关于中性点经小电阻接地方式在运行中存在问题分析(黄)

关于中性点经小电阻接地方式在运行中存在问题分析(黄)
关于中性点经小电阻接地方式在运行中存在问题分析(黄)

关于配电网中性点经小电阻接地方式的分析

李景禄1、李政洋1、张春辉2

1.长沙理工大学湖南长沙410076

2.长沙信长电力科技有限公司

湖南长沙(410076)

摘要:本文对配电网中性点小电阻接地方式、对铁磁谐振过电压的消除、对弧光接地过电压的限制及对电网的适用性进行了分析。分析了小电阻接地方式故障点的接地阻抗对零序保护的影响,特别对比分析了架空线路绝缘子闪络造成的瞬时性故障和架空绝缘导线断线接地时对零序保护的影响,认为:小电阻接地方式使供电可靠性下降的原因是架空线路绝缘子闪络时故障电流大,足以启动零序保护,而在架空绝缘导线断线接地时由于接地点接地电阻大会使零序保护“失灵”。因而小电阻接地方式仅适用于纯电缆网络,不适用于架空线路为主或架空电缆混合网。

关键词:小电阻接地方式、单相断线、过渡电阻接地、人身安全Analysis of Neutral Point via Small Resistance Grounding Method

Of Distribution Network

Li Jinglu1、Li Zheng Yang1、Zhang Chunhui2

(1.Changsha University of Science and Technology.Changsha 410076,China;

2.Changsha Xinchang Power technology co., LTD.Changsha 410076,China) Abstract: In this paper, the distribution network neutral point via small resistance grounding method, elimination of ferroresonance overvoltage, the limitation on the over-voltage of arc light earthing and analyzes the applicability of the power grid. Analysis of the impact of small resistance grounding fault point grounding impedance of zero-sequence protection.Special analysis of the overhead line insulator flashover caused by instantaneous fault and overhead insulated wire break ground on the influence of zero sequence protection.Draw the conclusion: the cause of the small resistance grounding mode led to the decrease of the power supply reliability is overhead line insulator flashover fault current is large enough to start the

zero-sequence protection,in overhead insulated conductor break ground, because the ground point grounding resistance congress to make zero-sequence protection "failure".So small resistance grounding method applies only to pure cable network, is not suitable for overhead line or aerial cable hybrid network.

Key words: Small resistance grounding method;Single-phase line break;Transition resistance grounding;The personal safety

0、引言

配电网中性点经小电阻接地方式由于内过电压水平低,在单相接地故障发生时可以通过零序保护及时切除故障线路而广泛应用于以纯电缆线路为主的配电网。但是近年来由于配电网经消弧线圈接地方式存在的安全问题而发生了多起安全事故,于是有些本来是架空电缆混合网或以架空线为主的配电网也改为小电阻接地方式,但这样一来不但造成了供电可靠性的下降,在发生绝缘导线断线时也发生了零序保护失灵,不能及时切断故障线路而造成的安全问题。因而有必要对中性点经小电阻接地方式进行认真的分析,从而对这种接地方式的适用性给出正确的评价。

1、配电网中性点经小电阻接地方式的特点

配电网中性点小电阻接地方式主要应用于以电缆为主的配电网,这种接地方式是在电网的中性点接入一个阻值在10-20Ω的电阻,把配电网由非有效接地系统转变为有效接地系统,各馈线配零序保护,在发生单相接地时,启动零序保护把故障线路切除。配电网中性点经小电阻接地方式的主要特点为:(1)内过电压水平低,因为影响配电网主要的、也是最常发生的内过电压为电磁式电压互感器引起的铁磁谐振过电压和单相接地时间歇性电弧引起的弧光接地过电压。①对铁磁谐振过电压的消除、因在小电阻接地方式时,由于在零序回路里

小电阻与电磁式电压互感器的励磁电抗是并联的,小电阻的存在有效地阻尼和制约小电磁式电压互感器因磁饱和引起的铁磁谐振过电压。

②对弧光接地过电压的限制、弧光接地过电压是配电网发生单相接地时故障点产生间歇性的熄弧与重燃引起电网电容上的电场能量与电感磁场能的强烈振荡造成的。在小电阻接地方式时当接地电流较小时,也会产生间歇性的电弧,但由于有小电阻的存在,对电网电容上的电荷提供了一个泄放通道,对电网电感电磁振荡起到了有效的阻尼,所以小电阻接地方式能有效地限制弧光接地过电压。因小电阻接地方式的过电压水平低,不会危及电气设备的绝缘,单相接地故障时,非故障相电压升高较小,发展相间短路的几率较小。(2)单相接地故障时快速切除故障线路、因小电阻接地方式配零序保护,在配电网发生单相接地故障时,通过电阻向故障馈线提供100-600A的阻性零序电流,启动零序保护切除故障线路,不存在消弧线圈接地方式的选线难题因而受到广泛的重视,尤其是北京、上海、广州、深圳等大城市配电网得到广泛的应用。

2、配电网中性点小电阻接地方式适用性分析

2.1、小电阻接地方式应用于纯电缆网络

纯电缆网络由于电缆线路大都埋在地下,虽然有部分电缆线路架空但芯线外部有接地的金属屏蔽层保护,因而纯电缆网络受雷电的影响小一般不会发生雷害事故。现在广泛应用的是交联聚乙烯电缆。交联聚乙烯电缆除了相间主绝缘是交联聚乙烯塑料以及线芯形状是圆形之外,还有两层半导体屏蔽层。在芯线的外表面包第一层半导体屏

蔽层,它可以克服导体电晕及电离放电,使芯线与绝缘层之间有良好的过渡;在相间绝缘外表面包第二层半导体胶,同时加包了一层0.1mm 厚的薄铜带,它组成了良好的相间屏蔽层,它保护着电缆,使之几乎不能发生相间故障。引起电缆绝缘故障的原因是多方面的,运行经验表明,电缆运行中的事故大多是由于外力破坏,或地下污水的腐蚀等所引起的。由于电缆头和电缆中间接头处由于受电场畸变的影响最易发生击穿故障,在架空电缆混合网,电缆与架空线路的连接处电缆头还易受雷电过电压的作用发生击穿。电缆的故障一般分为高阻故障和低阻故障,但电缆一旦发生故障则一定是永久性故障,所以对电缆网络使用消弧线圈接地是不合适的,因为即使消弧线圈补偿后的残流控制得再好,也不能把故障消除,再者,为了便于故障点查找对高阻故障还需要通过故障电流对故障点“烧穿”降阻,把高阻故障转化为低阻故障。从这个角度讲,小电阻接地方式对故障电流的放大正好起到这一作用。小电阻接地方式能有效限制配电网的内过电压,发生故障时能及时切断故障线路,因而特别适用于纯电缆网络。

2.2、小电阻接地方式应用于架空线路配电网

架空线路构成的配电网的故障主要是雷击、污闪造成缘缘子闪络,其瞬时性单相接地故障占85%左、右。为了保证配电网的供电可靠性,希望在发生瞬时性单相接地故障时能够熄弧而不跳闸。如配电网中性点采用小电阻接地方式,因杆塔有接地装置,一旦绝缘子闪络就是金属接地,其接地电流为:

C d I I +=Z I (1)

式中:d I -故障点的单相接地电流;R I -由零序电阻回路提供的阻性电

流;C I -电网电容电流。

因为线路绝缘子闪络时,流过故障点的阻性电流接为:

N

I Z Z U J N R += (2) 式中:R I -小电阻提供的阻性电流;N U -中性点位移电压;N Z -小电阻

的阻抗值;J Z -小电阻接地处的接地阻抗值。

此时,流过故障点的电容电流C I 也接近全部的电网电容电流,与

接地阻性电流R I 叠加,流过故障馈线的电流会达到零序保护的动作

值,会启动零序保护使线路跳闸。特别是在多雷区,雷击故障多,但大多数雷击闪络时,绝缘子并没被破坏,是瞬时性故障如若采用小电阻接地方式必然会跳闸,会由雷击跳闸使配电网供电可靠性大幅度下降。2010年广州供电公司发生10kv 导线雷击断线并落地造成2人3命的人身伤亡事故后,把所有的消弧线圈接地方式都更换为电阻接地方式,结果造成了供电可靠性大幅度下降。

对于架空线路而言,其永久性接地故障主要为绝缘子对地击穿、导线断线接地、线路上的避雷器击穿接地,因现在配电网使用的绝缘子的绝缘水平和质量一般较高,一般都会发生沿面闪络而不会造成永久性击穿;配电线路上使用的避雷器也由于带自动脱离器而不会使线路发生永久性的接地。而现在由于架空绝缘导线的大量使用而频繁发生绝缘导线断线接地故障。绝缘导线断线原因有:剪切疲劳断线、树木摩擦断线和雷击断线,架空绝缘导线的断线故障是结构性的问题,很难通过对线路的正常巡视检查和检修来预防,以至于架空绝缘导线

断线故障频繁发生,断线接地会对人身安全构成极大的安全风险,国内发生了多次因架空绝缘导线断线接地而产生的人身安全事故。为了解决绝缘导线断线接地带来的人身安全问题,有些地方把以架空线路和架空电缆为主的配电网改为小电阻接地方式,希望在绝缘导线断线接地时通过零序保护切除故障线路来解决人身安全问题。小电阻接地方式直能解决绝缘导线断线接地带来的人身安全问题?答案是否定的,因为在架空绝缘导线断线接地时,由于在导线落地点没有接地装置,如绝缘导线的裸露长度小,故障点土壤电阻率高或导线与大地接触不可靠,则导线与大地间的接地阻抗就较高,此时流过故障点的阻性电流为:

J

N G d Z Z U I ++=ΦZ (3) 式中:d I -流过故障点的入地电流;ΦU -电网相电压;G Z -故障点的接

地阻抗。

在小电阻接地系统中,单相接地时流过故障点的阻性电流较大,一般在400—600A 范围内,所以可以按照确保零序保护的可靠动作来确定零序电流互感器的变比。因零序保护的整定值要大于变电站上单回馈线的最大对地电容电流,在中心变电站一般零序保护的动作值应整定40A ,这样故障点的对地过渡电阻在大于150Ω时,因故障电流达不到零序保护的动作值会使“零序保护失灵”,在故障点的对地过渡电阻小于140Ω时零序保护才能可靠动作。设10kv 架空线路的杆塔接地电阻G Z =30Ω,当线路绝缘子雷击闪络时,流过故障回路的阻性故障电流可达100A 以上,再叠加上电网的电容电流满足零序保

护的灵敏度没有问题。但是若发生架空线路单相导线断线落地,特别是现在的架空线路一般采用绝缘导线,而绝缘导线由于雷击、或对树磨损最易发生单相绝缘导线断线落地,而断线落地处由于没有接地装置,导线对地的接地阻抗为经过渡电阻接地,其接地阻抗取决于导线与大地接触的长度、落地点的土壤电阻率和导线与大地的接触情况。而绝缘导线断线,一般导线的裸露长度小,在落地故障点土壤电阻率较高时,或导线与大地接触不可靠时,都会造成故障点接地阻抗较高,故障电流小满足不了零序电流灵敏度的要求,电网的零序保护就会“失灵”,故障线路不跳闸。另外,故障点接地阻抗较高时,还会造成故障点的入地电流小,这样即使把零序保护的整定值小40A,也会无法利用零序保护来切断故障馈线,解决故障点的安全问题。因而小电阻接地方式无法解决架空线路单相导线断线落地对人身安全风险问题。

2.3、小电阻接地方式应用于架空电缆混合网

现在许多配电网即不是纯电缆构成的电网也不是纯架空线路构成的电网,而是由架空线路和电缆线路组成的架空、电缆混合网。在由架空线路和电缆线路组成的架空、电缆混合网中,即有线路绝缘子闪络产生的瞬时性故障,也有电缆击穿所产生的永久性故障。在这种电网中用小电阻接地方式除了上面分析的特点外,就是在这种网络中在架空线路与电缆线路的联接处的电缆头易发生故障,特别是易发生由架空线路带来的雷击故障。小电阻接地方式发生单相接地时流过故障点的电流为阻性电流与电网电容电流的叠加,在电缆头发生单相接

地时,由于过渡电阻小,流过故障点的电流大而电缆头的相间距离小会使单接地发展为相间短路或引起电缆头或电缆分支箱发生火灾。

3、结论

(1)、小电阻接地方式由于结构简单,其内过电压水平低,在电网发生单相接地时能够通过零序保护及时切除故障线路,因而小电阻接地方式适用于纯电缆网络的配电网。

(2)、架空线路的大多数故障为线路绝缘子闪络产生的瞬时性故障,采用小电阻接地方式时因杆塔接地装置的存在接地电流大,大都满足零序保护动作值而跳闸,会使供电可靠性大幅度下降。

(3)当架空绝缘导线断线接地时,如绝缘导线与大地间的接地阻抗高,故障电流小,会使零序保护“失灵”,故障线路不跳闸,会对人身带来极大的安全风险,因而,小电阻接地方式不适用于架空网络,或架空、电缆混合网络。

中性点经电阻接地方式的适用范围及优缺点正式版

Through the reasonable organization of the production process, effective use of production resources to carry out production activities, to achieve the desired goal. 中性点经电阻接地方式的适用范围及优缺点正式版

中性点经电阻接地方式的适用范围及 优缺点正式版 下载提示:此安全管理资料适用于生产计划、生产组织以及生产控制环境中,通过合理组织生产过程,有效利用生产资源,经济合理地进行生产活动,以达到预期的生产目标和实现管理工作结果的把控。文档可以直接使用,也可根据实际需要修订后使用。 中性点经电阻接地方式,即是中性点与大地之间接人一定电阻值的电阻。该电阻与系统对地电容构成并联回路,由于电阻是耗能元件,也是电容电荷释放元件和谐振的阻压元件,对防止谐振过电压和间歇性电弧接地过电压,有一定优越性。中性点经电阻接地的方式有高电阻接地、中电阻接地、低电阻接地等三种方式。这三种电阻接地方式各有优缺点,要根据具体情况选定。 对于用电容量大且以电缆线路为主的

电力系统,其电容电流往往大于30A,如果采用消弧线圈接地方式,不仅调谐工作繁琐困难,故障点不易寻找,而且消弧线圈补偿量增大,使得投资增加,占地面积也随之增大。电缆线路不宜带故障运行,采用消弧线圈可以带故障运行的优点也不能发挥,因此这样的系统常采用电阻接地。电阻接地根据系统电容电流的不同,分为高电阻接地和中电阻接地两种情况。 (1)高电阻接地 高电阻接地多用于电容电流为10A或稍大的系统内。接地电阻的电阻值按照流经该电阻上的电流稍大于系统的接地电容

中性点经电阻接地方式的适用范围及优缺点

编订:__________________ 审核:__________________ 单位:__________________ 中性点经电阻接地方式的适用范围及优缺点Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-5969-82 中性点经电阻接地方式的适用范围 及优缺点 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 中性点经电阻接地方式,即是中性点与大地之间接人一定电阻值的电阻。该电阻与系统对地电容构成并联回路,由于电阻是耗能元件,也是电容电荷释放元件和谐振的阻压元件,对防止谐振过电压和间歇性电弧接地过电压,有一定优越性。中性点经电阻接地的方式有高电阻接地、中电阻接地、低电阻接地等三种方式。这三种电阻接地方式各有优缺点,要根据具体情况选定。 对于用电容量大且以电缆线路为主的电力系统,其电容电流往往大于30A,如果采用消弧线圈接地方式,不仅调谐工作繁琐困难,故障点不易寻找,而且消弧线圈补偿量增大,使得投资增加,占地面积也随

之增大。电缆线路不宜带故障运行,采用消弧线圈可以带故障运行的优点也不能发挥,因此这样的系统常采用电阻接地。电阻接地根据系统电容电流的不同,分为高电阻接地和中电阻接地两种情况。 (1)高电阻接地 高电阻接地多用于电容电流为10A或稍大的系统内。接地电阻的电阻值按照流经该电阻上的电流稍大于系统的接地电容电流的原则来选择。由于接地故障时总的接地电流比较小,对电气设备和线路所产生的机械应力和热效应也比较小,同样也减少人身遭受电击的危险和靠近接地故障点的人员遭受到电弧和闪络的危险,还可以带故障继续运行2h,以便利用这段时间消除接地故障,保持系统运行的可靠性。 (2)中电阻接地

关于中性点经小电阻接地方式在运行中存在问题分析(黄)

关于配电网中性点经小电阻接地方式的分析 李景禄1、李政洋1、张春辉2 1.长沙理工大学湖南长沙410076 2.长沙信长电力科技有限公司 湖南长沙(410076) 摘要:本文对配电网中性点小电阻接地方式、对铁磁谐振过电压的消除、对弧光接地过电压的限制及对电网的适用性进行了分析。分析了小电阻接地方式故障点的接地阻抗对零序保护的影响,特别对比分析了架空线路绝缘子闪络造成的瞬时性故障和架空绝缘导线断线接地时对零序保护的影响,认为:小电阻接地方式使供电可靠性下降的原因是架空线路绝缘子闪络时故障电流大,足以启动零序保护,而在架空绝缘导线断线接地时由于接地点接地电阻大会使零序保护“失灵”。因而小电阻接地方式仅适用于纯电缆网络,不适用于架空线路为主或架空电缆混合网。 关键词:小电阻接地方式、单相断线、过渡电阻接地、人身安全Analysis of Neutral Point via Small Resistance Grounding Method Of Distribution Network Li Jinglu1、Li Zheng Yang1、Zhang Chunhui2 (1.Changsha University of Science and Technology.Changsha 410076,China; 2.Changsha Xinchang Power technology co., LTD.Changsha 410076,China) Abstract: In this paper, the distribution network neutral point via small resistance grounding method, elimination of ferroresonance overvoltage, the limitation on the over-voltage of arc light earthing and analyzes the applicability of the power grid. Analysis of the impact of small resistance grounding fault point grounding impedance of zero-sequence protection.Special analysis of the overhead line insulator flashover caused by instantaneous fault and overhead insulated wire break ground on the influence of zero sequence protection.Draw the conclusion: the cause of the small resistance grounding mode led to the decrease of the power supply reliability is overhead line insulator flashover fault current is large enough to start the

中性点经小电阻接地

中性点经小电阻接地零序过流 0 引言 电力系统的中性点接地方式是一个综合性的技术问题,它与系统的供电可靠性、人身安全、绝缘水平、过电压保护、继电保护、通信干扰(电磁环境)及接地装置等问题有密切的关系,早期惠州惠阳的配网主要以架空线为主,线路电容电流较小,因此配网主要采用中性点不接地或者经消弧线圈接地并取得较好的效果,随着城网改造的深入,越来越多的采用电缆代替架空线,使得这些地区接地电容电流迅速上升,在这种情况下,中性点不接地或者经过消弧线圈接地已经不能满足系统限制过电压的要求,而且电缆馈线发生故障一般为永久性故障,宜采用迅速切除故障防止故障扩大,所以惠州惠阳10kv配网基本上都采用中性点经低电阻接地(接地变/曲折变),即NRS,由于系统的零序阻抗较小,线路发生单相接地故障时,线路的零序过流保护能够迅速切除故障,10kv母线发生故障时,接入曲折变保护的零序过流保护会动作隔离故障。 1 中性点经小电阻接地的特点 1.1 降低工频过电压和抑制弧光过电压中性点经小电阻接地方式可降低单相接地工频过电压,因为能迅速切除故障线路,使得工频电压升高持续时间很短,中性点电位衰减很快,弧光重燃产生过电压幅值可明显降低,有效地抑制弧光接地过电压。 1.2 消除铁磁谐振过电压和防止断线谐振过电压在中性点不接地系统中,由于电磁式电压互感器的激磁电感和线路的对地电容形成非线型谐振回路,在特定情况下引起铁磁谐振过电压,在中性点经小电阻接地后谐振无法产生。配网中性点不接地系统发生断线时,配电变压器的铁芯线圈与线路对地电容组成的串联回路在特定条件下会发生谐振,产生过电压。中性点经小电阻接地可以防止大部分的断线谐振过电压,减少绝缘老化,延长电气设备使用寿命,提高网络和设备可靠性。 1.3 避免发生高压触电事故配网系统的架空线路分布较广,高度也不太高,时有发生外物误碰高压线路以及高压线断线情况,极易导致触电伤亡事故。中性点经小电阻接地系统装有保护装置,一旦发生接地故障,可以立即跳闸,断

中性点经电阻接地方式

中性点经电阻接地方式 ——适宜于以电缆线路为主配电网的中性点接地方式 一、前言 三相交流电系统中性点与大地之间电气连接的方式,称为电网中性点接地方式。 中性点接地方式是一个综合性的、系统性的问题,既涉及到电网的安全可靠性、也涉及电网的经济性。中性点接地方式直接影响到系统设备绝缘水平的选择、系统过电压水平及过电压保护元件的选择、继电保护方式、系统的运行可靠性、通讯干扰等。在选择电网中性点接地方式时必须进行具体分析、全面考虑。 我国110kV及以上电压等级的电网一般都采用中性点直接接地方式,在中性点直接接地系统中,由于中性点电位固定为地电位,发生单相接地故障时,非故障相的工频电压升高不会超过1.4倍运行相电压;暂态过电压水平也相对较低;故障电流很大继电保护装置能迅速断开故障线路,系统设备承受过电压的时间很短,这样就可以使电网中设备的绝缘水平降低,从而使电网的造价降低。这里对中性点直接接地系统不做过多的讨论,下面主要讨论6~35kV配电网的接地方式。 配电网中性点的接地方式主要可分为以下三种: ●不接地 ●经消弧线圈接地 ●经电阻接地 自1949年至80年代我国基本上沿用前苏联的规定,6~35KV电网均采用中性点不接地或经消弧线圈(谐振)接地方式。近10多年来沿海一些大城市经济飞速发展,电网的容量和规模急剧扩大,配电线路逐步实现电缆化,系统电容电急剧增加、特别是近几年大规模城市电网改造,电缆线路逐步代替架空线路,电网结构大大加强。在电缆线路为主的城市电网中采用不接地或经消弧线圈接地方式,因单相接地过电压烧坏设备的事故概率大大增加,为了解决这一矛盾,许多城市电力部门广泛考察了国外配电网的中性点接地方式,结合本地电网的具体情况,经过充分的分析、研究,发现采用中性点经低电阻接地方式是解决这一矛盾的有效措施,20世纪80年代后期开

10kV小电阻接地系统特殊问题研究

摘要:提出了10 kV小电阻接地系统的系统模型和节点电压方程,根据该模型分析了该系统线路对地电容参数不对称所引起的流过接地变压器中性点的零序电流的变化规律。分析了高压侧出现单相接地故障对低压侧的影响情况,分析了变电所接地网接地不良所产生的接地变压器中性点零序电压升高的情况,并通过仿真算例证实了参数不对称和接地不良可能导致接地变压器零序电流保护误动的结论。 关键词:小电阻接地;接地网;参数不对称;零序电流保护;节点电位法 1引言 近年来,随着城市建设和供电业务的迅速发展,一些大城市新发展的10 kV配电网主要采用地下电缆,使对地电容电流大大增加。如果采用消弧线圈接地,则需要较大的补偿容量,而且要配置多台。10kV配电网线路在运行中操作较多,消弧线圈的分接头及时调整有困难,容易出现谐振过电压现象。因此我国许多大城市10 kV配电网采用了中性点经小电阻接地方式来解决这一问题。10 kV中性点小电阻接地方式在我国投入运行时间不长,许多问题尚未进行深入研究。本文就小电阻接地系统运行中可能出现的电缆对地电容参数不对称及变电所接地网不良所带来的问题进行了研究。 210 kV小电阻接地系统线路参数不对称产生的问题 2.1系统模型

目前,由于10 kV中性点小电阻接地系统主变压器10 kV侧一般采用三角形接线,中性点须采用一台接地变压器来实现,故建立10 kV小电阻接地系统电网模型如图1所示。 其中,出线对地等效三相电容阻抗值,型接地变压器三相等值阻抗;为系统等值三相电势源,Z ab、Z bc、Z ca分别为其三相 电源等效内阻,R为接地电阻。 2.2节点电压方程 对以上建立的10kV小电阻接地系统的网络模型,采用节点电位法进行分析,选择节点 5作为参考节点,节点方程为:

中性点经电阻接地方式的适用范围及优缺点(标准版)

Safety is the goal, prevention is the means, and achieving or realizing the goal of safety is the basic connotation of safety prevention. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 中性点经电阻接地方式的适用范 围及优缺点(标准版)

中性点经电阻接地方式的适用范围及优缺点 (标准版) 导语:做好准备和保护,以应付攻击或者避免受害,从而使被保护对象处于没有危险、不受侵害、不出现事故的安全状态。显而易见,安全是目的,防范是手段,通过防范的手段达到或实现安全的目的,就是安全防范的基本内涵。 中性点经电阻接地方式,即是中性点与大地之间接人一定电阻值的电阻。该电阻与系统对地电容构成并联回路,由于电阻是耗能元件,也是电容电荷释放元件和谐振的阻压元件,对防止谐振过电压和间歇性电弧接地过电压,有一定优越性。中性点经电阻接地的方式有高电阻接地、中电阻接地、低电阻接地等三种方式。这三种电阻接地方式各有优缺点,要根据具体情况选定。 对于用电容量大且以电缆线路为主的电力系统,其电容电流往往大于30A,如果采用消弧线圈接地方式,不仅调谐工作繁琐困难,故障点不易寻找,而且消弧线圈补偿量增大,使得投资增加,占地面积也随之增大。电缆线路不宜带故障运行,采用消弧线圈可以带故障运行的优点也不能发挥,因此这样的系统常采用电阻接地。电阻接地根据系统电容电流的不同,分为高电阻接地和中电阻接地两种情况。 (1)高电阻接地

10kV小电阻接地系统运行方式评价

10kV小电阻接地系统运行方式评价 摘要:在对变电站在低压侧接地运行方式分析的基础之上,文章对10kV小电阻接地相关问题进行了研究和探讨,阐述了小电阻接地方式的优点及合理性,并对其进行了评价。 关键词:变电站;小电阻;接地系统;优点 1.引言 近年来,随着城市经济的迅速发展,一些大城市新发展的10 kV 配电网主要采用地下电缆,使对地电容电流大大增加。如果采用消弧线圈接地,则需要较大的补偿容量,而且要配置多台。10kV配电网线路在运行中操作较多,消弧线圈的分接头及时调整有困难,容易出现谐振过电压现象。因此我国许多大城市10 kV配电网采用了中性点经小电阻接地方式来解决这一问题。10 kV中性点小电阻接地方式在我国投入运行时间不长,本文就小电阻接地系统实际运行情况进行了分析,实践证明此种接地方式的选择是合理的,下面就相关问题进行阐述和分析,并给予评价。 2.小电阻接地方式的分析 一般对于郊区变电站10kV侧带出线的变电站采用的是消弧线圈接地方式,对于核心城区变电站采用的是小电阻的接地方式,小电阻接地方式在某些方面弥补了消弧线圈运行方式带来的不足。 2.1消弧线圈接地方式缺点

近年来,随着我国城市电网的发展,城市居民的增多,10kV出线中电缆所占的比重越来越大,中性点经消弧线圈接地运行方式的缺点日渐暴露,主要原因为: (1)消弧线圈各分接头的标称电流和实际电流误差较大,有些甚至可达15%,运行中就发生过由于实际电流值与铭牌数据差别而导致谐振的现象。 (2)计算电容电流和实际电容电流误差较大,对于电缆和架空线混合的出线,单位长度的电容电流也不尽相同,消弧线圈补偿的正确性难以保证。 (3)出线电缆的单相接地故障多为永久性故障。由于中性点经消弧线圈接地的系统为小电流接地系统,发生单相接地永久性故障后,在接地故障点的检出过程中,这对城市中人口密集的现状而言,事故的后果会非常严重。 (4)中性点经消弧线圈接地系统仅能降低弧光接地过电压发生的概率,并不能降低弧光接地过电压的幅值,将使系统设备长时间承受过电压作用,对设备绝缘造成威胁。 综合以上分析,就要考虑小电阻的接地方式。 2.2小电阻接地方式 2.2.1应用介绍 近些年随着配电网的高速发展,电缆线路的比重越来越大,使线路电容电流的数值大幅度增加。据最近对部分变电站电容电流的测量,某些变电站(全站总的接地电容电流已达420A,而且有些变电

小电流及小电阻接地方式问题分析

小电流及小电阻接地方式问题分析 摘要:通过阐述10kV系统小电流接地及小电阻接地方式的特点,针对生产运行中出现的问题进行分析,提出解决方案。 关键词:中性点;小电流;小电阻;接地 在电力系统的安全问题上,必须避免的灾害性事故是重大设备损坏,因补偿不足产生谐振过电压,造成设备损坏现象时有发生。电力中性点的运行方式对电网经济性、安全可靠性影响重大 1中性点的运行方式 中性点的运行方式主要分两类:直接接地和不接地。 1.1 直接接地 变压器中性点直接接地,地网接地电阻小于0.5欧姆或更小。其特点是供电可靠性低,因系统中某相接地时,出现了除中性点外的另一个接地点,构成了一个短路回路,其它两相对地电压基本不变,接地点的电流很大,甚至会超过三相短路电流,因此又称大电流接地系统。为了防止损坏设备,必须迅速切除接地相甚至三相。 1.2 不接地系统 不接地系统包括中性点不接地和中性点经消弧线圈接两种方式,地网接地电阻小于10欧姆。其特点是供电可靠性高,因这种系统中某相接地时,不构成短路回路,接地相电流也不大,因此又称小电流接地系统,不必迅速切除接地相,但这时接地相对地电压降低,金属性接地时对地电压降至零,非接地相的对地电压升高,最高达到线相电压,对绝缘水平要求高。 在电压等级较高的系统中,绝缘费用在设备总价格中占很大比例,降低绝缘水平带来的经济效益很显著,一般采用中性点直接接地方式,因此在我国110kV及以上系统,中性点采用直接接地,60kV及以下系统采用中性点不接地。 2 中性点经消弧线圈接地

根据《电力部部颁规程交流绝缘DL-T620-1997》在3~60KV网络,容性电流超过下列数值时,中性点应装设消弧线圈:3~10KV网络10A;35~60KV 网络10A;单相接地残流不大于10A。 由于导线对地有电容,中性点不接地系统中某相接地时,接地点接地相电流属容性电流,而且随网络延伸,电流也越大以至完全有可能使接地点电弧不能熄灭并引起弧光接地过电压,甚至发展成严重系统事故,由于装了消弧线圈,构成了另一个回路,接地点接地相电流中增加了一个感性电流分量和装消弧线圈前的容性电流分量相抵消,减小了接地点电流,使电弧易于自行熄灭,提高了供电可靠性。 中性点经消弧线圈接地时又分过补偿和欠补偿。过补偿:指感性电流IL大于容性电流IC时的补偿方式;欠补偿:指感性电流IL小于容性电流IC时的补偿方式。 2.1 运行中存在的问题 为适应城市规划和市政建设的需要,城市电网已逐步实现电缆网供电。在负荷密集、供电半径短,以电缆线路为主且多数用户具备双电源或已形成环网的中性点不接地方式暴露出许多问题: A、对地电容电流增大,造成消弧设备增加,增加了投资并多占了空间。 B、消弧线圈的分接头必须随运行方式而调整补偿度,操作繁琐,变电站运行人员操作量增大。 C、10kV配电系统为中性点不接地或经消弧线圈接地方式,绝缘标准较高,根据规程规定,这种方式在发生单相接地故障时可继续运行2小时。这种接地方式的过电压高,包括工频过电压、弧光接地过电压、各种谐振过电压,且持续时间长,特别是10kV中性点不接地系统在一定的条件下,极度易引起铁磁谐振过电压事故,导致电压互感器烧毁或熔丝熔断,避雷器爆炸等危害,它们对设备绝缘和氧化锌避雷器的安全运行是一种较严重的威胁。 D、当发生单相接故障时,寻找接地点很麻烦。 E、不接地系统发生单相接地故障可运行2小时,因电压升高,不利于氧化锌避雷器的应用。

变压器中性点接地电阻柜工作原理

目录 1. 概述................................................ - 1 - 2. 引用标准............................................ - 2 - 3. 型号含义............................................ - 2 - 4. 产品特点............................................ - 2 - 5. 使用条件............................................ - 3 - 6. 变压器中性点接地电阻柜工作原理 ...................... - 4 - 7. 变压器中性点接地电阻柜主要技术参数 .................. - 5 - 8. 变压器中性点接地电阻柜接线原理图 .................... - 6 - 9. 发电机中性点接地电阻柜工作原理 ...................... - 6 - 10. 发电机中性点接地电阻柜主要技术参数 .................. - 7 - 11. 发电机中性点接地电阻柜接线原理图 .................... - 7 - 12. 中性点接地电阻柜结构及安装尺寸 ...................... - 8 - 13. 订货须知............................................ - 9 -

1.概述 电网中性点接地方式是一个综合性的、系统性的问题,既涉及到电网的安全可靠性、也涉及电网的经济性。中性点电阻接地系统近年来在我国城市电网和工业企业的配电网中得到越来越广泛的应用。中性点经电阻接地系统在世界上很多国家,比如美国,欧洲,日本,俄罗斯等有着很多年的成熟可靠运行经验。 在6-35KV电网,我国基本上采用中性点不接地或消弧线圈(谐振)接地方式。近20多年来一些城市电网负荷迅速增长、电缆线路增加很快、系统电容电流急剧增加、特别是近几年大规模城市电网改造,电缆线路逐步代替架空线路,电网结构大大加强。在电缆线路为主的城市电网中采用不接地或经消弧线圈接地方式,因单相接地过电压烧坏设备的事故概率大大增加,为了解决这一矛盾,许多城市电力部门在广泛考察、了解国外配电网中性点接地情况的基础上,结合本地电网的具体情况,经过充分的分析、研究,逐步采用中性点经电阻接地方式。例如广州、深圳、上海、北京、珠海、天津、厦门、南京、苏州工业园区、无锡、汕头、惠州、顺德、东莞等。中性点经电阻接地方式在上述城市配网中已有多年运行经验,经过数个变电站及电厂实际应用证明,采用中性点接地是降低中压配电网内部过电压及消除谐振过电压的最有效的方式,对降低系统过电压水平、提高系统可靠性具有良好的效果。。 现在,中性点经电阻接地方式已被写入电力行业规程,电力行业标DL/T620-1997《交流电气装置的过电压保护和绝缘配合》第3.1.4条规定:“6-35KV主要由电缆线路构成的送、配电系统,单相接地故障电容电流较大时,可采用低电阻接地方式,但应考虑供电可靠性要求、故障时瞬态电压、瞬态电流对电气设备的影响、对通信的影响和继电保护技术要求以及本地的运行经验等。”第3.1.5条规定:“6KV和10KV配电系统以及发电厂厂用电系统,单相接地故障电容电流较小时,为防止谐振,间隙性电弧接地过电压等对设备的危害,可用高电阻接地方式。” HT—DZ型中性点接地电阻柜适用于6~35kV、50Hz中压配电电网中,是用于连接变压器或发电机与大地之间的一种限流保护电气设备。当配电网内部出现故障时(二相短路、单相接地、单相断路等),配电网中性点将产生偏移,此时中性点接地电阻将配电网中性点经电阻强制接地并限制其故障电流,使继电保护设备有足够时间进行检测实现跳闸和备 - 1 -

配电系统中性点接地方式探讨

配电系统中性点接地方式 探讨 Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. 编订:___________________ 审核:___________________ 单位:___________________ 文件编号:KG-A0-4160-52 配电系统中性点接地方式探讨 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具

体的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 1999年,苏州供电局组织有关人员到上海、珠海、 广州、厦门、大连、沈阳、北京等地对10 kV系统的中 性点经电阻接地方式和经消弧线圈接地方式进行了调 研、分析。现将调研情况介绍如下。 1各单位配电系统中性点接地方式 1.1上海地区 上海地区35 kV、10 kV配电系统中性点原由电阻 接地改为经消弧线圈接地,现在大部分又改为电阻接 地。当中性点采用消弧线圈接地时,在试检线路或对线 路分段时,往往会发生另一相接地,导致线路跳闸。 在中性点经电阻接地系统中,设备仍按不接地系 统选择。发生单相金属性接地,保护时间较短,在非金 属性单相接地(经过渡电阻接地)靠零序保护,时间稍 长。在35/10 kV变电站内变压器采用接地,中性点引 出经电阻接地。 上海电网对中性点接地方式的选择有如下规定: 主城区部分,35 kV、10 kV系统由于电缆出线日益增

中性点经电阻接地方式的适用范围及优缺点

编号:SM-ZD-64561 中性点经电阻接地方式的适用范围及优缺点 Organize enterprise safety management planning, guidance, inspection and decision-making, ensure the safety status, and unify the overall plan objectives 编制:____________________ 审核:____________________ 时间:____________________ 本文档下载后可任意修改

中性点经电阻接地方式的适用范围 及优缺点 简介:该安全管理资料适用于安全管理工作中组织实施企业安全管理规划、指导、检查和决策等事项,保证生产中的人、物、环境因素处于最佳安全状态,从而使整体计划目标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅读内容。 中性点经电阻接地方式,即是中性点与大地之间接人一定电阻值的电阻。该电阻与系统对地电容构成并联回路,由于电阻是耗能元件,也是电容电荷释放元件和谐振的阻压元件,对防止谐振过电压和间歇性电弧接地过电压,有一定优越性。中性点经电阻接地的方式有高电阻接地、中电阻接地、低电阻接地等三种方式。这三种电阻接地方式各有优缺点,要根据具体情况选定。 对于用电容量大且以电缆线路为主的电力系统,其电容电流往往大于30A,如果采用消弧线圈接地方式,不仅调谐工作繁琐困难,故障点不易寻找,而且消弧线圈补偿量增大,使得投资增加,占地面积也随之增大。电缆线路不宜带故障运行,采用消弧线圈可以带故障运行的优点也不能发挥,因

中性点接地方式及其影响(2021版)

( 安全技术 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 中性点接地方式及其影响(2021 版) Technical safety means that the pursuit of technology should also include ensuring that people make mistakes

中性点接地方式及其影响(2021版) 摘要:中性点直接接地方式,即是将中性点直接接入大地。该系统运行中若发生一相接地时,就形成单相短路,其接地电流很大,使断路器跳闸切除故障。这种大电流接地系统,不装设绝缘监察装置。 关键词:中性点接地方式 1中性点直接接地 中性点直接接地方式,即是将中性点直接接入大地。该系统运行中若发生一相接地时,就形成单相短路,其接地电流很大,使断路器跳闸切除故障。这种大电流接地系统,不装设绝缘监察装置。 中性点直接接地系统产生的内过电压最低,而过电压是电网绝缘配合的基础,电网选用的绝缘水平高低,反映的是风险率不同,绝缘配合归根到底是个经济问题。

中性点直接接地系统产生的接地电流大,故对通讯系统的干扰影响也大。当电力线路与通讯线路平行走向时,由于耦合产生感应电压,对通讯造成干扰。 中性点直接接地系统在运行中若发生单相接地故障时,其接地点还会产生较大的跨步电压与接触电压。此时,若工作人员误登杆或误碰带电导体,容易发生触电伤害事故。对此只有加强安全教育和正确配置继电保护及严格的安全措施,事故也是可以避免的。其办法是:①尽量使电杆接地电阻降至最小;②对电杆的拉线或附装在电杆上的接地引下线的裸露部分加护套;③倒闸操作人员应严格执行电业安全工作规程。 2中性点不接地 中性点不接地方式,即是中性点对地绝缘,结构简单,运行方便,不需任何附加设备,投资省。适用于农村10kV架空线路为主的辐射形或树状形的供电网络。该接地方式在运行中,若发生单相接地故障,其流过故障点电流仅为电网对地的电容电流,其值很小称为小电流接地系统,需装设绝缘监察装置,以便及时发现单相接地

中性点经小电阻接地方式专题

中性点经小电阻接地方式专题 中电阻和小电阻之间没有通一的界限,一般认为单相接地故障时通过中性点电阻的电流10A~100A时为小电阻接地方式。 中性点经中阻和小电阻接地方式适用于以电缆线路为主、不容易发生瞬时性单相接地故障的、系统电容电流比较大的城市配网、发电厂厂用电系统及大型工矿企业。 1、以电缆线路为主的配电网的特点: (1) 单位长度的电缆线路的电容电流比架空线路电容电流大10几倍,以电缆为主的城市电网对地电容电流很大。 (2) 电缆线路受外界环境条件(雷电、外力、树木、大风等)影响小,瞬时接地故障很少,接地故障一般都是永久性故障。 (3) 电缆线路发生接地故障时,接地电弧为封闭性电弧,电弧不易自行熄灭,如不及时跳闸,很容易造成相间短路,扩大事故。 (4) 电缆为弱绝缘设备。例如,10kV交联聚乙稀电缆的一分钟工频耐压为28KV ,而一般10kV 配电设备的绝缘水平为35kV 。在消弧线圈接地系统中,由于查找故障点时间较长,电缆长时间承受工频或暂态过电压作用,易发展成相间故障,造成一线或多线跳闸。上海79—84的统计结果表明,有30%单相接地故障在查找故障点过程中,引起跳闸或闪络。据湘潭钢厂同志介绍,该厂的变配电系统原采用消弧线圈接地,由于厂区基本上都是电缆线路,且使用年限较长、绝缘老化,在单相接地时,经常发生来不及找出故障线路,非故障线路就发生电缆

爆炸的情况。 (5) 接地故障时由保护及时跳开故障线路。 (6) 随着城市电网改造工作的进展,配电网的结构得到加强,采用环网或双电源供电,许多地方已开始配网自动化的实施,以提高供电可靠性,而不是靠带接地故障运行来提高供电可靠性。 2、中性点经电阻接地方式的特点: (1) 中性点电阻是耗能元件,也是阻尼元件(而消弧线圈是谐振元件)。 (2) 可以降低工频过电压,单相接地故障时非故障相电压< 3 相电压,且持续时间很短。中性点不接地或中性点经消弧线圈接地系统,非故障相电压升高到≥3 相电压,持续时间长。 (3) 有效地限制弧光接地过电压,在中性点经电阻接地的配网中,当接地电弧熄弧后,系统对地电容中的残荷将通过中性点电阻泄放掉,所以当发生下一次燃弧时其过电压幅值和从正常运行情况发生单相接地故障的情况相同,不会产生很高的过电压。中性点电阻阻值越小,泄放残荷越快。适当选择中性点电阻值,可以将过电压倍数限制在满意的范围内。(补充:弧光接地过电压又称间隙性弧光接地过电压,当中性点非直接接地系统发生单相间隙性弧光接地故障时,由于不稳定的间歇性电弧多次不断的熄灭和重燃,在故障相和非故障相的电感电容回路上会引起高频振荡过电压,非故障相的过电压幅值一般可达3.15~3.5倍相电压,这种过电压是由于系统对地电容上电荷多次不断的积累和重新再分配形成的,是断续的瞬间发生的且幅值较高的过电压,对电力系统的设备危害极大。) (4) 是消除系统各种谐振过电压的最有效措施,中性点电阻相当于在谐振回路中的系统对地电容两端并接的阻尼电阻,由于电阻的阻尼作用,基本上可以消

小电阻接地问题的探讨

小电阻接地问题的探讨 10kV网络小电阻接地系统——又一新的电气火灾隐患 这些年因城镇用电负荷剧增,电网中大量采用10kV电缆供电。由于电容电流的增大,不得不将10kV网络由过去的不接地系统改为经小电阻接地系统。这一改变使变电所的接地故障电压由过去的百伏左右剧增到2000V~3000V,这被称作暂态过电压。这一过电压经变电所共用的接地系统沿低压线传导到用户的电气设备上。低压设备的绝缘,特别是老旧设备的绝缘,因承受不了如此高的过电压很容易被击穿短路而导致起火危险,这些都是因电气技术的发展而增加的一个电气火灾新隐患。 发达国家也有采用经小电阻接地系统,但为了防止引起电气火灾采取了有效的技术措施。具体措施是将变电所低压系统的接地另打接地极分开设置,使上述危险暂态过电压无法由此传导到低压用户去。也可大大减小变电所接地电阻值和10kV供电系统的接地短路电流值,使上述暂态过电压不致达到危险值。但我国的电网设计安装只片面地仿效了国外的经小电阻接地系统,却未学习国外配套的电气安全措施,由此引起的电气事故已时有所闻,如果不及时消除这一新的电气隐患,我国电气火灾发生率居高不下,有增无减的势头将越发难以遏制。随这电力的快速发展,用电每年都在攀升,10KV做为主要的电力输出系统时,对它的安全运行又有了新的要求,现在电力的各种故障时实都影响电力系统的正常运行,目前对于10KV 接地采用消弧线圈接地,这个系统在整个10KV系统的任一条出现接地时能很快的检测出并通过保护发出跳闸令。因在单相接地是系统是还可以运行1-2H的但这样就有很大的可能性发展成多相故障,在单相接地时接地点的对地流过的电容电流很小。 适应城市配网发展的接地方式——中性点经低电阻接地 深圳市华力特成套设备有限公司刘同钦阅读次数:10 新中国成立后至80年代,6kV一35kV配电网络基本上都是采用中性点不接地或经消弧线圈接地的方式。当时我国6kV一35kV电网以架空线路为主,电网结构简单,基本上以单电源、辐射形电网为主,电容电流较小,以上两种接地方式在技术上能够满足当时供电可靠性的要求。进入20世纪90年代以来,原来的以架空线路为主的城市配电网已不适应要求,北京等大城市的配网已率先发展为以电缆线路为主,其他大中城市正在加速进行城网改造,可以相信,我国的大部分城市配网将逐步以电缆线路取代架空线路,电网结构也将由单电源、辐射形供电发展为多电源环形供电,并逐步实现配网自动化,以提高供电可靠性。随着城市配网结构的变化,中性点不接地或经消弧线圈接地方式在某些方面已不能满足电网运行的要求,在沿海的一些大城市率先采用了中性点经小电阻接地方式,通过多年运行实践证明,这种接地方式对以电缆线路为主的配网是比较适宜的,并已被列入电力技术规程。电力行标《交流电气装置的过电压保护和绝缘配合》(1997.10.1)第3.1.4条规定:“6kV一35kV主要由电缆线路构成的送配电系统,单相接地电容电流较大时,可采用低电阻接地方式,但应考虑供电可靠性要求,故障时瞬态电压瞬态电流对电气设备的影响,对通信的影响和继电保护技术要求以及本地的运行经验等。” 一、电缆线路及以电缆线路为主的城市配网的特点 1.电缆线路的对地电容电流比相同长度的架空线路大得多,因此电网单相接地电容电流相当大。

10kv 配电系统中性点经小电阻接地方式初探

10kv 配电系统中性点经小电阻接地方式初探 摘要: 10kV 配电网中性点通常可分为不接地系统、经电阻接地系统和经消弧线圈接地系统。本文主要介绍10kv 配电系统中性点经小电阻接地方式的构成、保护方式和计量方式。 关键词: 10kv 配电网中性点接地方式小电阻接地 1引言 10kV 配电网中性点通常可分为不接地系统、经电阻接地系统和经消弧线圈接地系统。由于选择接地方式是一个涉及线路和设备的绝缘水平、通讯干扰、继电保护和供电网络安全可靠等因素的综合性问题, 所以我国配电网和大型工矿企业的供电系统做法各异。以前, 10kV 架空电力线路大都采用中性点不接地和经消弧线圈接地的运行方式。近年来随着10kV 系统规模的扩大和电缆应用的普及, 一些城市电网大力推广电阻接地的运行方式, 使得10kv 系统的中性点接地方式、中性点选择、计量方式、继电保护配置与10kV绝缘系统有了很大区别。 2配电网中性点接地方式运用现状 一般架空线路的小电网, 网络电容电流小, 可选用中性点不接地系统。架空线路的大电网, 网络电容电流较大, 可选用中性点经消弧线圈接地系统。城市电缆配电网, 网络结构较好, 可选用中性点经中值或低值电阻器接地系统。若要求补偿网络电容电流限制接地故障入地电流, 还可选用中性点经中值电阻器与消弧线圈并联的接地方式。 3中性点经电阻接地方式定义及阻值选择 ( 1) 定义: 电力系统中性点通过一电阻接地, 其单相接地时的电阻电流被限制到等于或略大于系统总电容充电电流值。此种接线方式属于中性点有效接地系统,即大电流接地系统。和消弧线圈接地方式相比, 改变了接地电流相位, 加速泄放回路中的残余负荷, 促使接地电弧自熄, 降低弧光过电压, 同时提供足够的零序电流和零序电压, 加速切除故障线路。 ( 2) 中性点电阻值的选择 根据有关文献资料, 从降低内部过电压考虑, 根据计算机模拟计算, 选择原则为RN ≦1/ ( 3C) 。这样选有几个好处: 一是RN 是发生单相接地故障时, 系统对单相接地故障电流出现的最大值; 二是非故障相的最大工频谐振电压≦2. 8U相; 三是能满足零序保护的灵敏度要求。 4建立系统中性点的方式

中性点接地和中性点不接地的区别

中性点接地和中性点不接地的区别 电力系统中性点运行方式有不接地、经电阻接地、经消弧线圈接地或直接接地等多种。我国电力系统目前所采用的中性点接地方式主要有三种:即不接地、经消弧线圈接地和直接接地。小电阻接地系统在国外应用较为广泛,我国开始部分应用。 1、中性点不接地(绝缘)的三相系统 各相对地电容电流的数值相等而相位相差120°,其向量和等于零,地中没有电容电流通过,中性点对地电位为零,即中性点与地电位一致。这时中性点接地与否对各相对地电压没有任何影响。可是,当中性点不接地系统的各相对地电容不相等时,及时在正常运行状态下,中性点的对地电位便不再是零,通常此情况称为中性点位移即中性点不再是地电位了。这种现象的产生,多是由于架空线路排列不对称而又换位不完全的缘故造成的。 在中性点不接地的三相系统中,当一相发生接地时:一是未接地两相的对地电压升高到√3倍,即等于线电压,所以,这种系统中,相对地的绝缘水平应根据线电压来设计。二是各相间的电压大小和相位仍然不变,三相系统的平衡没有遭到破坏,因此可继续运行一段时间,这是这种系统的最大优点。但不许长期接地运行,尤其是发电机直接供电的电力系统,因为未接地相对地电压升高到线电压,一相接地运行时间过长可能会造成两相短路。所以在这种系统中,一般应装设绝缘监视或接地保护装置。当发生单相接地时能发出信号,使值班人员迅速采取措施,尽快消除故障。一相接地系统允许继续运行的时间,最长不得超过2h。三是接地点通过的电流为电容性的,其大小为原来相对地电容电流的3倍,这种电容电流不容易熄灭,可能会在接地点引起弧光解析,周期性的熄灭和重新发生电弧。弧光接地的持续间歇性电弧较危险,可能会引起线路的谐振现场而产生过电压,损坏电气设备或发展成相间短路。故在这种系统中,若接地电流大于5A时,发电机、变压器和电动机都应装设动作于跳闸的接地保护装置。 2、中性点经消弧线圈接地的三相系统 上面所讲的中性点不接地三相系统,在发生单相接地故障时虽还可以继续供电,但在单相接地故障电流较大,如35kV系统大于10A,10kV系统大于30A时,就无法继续供电。为了克服这个缺陷,便出现了经消弧线圈接地的方式。目前在35kV电网系统中,就广泛采用了这种中性点经消弧线圈接地的方式。 消弧线圈是一个具有铁芯的可调电感线圈,装设在变压器或发电机的中性点。当发生单相接地故障时,可形成一个与接地电容电流大小接近相等而方向相反的电感电流,这个滞后电压90°的电感电流与超前电压90°的电容电流相互补偿,最后使流经接地处的电流变得很小以至等于零,从而消除了接地处的电弧以及由它可能产生的危害。消弧线圈的名称也是这么得来的。当电容电流等于电感电流的时候称为全补偿;当电容电流大于电感电流的时候称为欠补偿;当电容电流小于电感的电流的时候称为过补偿。一般都采用过补偿,这样消弧线圈有一定的裕度,不至于发生谐振而产生过电压。 3、中性点直接接地 中性点直接接地的系统属于较大电流接地系统,一般通过接地点的电流较大,可能会烧坏电气设备。发生故障后,继电保护会立即动作,使开关跳闸,消除故障。目前我国110kV 以上系统大都采用中性点直接接地。 对于不通等级的电力系统中性点接地方式也不一样,一般按下述原则选择:220kV以上电力网,采用中性点直接接地方式;110kV接地网,大都采用中性点直接接地方式,少部分采用消弧线圈接地方式;20~60kV的电力网,从供电可靠性出发,采用经消弧线圈接地或不接地的方式。但当单相接地电流大于10A时,可采用经消弧线圈接地的方式;3~10kV电力网,供电可靠性与故障后果是其最主要的考虑因素,多采用中性点不接地方式。但当电网

电动机中性点是否需要接地

Y形接法的电动机,3绕组的各一端联接点(锁尾)处电压为0伏的,接零(地)是没有意议的。 电机外壳接地起到防避漏电时人员触电,对绕组线圈没有何影响。 电动机(Motor)是把电能转换成机械能的一种设备。它是利用通电线圈(也就是定子绕组)产生旋转磁场并作用于转子(如鼠笼式闭合铝框)形成磁电动力旋转扭矩。电动机按使用电源不同分为直流电动机和交流电动机,电力系统中的电动机大部分是交流电机,可以是同步电机或者是异步电机(电机定子磁场转速与转子旋转转速不保持同步速)。电动机主要由定子与转子组成,通电导线在磁场中受力运动的方向跟电流方向和磁感线(磁场方向)方向有关。电动机工作原理是磁场对电流受力的作用,使电动机转动。 低压电动机星形接线是指定子绕组的六个接头中,3个需引出,另外3个接头短接。电动机是用电设备,中性点接地没有任何好处,实际使用时电机三相电流并不完全平衡,如果中性点接地将有零序电流产生,而且部分电机用于三相三线制系统,接地只有害处。部分高压电机中性点处设置CT做差动保护使用。 电动机一般中性点不需要接地,类似三相发电机以Y形输出时才有中性点接地的说法。 发电机中性点要采取不同的接地方式,主要目地是防止发电机及其它设备遭受不对称故障的危害。具体有以下几方面: 1.当发电机外部故障时,限制定子一点接地时最大接地电流从而限制定子线圈的机械应力。 2.限制故障点电流或故障时间,把故障点的损伤控制到最小。 3.限制故障时的稳态和暂态过电压大小在安全数值以下,防止设备绝缘遭受破坏。 4.提供选择性好、灵敏度高的接地保护,以便在定子一点接地时,能准确地发出接地信号或有选择地断开故障发电机。 电力系统中性点运行方式有不接地、经电阻接地、经消弧线圈接地或直接接地等多种。我国电力系统目前所采用的中性点接地方式主要有三种:即不接地、经消弧线圈接地和直接接地。小电阻接地系统在国外应用较为广泛,我国开始部分应用。 1、中性点不接地(绝缘)的三相系统 各相对地电容电流的数值相等而相位相差120°,其向量和等于零,地中没有电容电流通过,中性点对地电位为零,即中性点与地电位一致。这时中性点接地与否对各相对地电压没有任何影响。可是,当中性点不接地系统的各相对地电容不相等时,及时在正常运行状态下,中性点的对地电位便不再是零,通常此情况称为中性点位移即中性点不再是地电位了。这种现象的产生,多是由于架空线路排列不对称而又换位不完全的缘故造成的。 在中性点不接地的三相系统中,当一相发生接地时:一是未接地两相的对地电压升高到√3倍,即等于线电压,所以,这种系统中,相对地的绝缘水平应根据线电压来设计。二是各相间的电压大小和相位仍然不变,三相系统的平衡没有遭到破坏,因此可继续运行一段时间,这是这种系统的最大优点。但不许长期接地运行,尤其是发电机直接供电的电力系统,因为未接地相对地电压升高到线电压,一相接地运行时间过长可能会造成两相短路。所以在这种系统中,一般应装设绝缘监视或接地保护装置。当发生单相接地时能发出信号,使值班人员迅速采取措施,尽快消除故障。一相接地系统允许继续运行的时间,最长不得超过2h。三是接地点通过的电流为电容性的,其大小为原来相对地电容电流的3倍,这种电容电流不容易熄灭,可能会在接地点引起弧光解析,周期性的熄灭和重新发生电弧。弧光接地的持续间歇性电弧较危险,可能会引起线路的谐振现场而产生过电压,损坏电气设备或发展成相间短路。故在这种系统中,若接地电流大于5A时,发电机、变压器和电动机都应装设动作于跳闸的接地保护装置。 2、中性点经消弧线圈接地的三相系统 上面所讲的中性点不接地三相系统,在发生单相接地故障时虽还可以继续供电,但在单相接地故障电流较大,如35kV系统大于10A,10kV系统大于30A时,就无法继续供电。为了克服这个缺陷,便出现了经消弧线圈接地

相关文档
最新文档