数字存储示波器毕业论文

数字存储示波器毕业论文
数字存储示波器毕业论文

摘要

数字存储示波器是随着数字电路的发展而发展起来的一种具有存储功能的新型示波器。原先人们看好的模拟示波器的一些优点,目前数字示波器已完全能够做到,特别是在捕获非重复信号、避免信号的虚化和闪烁、在时间上从触发事件反问寻迹——实现在电路中隔离故障等方面,数字示波器显示出了模拟示波器无可比拟的优势。因此,数字示波器由于其优势的性能、良好的性能价格化,刚一问世,就显示出它强大的生命力,各行各业均迫切需要,有其广阔的发展前途。

本简易数字存储示波器,以单片机为控制核心,由通道调理、触发、波形显示等功能模块组成。本系统对触发系统、水平扫描速度和垂直灵敏度的自动设置功能(AUTOSET)及波形参数测量等功能进行了重点设计。设计中采用了模块化设计方法,并使用了多种EDA工具,提高了设计效率。整个设计实现了存储示波器的所有功能要求,达到较高的性能指标。

关键词:存储器,转换器,数字存储示波器,单片机

ABSTRACT

It is that one developed with development of the digital circuit is new-type oscillograph which stores the function that the figure stores the oscillograph . Original ancestors see some advantages of the good simulation oscillograph , the digital oscillograph can already be accomplished at present, catching and is not repeating the signal, avoiding melting and glimmers specially emptily, reply the mark of seeking from the incident of touching off on time of the signal --Realizing it in isolating the trouble in the circuit etc., the digital oscillograph demonstrates the incomparable advantage of the simulation oscillograph . So digital oscillograph because performance , good performance price of advantage their, just coming out , demonstrated its strong vitality, all trades and professions needed urgently , there is its wide development prospect. .

T his simple and easy figure stores the oscillograph, regard one-chip computer as the core of controlling, nursed one's health, touched off by the pass-way, the wave form shows, etc. the function module makes up . Such functions as automatic establishment function (AUTOSET ) and wave form parameter that this system scanned the speed and vertical sensitivity in touching off system , level are measured have been designed especially. Have adopt the module design method in the design, has used many kinds of EDA tools, have improved design efficiency. The whole of functions of designing and realizing storing the oscillograph require , reach the higher performance index

Keyword: the memory , the converter, the figure stores the oscillograph , Micro Computer Unite

毕业设计(论文)原创性声明和使用授权说明

原创性声明

本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。

作者签名:日期:

指导教师签名:日期:

使用授权说明

本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。

作者签名:日期:

学位论文原创性声明

本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。

作者签名:日期:年月日

学位论文版权使用授权书

本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。

涉密论文按学校规定处理。

作者签名:日期:年月日

导师签名:日期:年月日

指导教师评阅书

评阅教师评阅书

教研室(或答辩小组)及教学系意见

摘要 (1)

ABSTRACT (2)

第一章绪论 (3)

1.1课题背景 (3)

1.2课题研究的目的和意义 (3)

1.3课题的主要研究工作 (4)

第二章系统整体设计方案 (8)

2.1 硬件总体框图 (8)

2.2 系统实现的原理 (9)

2.3 软件整体设计 (20)

2.4 数字示波器技术参数 (20)

第三章硬件模块设计 (21)

3.1程控放大电路 (21)

3.2电源电路 (23)

3.3 高速AD转换与FIFO存储电路 (24)

3.4 时钟产生电路 (28)

3.5 MCU2单片机显示处理电路 (29)

3.6 MCU1单片机控制与信号整形电路 (31)

第四章软件设计 (33)

4.1 MCU1的软件部分设计 (33)

4.2 MCU2的软件部分设计 (36)

第五章总结与展望 (44)

参考文献 (46)

第一章绪论

1.1课题背景

在电子测量技术的发展史上,没有一种仪器产生过比示波器更大的影响。今天,在科学研究、工业生产等领域,示波器已成为最灵活、多用的电子仪器。自布劳恩(G.F.Braun)的第一台示波器(1897年)问世以来,示波器的发展迅速,方兴未艾。示波器的功能可以概括为捕获、显示和分析时域波形,后人在这三个方面进行了大量的改进工作。

本世纪60年代末,人们的工作主要致力于扩展频带宽度和固态化,从70年代开始,注意力转向自动化、实用化和提高准确度。微计算机和仪器通用接口的出现,给示波器的自动化发展推到一个崭新的水平。微计算机引入示波器,给传统示波器带来了巨大的冲击和革命性的影响,使示波器在设计、性能、功能、使用与操作以及鼓掌诊断等方面都产生了巨大的变化。为适应迅速发展的电子计算机工业中设计、测试的需要,示波器的功能已从时域分析扩展到数据域分析。当前,高精确度、功能多样、使用灵活、操作方便、性能可靠,已成为示波器生产厂家追求的主要目标。

1.2课题研究的目的和意义

随着电子工业的发展,电子技术已渗透到国民经济各个领域中。利用电子技术进行的测量——电子测量技术发展很快,已经形成一门学科,并在一定程度上反映该国的科学技术水平。在电子测量仪器中,示波器所占的地位是非常重要的。对于电量和许多非电量的测试来说,是一种主要的、通用的测量工具。其使用面之广,发展速度之快,都远远超过其它测量仪器。它已广泛地应用于国防、科研、学校以及工农商业等各个领域和部门。

迄今40多年来,示波器由电子管发展到晶体管,又发展到集成电路;由模拟电路发展到数字电路;由通用示波器发展到取样、记忆、数字存储、逻辑、智能化示波器等近十大系列、几百个品种。就美国Tektronix公司而言,建于1947年,目前已有9大系列,100多个品种,产品的销售遍及全球,已被世界公认为示波器的权威。1951年以来,我国在示波器生产方面也有很大进展,形成了一

支和生产示波器的专业队伍,已能生产宽带、取样、高灵敏度、记忆、数字存储、逻辑等各门类的示波器,有些门类的主要技术指标已接近国际先进水平。

现在主要门类的示波器有通用示波器(宽带示波器)、取样示波器,高灵敏度示波器、记忆示波器、数字存储示波器、逻辑分析仪(逻辑示波器)、数字化、智能化示波器。

数字存储示波器是随着数字电路的发展而发展起来的一种具有存储功能的新型示波器。它与记忆示波器一样,都具有记忆功能,但其工作原理却截然不同。它是采用数字电路,把输入信号经过A/D转换,将模拟波形变换成数字信息,并存入存储器中。待需读出时,在通过D/A转换,能捕捉触发前的信号,可通过接口与计算机相连接等特点。是与计算机连成系统。分析复杂的单次瞬变信号的有效仪器。刚一问世,就显示出它强大的生命力,各行各业(包括电子、机械、纺织、水力等)均迫切需要,有其广阔的发展前途。

现在,原先人们看好的模拟示波器的一些优点,即具有迅速的响应特性、面板直接控制操作、可直接观测输入信号、价格低廉等,目前数字示波器已完全能够做到,特别是在捕获非重复信号、避免信号的虚化和闪烁、在时间上从触发事件反问寻迹——实现在电路中隔离故障等方面,数字示波器显示出了模拟示波器无可比拟的优势。因此,数字示波器由于其优势的性能、良好的性能价格化,现已成为示波器的主流产品]2[。

1.3课题的主要研究工作

自然界里各种电信号或现象可归纳为二大类:一类是周期性重复信号,另一类是非周期的、单次的或随机的信号。对于第一类低频到高频的信号,利用模拟示波器(例如宽带示波器和取样示波器)可以满意地解决观测问题;对于第二类信号的观测,虽然可以利用宽带示波器单次照相的办法进记录,但是使用很不方便,对于那些变化很快的非重复信号,在示波器屏幕上一闪而过,则无法记录。

本世纪70年代起,数字集成电路和微处理机技术获得了迅速发展,示波器也开始应用这些新技术来适应各种需要。数字存储示波器就是70年代初发展起来的一种新颖示波器,它将模数(A/D)转换器和存储器引入了示波器。

数字存储示波器利用A/D转换把被测模拟信号变成数字信号,然后存入随机存储器(RAM)中,需要显示时将RAM中存储的内容调出,通过相应的电路控制显示器,将RAM中的波形数据显示到屏幕上。这种示波器不仅可用于记录、观察波形,而且可将获得的信息进一步作数据处理。在有突发性异常情况时,为便于分析产生的原因,用它记录下异常情况发生前的波形数据是很方便的。随着数字存储示波器的出现,使得由传统的模拟示波器占统治地位的情况发生了变化。虽然它出现的时间不长,但在性能上已经达到了较高的水平。数字存储示波器能以数字化的形式处理并记录波形,为其它设备提供了研究波形的方便。

模拟(通用)示波器在对连续的实时波形进行测量时,具有较宽的频带,在研究高频信号时占有优势,价格也较便宜。对于数字存储示波器来说,观察非重复信号的带宽比观察连续信号时要低。数字存储示波器中应用了微处理器,使波形测量的精确度提高了。使用者可以在屏幕上利用移动光标的方法测量时间和幅度,并且直接读出测量结果,省去了烦琐的数格和考虑比例因子的工作。

数字存储示波器具有把波形“冻结”供以后进行详细分析的能力。一般来说,这一特点可用来研究变化缓慢的信号、随机信号、非重复信号。在数字存储示波器问世以前,屏幕照像是“冻结”波形所采用的主要方法。另外,采用记忆示波器管构成的记忆示波器也可以达到这数字存储示波器在捕捉波形方面具有较大的优势。它对波形进行密集的采样,采样植被数字化并被存储,然后从存储器中取出,然后从存储器中取出,并把重建的波形用清晰的、均匀一致的轨迹重现在屏幕上。

不过,数字存储示波器也有它的局限性。其中之一是多数数字存储示波器使用等效时间采样来达到最大存储带宽。由于数字存储示波器的采样密度可以超过重复触发脉冲,因此对连续波形是可行的。但对瞬时脉冲的存储,实时采样速率便成为一个限制因素,这一速率在较快的数字存储示波器中为1~200M/s,时间分辨率为13103~5ns。

由于采样速率的限制,使得数字示波器不能用于较高的频率范围。如果需用10MHZ以上的宽带对瞬时信号做细致观察的话,采用记忆示波器要更好一些。在低于10MHZ时,数字存储示波器有一系列吸引人的方面。其中之一是可以重建一个清晰的存储波形。还可以捕捉并显示预触发波形,这一特征可用来查找那

些导致未知或间断相应的过程。多个波形可被单个或成组调出,取数目取决于存储容量。这种存储能力是非常有用的,可用来对存入的波形和参考波形进行比较,还可以把工作现场取到的波形带到其它地方进行研究。另外,使用者还可以把存储的波形转移到其它设备中做后期处理和分析,还可以把它们存入其它磁性介质中长期保存。屏幕更新速率是数字存储示波器另一个限制因素,它不象模拟示波器那样实时显示波形的变化,在数字存储示波器中,波形的显示被延迟了,被测信号总要经过一段时间才能在屏幕上显示出来。

在数字存储示波器中,还有一个触发间隔问题,为了解决在低速扫描时的触发间隔问题,一些数字存储示波器采用滚动模式,它通过存储器滚动数字化波形,使其连续不断地被显示在屏幕上,它的工作情况很象图表记录器。使用这一方法后触发间隔的影响可以被消除。另外,微弱的噪声在模拟示波器上是显示不出来的,因此观察者将看不到噪声。但是这种噪声信号可以在数字存储示波器上明显地被看到,这是因为任何噪声或颤动都会在采样时被捕捉。

较好的数字存储示波器都带有IEEE——488接口,使示波器可广泛用于自动测量和波形分析。对这种可通过总线编程的示波器,使用专用的仪器控制器或通用的微型计算机可对其面板操作及内部功能进行自动控制。此外,还可把存储在示波器中的波形数据保存在外部存储器中,或进行全面的脉冲参数分析及傅立叶变换。

总之,与通用的模拟示波器相比,数字存储示波器有以下优点:

(1)具有存储触发前信息的功能。用数字存储示波器的预触发功能(负延迟功能)能观测触发前的信号,因而可捕获和显示故障发生前的信号,便于故障检测。(2)长久保存波形,在观察缓慢信号时无闪烁现象。因为数字存储示波器采用了RAM,可以慢速写入,快速读出,所以无闪烁。有的示波器有电池备用,在切断外部电源后仍能保存数据。

(3)数据输出可加至数据采集系统,用快速傅立叶变化进行处理。

(4)可同时将已存储的波形与实时波形同时显示,以便进行比较。

(5)精确度高。数字存储示波器采用光标测量时,能减少输入放大器和示波管线性度的影响,可以获得较高的精确度。

数字存储示波器首先是美国尼科莱特公司于1972年研制成功的,近年来各

国都先后研制出多种规格的这种示波器,为示波器和计算技术的结合创造了良好条件,其发展前途是相当广阔的。

第二章系统整体设计方案

该示波器的设计分为硬件设计和软件设计两部分。示波器的控制核心采用atmel公司生产的avr单片机。由于整个系统控制复杂,所以采用了两片ATmega 单片机。模拟/数字转换芯片采用BB公司的8位高速A/D转换器ADS830E,官方资料给出的采样频率为10kSa/s~60MSa/s,可以满足本设计要求。A/D转换器采集到的数据送至FIFO芯片进行缓存。软件部分采用C语言进行设计,设计环境为A VR Stdio 4。采用的EDA设计工具为Altium Designder 6.0和A VR Stdio 4。

2.1 硬件总体框图

图2.1 系统整体框图

该示波器由6部分电路构成,分别是:

1. 输入程控放大(衰减)电路;

2. 高速AD转换电路;

3. FIFO存储电路;

4. 显示控制电路;

5. 时钟产生电路;

6. 测频与控制电路;

信号从探头输入,进入程控放大(衰减)电路进行放大(衰减),再对被放大(衰减)的信号进行电平调整后送入高速AD转换器对信号进行采样,采样所得的数据存入FIFO存储器中,当FIFO存满后通知MCU2,MCU2从FIFO存储器中读出数据进行处理,将波形显示在LCD模块上。时钟电路为高速AD转换器和FIFO存储器提供从600Hz~60MHz的8种不同的频率信号作为不同水平扫速时的采样时钟频率。从程控放大器输出的信号一路送入AD转换器,另一路送入整形电路对输入信号进行整形,作为测频率的待测信号送入MCU1的16位计数器外部触发引脚T1(PD5),进行频率测量,程控放大器的放大(衰减)倍数和时钟电路的输出频率均由MCU1控制。MCU1将被测信号的频率、程控放大器的放大倍数和时钟电路的输出频率等数据通过SPI总线发送给MCU2,MCU2以这些数据作为频率、水平扫速、灵敏度和峰峰值计算、显示的依据。

2.2 系统实现的原理

2.2.1实时取样

数字存储示波器(DSO)是利用A/D转换器把被测模拟信号变换成数字信号,然后存入RAM中,需要时可将RAM中存储的内容调出,通过相应的D/A转换器再恢复为模拟量显示在示波器屏幕上。示波器每隔一定的时间间隔,由A/D转换器将模拟信号变换成数字信号存储在RAM的过程,称为存储器的写过程,然后再将这些点从存储器中依次取出顺序排列起来,用这些点的包络线重新输入的模拟信号。在数字存储示波器中,每隔一个时钟周期取样一次,它是采用实时取样方式进行的,故能观察单次信号。与取样示波器一样,在观察波形时取样点的密度要足够大,这样显示器才能重现被观察的波形,否则会产生“频谱叠混”效应,使示波器得出错误的测量结果。

2.2.2 A/D转换器介绍

1. AD转换器的分类

下面简要介绍常用的几种类型的基本原理及特点:积分型、逐次逼近型、并行比较型/串并行型、∑-Δ调制型、电容阵列逐次比较型及压频变换型。

1)积分型(如TLC7135)

积分型AD工作原理是将输入电压转换成时间(脉冲宽度信号)或频率(脉冲频率),然后由定时器/计数器获得数字值。其优点是用简单电路就能获得高分辨率,但缺点是由于转换精度依赖于积分时间,因此转换速率极低。初期的单片AD转换器大多采用积分型,现在逐次比较型已逐步成为主流。

2)逐次比较型(如TLC0831)

逐次比较型AD由一个比较器和DA转换器通过逐次比较逻辑构成,从MSB开始,顺序地对每一位将输入电压与内置DA转换器输出进行比较,经n次比较而输出数字值。其电路规模属于中等。其优点是速度较高、功耗低,在低分辩率(<12位)时价格便宜,但高精度(>12位)时价格很高。

3)并行比较型/串并行比较型(如TLC5510)

并行比较型AD采用多个比较器,仅作一次比较而实行转换,又称FLash(快速)型。由于转换速率极高,n位的转换需要2n-1个比较器,因此电路规模也极大,价格也高,只适用于视频AD转换器等速度特别高的领域。

串并行比较型AD结构上介于并行型和逐次比较型之间,最典型的是由2个n/2位的并行型AD转换器配合DA转换器组成,用两次比较实行转换,所以称为Half flash(半快速)型。还有分成三步或多步实现AD转换的叫做分级(Multistep/Subrangling)型AD,而从转换时序角度又可称为流水线(Pipelined)型AD,现代的分级型AD中还加入了对多次转换结果作数字运算而修正特性等功能。这类AD速度比逐次比较型高,电路规模比并行型小。

2. ADS830E介绍

该示波器采用的AD转换器是ADS830E

图 2.2 ADS830E功能图

2.2.3 AVR单片机介绍

1997年,由ATMEL公司挪威设计中心的A先生与V先生利用ATMEL公司的Flash 新技术, 共同研发出RISC精简指令集的高速8位单片机,简称AVR。

1)AVR单片机的优势特征

一、简便易学,费用低廉

首先,对于非专业人员来说,选择AVR单片机的最主要原因,是进入AVR单片机开发的门槛非常低,只要会操作电脑就可以学习AVR单片机的开发。单片机初学者只需一条ISP下载线,把编辑、调试通过的软件程序直接在线写入AVR单片机,即可以开发AVR单片机系列中的各种封装的器件。AVR单片机因此在业界号称“一线打天下”。

其次,AVR单片机便于升级。AVR程序写入是直接在电路板上进行程序修改、烧录等操作,这样便于产品升级。

再次,AVR单片机费用低廉。学习AVR单片机可使用ISP在线下载编程方式(即把PC机上编译好的程序写到单片机的程序存储器中),不需购买仿真器、编程器、擦抹器和芯片适配器等,即可进行所有AVR单片机的开发应用,这可节省很多开发费用。程序存储器擦写可达10000次以上,不会产生报废品。

二、高速、低耗、保密

首先,AVR单片机是高速嵌入式单片机:

1、AVR单片机具有预取指令功能,即在执行一条指令时,预先把下一条指令取进来,使得指令可以在一个时钟周期内执行。

2、多累加器型,数据处理速度快。AVR单片机具有32个通用工作寄存器,相当于有32条立交桥,可以快速通行。

3、中断响应速度快。AVR单片机有多个固定中断向量入口地址,可快速响应中断。

其次,AVR单片机耗能低。对于典型功耗情况,WDT关闭时为100nA,更适用于电池供电的应用设备。有的器件最低1.8 V即可工作。

再次,AVR单片机保密性能好。它具有不可破解的位加密锁Lock Bit技术,保密位单元深藏于芯片内部,无法用电子显微镜看到。

三、I/O口功能强,具有A/D转换等电路

1. AVR单片机的I/O口是真正的I/O口,能正确反映I/O口输入/输出的真实情况。工业级产品,具有大电流(灌电流)10~40 mA,可直接驱动可控硅SCR或继电器,节省了外围驱动器件。

2. AVR单片机内带模拟比较器,I/O口可用作A/D转换,可组成廉价的A/D 转换器。ATmega48/8/16等器件具有8路10位A/D。

3. 部分AVR单片机可组成零外设元件单片机系统,使该类单片机无外加元器件即可工作,简单方便,成本又低。

4. AVR单片机可重设启动复位,以提高单片机工作的可靠性。有看门狗定时器实行安全保护,可防止程序走乱(飞),提高了产品的抗干扰能力。

四、有功能强大的定时器/计数器及通讯接口

定时/计数器T/C有8位和16位,可用作比较器。计数器外部中断和PWM(也可用作D/A)用于控制输出,某些型号的AVR单片机有3~4个PWM,是作电机无级调速的理想器件。

AVR单片机有串行异步通讯UART接口,不占用定时器和SPI同步传输功能,因其具有高速特性,故可以工作在一般标准整数频率下,而波特率可达576K。2)AVR 8-Bit MCU 的最大特点

与其它8-Bit MCU相比,AVR 8-Bit MCU最大的特点是:

2 哈佛结构,具备1MIPS / MHz的高速运行处理能力;

2 超功能精简指令集(RISC),具有32个通用工作寄存器,克服了如8051 MCU采用单一ACC进行处理造成的瓶颈现象;

2 快速的存取寄存器组、单周期指令系统,大大优化了目标代码的大小、执行效率,部分型号FLASH非常大,特别适用于使用高级语言进行开发;

2 作输出时与PIC的HI/LOW相同,可输出40mA(单一输出),作输入时可设置为三态高阻抗输入或带上拉电阻输入,具备10mA-20mA灌电流的能力;

2 片内集成多种频率的RC振荡器、上电自动复位、看门狗、启动延时等功能,外围电路更加简单,系统更加稳定可靠;

2 大部分AVR片上资源丰富:带E2PROM,PWM,RTC,SPI,UART,TWI,IS P,AD,Analog Comparator,WDT等;

2 大部分AVR除了有ISP功能外,还有IAP功能,方便升级或销毁应用程序。

3)AVR单片机的应用区域

目前,AVR已被广泛用于:

·空调控制板

·打印机控制板

·智能电表

2 智能手电筒

2 LED控制屏

2 医疗设备

2 GPS

2.2.4 ATMega8和ATMega32单片机特点

1)该设计采用的控制器为Atmel公司生产的AVR系列单片机。ATMega系列为AVR系列的高端产品。其主要性能描述如下:

? 高性能、低功耗的 8 位AVR? 微处理器

? 先进的RISC 结构

– 131 条指令–大多数指令执行时间为单个时钟周期

– 32个8 位通用工作寄存器

–全静态工作

–工作于16 MHz 时性能高达16 MIPS

–只需两个时钟周期的硬件乘法器

? 非易失性程序和数据存储器

– 32K 字节的系统内可编程Flash

擦写寿命: 10,000 次

–具有独立锁定位的可选Boot 代码区

通过片上Boot 程序实现系统内编程

真正的同时读写操作

– 1024 字节的EEPROM

擦写寿命: 100,000 次

– 2K字节片内SRAM

–可以对锁定位进行编程以实现用户程序的加密

? JTAG 接口( 与IEEE 1149.1 标准兼容)

–符合JTAG 标准的边界扫描功能

–支持扩展的片内调试功能

–通过JTAG 接口实现对Flash、EEPROM、熔丝位和锁定位的编程

? 外设特点

–两个具有独立预分频器和比较器功能的8 位定时器/ 计数器

–一个具有预分频器、比较功能和捕捉功能的16 位定时器/ 计数器

–具有独立振荡器的实时计数器RTC

–四通道PWM

– 8路10 位ADC

8 个单端通道

TQFP 封装的7 个差分通道

2 个具有可编程增益(1x, 10x, 或200x)的差分通道

–面向字节的两线接口

–可编程的串行USART

–可工作于主机/ 从机模式的SPI 串行接口

–具有独立片内振荡器的可编程看门狗定时器

–片内模拟比较器

? 特殊的处理器特点

–上电复位以及可编程的掉电检测

–片内经过标定的RC 振荡器

–片内/ 片外中断源

– 6种睡眠模式: 空闲模式、ADC 噪声抑制模式、省电模式、掉电模式、Stand by 模式以及

扩展的Standby 模式

? I/O 和封装

– 32 个可编程的I/O 口

– 40引脚PDIP 封装, 44 引脚TQFP 封装, 与44 引脚MLF 封装

? 工作电压

– ATmega32L:2.7 - 5.5V

– ATmega32:4.5 - 5.5V

? 速度等级

– ATmega32L:0 - 8 MHz

– ATmega32:0 - 16 MHz

? ATmega32L 在1 MHz, 3V, 25°C 时的功耗

–正常模式: 1.1 mA

–空闲模式: 0.35 mA

–掉电模式: < 1 μA

2)ATmega32 的结构框图

毕业设计(论文)开题报告-简易数字示波器设计

毕业设计(论文)开题报告-简易数字示波器设计西安交通大学XX学院 本科毕业设计(论文)开题报告 题目简易数字示波器设计所在系电气与信息工程学生姓名 XXXXX 专业电子信息工程班级信息XXX学号 XXXXXX3 指导教师 XXXX 教学服务中心制表 年月 本科毕业设计(论文)开题报告 对题目的陈述 1.结合毕业设计(论文)课题情况,根据查阅的文献资料,撰写1000字左右的文献综述: (说明选题意义、国内外研究现状、主要研究内容) 数字示波器是数据采集,A/D转换,软件编程等一系列的技术制造出来的高性能示波器。数字示波器一般支持多级菜单,能提供给用户多种选择,多种分析功能。还有一些示波器可以提供存储,实现对波形的保存和处理。目前高端数字示波器主要依靠美国技术,对于300MHz带宽之内的示波器,目前国内品牌的示波器在性能上已经可以和国外品牌抗衡,且具有明显的性价比优势, 数字示波器自上个世纪七十年代诞生以来,其应用越来越广泛,已成为测试工程师必备的工具之一。21世纪是一个科学和技术都在飞速发展的时代,随着电子技术、计算机技术、通信技术和自动化技术的高速发展,电子测量仪器也有了巨大的发展。数字式示波器就以其存储波形及多种信号分析、计算、处理等优良的性能从而逐步取代模拟示波器。用数字示波器能完成对信号的一次性采集,把波形存储起来,还可以通过移位操作观察波形的任何一部分等等。

数字示波器是随着数字集成电路技术的发展而出现的新型智能化示波器,己经成为电子测量领域的基础测试仪器。随着新技术、新器件的发展,它正在向宽带化、模块化、多功能和网络化的方向发展。数字示波器的优势是可以实现高带宽及强大的分析功能。现在高端数字示波器的实时带宽已达到20GHz,可以广泛应用于各种千兆以太网、光通讯等测试领域。而低端数字示波器几乎可以应用于国民经济各个领域的通用测试,同时可广泛应用于高校及职业学校的教学,为社会培养众多的后备人才。数字示波器的技术基础是数据采集,其设计技术可以应用于更广泛的数据采集产品中,具有深远的意义。 为了巩固大学4年来所学的知识,将课本上的理论知识运用到实际中,我选择了简易数字示波器这个题目作为的大学毕业设计题目。 自从1972年世界上第一台数字示波器问世以来,经历了三个发展阶段。1986年以前为DSO发展的初期阶段,当时的取样率较低,一般不超过50MSa/s,带宽在20MHz以下,结构形式以数字存储加传统模拟示波器二合一的组合式为主,功能少,性能低。主要代表性产品有美国哥德(Gould)公司生产的4035,HP公司生产的HP54200。1986年--1994年,伴随高速ADC和高速RAM的迅速发展,DSO的发展也进入了快车道,取样率达到了4GSa/s,记录长度超过32K。每年各示波器生产厂商都推出新的型号,技术上开始走向成熟。1989年,HP公司率先停止了模拟示波器的生产,专心培育数字示波器市场。到1993年,DSO的销售额就超过了传统模拟示波器,使持续将近半个世纪的模拟示波器市场发生动摇。1995年以后,DSO 在技术上己经成熟,带宽在100MHz以上,DSO已经完全取代了模拟示波器。2004年10月,AGILENT公司推出了具震撼性的DS081304A数字存储示波器,带宽 3GHz,上升时间23ps,最高采样率40GHz。这时,除了继续提高取样率(最高达 40GSa/s)、带宽(达20GHz)和增加记录长度(达16MB)外,DSO制造商开始向100MHz 以下带宽的通用DSO方向发展,并且性价比迅速提高。1996年,AGILENT公司面向

示波器原理及其应用分析解析

示波器原理及其应用 示波器介绍 示波器的作用 示波器属于通用的仪器,任一个硬件工程师都应该了解示波器的工作原理并能够熟练使用示波器,掌握示波器是对每个硬件工程师的基本要求。 示波器是用来显示波形的仪器,显示的是信号电压随时间的变化。因此,示波器可以用来测量信号的频率,周期,信号的上升沿/下降沿,信号的过冲,信号的噪声,信号间的时序关系等等。 在示波器显示屏上,横坐标(X)代表时间,纵坐标(Y)代表电压,(注,如果示波器有测量电流的功能,纵坐标还代表电流。)还有就是比较少被关注的-亮度(Z),在TEK的DPO示波器中,亮度还表示了出现概率(它用16阶灰度来表示出现概率)。 1.1.示波器的分类 示波器一般分为模拟示波器和数字示波器;在很多情况下,模拟示波器和数字示波器都可以用来测试,不过我们一般使用模拟示波器测试那些要求实时显示并且变化很快的信号,或者很复杂的信号。而使用数字示波器来显示周期性相对来说比较强的信号,另外由于是数字信号,数字示波器内置的CPU或者专门的数字信号处理器可以处理分析信号,并可以保存波形等,对分析处理有很大的方便。

1.2.1 模拟示波器 模拟示波器使用电子枪扫描示波器的屏幕,偏转电压使电子束从上到下均匀扫描,将波形显示到屏幕上,它的优点在于实时显示图像。 模拟示波器的原理框图如下: 见上图所示,被测试信号经过垂直系统处理(比如衰减或放大,即我们拧垂直按钮-volts/div),然后送到垂直偏转控制中去。而触发系统会根据触发设置情况,控制产生水平扫描电压(锯齿波),送到水平偏转控制中。 信号到达触发系统,开始或者触发“水平扫描”,水平扫描是一个是锯齿波,使亮点在水平方向扫描。触发水平系统产生一个水平时基,使亮点在一个精确的时间内从屏幕的左边扫描到右边。在快速扫描过程中,将会使亮点的运动看起来

数字示波器基础知识

数字示波器基础知识 耦合 耦合控制机构决定输入信号从示波器前面板上的BNC输入端通到该通道垂直偏转系统其它部分的方式。耦合控制可以有两种设置方式,即DC耦合和AC耦合。 DC耦合方式为信号提供直接的连接通路。因此信号提供直接的连接通路。因此信号的所有分量(AC 和:DC)都会影响示波器的波形显示。 AC耦合方式则在BDC端和衰减器之间串联一个电容。这样,信号的DC分量就被阻断,而信号的低频AC分量也将受阻或大为衰减。示波器的低频截止频率就是示波器显示的信号幅度仅为其直实幅度为71%时的信号频率。示波器的低频截止频率主要决定于其输入耦合电容的数值。 和耦合控制机构有关的另一个功能是输入接地功能。这时,输入信号和衰减器断开并将衰减器输入端连至示波器的地电平。当选择接地时,在屏幕上将会看到一条位于0V电平的直线。这时可以使用位置控制机构来调节这个参考电平或扫描基线的位置。 输入阻抗 多数示波器的输入阻抗为1MΩ和大约25pF相关联。这足以满足多数应用场合的要求,因为它对多数电路的负载效应极小。 有些信号来自50Ω输出阻抗的源。为了准确的测量这些信号并避免发生失真,必须对这些信号进行正确的传送和端接。这时应当使用50Ω特性阻抗的电缆并用50Ω的负载进行端接。某些示波器,如PM3094和PM3394A,内部装有一个50Ω的负载,提供一种用户可选择的功能。为避免误操作,选择此功能时需经再次确认。由于同样的理由,50Ω输入阻抗功能不能和某些探头配合使用。 相加和反向 简单的把两个信号相加起来似乎没有什么实际意义。然百,把两个有关信号之一反向,再将二者相加,实际上就实现了两个信号的相减。这对于消除共模干扰(即交流声),或者进行差分测量都是非常有用的。 从一个系统的输出信号中减去输入信号,再进行适当的比例变换,就可以测出被测系统引起的失真。 由于很多电子系统本身就具有反向的特性,这样只要把示波器的两个输入信号相加就能实现我们所期望的信号相减。 带宽

简易数字存储示波器.DOS

摘要 数字存储示波器是随着数字电路的发展而发展起来的一种具有存储功能的新型示波器。原先人们看好的模拟示波器的一些优点,目前数字示波器已完全能够做到,特别是在捕获非重复信号、避免信号的虚化和闪烁、在时间上从触发事件反问寻迹——实现在电路中隔离故障等方面,数字示波器显示出了模拟示波器无可比拟的优势。因此,数字示波器由于其优势的性能、良好的性能价格化,刚一问世,就显示出它强大的生命力,各行各业均迫切需要,有其广阔的发展前途.。 本简易数字存储示波器,以单片机和可编程逻辑器件(CPLD)为控制核心,由通道调理、触发、波形显示等功能模块组成。本系统对触发系统、水平扫描速度和垂直灵敏度的自动设置功能(AUTOSET)及波形参数测量等功能进行了重点设计。使仪器最后具有单次触发存储显示方式及锁存功能,又可以对某段瞬时波形进行即时存储和连续回放显示。设计中采用了模块化设计方法,并使用了多种EDA工具,提高了设计效率。整个设计实现了存储示波器的所有功能要求,达到较高的性能指标。 关键词:可编程逻辑器件,存储器,转换器,数字存储示波器,单片机

ABSTRACT It is that one developed with development of the digital circuit is new-type oscillograph which stores the function that the figure stores the oscillograph . Original ancestors see some advantages of the good simulation oscillograph , the digital oscillograph can already be accomplished at present, catching and is not repeating the signal, avoiding melting and glimmers specially emptily, reply the mark of seeking from the incident of touching off on time of the signal --Realizing it in isolating the trouble in the circuit etc., the digital oscillograph demonstrates the incomparable advantage of the simulation oscillograph . So digital oscillograph because performance , good performance price of advantage their, just coming out , demonstrated its strong vitality, all trades and professions needed urgently , there is its wide development prospect. . T his simple and easy figure stores the oscillograph, regard one-chip computer and programmable logic device (CPLD ) as the core of controlling, nursed one's health, touched off by the pass-way, the wave form shows, etc. the function module makes up . Such functions as automatic establishment function (AUTOSET ) and wave form parameter that this system scanned the speed and vertical sensitivity in touching off system , level are measured have been designed especially. Make the instrument have single time to touch off and store the display mode and latch the function finally, can store and show with the continuous playback immediately a section of instantaneous wave forms . Have adopt the module design method in the design, has used many kinds of EDA tools, have improved design efficiency. The whole of functions of designing and realizing storing the oscillograph require , reach the higher performance index Keyword: Programmable logic device, the memory , the converter, the figure stores the oscillograph , Micro Computer Unite

毕业论文基于STC单片机虚拟简易示波器的设计

题目:基于STC单片机虚拟简易示波器的设计 目录 1.实验目的及意义 (1) 2. 试验内容及方案论证 (1) 3.系统工作原理 (2) 4.硬件电路设计 (2) 5.系统软件设计 (3) 5.1下位机设计 (3) 5.2 上位机设计 (6) 6.系统调试 (8) 6.1硬件调试 (8) 6.2 软件调试 (8) 6.3 软硬联调 (9) 7.实验结果与误差分析 (9) 8.实验小结及体会 ........................................................................ 错误!未定义书签。参考文献: (11)

1.实验目的及意义 (1)学会利用AT89C5X系列单片机控制AD7862实现模拟的电压的采集; (2)学会利用串口与PC机进行通信将测量数据发送给PC机,在PC机上利用Visual C++ 6.0编写上位机界面,并显示数据与波形; (3)通过应用Altium Designer 6软件掌握电路板的原理图绘制及pcb板的生成; (4)学会利用Keil uVision4软件编写并调试单片机的下位机程序,利用Keil uVision4与wave6000软件结合,对硬件电路采集来的数据进行分析。 2. 试验内容及方案论证 在实际应用中,经常会遇到一些突发信号,需要对其进行高速采集,这种情况下采用高速的A/D自然成为首选。AD7862是AD公司推出的一个高速,低功耗,双12位的A/D转换,单+5V供电,功率为60mW。它包含两个4us的延时的ADC,两个锁存器,一个内部的+2.5V参考电压和一个高速并行输出端口。有四个模拟输入通道,分为两组,由A0选择。每一组通道有两个输入(VA1 & VA2 or VB1 & VB2),它们能同时的被采样和转化,保存相对的信号信息。它可以接受+10v的输入电压范围(AD7862-10),+2.5(AD7862-3)和0-2.5v(AD7862-2)。对模拟电压输入,具有过电保护功能,相对地,允许输入电压到达+17v,+7v,+7v,而不会造成损害,本实验选用AD7862-10。其具有以下主要特点: 1、4通道模拟输入,2路同时转换(内置2个可同时工作的12位集成AD 转换器); 2、4us转换时间,250ksps采样速率; 3、可选模拟量输入±10V(AD7862-10); 4、高速12位并行总线输出; 5、内部提供+2.5V参考电压或者由外部提供参考电压;; 6、单一电源工作。 本实验采用的微处理器是STC89C52RC单片机。STC89C52RC单片机使用方便,它与AT89S52单片机具有相同的内核,内部有256 Bytes片内RAM、8K Flash ROM,支持串口下载,易于在线编程调试,故采用这种单片机来做处理器。

数字示波器及其简单原理图

数字示波器及其简单原理图 数字示波器可以分为数字存储示波器(DSOs)、数字荧光示波器(DPOs)、混合信号示波器(MSOs)和采样示波器。 数字式存储示波器与传统的模拟示波器相比,其利用数字电路和微处理器来增强对信号的处理能力、显示能力以及模拟示波器没有的存储能力。数字示波器的基本工作原理如上图所示当信号通过垂直输入衰减和放大器后,到达模-数转换器(ADC)。ADC 将模拟输入信号的电平转换成数字量,并将其放到存贮器中。存储该值得速度由触发电路和石英晶振时基信号来决定。数字处理器可以在固定的时间间隔内进行离散信号的幅值采样。接下来,数字示波器的微处理器将存储的信号读出并同时对其进行数字信号处理,并将处理过的信号送到数-模转换器(DAC),然后DAC的输出信号去驱动垂直偏转放大器。DAC也需要一个数字信号存储的时钟,并用此驱动水平偏转放大器。与模拟示波器类似的,在垂直放大器和水平放大器两个信号的共同驱动下,完成待测波形的测量结果显示。数字存储示波器显示的是上一次触发后采集的存储在示波器内存中的波形,这种示波器不能实时显示波形信息。其他几种数字示波器的特点,请参考相关书籍。

Agilent DSO-X 2002A 型数字示波器面板介绍

该示波器有两个输入通道CH1和CH2,可同时观测两路输入波形。选择通道1时,示波器仅显示通道1的信号。选择通道2时,示波器仅显示通道2的信号。选择双通道时,示波器同时显示通道1信号和通道2信号。 荧光屏(液晶屏幕)是显示部分。屏上水平方向和垂直方向各有多条刻度线,指示出信号波形的电压和时间之间的关系。 操作面板上的各个按钮按下后,相应参数设置会显示在荧光屏上。 开机后,荧光屏显示如下: 测试信号时,首先要将示波器的地(示波器探笔的黑夹子)与被测电路的地连接在一起。根据输入通道的选择,将示波器探头接触被测点(信号端)。按下Auto Scale,示波器会自动将扫描到的信号显示在荧光屏上。 输入耦合方式:模拟示波器输入耦合方式有三种选择:交流(AC)、地(GND)、直流(DC);部分数字示波器则没有GND耦合这种方式,其通过在屏幕上直接标注零电平线的位置的方法来实现GND耦合(用来确定零电平线)的功能。当选择“地”时,扫描线显示出“示波器地”在荧光屏上的位置。直流耦合用于测定信号直流绝对值和观

简易数字存储示波器

简易数字存储示波器 06204526 程杰

图片预览

一、任务分析 制作一个简易数字存储示波器,其结构框图如下图所示 二、方案论证与比较 1.波形采集模块 波形采集模块采用AD 转换芯片将模拟波形信号转换为数字信号发送给单片机,有如下几种方案: 方案1 采用片外并行AD 芯片,如ADC0809。 优点:使用广泛,参考资料很多。 缺点:并行接口占用单片机口线较多,接线复杂。 方案2 采用单片机内置AD 转换功能,如A VR 、C8051等单片机内置的ADC 优点:集成在单片机内部,不需要额外连线,方便易行。 缺点:片内集成的ADC 速度较低,无法采集频率高的信号,没有独立多路AD , 多通道AD 会降低采样速度。 方案3 采用片外串行高速ADC 芯片如maxim 公司的高速ADC 串行芯片,外加 FPGA 控制采样。 优点:速度块,占用单片机口线少,可以很容易实现MHz 级别的波形采样 缺点:价格昂贵,资料较少。

综合考虑价格和易行性,本系统采用方案2,采用A VR mega64芯片中的内置ADC。2.微处理控制模块 微处理控制模块采用单片机来完整,经济可行: 方案1 采用经典80C51系列单片机 优点:使用广泛,资料丰富 缺点:功能较少,性能较弱 方案2 采用atmel公司的高档8位单片机A VRmega64 优点:高性能,价格相对较低,内置ADC 缺点:上市时间较短,资料少 方案3 采用atmel公司的高档8位单片机A VRmega64控制显示部分,外加一片FPGA控制采样 优点:FPGA采样速度快,单片机控制显示方便,取长补短 缺点:系统较为复杂 由于本人对A VR单片机使用较为熟悉,所以本系统采用方案2,即A VRmega64来完成,其基本性能指标如下: ·先进RISC结构,性能达到1MHz有1MIPS ·64KB Flash程序存储空间 ·4KB SRAM 、4KB EEPROM ·内置I2C、SPI、PWM、ADC等功能 ·支持在线编程ISP功能 3.存储模块 存储模块采用SRAM来存储波形采集模块所采集到的波形,有如下三种方案: 方案1 采用外置一片62256和74HC573作为锁存器,扩展单片机的存储空间优点:外扩空间容量很大 缺点:接线复杂,出现错误不容易排查 方案2 采用A VR 单片机内置4KB RAM,划分出约2KB空姐供存储波形数据,也可以存储数十页的数据。 优点:无须接线,体现了高档单片机RAM大的优势 缺点:空间较少,需要大量存储时仍然不够 方案3 利用FPGA内部的SRAM

数字式小示波器的设计【开题报告】

开题报告 电子信息工程 数字式小示波器的设计 一、综述本课题国内外研究动态,说明选题的依据和意义 在现代电子测量中,示波器作为最常用的仪器之一,被我们广泛的应用于各个领域。众所周知,示波器可以用来观察、测量和记录各种瞬时电压电流,同时还可以通过波形的方式来显示电压电流与时间的关系。从波形中,我们可以知道所测信号的很多特征,包括信号的时间与相应的电压电流值、信号的周期与频率、信号的直流部份和交流部份、是否存在故障部件使信号产生失真、信号的噪声值及噪声随时间变化的情况、多个波形信号的比较等等。通过示波器的直观显示,我们能更加深入的理解被测对象。通常,示波器产生的是一个二维波形,它的Y轴方向上显示的是输入端接收的电压或电流信号,而X轴方向显示的则是它的时间参数。传统的模拟示波器,显示器件采用的是CRT(一种使用阴极射线管的显示器)。工作时,电子管发射的电子束经过加速、聚集后打在荧屏上面,从而发出荧屏光。由于现代计算机技术与微电子技术的不断发展,示波器已开始了从模拟向数字的过渡。同模拟示波器相比,数字示波器具有更多的优点,所以它开始逐步取代模拟示波器的地位,并成为市场上的主流产品。 通常,模拟示波器在非周期性单次瞬变信号的观测方面是比较难以实现的,但数字技术恰恰能够很好地解决这一问题。通过这一技术,我们就能将各种信号无失真地显示并存储。我们都知道,数字示波器是随着模—数转换器(即ADC)发展起来的,并且目前已逐步趋于实用化。由进一步的了解可知,数字示波器主要是利用A/D转换技术和数字存储技术来工作的。它将模拟信号经过A/D实时采样以产生数字信号并在存储器中长期保存。当该数字示波器进行工作时,它先对从探针中输入的模拟信号进行A/D转换,从而得到与输入瞬时值对应的一系列数值,并将这些数值进行存储。而存储后的数值经过处理器复杂的处理运算后,将被用于液晶显示器信源波形的绘制及信源波形各种参数的计算与分析。这就是数字示波器的基本工作原理。 由参考文献可知,我们所要设计的这个系统主要由单片机和液晶显示器两大部份组成[1,2,3]。其中,单片机是为满足工业控制而设计出来的,因此它的实时控制功能特别强,其CPU可以对I/O直接进行操作,位操作能力更是其它计算机不能比的。而且,由于CPU、I/O接口及存储器集成在一块芯片上,各部件之间连接紧凑,因此数据在传输时受到的干扰比较小,且不易受到环境条件的影响,可靠性极高。同时,单片机还具有体积小、价格低等优点,它非同寻常的嵌入式应用特点对于

数字示波器原理及使用

数字示波器的原理及使用 【摘要】示波器就是以直角坐标为参数系,以时间扫描为时基两维地显示物理量——电量瞬时变化的仪器,它不但能观测低频信号(包括单次信号),同时也能观测高频信号与快速脉冲信号 ,并能对其表征的参量进行分析与测量。随着数字集成电路技术的发展而出现的数字存储示波器,不但能对波形进行显示,还能对波形进行存储、分析、计算,并能组成自动测试系统,使之成为了电子测量领域的基础测试仪器之一。 关键词:示波器,信号,数字集成电路,数字存储 【Abstract】Oscilloscope is an instrument that can display electrical signals in rectangular coordinates system based on amplitude and time、It can not only observe the low-frequency signal (including single signal), but also the high-frequency signal and pulse signal, and parameters on the characterization of the analysis and measurement、The digital storage oscilloscope was invented with the development of digital integrated circuit technology, which can not only display the waveform but also can store, analysis, calculate the Parameters of the signal and can form an automatic testing system、The digital storage oscilloscope have become one of the basic testing instrument for electronic measurement 、 Keywords: oscilloscope,signal,digital integrated circuit, digital storage oscilloscope 1、前言 随着数字集成电路技术的发展,数字式示波器的出现以其存储波形及多种信号分析、计算、处理等优良的性能逐步取代模拟示波器。与模拟示波器相比,数字示波器可以实现高带宽及方便地实现对模拟信号波形进行长期存储并能利用机内微处理器系统对存储的信号做进一步的处理,例如对被测波形的频率、幅值、前后沿时间、平均值等参数的自动测量以及多种复杂的处理。 2、数字示波器的基本原理 2、1数字存储示波器的组成原理 典型的数字示波器原理框图如图2、1所示,它分为实时与存储两种工作状态,当其以实时状态工作时,其电路组成原理与模拟示波器相同。当其以存储状态工作时,它的工作过程一般分为存储与显示两个阶段,在存储工作阶段,模拟输入信号先经过适当的放大或衰减,然后经过采样与量化两个过程的数字化处理,将模拟信号转化成数字信号后,在逻辑控制电路的控制下将数字信号写入到存储器中。量化过程就就是将采样获得的离散值通过 A/D转换器转换成二进制数字。采样,量化及写入过程都就是在同一时钟频率下进行的。在显示工作阶段,将数字信号从存储器中读出来,并经D/A转换器转换成模拟信号,经垂直放大器放大加到CRT 的Y偏转板。与此同时,CPU的读地址计数脉冲加之D/A转换器,得到一个阶梯波的扫描电压,加到水平放大器放大,驱动CRT的X偏转板,从而实现在CRT上以稠密的光点包络重现模拟信号。

电子类毕业设计方案经典题目集

本工作室承接电子类毕业设计论文一条龙服务!!!电子毕业设计:945701216 1.基于labVIEW虚拟滤波器的设计与实现 2.双闭环直流调速系统设计 3.单片机脉搏测量仪 4.单片机控制的全自动洗衣机毕业设计论文 5.FPGA电梯控制的设计与实现 6.恒温箱单片机控制 7.基于单片机的数字电压表 8.单片机控制步进电机毕业设计论文 9.函数信号发生器设计论文 10.110KV变电所一次系统设计 11.报警门铃设计论文 12.51单片机交通灯控制 13.单片机温度控制系统 14.CDMA通信系统中的接入信道部分进行仿真与分析 15.仓库温湿度的监测系统 16.基于单片机的电子密码锁 17.单片机控制交通灯系统设计 18.基于DSP的IIR数字低通滤波器的设计与实现 19.智能抢答器设计

20.基于LabVIEW的PC机与单片机串口通信 21.DSP设计的IIR数字高通滤波器 22.单片机数字钟设计 23.自动起闭光控窗帘毕业设计论文 24.三容液位远程测控系统毕业论文 25.基于Matlab的PWM波形仿真与分析 26.集成功率放大电路的设计 27.波形发生器、频率计和数字电压表设计 28.水位遥测自控系统毕业论文 29.宽带视频放大电路的设计毕业设计 30.简易数字存储示波器设计毕业论文 31.球赛计时计分器毕业设计论文 32.IIR数字滤波器的设计毕业论文 33.PC机与单片机串行通信毕业论文 34.基于CPLD的低频信号发生器设计毕业论文 35.110kV变电站电气主接线设计 36.m序列在扩频通信中的应用 37.正弦信号发生器 38.红外报警器设计与实现 39.开关稳压电源设计 40.基于MCS51单片机温度控制毕业设计论文 41.步进电动机竹竿舞健身娱乐器材

数字存储示波器的工作原理及软硬件系统的设计

数字存储示波器的工作原理及软硬件系统的设计 与传统模拟示波器相比.数字存储示波器不仅具有可存储波形、体积小、功耗低,使用方便等优点,而且还具有强大的信号实时处理分析功能。在电子测量领域,数字存储示波器正在逐渐取代模拟示波器。但目前我国使用高性能数字存储示波器主要依靠国外产品,而且价格昂贵。因此研究数字存储示波器具有重要价值。借于此,提出了一种简易数字存储示波器的设计方案,经测试,性能优良。 2 数字存储示波器基本工作原理 数字存储示波器与模拟示波器不同在于信号进入示波器后立刻通过高速A/D转换器将模拟信号前端快速采样,存储其数字化信号。并利用数字信号处理技术对所存储的数据进行实时快速处理,得到信号的波形及其参数,并由示波器显示,从而实现模拟示波器功能,而且测量精度高。还可存储信号,因而,数字存储示波器可以存储和调用显示特定时刻信号。 3 系统分析论证 3.1 A/D实时采样 根据奈奎斯特采样定理,采样速率必须高于2倍的信号最高频率分量。对于正弦信号,一周期内应有2个采样点。为了不失真恢复被测信号,通常一周期内需要采样8个点以上。为了配合高速模数转换器,采用FPGA控制M/D转换器的采样速率,以实现高速实时采样。实时采样可以实现整个频段的全速采样,本系统设计选用ADI公司的12位高速A/D 转换器AD9220,其最高采样速率可达10 MHz。 3.2 双踪显示 本系统设计的双踪显示模块是以高速切换模拟开关选通两路信号进入采样电路,两路波形存储在同一个存储器的奇、偶地址位。双踪显示时,先扫描奇地址数据位,再扫描偶地址数据位。采用模拟开关代替一个模数转换器,避免两片高速A/D转换器相互干扰,降低系统调试难度,并且实现系统功能。 3.3 触发方式

简易数字存储示波器研究

简易数字存储示波器研究 基于MCU8051和FPGA的控制平台,采用实时采样与等效采样两种方式实现了时频率为10Hz-10MHz的波形数据的实时采样,存储与回放。做到垂直灵敏度含1v/div,0.1v/div和2my/div三档,扫描速度合20ms/div,2uv/div,100ns/div 三档。系统的频率测量精度达0.001Hz,电压测量精度达0.05V。自带100KHz 方波信号为系统测频时钟与电压基准源的进行自动校准,此外,还实现了对波形数据的单次触发存储与调出功能和AUTO显示功能。 标签:数字存储;示波器;等效采样;实时采样 1引言 数字存储示波器是20世纪70年代初发展起来的一种新型示波器。这种类型的示波器可以方便地实现对模拟信号波形进行长期存储并能利用机内微处理器系统对存储的信号做进一步的处理,例如对被测波形的频率、幅值、前后沿时间、平均值等参数的自动测量以及多种复杂的处理。数字存储示波器的出现使传统示波器的功能发生了重大变革。 2数字存储示波器基本工作原理 数字存储示波器在信号进入示波器后立刻通过高速A/D转换器将模拟信号快速采样、存储。通过单片机对信号进行处理,得到信号的波形参数,存储并通过D/A转换器后可由示波器显示,从而实现模拟示波器的功能。但相对于模拟示波器,数字示波器测量精度高,还可对信号进行存储。本系统的原理方框图如图1所示: 3系统功能模块与硬件电路 基于数字示波器的基本原理,可以把整个系统分为频率测量、采样保持、触发方式选择、位置调节、显示控制几个主要的模块。模拟信号通过信号调理模块(阻抗变换、程控放大、触发电路),将模拟信号的幅值大小调整到高速AD(AD9225)的输入范围0V-4V。然后通过AD9225对信号进性采样。我们采用外部有源晶振作为高速AD的采样时钟来控制恒定的采样率4MHz(晶振的固有振荡频率),在FPGA内部增加波形存储控制模块,当满足触发条件时FP-GA以下抽样的方式对AD转换得到的数据进行存储,抽样频率由可水平分辩率来控制(若为AUTO功能,则与信号的频率有关)。将抽样的数据分别存储到双口RAM中,在送人行列扫描电路(2片DAC0800)前经过了波形显示控制模块,它的作用是对RAM的数据及读入起始地址的进行处理。从而实现波形在模拟示波器上的左右平移。同时在FPGA内部实现了512点的FFT计算,成功得分析了输入信号的频谱。系统的连接框图如图2所示:

毕业设计论文——数字示波器

常州信息职业技术学院 学生毕业设计(论文)报告 系别:电子与电气工程学院 专业:微电子技术 班号:微071 学生姓名:俞斌 学生学号:0706033136 设计(论文)题目:数字示波器 指导教师:刘明建 设计地点:常州信息职业技术学院起迄日期:2009.8.1~2009.8.22

毕业设计(论文)任务书 专业微电子班级微071姓名俞斌 一、课题名称:数字示波器 二、主要技术指标:1:带宽:1GHZ 2:抽样率:5GS 3:记录长度:15KPts 4:垂直分辨率8bit 5:垂直精度±105% 6:带限20250MHZ 三、工作内容和要求:本设计的设计方案大致可分为几个步骤:首先我们要先了解数字示 波器是什么东西其次就是我们要了解数字示波器的一些数据和作用还有特点。然后我们才能 来设计数字示波器的方案,大致列出数字示波器的的内容和所要设计的内容,搜索资料更多 的了解数字示波器会对写设计有帮助,根据列表一步步完成设计。 要求:认真有耐性,要对每一个设计方案的步骤要熟悉,条理要分明清晰。要进行多次修改 争取做到最完善。 \ 四、主要参考文献[1] 全国大学生电子设计竞赛组委会.全国大学生电子设计竞赛获奖作品 选编[M].北京:北京理工大学出版社.2007. [2] 黄智伟.全国大学生电子设计竞赛电路设计[M].北京:北京航空航天 大学出版社 2006. [3] 雷志勇.江建尧.数字存贮示波器的随机采样原理.

学生(签名)俞斌2009年6 月26 日指导教师(签名)刘明建2009年6 月26 日教研室主任(签名)2009年6 月27 日系主任(签名)2009年6 月28 日 毕业设计(论文)开题报告

数字存储示波器的使用

数字存储示波器的使用

实验二数字存储示波器的使用 加灰色底纹部分是预习报告必写部分 示波器是一种常用的电子仪器,主要用于观察和测量各种电信号。配合各种传感器把非电量转换成电量,示波器也可以用来观察各种非电量的变化过程。示波器有多种类型和型号,但它们基本原理是相同的。本实验是用双信号发生器的输出信号在示波器中合成李萨如图形。 [实验目的] 1.了解示波器的主要结构和显示波形的基本原理。 2.学会使用函数信号发生器。 3.学会用示波器观察波形以及测量电压、周期和频率等。 4、理解李萨如图形合成原理及方法。 [实验仪器] DS1052E型数字存储示波器、DG1022双通道函数/任意波形发生器、连接线(2根) 【示波管的简单介绍】

示波管如图1所示 示波管包括有: (1)一个电子枪,它发射电子,把电子加速到一定速度,并聚焦成电子束; (2)一个由两对金属板组成的偏转系统;(3)一个在管子末端的荧光屏,用来显示电子束的轰击点。 所有部件全都密封在一个抽成真空的玻璃外壳里,目的是为了避免电子与气体分子碰撞而引起电子束散射。接通电源后,灯丝发热,阴极发射电子。栅极加上相对于阴极的负电压,它有两个作用:①一方面调节栅极电压的大小控制阴极发射电子的强度,所以栅极也叫控制极;②另一方面栅极电压和第一阳极电压构成一定的空间电位分布,使得由阴极发射的电子束在栅极附近形成一个交叉点。第一阳极和第二阳极的作用一方面构成聚焦电场,使得经过第一交叉点又发散了的电子在聚焦场作用下又会聚起来;另一方面使电子加速,电子以高速打在荧光屏上,屏上

③数字滤波的频率上线 MATH 为系统的数学运算界面 REF 为导入导出已保存的文件菜单或保存文件,但不存储X-Y方式的波形 设置水平系统HORIZONTAL(MENU、POSITION(水平位置) SCALE(水平范围) MENU ①延迟扫描:用来放大一段波形,以便查看图形细节②时基:Y-T、X-Y(水平轴上显示通道1电压,垂直轴上显示通道2电压)、Roll③采样率:显示系统采样率 设置触发系统TRIGGER(LEVEL、MENU、50%、FORCE) MENU中的触发模式有边沿触发、脉宽触发、斜率触发、视频触发、交替触发(稳定触发双通道不同步信号,此触发模式下,不能产生X-Y波形,且交替触发菜单中触发类型为视频触发时它的同步分为:所有行、指定行、奇数场、偶数场)。触发方式:自动、普通、单次,如在自动下无法稳定两波形,可选择单次稳定波形。触发设置:灵敏度、触发抑制:设置重新启动触发电路的时间间隔,时间范围为:500ns-1.5s、

数字存储示波器的设计【开题报告】

毕业设计(论文)开题报告 题目:数字存储示波器的设计 专业:电子信息工程 一选题的背景、意义: 示波器是一种在显示屏幕上直观地显示被测信号波形的测量仪器,除了可以直接测量电信号外,通过传感器的转换,示波器也能测量非电量的信号。1931年,在美国通用无线电公司研制出第一台模拟示波器。1972年,出现了具有数字存储功能的新型智能化示波器:数字存储示波器。数字存储示波器是随着数字集成电路技术的发展而出现的采用模数转换和数字存储技术的新型数字化、智能化示波器,由于具有自动刻度、预触发、容易实现高带宽、波形及设置存储、程序控制和自动测量等先进功能,正迅速全面替代模拟示波器,成为电子工程师的有力助手[2]。 数字存储示波器,是对被观测的电子信号进行波形采集、显示、测量、存储及分析的仪器。波形采集与显示是数字存储示波器作为示波仪器的基本功能,测量、存储及分析是数字存储示波器作为数字化仪器的智能功能。 根据采样技术的不同,数字存储示波器可以分为三类:顺序采样示波器、随即采样示波器、实时采样示波器。 数字存储示波器是随着数字集成电路技术的发展而出现的新型智能化示波器,已经成为电子测量领域的基础测试仪器。随着新技术、新器件的发展,它正在向宽带化、模块化、多功能和网络化的方向发展。数字存储示波器的优势是可以实现高带宽及强大的分析功能。现在高端数字存储示波器的实时带宽已达到20GHZ,可以广泛应用于各种千兆以太网、光通讯等测试领域。而低端数字存储示波器几乎可以应用于国民经济各个领域的通用测试,同时可广泛应用于高校及职业学校的教学,为社会培养众多的后备人才。数字存储示波器的技术基础是数据采集,其设计技术可以应用于更广泛的数据采集产品中,具有深远的意义。 二相关研究的最新成果及动态: 1)国外的研究概况 自从1972年世界上第一台数字存储示波器(DSO,又称数字示波器)问世以来,经历了三个发展阶段。

(整理)数字存储示波器的原理及使用

数字存储示波器的原理及使用 示波器是一种用途十分广泛的电子测量仪器。它能把肉眼看不见的电信号变换成看得见的图象,便于人们研究各种电现象的变化过程。目前大量使用的示波器有两种:模拟示波器和数字示波器。模拟示波器发展较早,技术也非常成熟,其优点主要是带宽宽、成本低。但是随着数字技术的飞速发展,数字示波器拥有了许多模拟示波器不具备的优点:不仅具有可存储波形、体积小、功耗低,使用方便等优点,而且还具有强大的信号实时处理分析功能;具有输入输出功能,可以与计算机或其他外设相连实现更复杂的数据运算或分析。随着相关技术的进一步发展,数字示波器的频率范围也越来越高了,其使用范围将更为广泛因此,学习数字示波器的使用具有重要的意义。 实验目的 1. 了解数字示波器的工作原理; 2. 掌握数字示波器的使用方法; 3. 会用数字示波器测量未知信号的参数。 实验原理 数字存储示波器与模拟示波器不同在于信号进入示波器后立刻通过高速A/D转换器将模拟信号前端快速采样,存储其数字化信号。并利用数字信号处理技术对所存储的数据进行实时快速处理,得到信号的波形及其参数,并由示波器显示,从而实现模拟示波器功能。而且测量精度高,还可以存储和调用显示特定时刻信号。 一个典型的数字存储示波器原理框图如图1所示,模拟输入信号先适当地放大或衰减,然后再进行数字化处理。数字化包括“取样”和“量化”两个过程,取样是获得模拟输入信号的离散值,而量化则是使每个取样的离散值经A/D转换成二进制数字,最后,数字化的信号在逻辑控制电路的控制下依次写入到RAM(存储器)中,CPU从存储器中依次把数字信号读出并在显示屏上显示相应的信号波形。GPIB为通用接口总线系统,通过它可以程控数字存储示波器的工作状态,并且使内部存储器和外部存储器交换数据成为可能。 由此可见,数字示波器必须要完成波形的取样、存储和波形的显示,另外为了满足一般应用的需求,几乎所有微机化的数字示波器都提供了波形的测量与处理功能。 1. 波形的取样和存储 由于数字系统只能处理离散信号,所以必须对模拟连续波形先进行抽样,再进行A/D 转换。根据Nyquist定理,只有抽样频率大于要处理信号频率的两倍时,才能在显示端理想地复现该信号。 由此可见,数字示波器必须要完成波形的取样、存储和波形的显示,另外为了满足一般应用的需求,几乎所有微机化的数字示波器都提供了波形的测量与处理功能。

电子设计大赛简易数字存储示波器报告

简易数字存储示波器 (2011年全国电子设计大赛) 设计任务及要求: 1、设计并制作一台用普通示波器显示被测波形的简易数字存储示波器,示意图如下: 2、基本要求 (1)要求仪器具有单次触发存储显示方式,即每按动一次“单次触发”键,仪器在满足触发条件时,能对被测周期信号或单次非周期信号进行一次采集与存储,然后连续显示。 (2)要求仪器的输入阻抗大于100kΩ,垂直分辨率为32级/div,水平分辨率为20点/div;设示波器显示屏水平刻度为10div,垂直刻度为8div。 (3)要求设置0.2s/div、0.2ms/div、20μs/div三档扫描速度,仪器的频率范围为DC~50kHz,误差≤5%。 (4)要求设置0.1V/div、1V/div二档垂直灵敏度,误差≤5%。

(5)仪器的触发电路用内触发,要求上升沿触发、触发电平可调。(6)观测波形无明显失真。 3、发挥部分(1)增加连续触发存储显示方式,在这种方式下,仪器能连续对信号进行采集、存储并实时显示,且具有锁存(按“锁存”键即可存储当前波形)功能。 (2)增加双踪示波功能,能同时显示两路被测信号波形。 (3)增加水平移动扩展显示功能,要求存储深度增加一倍,并且能通过操作“移动”键显示被存储信号波形的任一部分。 (4)垂直灵敏度增加0.01V/div档,以提高仪器的垂直灵敏度,并尽力减小输入短路时的输出噪声电压。 方案选择及设计理念: 数字存储示波器系统由信号调理电路、采样保持电路、触发电路、A/D、D/A、X输出电路、Y输出电路、控制处理器等组成。下图所示为数字存储示波器的原理框图。每隔一端时间对输入的模拟信号进行采样然后经过A/D转换,把这些数字化后的信息按一定的顺序存入RAM中,当采样频率走高时,就可以实现信号的不失真存储。当需要观察这些信息时,只要以合适的频率把这些信息从存储器RAM中按原顺序取出,经D/A转化和LPF滤波后送至示波器就可以观察到稳定的还原后的波形。

相关文档
最新文档