概率论第一章习题解答

概率论第一章习题解答
概率论第一章习题解答

00第一章 随机事件与概率

I 教学基本要求

1、了解随机现象与随机试验,了解样本空间的概念,理解随机事件的概念,掌握事件之间的关系与运算;

2、了解概率的统计定义、古典定义、几何定义和公理化定义,会计算简单的古典概率和几何概率,理解概率的基本性质;

3、了解条件概率,理解概率的乘法公式、全概率公式、贝叶斯公式,会用它们解决较简单的问题;

4、理解事件的独立性概念.

II 习题解答

A 组

1、写出下列随机试验的样本空间

(1) 抛掷两颗骰子,观察两次点数之和; (2) 连续抛掷一枚硬币,直至出现正面为止; (3) 某路口一天通过的机动车车辆数; (4) 某城市一天的用电量.

解:(1) {2,3,

,12}Ω=;

(2) 记抛掷出现反面为“0”,出现正面为“1”,则{(1),(0,1),(0,0,1),}Ω=;

(3) {0,1,2,

}Ω=;

(4) {|0}t t Ω=≥.

2、设A 、B 、C 为三个事件,试表示下列事件: (1) A 、B 、C 都发生或都不发生; (2) A 、B 、C 中至少有一个发生; (3) A 、B 、C 中不多于两个发生.

解:(1) ()()ABC ABC ;

(2) A

B C ;

(3) ABC 或A

B

C .

3、在一次射击中,记事件A 为“命中2至4环”、B 为“命中3至5环”、C 为“命中5至7环”,写出下列事件:(1) AB ;(2) A

B ;(3) ()A B

C ;(4) ABC .

解:(1) AB 为“命中5环”; (2) A

B 为“命中0至1环或3至10环”;

(3) ()A B

C 为“命中0至2环或5至10环”;

(4) ABC 为“命中2至4环”.

4、任取两正整数,求它们的和为偶数的概率?

解:记取出偶数为“0”,取出奇数为“1”,则其出现的可能性相同,于是任取两个整数的样本空间为{(0,0),(0,1),(1,0),(1,1)}Ω=.设A 为“取出的两个正整数之和为偶数”,则

{(0,0),(1,1)}A =,从而1

()2

p A =

. 5、从一副52张的扑克中任取4张,求下列事件的概率:

(1) 全是黑桃;(2) 同花;(3) 没有两张同一花色;(4) 同色?

解:从52张扑克中任取4张,有4

52C 种等可能取法.

(1) 设A 为“全是黑桃”,则A 有413

C 种取法,于是413

452

()C p A C =;

(2) 设B 为“同花”,则B 有413

4C 种取法,于是413

452

4()C p B C =;

(3) 设C 为“没有两张同一花色”,则C 有4

13种取法,于是4

452

13()p C C =;

(4) 设D 为“同色”,则D 有426

2C 种取法,于是426

452

2()C p D C =.

6、把12枚硬币任意投入三个盒中,求第一只盒子中没有硬币的概率?

解:把12枚硬币任意投入三个盒中,有12

3种等可能结果,记A 为“第一个盒中没有硬币”,则A 有12

2种结果,于是12

2()()3

p A =.

7、甲袋中有5个白球和3个黑球,乙袋中有4个白球和6个黑球,从两个袋中各任取一球,求取到的两个球同色的概率?

解:从两个袋中各任取一球,有11

810C C ?种等可能取法,记A 为“取到的两个球同色”,则A 有1

111

5

4

3

6C C C C

?+?种取法,于是

1111543611

81019

()40

C C C C p A C C ?+?==?. 8、把10本书任意放在书架上,求其中指定的三本书放在一起的概率?

解:把10本书任意放在书架上,有10!种等可能放法,记A 为“指定的三本书放在一起”,则A 有3!8!?种放法,于是3!8!1

()10!15

p A ?=

=. 9、5个人在第一层进入十一层楼的电梯,假若每个人以相同的概率走出任一层(从第二层开始),求5个人在不同楼层走出的概率?

解:5个人从第二层开始走出电梯,有5

10种等可能结果,记A 为“5个人在不同楼层

走出”,则A 有510

P 种结果,于是510

5()10

P p A =.

10、n 个人随机地围一圆桌而坐,求甲乙两人相邻而坐的概率?

解:设甲已坐好,只考虑乙的坐法,则乙有1n -种坐法,记A 为“甲乙两人相邻而坐”,则A 有2种坐法,于是2

()1

p A n =

-. 11、甲乙两艘轮船驶向一个不能同时停泊两艘轮船的码头,它们在一昼夜内到达的时间是可能的,若甲船的停泊时间为一小时,乙船的停泊时间为两小时,求它们中任何一艘都不需要等候码头空出的概率?

解:设x 、y 分别为甲、乙两艘轮船到达码头的时间,则{(,)|0,24}x y x y Ω=≤≤,

其面积2

24S Ω=,记A 为“它们中任何一艘都不需要等候码头空出”,于是

{(,)|12}

A x y y x x y =-≥-≥或,其面积

221

(2322)

2

A S =+,从而

22

2

2322()0.879224A S p A S Ω+===?.

12、在区间(0,1)中随机地取两个数,求事件“两数之和小于6/5”的概率?

解:设x 、y 分别为取出的两个数,则{(,)|0,1}x y x y Ω=≤≤,其面积1S Ω=,记A 为“两数之和小于6/5”,于是6

{(,)|}5A x y x y =+<,其面积2

141()25

A S =-

,从而17()0.6825

A S p A S Ω=

==. 13、设0a >,有任意两数x 、y ,且0,x y a <<.试求2

4

a xy <的概率?

解:由题意知{(,)|0,}x y x y a Ω=<<,其面积2

S a Ω=,记2

{(,)|}4

a A x y xy =<,

则其面积

24

44

22

2

23ln 4()()(1)444

a a a

x

a a

a

A a S a dy dx a a dx a x =-=--=-+???

从而3ln 4

()10.596644

A S p A S Ω=

=-+=. 14、从0、1、2、…、9这十个数字中任选三个不同的数字,试求下列事件的概率:

(1) 1A 为“三个数字中不含0和5”; (2) 2A 为“三个数字中不含0或5”; (3) 3A 为“三个数字中含0但不含5”?

解:记A 为“三个数字不含0”、B 为“三个数字不含5”,则

393107()10C p A C ==、393107()10C p B C ==、383107

()15

C p AB C ==

于是有

(1) 17

()()15

p A p AB ==; (2) 27714()()()()()2101515

p A p A

B p A p B p AB ==+-=?

-=; (3) 3777

()()()()101530

p A p AB p B p AB ==-=

-=

. 15、某工厂的一个车间有男工7人、女工4人,现要选出3个代表,求选出的3个代表中至少有1个女工的概率?

解:设A 为“选出的3个代表中至少有1个女工”,则

373117

()33

C p A C ==

726

()1()13333

p A p A ?=-=-

=

. 16、从数字1、2、…、9中重复地取n 次,求n 次所取数字的乘积能被10整除的概率?

解:记A 为“至少取到一次5”、B 为“至少取到一次偶数”,则

8()9n n p A =、5()9n n p B =、4()9

n

n p AB =

于是,所求概率为

854()1()1()()()1999

n n n

n n n p AB p A

B p A p B p AB =-=--+=--+.

17、已知事件A 、B 满足()()p AB p AB =,记()p A p =,求()p B ?

解:由()()()1()1()()()p AB p AB p A

B p A B p A p B p AB ===-=--+

1()()0p A p B ?--= ()1()1p B p A p ?=-=-.

18、已知()0.7p A =,()0.3p A

B =-,求()p AB ?

解:由()()()0.3p A B p A p AB =-=-和()0.7p A =

()0.4p AB ?=

()1()0.6p AB p AB ?=-=.

19、设1

()()2

p A p B ==

,试证:()()p AB p AB =. 证明:由1

()()2

p A p B ==

()1()1()()()()p AB p A

B p A p B p AB p AB ?=-=--+=.

20、某班级在一次考试中数学不及格的学生占15%,英语不及格的学生占5%,这两门课都不及格的学生占3%.

(1) 已知一个学生数学不及格,他英语也不及格的概率是多少; (2) 已知一个学生英语不及格,他数学也不及格的概率是多少? 解:记A 为“数学不及格”、B 为“英语不及格”,则

()0.15p A =、()0.05p B =、()0.03p AB =

(1) ()0.03

(|)0.2()0.15p AB p B A p A =

==; (2) ()0.03

(|)0.6()0.05

p AB p A B p B =

==. 21、掷两颗骰子,以A 记事件“两颗点数之和为10”,以B 记事件“第一颗点数小于第二颗点数”,求(|)p A B 和(|)p B A ?

解:掷两颗骰子的样本空间为

(1,1)

(1,2)(1,3)(1,4)(1,5)(1,6)(2,1)(2,2)(2,3)(2,4)(2,5)(2,6)(3,1)(3,2)(3,3)(3,4)(3,5)(3,6)(4,1)(4,2)(4,3)(4,4)(4,5)(4,6)(5,1)(5,2)(5,3)(5,4)(5,5)(5,6)(6,1)(6,2)(6,3)(6,4)(6,5)(6,6)????

??

??

Ω=?

?????

??

??

由于{(4,6),(5,5),(6,4)}A =、(1,2)(1,3)(1,4)(1,5)(1,6)(2,3)(2,4)(2,5)(2,6)(3,4)(3,5)(3,6)(4,5)(4,6)(5,6)B ????

=??????、

{(4,6)}AB =,于是

3()36p A =

、15()36p B =、1

()36

p AB =

()1(|)()15p AB p A B p B ?=

=、()1

(|)()3

p AB p B A p A ?==. 22、设10件产品中有4件不合格品,从中任取二件,已知其中一件是不合格品,求另一件

也是不合格的概率?

解:记i A 为“第i 次取出不合格品”(1,2)i =,B 为“有一件不合格品”,C 为“另一件也是不合格品”,则121212()

()()B A A A A A A =,于是

1212124664432

()()()()1091091093

p B p A A p A A p A A ???=++=

++=??? 432

()10915

p BC ?=

=? ()1

(|)()5

p BC p C B p B ?=

=. 23、已知()0.3p A =、()0.4p B =、()0.5p AB =,求(|)p B A

B ?

解:由()0.3p A =、()0.4p B =、()0.5p AB =

()()()()0.70.60.50.8p A B p A p B p AB ?=+-=+-=

再由()()()0.7()0.5p AB p A p AB p AB =-=-=()0.2p AB ?= 从而(())()0.21

(|)()()0.84

p B A B p AB p B A

B p A B p A B =

===.

24、两台车床加工固焊零件,第一台出次品的概率是0.03,第二台出次品的概率为0.06,

加工出来的零件放在一起且已知第一台加工的零件比第二台加工的零件多一倍.

(1) 求任取一个零件是合格品的概率;

(2) 如果取出的零件是不合格品,求它是由第二台车床加工的概率? 解:记A 为“取到第一台车床加工的零件”、B 为“取到合格品”,则

2

()3

p A =

、(|)0.97p B A =、(|)0.94p B A = (1) 21

()()(|)()(|)0.970.940.9633p B p A p B A p A p B A =+=?+?=;

(2) 1

0.06

()()(|)1

3(|)()1()0.042

p AB p A p B A p A B p B p B ?=

===-. 25、已知男人中有5%是色盲患者,女人中有0.25%是色盲患者,现从男女人数相等的人群

中随机挑选一人,发现恰好是色盲患者,问此人是男人的概率是多少?

解:记A 为“选到色盲患者”、B 为“选到男人”,则

1

()2

p B =

、(|)5%p A B =、(|)0.25%p A B = 于是,所求概率为

()(|)0.50.05

(|)0.9524()(|)()(|)0.50.050.50.0025

p B p A B p B A p B p A B p B p A B ?=

==+?+?.

26、证明:()

(|)1()

p B p B A p A ≥-

,其中()0p A >. 证明:由于()()()()()()1()()p AB p A p B p A

B p A p B p A p B =+-≥+-=-

()()()()

(|)1()()()

p AB p A p B p B p B A p A p A p A -=

≥=-. 27、设A 、B 为任意两个事件,且A B ?、()0p B >,证明:()(|)p A p A B ≤.

证明:由A B ?得

()()

(|)()()()

p AB p A p A B p A p B p B =

=≥. 28、甲乙两人独立地对同一目标射击一次,其命中率分别为0.6和0.7,已知目标被击中,

求它是甲击中的概率?

解:记A 为“目标被击中”、1B 为“甲击中目标”、2B 为“乙击中目标”,则

121212()()()()()0.60.70.60.70.88p A p B B p B p B p B B ==+-=+-?=

再由1B A ?可得所求概率为

111()()0.6

(|)0.682()()0.88

p B A p B p B A p A p A =

===.

29、设电路由A 、B 、C 三个元件组成,若元件A 、B 、C 发生故障的概率分别是0.3、

0.2、0.2,各元件独立工作,求下列三种情况下电路发生故障的概率.

(1) A 、B 、C 三个元件串连; (2) A 、B 、C 三个元件并联; (3) B 与C 并联后再与A 串联?

解:记A 、B 、C 分别表示元件A 、B 、C 发生故障. (1) 所求概率为

()1()1()()()10.70.80.80.552p A B C p ABC p A p B p C =-=-=-??=;

(2) 所求概率为

()()()()0.30.20.20.012p ABC p A p B p C ==??=;

(3) 所求概率为

(())()()()()()()()()()p A BC p A p BC p ABC p A p B p C p A p B p C =+-=+-

0.30.20.20.30.20.20.328=+?-??=.

30、若()0.4p A =、()0.7p A

B =,在下列情况下求()p B .

(1) A 、B 不相容; (2) A 、B 独立; (3) A B ??

解:(1) 由于A 、B 不相容,从而()()()p A

B p A p B =+,于是

()()()0.70.40.3p B p A B p A =-=-=;

(2) 由于A 、B 独立,从而()()()()()p A

B p A p B p A p B =+-,于是

0.70.4()0.4()p B p B =+- ()0.5p B ?=;

(3) 由于A B ?,从而A

B B =,于是

()()0.7p B p A B ==.

B 组

1、一个书架上有6本数学书和4本物理书,求指定的3本数学书放在一起的概率?

解:6本数学书和4本物理书在书架上有10!种等可能放法,记A 为“指定的3本数学书放在一起”,则A 有3!8!?种放法,于是3!8!1

()10!15

p A ?=

=. 2、设有n 个人,每个人都等可能地被分配到N 个房间中的任一间去住()n N ≤,求下列事件的概率.

(1) 指定的n 间房间里各有一个住; (2) 恰有n 间房各住一人?

解:将n 个人分配到N 个房间中去住,有n

N 种等可能分法.

(1) 记A 为“指定的n 间房间里各有一个住”,则A 有!n 种分法,于是!()n

n p A N =

; (2) 记B 为“恰有n 间房各住一人”,则B 有!n

N

C n 种分法,于是!

()n N n

C n p B N =.

3、公安人员在某地发现一具尸体,经分析认为凶手还在该地的概率为0.4,乘车外逃的概率为0.5,自首的概率为0.1,现派人追捕,在该地抓到凶手的概率为0.9,若外逃则抓到凶手的概率为0.5,问此次凶手在该地或外逃被抓到的概率是多少?

解:记1A 为“凶手还在该地”、2A 为“凶手已乘车外逃”、B 为“凶手被抓到”,则

1()0.4p A =、2()0.5p A =、1(|)0.9p B A =、2(|)0.5p B A =,于是所求概率为

12121122(()

())()()()(|)()(|)p A B A B p A B p A B p A p B A p A p B A =+=+

0.40.90.50.50.61=?+?=.

4、有两箱零件,第一箱装50件,其中10件是一等品;第二箱装30件,其中18件是一等品,现从两箱中任取一箱,然后从该箱中先后取出两个零件,试求在第一次取到一等品的条件下,第二次取出的零件仍是一等品的概率?

解:记i A 为“第i 次取到一等品”、B 为“取到第一箱”,则

111110118()()(|)()(|)0.4250230

p A p B p A B p B p A B =+=

?+?= 121212()()(()|)()(()|)p A A p B p A A B p B p A A B =+

1109118170.194232504923029

??=

?+?=?? 于是12211()0.19423

(|)0.4856()0.4

p A A p A A p A =

==.

5、掷均匀硬币n m +次,已知至少出现一次正面,求第一次正面出现在第n 次实验的概率?

解:记A 为“至少出现一次正面”、B 为“第一次正面出现在第n 次实验”,则

0()1()1(0.5)

1(0.5)n m n m n m p A p A C +++=-=-=- 1()0.5(0.5)(0.5)n n p B -=?=

再由B A ?可得所求概率为

()()(0.5)(|)()()1(0.5)n n m

p AB p B p B A p A p A +===-.

6、甲、乙、丙三人进行比赛,规定每局两个人比赛,胜者再与第三人比,依次循环,直至

有一人连胜二局为止,此人即为冠军,假设每次比赛双方取胜的概率均为0.5,若甲、乙两人先比,求甲得冠军的概率?

解:记A 为“甲得冠军”;i A 、i B 、i C 分别为“第i 局中甲、乙、丙获胜”,则

121234512345678()[()()()]p A p A A p AC B A A p AC B A C B A A =++++

12341234567[()()]p B C A A p B C A B C A A ++ 25847(0.50.50.5)(0.50.5)=+++

+++

2433

0.50.5510.510.514

=+=--. 7、乒乓球单打比赛采用五局三胜制,甲、乙两名运动员在每局比赛中获胜的概率各为0.6和0.4,当比赛进行完二局时,甲以2:0领先,求在以后的比赛中甲获胜的概率?

解:记B 为“甲获胜”、i A 为“甲在第i 局比赛中获胜”,由于甲以2:0领先,因而

334345()()B A A A A A A =

334345()()()()()()()p B p A p A p A p A p A p A ?=++

20.60.40.60.40.60.936=+?+?=.

8、保险公司把被保险人分为“谨慎”、“一般”、“冒失”三类,统计资料表明上述三种人在一年中发生事故的概率分别是0.05、0.15、0.3;如果“谨慎”的被保险人占20%,“一般”的被保险人占50%,“冒失”的被保险人占30%,现知某保险人在一年内发生了事故,则他是属“谨慎”客户的概率是多少?

解:记1A 为“谨慎客户”、2A 为“一般客户”、3A 为“冒失客户”、B 为“保险人在一年内发生事故”,则1()0.2p A =、2()0.5p A =、3()0.3p A =、1(|)0.05p B A =、

2(|)0.15p B A =、3(|)0.3p B A =,于是

1113

1

()(|)

0.20.052

(|)0.20.050.50.150.30.335

()(|)

i

i

i p A p B A p A B p A p B A =?=

=

=?+?+?∑.

(本资料素材和资料部分来自网络,仅供参考。请预览后才下载,期待您的好评与关注!)

概率论与数理统计浙大四版习题答案第七章

第七章 参数估计 1.[一] 随机地取8只活塞环,测得它们的直径为(以mm 计) 74.001 74.005 74.003 74.001 74.000 73.998 74.006 74.002 求总体均值μ及方差σ2的矩估计,并求样本方差S 2。 解:μ,σ2的矩估计是 61 22 106)(1?,002.74?-=?=-===∑n i i x X n X σ μ 621086.6-?=S 。 2.[二]设X 1,X 1,…,X n 为准总体的一个样本。求下列各总体的密度函数或分布律中的未知参数的矩估计量。 (1)???>=+-其它,0,)()1(c x x c θx f θθ 其中c >0为已知,θ>1,θ为未知参数。 (2)?? ???≤≤=-.,01 0,)(1其它x x θx f θ 其中θ>0,θ为未知参数。 (5)()p p m x p p x X P x m x m x ,10,,,2,1,0,)1()(<<=-==-Λ为未知参数。 解:(1)X θc θθc θc θc θdx x c θdx x xf X E θθc θ θ =--=-== =+-∞+-∞+∞ -? ? 1 ,11)()(1令, 得c X X θ-= (2),1)()(10 += = = ? ? ∞+∞ -θθdx x θdx x xf X E θ 2 )1(,1 X X θX θθ-==+得令 (5)E (X ) = mp 令mp = X , 解得m X p =? 3.[三]求上题中各未知参数的极大似然估计值和估计量。 解:(1)似然函数 1211 )()()(+-=== ∏θn θn n n i i x x x c θ x f θL Λ 0ln ln )(ln ,ln )1(ln )ln()(ln 1 1 =- +=-++=∑∑ ==n i i n i i x c n n θθ d θL d x θc θn θn θL

概率论第一章课后习题答案

《概率论与数理统计》课后习题解答 习题一 3.设A ,B ,C 表示三个事件,用A ,B ,C 的运算关系表示下列各事件: (1)A 发生,B 与C 不发生; (2)A 与B 都发生,而C 不发生; (3)A ,B ,C 都发生; (4)A ,B ,C 都不发生; (5)A ,B ,C 中至少有一个发生; (6)A ,B ,C 中恰有一个发生; (7)A ,B ,C 中至少有两个发生; (8)A ,B ,C 中最多有一个发生. 解:(1)C B A ; (2)C AB ; (3)ABC ; (4)C B A ; (5)C B A ; (6)C B A C B A C B A ++; (7)BC AC AB ; (8)BC AC AB 或C B C A B A . 5.在房间里有10个人,分别佩戴从1号到10号的纪念章,任选3人记录其纪念章的号码. (1)求最小的号码为5的概率; (2)求最大的号码为5的概率. 解:设事件A 表示“最小的号码为5”,事件B 表示“最大的号码为5”,由概率的古典定义得 (1)12 1)(31025==C C A P ; (2)20 1)(31024==C C B P . 6.一批产品共有200件,其中有6件废品,求: (1)任取3件产品恰有1件是废品的概率; (2)任取3件产品没有废品的概率; (3)任取3件产品中废品不少于2件的概率. 解:设事件i A 表示“取出的3件产品中恰有i 件废品”)3,2,1,0(=i ,由概率的古典定义得

(1)0855.0)(3200 2194161≈=C C C A P ; (2)9122.0)(3200 31940≈=C C A P ; (3)0023.0)(3200 3611942632≈+=+C C C C A A P . 8.从0,1,2,…,9这十个数字中任意取出三个不同的数字,求下列事件的概率: A 表示“这三个数字中不含0和5” ; B 表示“这三个数字中包含0或5” ; C 表示“这三个数字中含0但不含5”. 解:由概率的古典定义得 157)(31038==C C A P ;158)(1)(=-=A P B P ;30 7)(31028==C C C P 9.已知5.0)(=A P ,6.0)(=B P ,8.0)(=A B P ,求)(AB P 和)(B A P . 解:4.08.05.0)|()()(=?==A B P A P AB P )]()()([1)(1)()(AB P B P A P B A P B A P B A P -+-=-== 3.0) 4.06.0 5.0(1=-+-= 10.已知4.0)(=B P ,6.0)(=B A P ,求)(B A P . 解:314.014.06.0)(1)()() ()()(=--=--==B P B P B A P B P B A P B A P 11.某种品牌电冰箱能正常使用10年的概率为9.0,能正常使用15年的概率为3.0,现某人购买的该品牌电冰箱已经正常使用了10年,问还能正常用到15年的概率是多少? 解:设事件B A ,分别表示“该品牌电冰箱能正常使用10,15年”,依题可知 3.0)()(,9.0)(===B P AB P A P ,则所求的概率为 3 19.03.0)()()|(===A P AB P A B P 12.某人忘记了电话号码的最后一个数字,因而他随意地拨最后一个号码.

概率统计章节作业答案

第一章随机事件与概率 一、单项选择题 1.掷一枚骰子,设A ={出现奇数点},B ={出现1或3点},则下列选项正确的是 ( B ). A.AB ={出现奇数点} B. AB ={出现5点} C. B ={出现5点} D. A B =Ω 2.设A 、B 为任意两个随机事件,则下列选项中错误的是 ( A ). A. ()A B B A +-= B. ()A B B A B A AB +-=-=- C. ()A B B A B -+=+ D.AB AB A += 3.将一枚匀称的硬币投掷两次,令A i ={第i 次正面向上}(i =1,2),则“至少有一次正面向上”可表示为 ( D ). A.1212A A A A B.12A A C.12A A D.12A A 4.某人向一目标射击3次,设A i 表示“第i 次射击命中目标”(i =1,2,3),则3次都没有命中目标表示为 ( A ). A.123A A A B.123A A A ++ C.123A A A D.123A A A 5.设A 与B 为互为对立事件,且()0,()0P A P B >>,则下列各式中错误的是 ( A ). A.(|)0P A B = B. (|)0P B A = C. ()0P AB = D. ()1P A B = 6.设事件A 与B 相互独立,P (A )=0.2, P (B )=0.4, 则(|)P A B = ( D ). A. 0.2 B. 0.4 C. 0.6 D. 0.8 7.已知事件A 与B 互不相容, P (A )>0, P (B )>0, 则 ( C ).

A.()1P A B = B.()()()P AB P A P B = C. ()0P AB = D.()0P AB > 8.设P (A )=0, B 为任一事件, 则 ( C ). A.A =Φ B.A B ? C.A 与B 相互独立 D. A 与B 互不相容 9.已知P (A )=0.4, P (B )=0.5, 且A B ?,则P (A |B )= ( C ). A. 0 B. 0.4 C. 0.8 D. 1 10.设A 与B 为两事件, 则AB = ( B ). A.A B B. A B C. A B D. A B 11.设事件A B ?, P (A )=0.2, P (B )=0.3,则()P A B = ( A ). A. 0.3 B. 0.2 C. 0.5 D. 0.44 12.设事件A 与B 互不相容, P (A )=0.4, P (B )=0.2, 则P (A|B )= ( D ). A. 0.08 B. 0.4 C. 0.2 D. 0 13.设A , B 为随机事件, P (B )>0, P (A |B )=1, 则必有 ( A ). A.()()P A B P A = B.A B ? C. P (A )=P (B ) D. P (AB )=P (A ) 14.从1,2,3,4,5中任意取3个数字,则这3个数字中不含5的概率为 ( A ). A. 0.4 B. 0.2 C. 0.25 D. 0.75 15.某学习小组有10名同学,其中6名男生、4名女生,从中任选4人参加社会活动,则4人中恰好2男2女的概率为 ( A ). A. 3 7 B.0.4 C. 0.25 D.16 16.某种动物活20年的概率为0.8,活25年的概率为0.6,现有一只该种动物已经活了20年,它能活到25年的概率是 ( B ). A. 0.48 B. 0.75 C. 0.6 D. 0.8 17.将两封信随机地投到4个邮筒内,则前两个邮筒内各有一封信的概率为 ( A ).

概率论与数理统计第四章习题及答案

概率论与数理统计习题 第四章 随机变量的数字特征 习题4-1 某产品的次品率为,检验员每天检验4次,每次随机地取10件产品进行检验,如发现其中的次品数多于1个,就去调整设备,以X 表示一天中调整设备的次数,试求)(X E (设诸产品是否为次品是相互独立的). 解:设表示一次抽检的10件产品的次品数为ξ P =P (调整设备)=P (ξ>1)=1-P (ξ≤1)= 1-[P (ξ=0)+ P (ξ=1)] 查二项分布表 1-=. 因此X 表示一天调整设备的次数时X ~B (4, . P (X =0)=??? ? ??04×× =. P (X =1)=???? ??14××=, P (X =2)= ???? ??24××=. P (X =3)=???? ??34××=, P (X =4)= ??? ? ??44××=. 从而 E (X )=np =4×= 习题4-2 设随机变量X 的分布律为Λ,2,1,323)1(1==???? ??-=+j j X P j j j ,说明X 的数学期望不存在. 解: 由于 1 11 1133322(1) ((1))3j j j j j j j j j P X j j j j ∞ ∞∞++===-=-==∑∑∑,而级数1 12j j ∞ =∑发散,故级数1 11 33(1) ((1))j j j j j P X j j ∞ ++=-=-∑不绝对收敛,由数学期望的定义知,X 的数学期望不存在. 习题X -2 0 2 k p 求)53(),(),(2 2 +X E X E X E . 解 E (X )=(-2)+0+2= 由关于随机变量函数的数学期望的定理,知 E (X 2)=(-2)2+02+22= E (3X 2+5)=[3 (-2)2+5]+[3 02+5]+[3 22 +5] = 如利用数学期望的性质,则有 E (3X 2+5)=3E (X 2)+5=3+5=

概率论与数理统计习题及答案第七章

习题7-1 1.选择题 (1)设总体X 的均值口与方差 /都存在但未知,而X 1,X 2,L ,X n 为来 自X 的样本,则均值 口与方差 (T 2的矩估计量分别是 (). (A) X 和 (B) 1 n X 和—(X n i 1 i )2 . (C) 口和 2 (T ? 1 (D) X 和一 n n (X i i 1 x)2. 解 选 (D). (2) 设X : U[0, ],其中 e >0为未知参数,又X ,,X 2,L ,X n 为来自总体 X 的样本 ,则e 的矩估计量是( ). (A) X . (B) 2X . (C) max{X i }. (D) m i^ X i } . 解选(B). 2.设总体X 的分布律为 其中0v B v 为未知参数,X1, X 2,…,X.为来自总体X 的样本,试求e 的矩 估计量. 解 因为 E (X )=(- 2)x3 e +1x(1 -4 e )+5x e =1-5 e ,令 1 5 X 得到 的矩估计量为 3.设总体X 的概率密度为

f(x ;) (1)x ,0 x 1, 0, 其它? 其中 0> -1是未知参数,X,冷… ,X n 是来自 X 的容量为n 的简单随机样本 求 : (1) 的矩估计量; ⑵ 0的极大似然估计量? 解 总体X 的数学期望为 - 1 9 2X 1 令E(X) X ,即一1 X,得参数B 的矩估计量为? ? 2 1 X 设X 1, X 2,…,x n 是相应于样本X 1, X 2,…,X n 的一组观测值,则似然函 数为 n (1)n X i , 0 x i 1, i 1 0, 其它. In x i 1 In X i i 1 4.设总体X 服从参数为 的指数分布,即X 的概率密度为 E(X) 1 xf(x)dx o ( 1)x dx 当 00 且 In L nln( 1) In X i , dln L n In x =0,得 0的极大似然估计值为 而0的极大似然估计量为

上海工程技术大学概率论第一章答案

习题一 2.设A ,B 为随机事件,且P (A )=0.7,P (A -B )=0.3,求P ( AB 解: P (AB ) =1-P (AB )=1-[P (A )-P (A -B )] =1-[0.7-0.3]=0.6。 3. 设A ,B ,C 为三事件,且P (A )=P (B )=1/4,P (C )=1/3且P (AB )=P (BC )=0, P (AC )=1/12,求A ,B ,C 至少有一事件发生的概率。 解:因为 A B C A B ?,所以0()()P ABC P AB ≤≤,又 P (AB )=0,则()0P ABC =, P (A ∪B ∪C ) =P (A )+P (B )+P (C )-P (AB )-P (BC )-P (AC )+P (ABC ) =14+14+13-112=34 。 4.将3个不同的球随机地放入4个杯子中去,求所有杯中球的最大个数分别为1,2,3的概率。 解:设i A ={杯中球的最大个数为i },i =1,2,3。 将3个球随机放入4个杯子中,全部可能放法有43种,杯中球的最大个数为1时,每个杯中最多放一球,故 34 13C 3!3()84 P A == 而杯中球的最大个数为3,即三个球全放入一个杯中,故1433C 1()164 P A ==,因此 213319()1()()181616 P A P A P A =--=--= 或 12143323C C C 9()164P A ==. 6.从1,2,3,4,5,6,7,8,9,0这10个数字中任取五个数按先后顺序组成多位数,求下列事件的概率:(1) 这五个数字组成一个五位偶数;(2) 2和3都被抽到且靠在一起. 解(1)5105987648764190 P A ????-???==. (2)145102!876445 C P A ????==. 7.对一个五人学习小组考虑生日问题: (1) 求五个人的生日都在星期日的概率;(2) 求五个人的生日都不在星期日的概率; (3) 求五个人的生日不都在星期日的概率. 解:基本事件总数为57, (1)设A 1={五个人的生日都在星期日},所求事件包含基本事件的个数为1个,故 P (A 1)=517=51()7 ;

2020年整理概率统计章节作业答案.doc

第一章 随机事件与概率 一、单项选择题 1.掷一枚骰子,设A ={出现奇数点},B ={出现1或3点},则下列选项正确的是 ( B ) . A. AB ={出现奇数点} B. AB ={出现5点} C. B ={出现5点} D. A B =ΩU 2.设A 、B 为任意两个随机事件,则下列选项中错误的是 ( A ). A. ()A B B A +-= B. ()A B B A B A AB +-=-=- C. ()A B B A B -+=+ D.AB AB A += 3.将一枚匀称的硬币投掷两次,令A i ={第i 次正面向上}(i =1,2),则“至少 有一次正面向上”可表示为 ( D ). A.1212A A A A U B.12A A C.12A A D.12A A U 4.某人向一目标射击3次,设A i 表示“第i 次射击命中目标”(i =1,2,3), 则3次都没有命中目标表示为 ( A ). A.123A A A B.123A A A ++ C.123A A A D.123A A A 5.设A 与B 为互为对立事件,且()0,()0P A P B >>,则下列各式中错误的是 ( A ). A.(|)0P A B = B. (|)0P B A = C. ()0P AB = D. ()1P A B =U 6.设事件A 与B 相互独立,P (A )=0.2, P (B )=0.4, 则(|)P A B = ( D ). A. 0.2 B. 0.4 C. 0.6 D. 0.8 7.已知事件A 与B 互不相容, P (A )>0, P (B )>0, 则 ( C ).

概率论第4章习题参考解答

概率论第4章习题参考解答 1. 若每次射击中靶的概率为0.7, 求射击10炮, 命中3炮的概率, 至少命中3炮的概率, 最可能命中几炮. 解: 设ξ为射击10炮命中的炮数, 则ξ~B (10,0.7), 命中3炮的概率为 =??==733 103.07.0}3{C P ξ0.0090 至少命中3炮的概率, 为1减去命中不到3炮的概率, 为 =??-=<-=≥∑=-2 010103.07.01}3{1}3{i i i i C P P ξξ0.9984 因np +p =10×0.7+0.7=7.7不是整数, 因此最可能命中[7.7]=7炮. 2. 在一定条件下生产某种产品的废品率为0.01, 求生产10件产品中废品数不超过2个的概率. 解: 设ξ为10件产品中的废品数, 则ξ~B (10,0.01), 则废品数不超过2个的概率为 =??=≤∑=-2 0101099.001.0}2{i i i i C P ξ0.9999 3. 某车间有20部同型号机床, 每部机床开动的概率为0.8, 若假定各机床是否开动彼此独立, 每部机床开动时所消耗的电能为15个单位, 求这个车间消耗电能不少于270个单位的概率. 解: 设每时刻机床开动的数目为ξ, 则ξ~B (20,0.8), 假设这个车间消耗的电能为η个单位, 则η=15ξ, 因此 2061.02.08.0}18{}15 270 {}27015{}270{20 18 2020=??==≥=≥ =≥=≥∑=-i i i i C P P P P ξξξη 4. 从一批废品率为0.1的产品中, 重复抽取20个进行检查, 求这20个产品中废品率不 大于0.15的概率. 解: 设这20个产品中的废品数为ξ, 则ξ~B (20,0.1), 假设这20个产品中的废品率为η, 则η=ξ/20. 因此 ∑=-??=≤=≤=≤3 20209.01.0}3{}15.020 { }15.0{i i i i C P P P ξξ η=0.867 5. 生产某种产品的废品率为0.1, 抽取20件产品, 初步检查已发现有2件废品, 问这20 件中, 废品不少于3件的概率. 解: 设ξ为这20件产品中的废品数, 则ξ~B (20,0.1), 又通过检查已经知道ξ定不少于2件的条件, 则要求的是条件概率 } 2{} 23{}2|3{≥≥?≥= ≥≥ξξξξξP P P 因事件}3{}2{≥?≥ξξ, 因此2}23{≥=≥?≥ξξξ 因此

概率论与数理统计第一章课后习题及参考答案

概率论与数理统计第一章课后习题及参考答案 1.写出下列随机试验的样本空间. (1)记录一个小班一次数学考试的平均分数(以百分制记分); (2)一个口袋中有5个外形相同的球,编号分别为1,2,3,4,5,从中同时取 出3个球; (3)某人射击一个目标,若击中目标,射击就停止,记录射击的次数; (4)在单位圆内任意取一点,记录它的坐标. 解:(1)}100,,2,1{ =Ω; (2)}345,235,234,145,135,134,125,124,123{=Ω; (3)},2,1{ =Ω; (4)}|),{(22y x y x +=Ω. 2.在}10,,2,1{ =Ω,}432{,,=A ,}5,4,3{=B ,}7,6,5{=C ,具体写出下列各式:(1)B A ;(2)B A ;(3)B A ;(4)BC A ;(5)C B A . 解:(1),9,10}{1,5,6,7,8=A , }5{=B A ;(2)}10,9,8,7,6,5,4,3,1{=B A ; (3)法1:}10,9,8,7,6,2,1{=B , }10,9,8,7,6,1{=B A , }5,4,3,2{=B A ; 法2:}5,4,3,2{===B A B A B A ; (4)}5{=BC , }10,9,8,7,6,4,3,2,1{=BC , }4,3,2{=BC A , }10,9,8,7,6,5,1{=BC A ;

(5)}7,6,5,4,3,2{=C B A , {1,8,9,10}=C B A . 3.设}20|{≤≤=Ωx x ,}121| {≤<=x x A ,}2 341|{≤≤=x x B ,具体写出下列各式:(1)B A ;(2)B A ;(3)AB ;(4)B A . 解:(1)B B A = , }22 3,410|{≤<<≤==x x x B B A ;(2)=B A ?; (3)A AB =, }21,10|{≤<≤ ≤==x x x A AB ;(4)}231,2141|{<<<≤=x x x B A .4.化简下列各式:(1)))((B A B A ;(2)))((C B B A ;(3)))((B A B A B A .解:(1)A B B A B A B A ==)())(( ; (2)AC B C A B C B B A ==)())((;(3))())()((B A B B A B A B A B A =AB AB A A B A A === )(.5.A ,B ,C 表示3个事件,用文字解释下列事件的概率意义:(1)C B A C A C B A ;(2)BC AC AB ;(3)(C B A ;(4)BC AC AB . 解:(1)A ,B ,C 恰有一个发生; (2)A ,B ,C 中至少有一个发生; (3)A 发生且B 与C 至少有一个不发生; (4)A ,B ,C 中不多于一个发生. 6.对于任意事件A ,B ,证明:Ω=-A B A AB )(.

概率论与数理统计(经管类)第七章课后习题答案word

习题7.1 1.设总体X服从指数分布 试求的极大似然估计.若某电子元件的使用寿命服从该指数分布,现随机抽取18个电子元件,测得寿命数据如下(单位:小时): 16, 19, 50, 68, 100, 130, 140, 270, 280, 340, 410, 450, 520, 620, 190, 210, 800, 1100. 求的估计值. 解: 似然函数为 令 得 2.设总体X的概率密度为 其他 试求(1)的矩估计的极大似然估计 解: (1) 的矩估计 (2) 似然函数为

令 解得 3.设总体X服从参数为的泊松分布试求的矩估计和极大似然估计(可参考例7-8) 解:由服从参数为的泊松分布 由矩法,应有 似然函数为 解得的极大似然估计为 习题7.2 1.证明样本均值是总体均值的相合估计 证: 由定理知是的相合估计 2.证明样本的k阶矩是总体阶矩的相合估计量 证: 是的相合估计 3.设总体为其样品试证下述三个估计量 (1) (2)

(3) 都是的无偏估计,并求出每一估计量的方差,问哪个方差最小? 证: 都是的无偏估计 故的方差最小. 4.设总体其中是未知参数又为取自该总体的样品为样品均值 (1)证明是参数的无偏估计和相合估计 (2)求的极大似然估计 (1)证: 是参数的无偏估计 又 是参数的相合估计 (2)故其分布密度为 其他 似然函数 其他 因对所有有

习题7.3 1.土木结构实验室对一批建筑材料进行抗断强度试验.已知这批材料的抗断强度.现从中 抽取容量为6的样本测得样本观测值并算的求的置信度的置信区间 解: 置信度为的置信区间是 2.设轮胎的寿命X服从正态分布,为估计某种轮胎的平均寿命,随机地抽取12只轮胎试用,测得它们的 寿命(单位:万千米)如下: 4.68 4.85 4.32 4.85 4.61 5.02 5.20 4.60 4.58 4.72 4.38 4.7 试求平均寿命的的置信区间(例7-21,未知时的置信区间) 解:查分布表知 平均寿命的的置信区间为 3.两台车床生产同一种型号的滚珠,已知两车床生产的滚珠直径X,Y分别服从 其中未知现由甲,乙两车床的产品中分别抽出25个和15个,测得 求两总体方差比的置信度0.90的置信区间. 解:此处 的置信度0.90的置信区间为: 4.某工厂生产滚珠,从某日生产的产品中随机抽取9个,测得直径(单位:毫米)如下: 14.6 14.7 15.1 14.9 14.8 15.0 15.1 15.2 14.8 设滚珠直径服从正态分布,若 (1)已知滚珠直径的标准差毫米; (2)未知标准差

同济大学版概率论与数理统计——修改版答案

概率论与数理统计练习题 系 专业 班 姓名 学号 第一章 随机事件及其概率(一) 一.选择题 1.对掷一粒骰子的试验,在概率论中将“出现奇数点”称为 [ C ] (A )不可能事件 (B )必然事件 (C )随机事件 (D )样本事件 2.下面各组事件中,互为对立事件的有 [ B ] (A )1A ={抽到的三个产品全是合格品} 2A ={抽到的三个产品全是废品} (B )1B ={抽到的三个产品全是合格品} 2B ={抽到的三个产品中至少有一个废品} (C )1C ={抽到的三个产品中合格品不少于2个} 2C ={抽到的三个产品中废品不多于2个} (D )1D ={抽到的三个产品中有2个合格品} 2D ={抽到的三个产品中有2个废品} 3.下列事件与事件A B -不等价的是 [ C ] (A )A A B - (B )()A B B ?- (C )A B (D )A B 4.甲、乙两人进行射击,A 、B 分别表示甲、乙射中目标,则A B ?表示 [ C] (A )二人都没射中 (B )二人都射中 (C )二人没有都射着 (D )至少一个射中 5.以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对应事件A 为. [ D] (A )“甲种产品滞销,乙种产品畅销”; (B )“甲、乙两种产品均畅销”; (C )“甲种产品滞销”; (D )“甲种产品滞销或乙种产品畅销 6.设{|},{|02},{|13}x x A x x B x x Ω=-∞<<+∞=≤<=≤<,则A B 表示 [ A] (A ){|01}x x ≤< (B ){|01}x x << (C ){|12}x x ≤< (D ){|0}{|1}x x x x -∞<

概率论与数理统计复旦大学出版社第一章课后答案

第一章 1.见教材习题参考答案. 2.设A ,B ,C 为三个事件,试用A ,B ,C (1) A 发生,B ,C 都不发生; (2) A ,B ,C 都发生; (3) A ,B ,C (4) A ,B ,C 都不发生; (5) A ,B ,C (6) A ,B ,C 至多有1个不发生; 【解】(1) ABC (2) ABC (3)A B C (4) ABC =A B C (5) ABC (6) ABC ∪ABC ∪ABC ∪ABC =AB BC AC 3. . 4.设A ,B 为随机事件,且P (A )=0.7,P (A -B )=0.3,求P (AB ). 【解】 P (AB )=1-P (AB )=1-[P (A )-P (A -B )] =1-[0.7-0.3]=0.6 5.设A ,B 是两事件,且P (A )=0.6,P (B )=0.7, (1) 在什么条件下P (AB (2) 在什么条件下P (AB 【解】(1) 当AB =A 时,()()0.6P AB P A ==,()P AB 取到最大值为0.6. (2) 当A ∪B =Ω时,()()()()0.3P AB P A P B P A B =+-=,()P AB 取到最小值为0.3. 6.设A ,B ,C 为三事件,且P (A )=P (B )=1/4,P (C )=1/3且P (AB )=P (BC )=0, P (AC )=1/12,求A ,B ,C 至少有一事件发生的概率. 【解】 因为P (AB )=P (BC )=0,所以P (ABC )=0, 由加法公式可得 ()()()()()()()()P A B C P A P B P C P AB P AC P BC P ABC =++---+ = 14+14+13-112=34

概率统计章节作业答案教学提纲

概率统计章节作业答 案

第一章 随机事件与概率 一、单项选择题 1.掷一枚骰子,设A ={出现奇数点},B ={出现1或3点},则下列选项正确的 是 ( B ). A. AB ={出现奇数点} B. AB ={出现5点} C. B ={出现5点} D. A B =Ω 2.设A 、B 为任意两个随机事件,则下列选项中错误的是 ( A ). A. ()A B B A +-= B. ()A B B A B A AB +-=-=- C. ()A B B A B -+=+ D.AB AB A += 3.将一枚匀称的硬币投掷两次,令A i ={第i 次正面向上}(i =1,2),则“至少 有一次正面向上”可表示为 ( D ). A.1212A A A A B.12A A C.12A A D.12A A 4.某人向一目标射击3次,设A i 表示“第i 次射击命中目标”(i =1,2,3),则 3次都没有命中目标表示为 ( A ). A.123A A A B.123A A A ++ C.123A A A D.123A A A 5.设A 与B 为互为对立事件,且()0,()0P A P B >>,则下列各式中错误的是 ( A ). A.(|)0P A B = B. (|)0P B A = C. ()0P AB = D. ()1P A B = 6.设事件A 与B 相互独立,P (A )=0.2, P (B )=0.4, 则(|)P A B = ( D ). A. 0.2 B. 0.4 C. 0.6 D. 0.8 7.已知事件A 与B 互不相容, P (A )>0, P (B )>0, 则 ( C ). A.()1P A B = B.()()()P AB P A P B =

概率论第一章答案

.1. 解:(正, 正), (正, 反), (反, 正), (反, 反) A (正 ,正) , (正, 反) .B (正,正),(反,反) C (正 ,正) , (正, 反) ,(反,正) 2.解:(1,1),(1,2), ,(1,6),(2,1),(2,2), ,(2,6), ,(6,1),(6,2), ,(6,6);AB (1,1),(1,3),(2,2),(3,1); A B (1,1),(1,3),(1,5), ,(6,2),(6,4),(6,6),(1,2),(2,1); AC - BC (1,1),(2,2). A B C D (1,5), (2,4), (2,6), (4,2), (4,6), (5,1), (6,2), (6,4) 3. 解:(1) ABC ;(2) ABC ;(3) ABC ABC ABC ; (4) ABC ABC ABC ;( 5) A B C ; (6) ABC ;(7) ABC ABC ABC ABC 或AB AC BC (8) ABC ;(9) ABC 4. 解:甲未击中;乙和丙至少一人击中;甲和乙至多有一人击中或甲和乙至少有一人未击中; 甲和乙都未击中;甲和乙击中而丙未击中;甲、乙、丙三人至少有两人击中c 5. 解:如图: 第一章概率论的基本概念习题答案

每次拿一件,取后放回,拿3次: ABC ABC; AB C ABC C; B A C ABC ABC ABC BA ABC BC ABC 6. 解:不 疋成立 。例如: A 3,4,5 B 那么 A C B C 但A B 0 7. 解:不 疋成立 。例如: A 3,4,5 B 那么 A (B C) 3 , 但是 (A B) C 3,6,7 ABC ABC A B 4,5,6 o 8.解: C ABC ABC ABC 3 C 4,5 6,7 P( BA) P(B AB) P(B) P(AB) (1) 2 ; (2) P( BA) P(B A) P(B) 1 P(A) 6 ; (3) P( BA) P(B AB) P(B) 1 P(AB)- 2 9. 解: P(ABC) P A B C 1 P(A B C)= 1 1 8 P (1 ) 2 982 1003 0.0576 ; 1旦 1003 0.0588 ; 1 P(A) 1 P(B) 1 P(C) 1 P(AB) 1 P(AC) 3 P(BC) P(ABC) 16 16 g 八牛 A)n .(.( (C p( B P (1) C ;8C ; C 100 0.0588 ; P (2) 3 100 1 98 0.0594 ; D P 3 2 2 P c ;c

概率统计作业解答

1文档来源为:从网络收集整理.word 版本可编辑. 《概率论与数理统计》作业解答 第一章 概率论的基本概念习题(P24-28) 1. 写出下列随机试验的样本空间S : (1) 记录一个班一次数学考试的平均分数(设以百分制记分). (2) 生产产品直到有10件正品为止,记录生产产品的总件数. (3) 对某工厂出厂的产品进行检查,合格的记上“正品”,不合格的记上“次品”.如连续查出了2件次品,就停止检查,或检查了4件产品就停止检查. 记录检查的结果. (4) 在单位圆内任意取一点,记录它的坐标. 分析 要写出随机试验的样本空间,就要明确所有的样本点,即随机试验时直接产生的所有可能的结果. 解 (1) 我们考察一个班数学考试平均分的所有可能. 为此,我们先明确平均分的计算:全班的总分除以班级学生数. 设该班有n 个学生,则全班总分的所有可能为0到100n 的所有整数i . 其平均分为i n . 故,所求样本空间为::1,2,,100i S i n n ??==??????? . (2) 由已知,生产的件数至少为10(刚开始生产的10件均为正品),此后,可以取大于等于10的所有整数. 故所求样本空间为:{}10,11,12,S =???. (3) 若记0=“检查的产品为次品”,1=“检查的产品正品”,0,1从左到右按检查的顺序排列,则所求样本空间为: (5) 所求样本空间为:{} 22(,):1S x y x y =+< 2. 设,,A B C 为三个事件,用,,A B C 的运算关系表示下列各事件: (1) A 发生,B 与C 不发生. (2) A 与B 都发生,而C 不发生.

概率论第四章课后习题解答

概率论第四章习题解答 1(1)在下列句子中随机地取一个单词,以X 表示取到的单词所饮食的字母个数,写出X 的分布律并求数学期望()E X 。 “THE GIRL PUT ON HER BEAUTIFUL RED HAT ” (2)在上述句子的30个字母中随机地取一个字母,以Y 表示取到的字母所在单词所包含的字母数,写出Y 的分布律并求()E Y (3)一人掷骰子,如得6点则掷第二次,此时得分为6加第二次得到的点数;否则得分为第一次得到的点数,且不能再掷,求得分X 的分布律。 解 (1)在所给的句子中任取一个单词,则其所包含的字母数,即随机变量X 的取值为:2,3,4,9,其分布律为 所 以 151115()234988884 E X =?+?+?+?=。 (2)因为Y 的取值为2,3,4,9 当2Y =时,包含的字母为“O ”,“N ”,故 1 21 {2}3015 C P Y == =; 当3Y =时,包含的3个字母的单词共有5个,故 当4Y =时,包含的4个字母的单词只有1个,故 当9Y =时,包含的9个字母的单词只有1个,故

112314673 ()234915215103015 E Y =? +?+?+?== 。 (3)若第一次得到6点,则可以掷第二次,那么他的得分为:X =7,8,9,10,11,12; 若第一次得到的不是6点,则他的得分为1,2,3,4,5。由此得X 的取值为: 1,2,3,4,5,7,8,9,10,11,12。 2 某产品的次品率为,检验员每天检验4次,每次随机地取10件产品进行检验,如果发现其中的次品多于1,就去调整设备。以X 表示一天中调整设备的次数,试求()E X 。(设诸产品是否为次品是相互独立的。) 解 (1)求每次检验时产品出现次品的概率 因为每次抽取0件产品进行检验,且产品是否为次品是相互独立的,因而可以看作是进行10次独立的贝努利试验,而该产品的次品率为,设出现次品的件数为 Y ,则(10,0.1)Y B :,于是有 1010{}(0.1)(0.9)k k k P Y k C -== (2 )一次检验中不需要调整设备的概率 则需要调整设备的概率 {1}1{}10.73610.2639P Y P Y >=-≤=-= (3)求一天中调整设备的次数X 的分布律

大学概率论与数理统计试题库及答案a

< 概率论>试题 一、填空题 1.设 A 、B 、C 是三个随机事件。试用 A 、B 、C 分别表示事件 1)A 、B 、C 至少有一个发生 2)A 、B 、C 中恰有一个发生 3)A 、B 、C 不多于一个发生 2.设 A 、B 为随机事件, P (A)=0.5,P(B)=0.6,P(B A)=0.8。则P(B )A = 3.若事件A 和事件B 相互独立, P()=,A αP(B)=0.3,P(A B)=0.7,则α= 4. 将C,C,E,E,I,N,S 等7个字母随机的排成一行,那末恰好排成英文单词SCIENCE 的概率为 5. 甲、乙两人独立的对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被命中,则它是甲射中的概率为 6.设离散型随机变量X 分布律为{}5(1/2)(1,2,)k P X k A k ===???则 A=______________ 7. 已知随机变量X 的密度为()f x =? ??<<+其它,01 0,x b ax ,且{1/2}5/8P x >=,则 a =________ b =________ 8. 设X ~2 (2,)N σ,且{24}0.3P x <<=,则{0}P x <= _________ 9. 一射手对同一目标独立地进行四次射击,若至少命中一次的概率为80 81 ,则该射手的命中率为_________ 10.若随机变量ξ在(1,6)上服从均匀分布,则方程x 2 +ξx+1=0有实根的概率是 11.设3{0,0}7P X Y ≥≥= ,4 {0}{0}7 P X P Y ≥=≥=,则{max{,}0}P X Y ≥= 12.用(,X Y )的联合分布函数F (x,y )表示P{a b,c}X Y ≤≤<= 13.用(,X Y )的联合分布函数F (x,y )表示P{X a,b}Y <<=

统计学第5章概率论作业

一、选择 1、一项试验中所有可能结果的集合称为() A事件 B简单事件 C样本空间 D基本事件 2、每次试验可能出现也可能不出现的事件称为() A必然事件 B样本空间 C随机事件 D不可能事件 3、抛3枚硬币,用0表示反面,1表示正面,其样本空间Ω=() A{000,001,010,100,011,101,110,111} B{1,2,3}C{0,1}D{01,10} 4、随机抽取一只灯泡,观察其使用寿命t,其样本空间Ω=() A{t=0} B{t<0} C{t>0} D{t≥0} 5、观察一批产品的合格率P,其样本空间为Ω=() A{0

大学概率论与数理统计必过复习资料试题解析(绝对好用)

《概率论与数理统计》复习提要第一章随机事件与概率1.事件的关系 2.运算规则(1)(2)(3)(4) 3.概率满足的三条公理及性质:(1)(2)(3)对互不相容的事件,有(可以取)(4)(5) (6),若,则,(7)(8) 4.古典概型:基本事件有限且等可能 5.几何概率 6.条件概率(1)定义:若,则(2)乘法公式:若为完备事件组,,则有(3)全概率公式: (4) Bayes公式: 7.事件的独立 性:独立(注意独立性的应用)第二章随机变量与概率分 布 1.离散随机变量:取有限或可列个值,满足(1),(2)(3)对 任意, 2.连续随机变量:具有概率密度函数,满足(1)(2); (3)对任意, 4.分布函数,具有以下性质(1);(2)单调非降;(3)右连续;(4),特别;(5)对离散随机变量,; (6)为连续函数,且在连续点上, 5.正态分布的 概率计算以记标准正态分布的分布函数,则有(1);(2);(3) 若,则;(4)以记标准正态分布的上侧分位 数,则 6.随机变量的函数(1)离散时,求的值,将相同的概率相加;(2)连续,在的取值范围内严格单调,且有一阶连续导 数,,若不单调,先求分布函数,再求导。第三章随机向量 1.二维离散随机向量,联合分布列,边缘分布,有(1);(2 (3), 2.二维连续随机向量,联合密度,边缘密度,有 (1);(2)(4)(3);,3.二维均匀分布,其中为的面积 4.二维正态分布 且; 5.二维随机向量的分布函数有(1)关于单调非降;(2)关 于右连续;(3);(4),,;(5);(6)对 二维连续随机向量, 6.随机变量的独立性独立(1) 离散时独立(2)连续时独立(3)二维正态分布独立,且 7.随机变量的函数分布(1)和的分布的密度(2)最大最小分布第四章随机变量的数字特征 1.期望 (1) 离散时 (2) 连续 时, ;,; (3) 二维时, (4); (5);(6);(7)独立时, 2.方差(1)方差,标准差(2); (3);(4)独立时, 3.协方差 (1);;;(2)(3);(4)时, 称不相关,独立不相关,反之不成立,但正态时等价;(5) 4.相关系数;有, 5.阶原点矩,阶中心矩第五章大数定律与中心极限定理 1.Chebyshev不等式 2.大数定律 3.中心极限定理(1)设随机变量独立同分布, 或,或

相关文档
最新文档