、SD端子接通,相当于STF端子输入正转控制信号,变翻器U、V、W端子输出正转电源电压,驱动电动机正向

如何给电机选择合适的变频器

如何给电机选择合适的变频器 摘要:变频器让电机传动系统实现了两个愿望,一是让电机实现了更高效率的运行;二是让电机可以做到工况可控,避免大牛拉小车的问题。但摆在工程师面前的问题是:电机负载类型那么多,对所配变频器的性能要求也是千差万别,如何给电机选择合适的变频器呢? 变频器的英文译名是VFD(Variable Frequency Drive),这可能是现代科技由中文反向翻译为英文的为数不多实例之一。变频器是应用在变频技术与微电子技术,通过改变电机工作电源的频率和幅度的方式来控制交流电动机的电力传动元件。 而为整个电机运动系统选择合适的变频器,已是让工程师一个头痛的问题。 总的来说,变频器的选用,应按照被控对象的类型、调速范围、静态速度精度、启动转矩等来考虑,使之在满足工艺和生产要求的同时,既好用,又经济。 一般性的经验是: ●多大的电机就选择多大的变频器,有时也可大一个规格。 ●大功率的变频器功率因数较低最好在变频器的进线端加装交流电抗器。这样一是提高 功率因数,二是抑制高频谐波。如果经常频繁启动,制动,要安装制动单元和制动电阻。 ●如果需要降低噪音,可用选择水冷型变频器; ●如果需要制动,需选配制动斩波器以及制动电阻。或可用选择四象限产品,可以向电 网回馈能量,节省电能; ●如果现场仅有直流电源的话,可以选择单纯的逆变产品(使用直流电源)用以驱动电 动机。

变频器选型的最终依据,是变频器的电流曲线包罗机械负载的电流曲线。 这里罗列了一些选择变频器时,我们需要关注的实际问题。 1.采用变频的目的;恒压控制或恒流控制等。 2.变频器的负载类型;如叶片泵或容积泵等,特别注意负载的性能曲线,性能曲线决定 了应用时的方式方法。 3.变频器与负载的匹配问题; ●电压匹配;变频器的额定电压与负载的额定电压相符。 ●电流匹配;普通的离心泵,变频器的额定电流与电机的额定电流相符。对于特殊的负 载如深水泵等则需要参考电机性能参数,以最大电流确定变频器电流和过载能力。 ●转矩匹配;这种情况在恒转矩负载或有减速装置时有可能发生。 4.在使用变频器驱动高速电机时,由于高速电机的电抗小,高次谐波增加导致输出电流 值增大。因此用于高速电机的变频器的选型,其容量要稍大于普通电机的选型。 5.变频器如果要长电缆运行时,此时要采取措施抑制长电缆对地耦合电容的影响,避免 变频器出力不足,所以在这样情况下,变频器容量要放大一档或者在变频器的输出端安装输出电抗器。 6.对于一些特殊的应用场合,如高温,高海拔,此时会引起变频器的降容,变频器容量 要放大一挡。 对一些电机运动控制系统要求严格的场合,需要准确检测变频器的选配效果如何,直接方法就是通过电机测试系统进行测试。但要想完成变频器与电机系统的整体测试,对电机测试系统也就提出了更高的要求,比如高带宽、高精度的电参数测量,多通道同步测试等。

变频器的控制方式有哪些

变频器的控制方式有哪些 变频器(Variable-frequency Drive,VFD)是应用变频技术与微电子技术,通过改变电机工作电源频率方式来控制交流电动机的电力控制设备。变频器靠内部IGBT的开断来调整输出电源的电压和频率,根据电机的实际需要来提供其所需要的电源电压,进而达到节能、调速的目的,另外,变频器还有很多的保护功能,如过流、过压、过载保护等等。随着工业自动化程度的不断提高,变频器也得到了非常广泛的应用。那么,常见的变频器有哪些种类,它们的控制方法又是什么? 变频器的种类从控制方式来讲,现在市场上常见的有V/F控制变频器、矢量控制变频器两种。从电压角度来讲,有低压变频器、高压变频器两种。从电源角度来讲,有单相变频器、三相变频器的区分。从适用场合来分,有通用变频器、风机水泵专用型变频器、注塑机专用型变频器、拉丝机专用变频器、电梯专用变频器、球磨机专用变频器等等。 变频器常用的控制方式1、非智能控制方式在交流变频器中使用的非智能控制方式有V/f 协调控制、转差频率控制、矢量控制、直接转矩控制等。 (1)V/f正弦脉宽调制(SPWM)控制方式 V/f控制是为了得到理想的转矩-速度特性,基于在改变电源频率进行调速的同时,又要保证电动机的磁通不变的思想而提出的,通用型变频器基本上都采用这种控制方式。V/f控制变频器结构非常简单,但是这种变频器采用开环控制方式,不能达到较高的控制性能,而且,在低频时,必须进行转矩补偿,以改变低频转矩特性。 (2)转差频率控制 转差频率控制是一种直接控制转矩的控制方式,它是在V/f控制的基础上,按照知道异步电动机的实际转速对应的电源频率,并根据希望得到的转矩来调节变频器的输出频率,就可以使电动机具有 对应的输出转矩。这种控制方式,在控制系统中需要安装速度传感器,有时还加有电流反馈,对频率和电流进行控制,因此,这是一种闭环控制方式,可以使变频器具有良好的稳

变频器的选型和使用

变频器的选型和使用 作者:佚名发布日期:2008-5-30 17:33:09 (阅1624次) 所属频道: 继电保护关键词: 变频变频器 通用变频器的选择包括通用变频器的型式选择和容量选择两个方面,选择的原则是:首先其功能特性能保证可靠地事项工艺要求,其次是获得较好的性能价格比。通用变频器类型的选择要根据负载特性进行。对于风机、泵类等平方转矩,低速下负载转矩较小,通常可选择专用或普通功能型通用变频器。对于恒转矩类负载或有较高静态转速精度要求的机械应选用具有转矩控制功能的高功能型通用变频器,这种通用变频器低速转矩、静态机械特性硬度大,不怕负载冲击,具有挖土机特性。为了实现大调速比的恒转矩调速,常采用加大通用变频器容量的办法。对于要求精度高、动态性能好、速度响应快的生产机械(如造纸机械、注塑机、轧钢机等),应采用矢量控制或直接转矩控制型通用变频器。 1、电机的规格指标参数 变频器在使用过程中带动的是电机,所以,变频器的选型可以从电机的角度来选择型号、规格。那首先,我们就必须先了解电机的各项规格指标参数。

每台电机都有它自己出厂的铭牌,从铭牌上,我们不难找到电机的各项参数。这些参数中,我们需要了解的主要参数有:电机的额定电压、额定电流、额定频率、额定转速等。 电机的额定电压:电机的额定电压一般有110V、220V、380V、690V、1140V、6kV等。 我公司现生产的变频器电压等级有:220V、380V、690V、1140V。如有其它非标准的电压等级,请及时咨询生产厂家或各地办事处及经销商。 电机的额定电流:电机的额定电流根据电机的功率不同而不同。选择变频器时,变频器的额定电流应大于或等于电机的额定电流,特殊情况应将变频器功率档次放大一档。 电机的额定频率:普通电机的额定频率一般是50~60Hz,高速电机有1000~3000Hz等。CH_100系列可满足0~600Hz电机的需要,如需更高频率,请选用CH_150系列变频器。 电机的额定转速:电机有分为2极、4极、6极、8极等,极数越高,转速越低,同功率电流也越大。我们一般用的电机的额定转速是1500rpm对应4极电机。变频器也是根据4极电机来设计的。2极对应3000rpm、6极对应960rpm、8极对应720rpm左右。 2、温度和湿度

变频器控制电机运行的方式图文解读-民熔

变频器控制电机运行的方式-民熔 一旦转换器的主电路连接到电源线,就必须控制电动机的操作,并且边缘控制电路必须连接到相关端子,并且在外部操作模式中设置转换器的起动参数。 频率变频器以两种方式控制发动机的操作,一种是开关控制,另一种是继电器控制: 开关控制旋转控制电路 如下图所示,开关控制旋转电路利用手动转换器STF端子外的SA开关控制电动机的旋转。

电路的工作原理如下: 1,启动准备:按SB2键,KM触点电化,KM触点经常关闭KM触点,第二触点经常打开,主触点电锁定,主触点关闭KM触点以将转换器连接到主电源。 正旋转控制:单击SA开关、STF开关、SD连接开关,等于STF终端的输入、输入和旋转控制信号、U、V和W终端的正电源电压。驱动电动机沿方向运行反之R端子外部电位计、电源频率输出频率变频器和电动机的转速。 异常保护:在变频器运行期间发生异常或故障的情况下,通常关闭的开关,在变频器B和C 端子之间内部等效,接触器的KM线圈,主要的KM接触,变频器的电源,转换器保护 停止控制:当转换器正常工作时,SA开关被断开,STF和SD端子被断开,转换器停止输出功率,电动机停止。 如果要切断转换器的主电源,可以按SB1键,切断触发器的KM线圈,切断主KM触点,切断转换器的输入电源。

中继控制的正旋转控制电路 中继控制的正旋转控制电路 电路的工作原理如下: 1,启动准备:按SB2键,KM接触器被电化,KM主接触器和两个通常打开的辅助接触器都被关闭,KM主接触器被关闭以连接转换器至主电源,其中一个辅助接触器经常被关闭,KM 线圈的锁定是电气锁定的,而另一公里则定期关闭辅助接触,以便从中继器的K中间线圈准备电力。 正向旋转控制:按SB4键,KA线圈继电器,3KA恒定开启触点全部关闭,普通开启触点锁定KA锁定线圈以获得电力,普通开启触点锁定SB1,普通开启触点使STF端子和SD端子接触,这相当于STF端子的输入控制信号,并逆转U、V和W端子的输出电源电压,以使发动机沿方向运行。反之电位计R,在端子外面连接,修改转换器输出电源频率和发动机转速。 变频器的异常保护:当变频器在异常期间发生故障时,变频器的B和C端子之间的内部等效普通开关被断开,触发器的KM线圈被断开,主KM接触被断开,变频器被切断。在人的电源中,转换器受到保护,而继电器的Ka线圈失去电力,三个正常的Ka接触被关闭。

变频器和电机匹配方法

变频器和电机匹配方法 变频器的正确选择对于控制系统的正常运行是非常关键的。选择变频器时必须要充分了解变频器所驱动的负载特性。人们在实践中常将生产机械分为三种类型:恒转矩负载、恒功率负载和风机、水泵负载。 1.1 恒转矩负载 负载转矩TL与转速n无关,任何转速下TL总保持恒定或基本恒定。例如传送带、搅拌机,挤压机等摩擦类负载以及吊车、提升机等位能负载都属于恒转矩负载。变频器拖动恒转矩性质的负载时,低速下的转矩要足够大,并且有足够的过载能力。如果需要在低速下稳速运行,应该考虑标准异步电动机的散热能力,避免电动机的温升过高。 1.2 恒功率负载 机床主轴和轧机、造纸机、塑料薄膜生产线中的卷取机、开卷机等要求的转矩,大体与转速成反比,这就是所谓的恒功率负载。负载的恒功率性质应该是就一定的速度变化范围而言的。当速度很低时,受机械强度的限制,TL 不可能无限增大,在低速下转变为恒转矩性质。负载的恒功率区和恒转矩区对传动方案的选择有很大的影响。电动机在恒磁通调速时,最大允许输出转矩不变,属于恒转矩调速;而在弱磁调速时,最大允许输出转矩与速度成反比,属于恒功率调速。如果电动机的恒转矩和恒功率调速的范围与负载的恒转矩和恒功率范围相一致时,即所谓“匹配”的情况下,电动机的容量和变频器的容量均最小。 1.3 风机、泵类负载 在各种风机、水泵、油泵中,随叶轮的转动,空气或液体在一定的速度范围内所产生的阻力大致与速度n的2次方成正比。随着转速的减小,转矩按转速的2次方减小。这种负载所需的功率与速度的3

次方成正比。当所需风量、流量减小时,利用变频器通过调速的方式来调节风量、流量,可以大幅度地节约电能。由于高速时所需功率随转速增长过快,与速度的三次方成正比,所以通常不应使风机、泵类负载超工频运行。 用户可以根据自己的实际工艺要求和运用场合选择不同类型的变频器。在选择变频器时因注意以下几点注意事项: 选择变频器时应以实际电机电流值作为变频器选择的依据,电机的额定功率只能作为参考。另外,应充分考虑变频器的输出含有丰富的高次谐波,会使电动机的功率因数和效率变坏。因此,用变频器给电动机供电与用工频电网供电相比较,电动机的电流会增加10%而温升会增加20%左右。所以在选择电动机和变频器时,应考虑到这种情况,适当留有余量,以防止温升过高,影响电动机的使用寿命。 变频器若要长电缆运行时,此时应该采取措施抑制长电缆对地耦合电容的影响,避免变频器出力不够。所以变频器应放大一、两档选择或在变频器的输出端安装输出电抗器。 对于一些特殊的应用场合,如高环境温度、高开关频率、高海拔高度等,此时会引起变频器的降容,变频器需放大一档选择。 使用变频器控制高速电机时,由于高速电动机的电抗小,会产生较多的高次谐波。而这些高次谐波会使变频器的输出电流值增加。因此,选择用于高速电动机的变频器时,应比普通电动机的变频器稍大一些。 使用变频器驱动齿轮减速电动机时,使用范围受到齿轮转动部分润滑方式的制约。润滑油润滑时,在低速范围内没有限制;在超过额定转速以上的高速范围内,有可能发生润滑油用光的危险。因此,不要超过最高转速容许值。

相关文档
最新文档