多环芳烃和非笨芳烃

多环芳烃和非笨芳烃

第七章多环芳烃和非苯芳烃

习题

六、茚(C9H8)是存在于煤焦油化合物中的芳香烃,能迅速使Br/CCl4和KMnO4溶液褪色;茚如果只吸收1摩尔H2,则生成茚满(C9H10);茚如果剧烈氢化,则生成分子式为C9H16的化合物;茚经剧烈氧化生成邻苯二甲酸。试推出茚的结构,并写出有关反应式。

七、某芳烃A(C12H10)经完全氢化后,生成化合物B(C12H20);若A剧烈氧化,则得到1,8-萘二甲酸。写出A、B的结构式及有关反应式。

八、合成题

1以苯和甲苯为原料合成

2以萘为原料合成。

COOH

COOH

Br

Br

OH

OH

4

COOH COOH

A B C

COOH COOH

-CO2

A

B

C

Br

NO2

CH2Cl

CH3

3

CH2

非苯芳烃及芳香性判据

非苯芳烃及芳香性判据 教学目标:了解非苯芳烃的结构特征及性质,掌握芳香性判据即休克尔(Hückel)规则。{插入化学家小传} 教学重点:休克尔规则判断化合物或离子是否具有芳香性 教学安排:G >G12;30min 1— 基本概念:芳香性:环状闭合共轭体系,π电子高度离域,具有离域能,体系能量低,较稳定。在化学性质上表现为易进行亲电取代反应,不易进行加成反应和氧化反应,这种物理、化学性质称为芳香性。 一、芳香性判据——休克尔规则 是不是具有芳香性的化合物一定要含有苯环?德国化学家休克尔而从分子轨道理论的角度,对环状化合物的芳香性提出了如下的规则,即休克尔规则:一个单环化合物只要具有平面离域体系,它的π 电子数为4n+2(n=0,1,3,…整数),就有芳香性(当n>7 时,有例外)。其中n相当于简并的成键轨道和非键轨道的组数(如图)。苯有六个π 电子,符合4n+2 规则,六个碳原子在同一平面内,故苯有芳香性。而环丁二烯、环辛四烯的π 电子数不符合4n+2 规则,故无芳香性。 凡符合休克尔规则,具有芳香性。不含苯环的具有芳香性的烃类化合物称作非苯芳烃,非苯芳烃包括一些环多烯和芳香离子等。 二、轮烯 环多烯烃(通式C n H n)又称作轮烯(也有人把n≥10 的环多烯烃称为轮烯)。环丁烯、

苯、环辛四烯和环十八碳九烯分别称[4]轮烯、[6]轮烯、[8]轮烯和[18]轮烯。它们是否具有芳香性,可按休克尔规则判断,首先看环上的碳原子是否均处于一个平面内,其次看π 电子数是否符合4n+2。[18]轮烯环上碳原子基本上在一个平面内,π 电子数为4n+2(n=4),因此具有芳香性。又如[10]轮烯,π 电子数符合4n+2(n=2),但由于环内两个氢原子的空间位阻,使环上碳原子不能在一个平面内,故无芳香性。 非苯芳烃及芳香性判据 三、芳香离子 某些烃无芳香性,但转变成离子后,则有可能显示芳香性。如环戊二烯无芳香性,但形成负离子后,不仅组成环的5 个碳原子在同一个平面上,且有6 个π 电子(n=1),故有芳香性。与此相似,环辛四烯的两价负离子也具有芳香性。因为形成负离子后,原来的碳环由盆形转变成了平面正八边形,且有10 个π 电子(n=2),故有芳香性。 环戊二烯负离子 其它某些离子也具有芳香性,例如,环丙烯正离子(Ⅰ),环丁二烯两价正离子(Ⅱ)和两价负离子(Ⅲ),环庚三烯正离子(Ⅳ)。因为它们都具有平面结构,且π 电子数分别位2,2,6,6,符合4n+2(n 分别位0,0,1,1)。 具有芳香性的离子也属于非苯芳烃。 四、稠环体系 与苯相似,萘、蒽、菲等稠环芳烃,由于它们的成环碳原子都在同一个平面上,且π 电子数分别为10 和14,符合Hückel 规则,具有芳香性。虽然萘、蒽、菲是稠环芳烃,但构成环的碳原子都处在最外层的环上,可看成是单环共轭多烯,故可用Hückel 规则来判断其芳香性。 与萘、蒽、等稠环芳烃相似,对于非苯系的稠环化合物,如果考虑其成环原子的外围π 电子,也可用Hückel 规则判断其芳香性。例如,薁(蓝烃)是由一个五元环和一个七元环稠合而成的,其成环原子的外围π 电子有10 个,相当于[10]轮烯,符合Hückel 规则(n=2),

第七章多环芳烃和非苯芳烃

第七章多环芳烃和非苯芳烃 一、 写出下列化合物的构造式。 1、α-萘磺酸 2、 β-萘胺 3、β-蒽醌磺酸 SO 3H NH 2 C C O O SO 3H 4、9-溴菲 5、三苯甲烷 6、联苯胺 Br CH NH 2 二、 命名下列化合物。 1. 2. C C O 3. SO 3H NO 2 4. CH 2 5. 6. CH 3 CH 3 OH NO 2 二苯甲烷 对联三苯 1,7-二甲基萘 三、 推测下列各化合物发生一元硝化的主要产物。 SO 3H SO 3H 1. HNO 3H 2SO 4 O 2N SO 3H NO 2 + 2. CH 3 H 2SO 4 HNO CH 3 NO 2

3. OCH 3H 2SO 4 NO 2 OCH 4. CN CN NO 2 3H 2SO 4 NO 2 CN 四、 回答下列问题: 1,环丁烯只在较低温度下才能生成,高于350K 即(如分子间发生双烯合成)转变为二聚体 , 已知它的衍生物二苯基环丁二烯,有三种异构体。上述现象说明什么?写出二苯环丁烯三种异构体的构造式。 解:环丁二烯π-电子为四个,具有反芳香性,很不稳定,电子云不离域。三种二苯基环丁二烯结构如下: Ph Ph Ph Ph Ph Ph 2,1,3,5,7-环辛四烯能使高锰酸钾水溶液迅速褪色,和溴的四氯化碳溶液作用得到C 8H 8Br 8。 (a 这两个共振结构式表示? 解:不可以,因为1,3,5,7-辛环四烯不具有离域键,不能用共振结构式表示。 (c ),用金属钾和环辛四烯作用即得到一个稳定的化合物2K +C 8H 8(环辛四烯二负离子),这种盐的形成说明了什么?预期环辛四烯二负离子将具有怎样的结构? 解:环辛四烯二负离子具有芳香性,热力学稳定,其结构为:

第七章 多环芳烃

第七章 多环芳烃 1、 联苯及其衍生物 2、 稠环芳烃:萘、蒽、菲及其衍生物的结构和化学性质 1、 芳香体系与休克尔规则 基本要求: 1.熟练掌握稠环芳烃萘蒽等衍生物的命名。 2.熟练掌握萘的化学性质及萘环上亲电取代产物的定位规律。 3.掌握H ückel 规则,理解芳香性的概念,能应用H ückel 规则判断环状化合物的芳香性。 分子中含有多个苯环的烃称作多环芳烃。多环芳烃可分如下三种: 联苯和联多苯类:这类多环芳烃分子中有两个或两个以上的苯环直接以单键相联结。 稠环芳烃:这类多环芳烃分子中有两个或两个以上的苯环以共用两个碳原子的方式相互稠合。 多苯代脂肪类:这类多环芳烃可看作是脂肪烃中两个或两个以上的氢原子被苯基取代。 7.1联苯及其衍生物 联苯是两个苯环通过单键直接连接起来的二环芳烃。 其结构为: 联苯为无色晶体,熔点70℃,沸点254℃。不溶于水而溶于有机溶剂。因其沸点高和具有很好的热稳定性,所以工业上常用它作热传导介质(热载体)。 联苯的化学性质与苯相似,在两个苯环上均可发生磺化、硝化等取代反应。联苯环上碳原子的位置采用下列所示的编号来表示: 联苯可看作是苯的一个氢原子被苯基取代,而苯基是邻对位定位基,所以,当联苯发生取代反应时,取代基进入苯的对邻位和对位。但由于邻位上的空间位阻较大,主要生成对位产物。 7.2稠环芳烃 有多个苯环共用两个或多个碳原子稠合而成的芳烃称为稠环芳烃。简单的稠环芳烃如萘、蒽、菲等。稠环芳烃最重要的是萘。 7.2.1萘(naphthalene) 萘的结构:平面结构,所有的碳原子都是sp 2杂化的,是大π键体系。 分子中十个碳原子不是等同的,为了区别,对其编号如下: 萘的一元取代物只有两种,二元取代物两取代基相同时有10种,不同时有14种。 萘的物理性质:萘是白色晶体,熔点80.5℃,沸点218℃,有特殊气味,易升华,不溶于水,易溶于热的气醇及乙醚,常用作防柱剂。萘在染料合成中应用很广,大部分用于制造邻苯二甲酸酐。 12345678109αβααα βββ1、4、5、8位又称为 位αβ2、3、6、7位又称为 位电荷密度αβ>

芳香烃的化学性质

芳香烃的化学性质(一) 一、苯的稳定性和加成反应 比较苯与环己烯的分子式可知,苯比环己烯少四个氢原子,这相当于增加了两个碳碳双键,或者可以说:苯的不饱和度与环己三烯相当。但1,3-环己二烯失去两个氢变成苯时,不但不吸热,反而放出少量的热,这说明:苯比相应于环己三烯的化合物要稳定得多,从1,3-环己二烯变成苯时,分子结构已发生了根本的变化,并导致了一个稳定体系的产生。 因此,尽管苯的 C/H比值等于或大于不饱和烃的 C/H比值,但苯的不饱和性质却很不显著,譬如烯、炔在室温下能迅速与溴、硫酸等亲电试剂发生加成反应,而苯和溴、硫酸等不发生加成反应,在升温和催化剂作用下却很易发生卤化、硝化、磺化、烷基化、酰基化等取代反应。在特殊情况下,苯也能发生加成反应,但奇特的是在发生加成反应时,一般总是三个双键同时发生反应,生成一个环己烷的体系,只在个别情况下,一个双键或两个双键可以单独发生反应。如苯和氯在阳光下反应,就生成六氯代环己烷: 催化加氢也是类似的,一步生成环己烷: 苯的稳定性和加成反应 比较苯与环己烯的分子式可知,苯比环己烯少四个氢原子,这相当于增加了两个碳碳双键,或者可以说:苯的不饱和度与环己三烯相当。但1,3-环己二烯失去两个氢变成

苯时,不但不吸热,反而放出少量的热,这说明:苯比相应于环己三烯的化合物要稳定得多,从1,3-环己二烯变成苯时,分子结构已发生了根本的变化,并导致了一个稳定体系的产生。 因此,尽管苯的 C/H比值等于或大于不饱和烃的 C/H比值,但苯的不饱和性质却很不显著,譬如烯、炔在室温下能迅速与溴、硫酸等亲电试剂发生加成反应,而苯和溴、硫酸等不发生加成反应,在升温和催化剂作用下却很易发生卤化、硝化、磺化、烷基化、酰基化等取代反应。在特殊情况下,苯也能发生加成反应,但奇特的是在发生加成反应时,一般总是三个双键同时发生反应,生成一个环己烷的体系,只在个别情况下,一个双键或两个双键可以单独发生反应。如苯和氯在阳光下反应,就生成六氯代环己烷: 催化加氢也是类似的,一步生成环己烷: 二、苯及其同系物的氧化 烯、炔在室温下可迅速地被高锰酸钾氧化,但苯即使在高温下与高锰酸钾、铬酸等强氧化剂同煮,也不会被氧化。只有在五氧化二钒的催化作用下,苯才能在高温被氧化成顺丁烯二酸酐。

16种常见多环芳烃的物理性质

16种常见多环芳烃的 物理性质 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

萘英文名称NAP Naphthalene分子量 128.18 物理性质;密度1.162 熔点80.5℃,沸点217.9℃,凝固点,80.5℃,闪点78.89℃,折射率1.58212(100℃)恒压燃烧热:40264.1J/g(标准大气压,298.15K)恒压燃烧热:40205J/g(标准大气压,298.15K)。不溶于水,溶于乙醇和乙醚等。易挥发,易升华溶于乙醇后,将其滴入水中,会出现白色浑浊。化学性质(1)萘的氧化温和氧化剂得醌,强烈氧化剂得酸酐。萘环比侧链更易氧化,所以不能用侧链氧化法制萘甲酸。电子云密度高的环易被氧化。(2)萘的还原(3)萘的加成(4)萘的亲电取代反应萘的a-位比b-位更易发生亲电取代反应。a-位取代两个共振式都有完整的苯环。b-位取代只有一个共振式有完整的苯环。在萘环上主要发生亲电取代,同苯环一样,但活性比苯环强从中间对称的两个C旁边的C开始标,其中1,4,5,8号碳活性完全一样(称为阿尔法碳),2,3,6,7号碳性质完全一样(称为贝塔碳)。一般情况下,阿尔法碳活性大于贝塔碳,取代基在阿尔法位上,这是由动力学控制,温度较高时,阿尔法碳[1]上取代基会转移到贝塔碳上。但在萘的弗瑞德-克来福特酰基化反应,不加热却生成了阿尔法位和贝塔位的混合物。如用硝基甲烷为溶剂,则主要生成贝塔酰化产物。 苊烯ANY Acenaphthylene 分子量:152.200 性质:黄色棱柱状或板状结晶。熔点92-93℃,沸点265-275℃(部分分解),156-160℃(3.73千帕),相对密度0.8988(16/2℃),易溶于乙醇、甲醇、丙醇、乙醚、石油醚、苯,不溶于水。能在强酸中聚合。 苊ANA Acenaphthene 英文别名:1,8-Ethylenenaphthalene 分子量:154.21性状描述:白色或略带黄色斜方针状结晶。物理参数:密 度:1.0242(99/4°C) 熔点:96.2°C 沸点:279°C 闪点:125°C 折射率:1.6048(95°C) 芴FLU Fluorene分子量:166.22 性状描述:白色叶状至小片状结晶物理参数:密度:1.202 g/mL 熔点:116-117°C 沸点:295°C 闪点:151°C

环境污染物的来源和性质

环境污染物的来源和性质 环境污染物是指进入环境后使环境的正常组成和性质发生直接或间接有害于人类的变化的物质。大部分环境污染物是由人类的生产和生活活动产生的。有些物质原本是生产中的有用物质,甚至是人和生物必需的营养元素,由于未充分利用而大量排放,不仅造成资源上的浪费,而且可能成为环境污染物。一些污染物进入环境后,通过物理或化学反应或在生物作用下会转变成危害更大的新污染物,也可能降解成无害物质。不同污染物同时存在时,可因拮抗或协同作用使毒性降低或增大。 环境污染物是环境监测研究的对象。 1.污染物的化学类别 对环境产生危害的化学污染物可分为九类,具体介绍如下。 (1)元素包括铅、镉、铬、汞、砷等重金属元素和准金属、卤素、氧(臭氧)、黄磷等。 (2)无机物包括氰化物、一氧化碳、氮氧化物、卤化氢、卤素化合物(如ClF、BrF3、IF5、BrCl、IBr等)、次氯酸及其盐硅的无机化合物(如石棉)、磷的无机化合物(如PH3、PX3、PX5)、硫的无机化合物(如H2S、SO2、H2SO3、H2SO4)等。 (3)有机烃化合物包括烷烃、不饱和烃、芳烃、多环芳烃等。 (4)金属有机和准金属有机化合物如四乙基铅、羰基镍、二苯铬、三丁基锡、单甲基或二甲基胂酸、三苯基锡等。 (5)含氧有机化合物包括环氧乙烷、醚、醇、酮、醛、有机酸、酯、酐和酚类化合物等。 (6)有机氮化合物包括胺、腈、硝基甲烷、硝基苯和亚硝胺等。 (7)有机卤化物包括四氯化碳、饱和或不饱和卤化烃(如氯乙烯)、卤代芳烃(如氯代苯)、氯代苯酚、多氯联苯和氯代二噁英类等。 (8)有机硫化合物如烷基硫化物、硫醇、巯基甲烷、二甲砜、硫酸二甲酯等。(9)有机磷化合物主要是磷酸酯类化合物,如磷酸三甲酯、磷酸三乙酯、磷酸三邻甲苯酯、焦磷酸四乙酯、有机磷农药、有机磷军用毒气等。 2.污染物的性质 污染物质的种类繁多,性质各异,可归纳如下。 (1)自然性长期生活在自然环境中的人类,对于自然物质有较强的适应能力。有人分析了人体中60多种常见元素的分布规律,发现其中绝大多数元素在人体血液中的百分含量与它们在地壳中的百分含量极为相似。但是,人类对人工合成的化学物质的耐受力则要小得多。所以区别污染物的自然或人工属性,有助于估计它们对人类的危害程度。 (2)毒性环境污染物中的氰化物、砷及其化合物、汞、铍、铅、有机磷和有机氯等的毒性都很强。其中部分具有剧毒性,处于痕量级就能危及人类和生物的生存。决定污染物毒性强弱的主要因素除了其性质、含量,还和其存在形态密切相

芳香烃的知识点总结

第五节苯芳香烃 ●教学目的: 1、使学生了解苯的组成和结构特征,掌握苯的主要化学性质。 2、使学生了解芳香烃的概念。 3、使学生了解甲苯、二甲苯的某些化学性质。 ●教学重点:苯的主要化学性质以及与分子结构的关系,苯的同系物的主要化学性质。 ●教学难点:苯的化学性质与分子结构的关系。 ●教学方法:探索推理,实验验证 教学过程: [引入] 前面我们已经学习了三大类有机物:烷烃、烯烃、炔烃。今天我们开始学习另一大类有 机物——芳香烃,它的代表物是苯。那么苯是怎样被发现的呢? 以前人们在没有使用电灯前用的是煤油灯,而且是用塑料桶装的,每次煤油用完了之后, 桶底都留有一种油状物质,人们不知道这是什么。著名科学家法拉第及法国的日拉尔等化学 家对此进行研究,用了五年的时间终于发现和提出了这种油状物质,它就是苯。[展示实 物苯] 二、苯分子的结构 当法拉第提炼出苯后,化学家们就对苯的成分进行了研究,发现它可以燃烧,且生成物 为CO2和H2O,于是确定苯由C、H元素组成。后又通过实验数据得出了苯中C%=12/13, H%=1/13,即得出C、H个数比为1:1,即最简式为CH。最后人们还发现1mol苯的质量刚 好是3mol乙炔的质量,由此确定苯的摩尔质量为78g/mol,于是推出苯的分子式:C6H6 接下来的任务是研究苯的分子结构,为此,化学家们进行了很多实验,假设,探索。 首先,根据分子式C6H6,不符合饱和结构C n H2n+2(不饱和度为4),肯定苯是高度不饱 和结构。根据当时的“有机物分子呈链状结构”来假设: 等等 若是以上结构,则都将能发生氧化反应,会使酸性KMnO4溶液褪色。 [实验] 1、取1苯于试管中,加入2酸性KMnO4溶液,振荡。 2、取1苯于试管中,加入2溴水,振荡。 [现象] 苯不能使酸性KMnO4溶液和溴水褪色。(苯在溴水中发生萃取现象)于是推翻以上假设。 一时,苯的结构式问题成了令科学家们一筹莫展的难题,也逼迫链状结构理论的提出者——36岁的德国化学家凯库勒不得不对自己的工作进行反思。 一个冬天的夜里,凯库勒坐在书桌前思考苯的结构,他画了很多图,然而百思不得其解, 他只好停笔,煨着火炉休息,他面对炉中飘忽不定的火苗陷入了沉思,不知不觉进入了梦乡, 朦胧之中凯库勒仿佛觉得有一些碳原子在自己面前跳起舞来,高贵优雅,突然间这些碳原子

16种常见多环芳烃的物理性质

萘英文名称NAP Naphthalene分子量128.18 物理性质;密度1.162 熔点80.5℃,沸点217.9℃,凝固点,80.5℃,闪点78.89℃,折射率1.58212(100℃)恒压燃烧热:40264.1J/g(标准大气压,298.15K)恒压燃烧热:40205J/g(标准大气压,298.15K)。不溶于水,溶于乙醇和乙醚等。易挥发,易升华溶于乙醇后,将其滴入水中,会出现白色浑浊。化学性质(1)萘的氧化温和氧化剂得醌,强烈氧化剂得酸酐。萘环比侧链更易氧化,所以不能用侧链氧化法制萘甲酸。电子云密度高的环易被氧化。(2)萘的还原(3)萘的加成(4)萘的亲电取代反应萘的a-位比b-位更易发生亲电取代反应。a-位取代两个共振式都有完整的苯环。b-位取代只有一个共振式有完整的苯环。在萘环上主要发生亲电取代,同苯环一样,但活性比苯环强从中间对称的两个C旁边的C开始标,其中1,4,5,8号碳活性完全一样(称为阿尔法碳),2,3,6,7号碳性质完全一样(称为贝塔碳)。一般情况下,阿尔法碳活性大于贝塔碳,取代基在阿尔法位上,这是由动力学控制,温度较高时,阿尔法碳[1]上取代基会转移到贝塔碳上。但在萘的弗瑞德-克来福特酰基化反应,不加热却生成了阿尔法位和贝塔位的混合物。如用硝基甲烷为溶剂,则主要生成贝塔酰化产物。 苊烯ANY Acenaphthylene 分子量:152.200 性质:黄色棱柱状或板状结晶。熔点92-93℃,沸点265-275℃(部分分解),156-160℃(3.73千帕),相对密度0.8988(16/2℃),易溶于乙醇、甲醇、丙醇、乙醚、石油醚、苯,不溶于水。能在强酸中聚合。 苊ANA Acenaphthene 英文别名:1,8-Ethylenenaphthalene 分子量:154.21性状描述:白色或略带黄色斜方针状结晶。物理参数:密度:1.0242(99/4°C) 熔点:96.2°C 沸点:279°C 闪点:125°C 折射率:1.6048(95°C) 芴FLU Fluorene分子量:166.22 性状描述:白色叶状至小片状结晶物理参数:密度:1.202 g/mL 熔点:116-117°C 沸点:295°C 闪点:151°C 菲PHE Phenanthrene 分子量:178.23性状描述:类白色粉状结晶体。物理参数密度:1.179 g/mL(25°C) 熔点:101°C 沸点:340°C 折射率:1.59427 蒽ANT Anthracene 分子量178.22物理性状带有淡蓝色荧光的白色片状晶体或浅黄色针状结晶。(纯品为白色带紫色荧光) 相对密度 1.25(27℃);1.283(25℃),熔点217,沸点342,闪点196.1,121.1(闭式)(以上均为℃),蒸汽压[1] 0.13kPa/145℃不溶于水、难溶于

多环芳烃来源和性质

多环芳烃来源和性质 自然源 主要包括燃烧(森林大火和火山喷发)和生物合成(沉积物成岩过程、生物转化过程和焦油矿坑内气体),未开采的煤、石油中也含有大量的多环芳烃 人为源 PAHs人为源来自于工业工艺过程、缺氧燃烧、垃圾焚烧和填埋、食品制作及直接的交通排放和同时伴随的轮胎磨损、路面磨损产生的沥青颗粒以及道路扬尘中,其数量随着工业生产的发展大大增加,占环境中多环芳烃总量的绝大部分;溢油事件也成为PAHs人为源的一部分。在自然界中这类化合物存在着生物降解、水解、光作用裂解等消除方式,使得环境中的PAHs含量始终有一个动态的平衡,从而保持在一个较低的浓度水平上,但是近些年来,随着人类生产活动的加剧,破坏了其在环境中的动态平衡,使环境中的PAHs大量的增加。因此,如何加快PAHs在环境中的消除速度,减少PAHs对环境的污染等问题,日益引起人们的注意。 多环芳烃大部分是无色或淡黄色的结晶,个别具深色,熔点及沸点较高,蒸气压很小,大多不溶于水,易溶于苯类芳香性溶剂中,微溶于其他有机溶剂中,辛醇-水分配系数比较高。多环芳烃大多具有大的共扼体系,因此其溶液具有一定荧光。一般说来,随多环芳烃分子量的增加,熔沸点升高,蒸气压减小。多环芳烃的颜色、荧光性和溶解性主要与多环芳烃的共扼体系和分子苯环的排列方式有关.随p电子数的增多和p电子离域性的增强,颜色加深、荧光性增强,紫外吸收光谱中的最大吸收波长也明显向长波方向移动;对直线状的多环芳烃,苯环数增多,辛醇-水分配系数增加,对苯环数相同的多环芳烃,苯环结构越“团簇”辛醇-水分配系数越大。 多环芳烃化学性质稳定.当它们发生反应时,趋向保留它们的共扼环状系,一般多通过亲电取代反应形成衍生物并代谢为最终致癌物的活泼形式。其基本单元是苯环,但化学性质与苯并不完全相似.分为以下几类 ⑴具有稠合多苯结构的化合物 如三亚苯、二苯并 [e,i]芘、四苯并 [a,c,h,j]葱等,与苯有相似的化学稳定性, 说明:电子在这些多环芳烃中的分布是和苯类似的。 图1x电子分布与苯类似的多环芳烃 ⑵呈直线排列的多环芳烃 !

多环芳烃

多环芳烃(PAHs)是环境常见的污染物之一,其来源于有机物热解和不完全燃烧, 在空气、水、土壤中广泛分布。由于食品产地环境受到污染, 致使PAHs在食 品中存在,同时加工方式不同, 也会影响食品中PAHs的含量。长期食用含有PAHs的食物对健康将产生潜在威胁[2-5]。不同国家和地区, 烹饪方法和饮 食习惯不同,从食品中摄入的PAHs量也不相同。 不同食品中含有不同种类和浓度的多环芳烃,其主要来源有以下3方面: (1)自 然界天然存在的,如植物、细菌、藻类的内源性合成,使得森林、土壤、海洋 沉积物中存在多环芳烃类化合物; (2)环境污染造成的,现代工业生产和其它许 多方面要使用和产生多环芳烃类化合物;这些物质难免会有一些排放到食品的 生产环境如水源、土壤、空气、海洋中,从而对食品造成污染,这是目前食品 中多环芳烃最主要的来源;(3)食品加工和包装过程中产生的,如食品的烤、炸、熏制和包装材料、印刷油墨中多环芳烃污染,这也是食品中多环芳烃的重要来源。目前,各类食品已检测出20余种PAHs,其中以熏烤类食品污染最严重:如熏 肉吉有屈、苯并[b]荧蒽、苯并[e]芘、苯并[k]荧蒽、苯并[a]芘、1,2,5,6- 二苯并蒽、茚[1,2,3-cd]并芘等PAHs。王绪卿评价了14种熏烤肉中PAHs的污 染水平,并在19份腊昧肉中全部测出屈、苯并[e]芘、苯并[k]荧蒽,其中9份 样品苯并[a]芘量为0.34~27.56μg/kg。另据报道,尼日利亚各种熏烤鱼中均 含有PAHs。比较了现代烤炉与传统烤炉熏烤物中13种PAHs含量,前PAHs<4.5μg/kg。后者苯并[a]芘为0.2~4.1μg/kg(湿质量)。食用植物油及其加热产 物中均含有PAHs[6-7],而且加热后PAHs含量显著增加。实验表明,食用植物油 加温后B(a)P含量是加温前的2.33倍,1,2,5,6-二苯并蒽为4.17倍,而且油烟 雾中其含量更高,厨房空气气态样品中PAHs种类与含量均大于颗粒物,说明厨 房空气中PAHs可能主要是由于食品,特别是动植物蛋白以热油烹炸过程中形成。近年来在各种酒样中也发现了PAHs,但这方面研究尚待深入,Moret等在所有白 酒和啤酒中都检出苯并[b]荧蒽、苯并[k]荧蒽、苯并[a]芘、1,12-苯并苝、 茚[1,2,3-cd]并芘以及芴、苯并a蒽、1,2,5,6-二苯并蒽,其PAHs总量<0.72 μg/kg。目前, 各种蔬菜亦受到不同程度PAHs污染, 其来源可能是根系吸 收及叶面吸附。国际癌症研究机构(IARC,1973)曾报道西红柿中苯并[a]芘为 0.2pg/kg,王爱玲等测定白菜和西红柿中苯并[a]芘分别为1.310~12.316μ g/kg和0.841~4.335μg/kg[8]。在食品制作的过程中,有许多制作方法是不可

有机化学各大名校考研真题第七章 多环芳烃与非苯芳烃

第七章多环芳烃与非苯芳烃1.以奈为原料合成维生素K3. O CH3 O 解:以奈为原料合成维生素K3有以下几步 (1)OH K2C2O7 H+ O O (2)O O [H] OH OH (3)OH OH 3 CH3I OH CH3 (4)OH OH CH3K 2 C2O7 H+ O CH3 O 2.由指定的原料和必要的试剂合成下列化合物 HC CH3 CH3 CH3 解。各步反应如下

CH 3CH 2CH 2Cl 3 O O O AlCl 3 CH(CH 3)2 COCH 2CH 2COOH CH(CH 3)2 CH(CH 3)2 CH 2CH 2CH 2COOH Zn-Hg HCl SOCl 2 CH(CH 3)2 CH 2CH 2CH 2COCl AlCl 3 (H 3C)2HC O CH 3MgBr (H 3C)2HC H 3 C OMgBr - (H 3C)2HC H 3C Pb-C 脱氢 (H 3C)2HC H 3C 3从2-甲基奈合成1-溴-7甲基奈。 解;合成步骤如下所示: CH 浓 H 2SO 4 Br 2Fe TM 4,完成下列反应,写出主要产物 H 2SO 4(1)NaOH (2)H + (2) (1) 解:根据奈与H2SO4磺化反应在高温下发生磺化反应,有; H 2SO 4 SO 3H OH H + 所以(1)为SO 3H ,(2)为 OH 5.完成下列反应 H 3C NO 3+ Br 2 Fe 粉

解:联苯的性质与苯的性质类类似,在此反应中,甲基是第一类定位基,硝基是第二类定位基,取代反应后,溴进入甲基的邻对位,所以得到取代产物 为 Br H3C NO3 . 6.完成下列反应; H2SO4 165℃ (1)Na2SO4 (2)NaOH,(3)H (K) (J) 解;根据奈的磺化反应可知J为SO3H ;J经过一系列反应后 可知K为OH ;K与混酸发生硝化反应,因为羟基是邻对位定 位基,在β位上,所以硝基只能取代在与它相邻的α位上,从而得到L为OH NO3 。 7.完成下列反应。 OH 2Br2 解;根据奈环的取代规律,卤代产物为OH Br 。 8.命名下列化合物; (1) OH O2N(2) N+(CH3)3Cr (3)N N (4) CH CHCOOH

芳烃的性质

实验15 芳烃的性质 一、实验目的 1. 1.掌握芳烃的化学性质,重点掌握取代反应的条件。 2. 2.了解游离基的存在及化学检验方法。 3. 3.掌握芳烃的鉴别方法。 二、实验仪器与药品 苯、甲苯、二甲苯、KMnO 4、10%H 2 SO 4 、20%Br/CCl 4 、10%NaOH、氨水、萘、浓HNO 3 、甲 醛、CCl 4、AlCl 3 三、实验步骤 1.高锰酸钾溶液氧化 ①①苯、甲苯各0.5ml ③0.5ml10% H 2SO 4 ②1滴0.5% KMnO 4 ④水浴60-700C △ 观察现象? 2.芳烃的取代反应 (1)(1)溴代 ①光对溴代反应的影响 光照 a.2ml(苯、甲苯、二甲苯) b. Br/CCl 4 避光 观察现象? ②催化剂对溴代反应的影响 在试管中加入3ml苯,0.5ml20%Br/CCl 4 ,再加入少量Fe粉,三个烧杯中分别加入10%NaOH,无离子水,氨水水浴加热整个试管,使之微沸,观察现象?反应毕,将反应液到入盛有10ml水的小烧杯中,观察现象? (2)磺化 四支试管分别加入苯、甲苯、二甲苯各1.5ml及萘0.5g,分别加入浓硫酸溜2ml,水浴750C △,振荡,反应物分成两份,一份到入10ml水小烧杯,另一份到入10ml饱和NaCl中,观察现象? (3)硝化 a.一硝基化物 3ml浓HNO 3在冷却下逐滴加入4ml浓H 2 SO 4 冷却振荡,然后见混酸分成两份,分别在冷

却下滴加1ml苯、甲苯充分振荡,水浴数分钟,再分别倾入10ml冷水中,观察现象? b.二硝基化合物 加入2ml浓HNO 3,在冷却下逐滴加入4ml浓H 2 SO 4 ,冷却,逐滴加1.5ml苯,在沸水 中加热10min,冷却,到入40ml冷水烧杯中,观察现象? 3.芳烃的显色反应 a.甲醛—硫酸试验 将30mg固体试样(液体试样则用1-2滴)溶于1ml非芳烃溶剂,取此溶液1-2滴加到滴板上,再加一滴试剂,观察现象? b.无水AlCl 3-CHCl 3 试验 取1支干燥的试管,加入0.1-0.2g无水AlCl 3,试管口放少许棉花,加热使AlCl 3 升华,并 结晶在棉花上,取升华的AlCl 3 粉末少许置于点滴板孔内,滴加2-3滴样品(用氯仿溶解)即可观察到特征颜色的产生。

芳香烃的性质

芳香烃的性质 物理性质 芳香烃不溶于水,但溶于有机溶剂,如乙醚、四氯化碳、石油醚等非极性溶剂。一般芳香烃均比水轻;沸点随相对分子质量升高而升高;熔点除与相对分子质量有关外,还与其结构有关,通常对位异构体由于分子对称,熔点较低。一些常见芳香烃的物理性质列于下表中: 一些常见的芳香烃的名称及物理性质 化合物熔点/℃沸点/℃相对密度 苯 5.5 80 0.879 甲苯-95 111 0.866 邻二甲苯-25 144 0.881 间二甲苯-48 139 0.864 对二甲苯13 138 0.861 六甲基苯165 264 —— 乙苯-95 136 0.866 9 正丙苯-99 159 0.862 1 异丙苯-96 152 0.864 联苯70 255 1.041 二苯甲烷26 263 1.3421(d10) 三苯甲烷93 360 1.014(d90) 苯乙烯-31 145 0.907 4 苯乙炔-45 142 0.9295 萘80 218 1.162 四氢化萘-30 208 0.971 蒽 2.7 354 1.147 菲101 340 1.179(d25)

化学性质 加成反应 1.苯的加成反应 苯具有特殊的稳定性,一般不易发生加成反应。但在特殊情况下,芳烃也能发生加成反应,而且总是三个双键同时发生反应,形成一个环己烷体系。如苯和氯在阳光下反应,生成六氯代环己烷。 只在个别情况下,一个双键或两个双键可以单独发生反应。 2.萘、蒽和菲的加成反应 萘比苯容易发生加成反应,例如:在不受光的作用下,萘和一分子氯气加成得1,4二氯化萘,后者可继续加氯气得1,2,3,4-四氯化萘,反应在这一步即停止,因为四氯化后的分子剩下一个完整的苯环,须在催化剂作用下才能进一步和氯气反应。1,4-二氯化萘和1,2,3,4-四氯化萘加热可以失去氯化氢而分别得1-氯代萘和1,4-二氯代萘。 由于稠环化合物的环十分活泼,因此一般不发生侧链的卤化。 蒽和菲的9、10位化学活性较高,与卤素的加成反应优先在9、10位发生。 还原反应 1.Birch还原反应 碱金属(钠、钾或锂)在液氨与醇(乙醇、异丙醇或二级丁醇)的混合液中,与芳香化合物反应,苯环可被还原成1,4-环己二烯类化合物,这种反应叫做 Birch(伯奇)还原。例如,苯可被还原成1,4-环己二烯。 Birch还原反应与苯环的催化氢化不同,它可使芳环部分还原生成环己二烯类化合物,因此Birch还原有它的独到之处,在合成上十分有用。 萘同样可以进行Birch还原。萘发生Birch还原时,可以得到1,4二氢化萘和1,4,5,8-四氢化萘。 2.催化氢化反应

芳香烃的性质

时间 月日课 实验十二芳香烃的性质星期题 教学目标 1.掌握芳烃的化学性质 2.掌握芳烃的鉴别方法 教学 重点 掌握取代反应的条件。 教学 难点 芳烃的鉴别方法 课型验证型教学媒体 教法 选择 讲授+ 指导 教学过程板书要点【仪器与药品】 苯、甲苯、二甲苯、KMnO4、10%H2SO4、20%Br/CCl4、10%NaOH、 氨水、萘、浓HNO3、甲醛、CCl4、AlCl3 【实验步骤】 1.高锰酸钾溶液氧化 ①苯、甲苯各0.5ml ②1滴0.5% KMnO4 ③0.5ml10% H2SO4 ④水浴60-700C △观察现象? 2.芳烃的取代反应 (1)溴代 ①光对溴代反应的影响 标题及画图此表2学时填写一份,“教学过程”栏不足者可附页

a.光照 2ml(苯、甲苯、二甲苯)Br/CCl4 b.避光观察现象? ②催化剂对溴代反应的影响 在试管中加入3ml苯,0.5ml20%Br/CCl4,再加入少量Fe粉,三个烧杯中分别加入10%NaOH,无离子水,氨水水浴加热整个试管,使之微沸,观察现象?反应毕,将反应液到入盛有10ml水的小烧杯中,观察现象?(2)磺化 四支试管分别加入苯、甲苯、二甲苯各1.5ml及萘0.5g,分别加入浓硫酸溜2ml,水浴750C △,振荡,反应物分成两份,一份到入10m l水小烧杯,另一份到入10ml饱和NaCl中,观察现象? (3)硝化 a.一硝基化物 3ml浓HNO3在冷却下逐滴加入4ml浓H2SO4冷却振荡,然后见混酸分成两份,分别在冷却下滴加1ml苯、甲苯充分振荡,水浴数分钟,再分别倾入10ml冷水中,观察现象? b.二硝基化合物 加入2ml浓HNO3,在冷却下逐滴加入4ml浓H2SO4,冷却,逐滴加1.5ml 苯,在沸水中加热10min,冷却,到入40ml冷水烧杯中,观察现象? 3.芳烃的显色反应 a.甲醛—硫酸试验 将30mg固体试样(液体试样则用1-2滴)溶于1ml非芳烃溶剂,取此

混合芳烃理化性质及危险特性

混合芳烃理化性质及危险特性 标识 化学品中文名称混合芳烃化学品俗名:/ 化学品英文名称/ 成分/组成信息苯、甲苯、二甲苯、乙苯 危险性概述危险性类别第3.2类低闪点液体侵入途径皮肤接触、吸入、食入 健康危害 接触高浓度蒸汽出现头痛、倦睡、共济失调以及眼、鼻、喉刺激症状, 口服可可致恶心、呕吐、腹痛、腹泻、倦睡、昏迷甚至死亡。长期皮 肤接触可致皮肤干燥、皲裂。 环境危害对环境有严重危害,对空气、水环境及水源可造成污染。 燃爆危险本品极度易燃,具刺激性。 急救措施皮肤接触脱去污染的衣着,用肥皂水和清水彻底冲洗皮肤。 眼睛接触提起眼睑,用流动清水或生理盐水冲洗。就医。 吸入 迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。 如呼吸停止,立即进行人工呼吸。就医。 食如昏迷者不要催吐就医。 消防应急措施 危险特性 易燃,其蒸气与空气可形成爆炸性混合物,遇明火、高热能引起燃烧 爆炸。与氧化剂能发生强烈反应。流速过快,容易产生和积聚静电。 其蒸气比空气重,能在较低处扩散到相当远的地方,遇火源会着火回 燃。 有害燃烧产物一氧化碳、二氧化碳。 灭火方法 喷水冷却容器,可能的话将容器从火场移至空旷处。处在火场中的容 器若已变色或从安全泄压装置中产生声音,必须马上撤离。灭火剂: 泡沫、干粉、二氧化碳、砂土。用水灭火无效。 泄露应急处理迅速撤离泄漏污染区人员至安全区,并进行隔离,严格限制出入。切断火源。建议应急处理人员戴自给正压式呼吸器,穿防毒服。尽可能切断泄漏源。防止流入下水道、排洪沟等限制性空间。小量泄漏:用活性炭或其它惰性材料吸收。也可以用不燃性分散剂制成的乳液刷洗,洗液稀释后放入废水系统。大量泄漏:构筑围堤或挖坑收容。用泡沫覆盖,降低蒸气灾害。用防爆泵转移至槽车或专用收集器内,回收或运至废物处理场所处置。 操作处置与储存操作注意事 项 密闭操作,加强通风。操作人员必须经过专门培训,严格遵守操作规程。 建议操作人员佩戴自吸过滤式防毒面具(半面罩),戴化学安全防护眼镜, 穿防毒物渗透工作服,戴橡胶耐油手套。远离火种、热源,工作场所严禁 吸烟。使用防爆型的通风系统和设备。防止蒸气泄漏到工作场所空气中。 避免与氧化剂接触。灌装时应控制流速,且有接地装置,防止静电积聚。 搬运时要轻装轻卸,防止包装及容器损坏。配备相应品种和数量的消防器 材及泄漏应急处理设备。倒空的容器可能残留有害物。 储存注意事 项 储存于阴凉、通风的库房。远离火种、热源。库温不宜超过30℃。保持容 器密封。应与氧化剂分开存放,切忌混储。采用防爆型照明、通风设施。 禁止使用易产生火花的机械设备和工具。储区应备有泄漏应急处理设备和 合适的收容材料。 接触控 工程控制生产过程密闭,全面通风。 呼吸系统防 护 空气中浓度超标时,佩戴自吸过滤式防毒面具(半面罩)。紧急事态抢救 或撤离时,应该佩戴空气呼吸器或氧气呼吸器。

相关文档
最新文档