组合数学鸽巢原理例题

人教版小学数学六年级下册 鸽巢问题 教学设计

《鸽巢问题》教学设计 教学内容:教材第68-70页例1、例2,及“做一做”的第1题,及第71页练习十三的1-2题。 教学目标: 1、了解“鸽巢问题”的特点,理解“鸽巢原理”的含义。使学生学会用此原理解决简单的实际问题。 2、经历探究“鸽巢原理”的学习过程,体验观察、猜测、实验、推理等活动的学习方法,渗透数形结合的思想。 3、通过用“鸽巢问题”解决简单的实际问题,激发学生的学习兴趣,使学生感受数学的魅力。 教学重、难点: 重点:引导学生把具体问题转化成“鸽巢问题”。 难点:找出“鸽巢问题”解决的窍门进行反复推理。 教学准备:课件。 教学过程: 一、情境导入: 老师组织学生做“抢凳子的游戏”。 请4位同学上来,摆开3张凳子。 老师宣布游戏规则:4位同学跟随着音乐(甩葱歌)围着凳子转圈,音乐“停”的时候,四个人每个人都必须坐在凳子上。 教师背对着游戏的学生。 师:都坐下了不?老师不用瞧,也知道肯定有一张凳子上至少坐着2

位同学。老师说得对不? 师:老师为什么说得这么肯定呢?其实这里面蕴含一个深奥的道理,今天我们就来探究这个问题——鸽巢问题(板书课题)。 二、探究新知: 教学例1、(课件出示例题1情境图) 思考问题:把4支铅笔放进3个笔筒中,不管怎么放,总有1个笔筒里至少有2支铅笔。为什么呢?“总有”与“至少”就是什么意思? 学生通过操作发现规律→理解关键词的含义→探究证明→认识“鸽巢问题”的学习过程来解决问题。 操作发现规律:通过吧4支铅笔放进3个笔筒中,可以发现:不管怎么放,总有1鸽笔筒里至少有2支铅笔。 理解关键词的含义:“总有”与“至少”就是指把4支铅笔放进3个笔筒中,不管怎么放,一定有1个笔筒里的铅笔数大于或等于2支。 探究证明。 方法一:用“枚举法”证明。 方法二:用“分解法”证明。 把4分解成3个数。 由图可知,把4分解成3个数,与枚举法相似,也有4中情况,每一种情况分得的3个数中,至少有1个数就是不小于2的数。 方法三:用“假设法”证明。 通过以上几种方法证明都可以发现:把4只铅笔放进3个笔筒中,无论怎么放,总有1个笔筒里至少放进2只铅笔。

六年级下数学广角-鸽巢问题知识点

第五单元:数学广角-鸽巢问题 【知识点一】“鸽巢原理”(一) “鸽巢原理”(一):把m个物体任意分放进n个鸽巢中(m和n是非0自然数,且 m>n),那么一定有一个鸽巢中至少放进了2个物体。【知识点二】“鸽巢原理”(二) “鸽巢原理”(二):把多于kn个物体任意分进n个鸽巢中(k和n是非0自然数), 那么一定有一个鸽巢中至少放进了(k+1)个物体。【知识点三】应用“鸽巢原理”解决简单的实际问题 应用“鸽巢原理”解题的一般步骤(1)分析题意,把实际问题转化成“鸽 巢问题”,即弄清楚“鸽巢”(“鸽巢”是什么,有几个鸽巢) 和分放的物体。(2)设计“鸽巢”的具体形式。(3)运用 原理得出某个“鸽巢”中至少分放的物体个数,最终解决问 题。 【误区警示】 误区一:判断:因为11÷3=3....2,所以把11本书放进3个抽屉中,总有一个 抽屉里至少放5本书。(√) 错解分析此题错在把这个抽屉至少放的书的本数用“3(商)+2(余数)” 计算了,应该是“3(商)+1”。 错解改正× 误区二:有红、绿、蓝三种颜色的小球各5个,至少取出几个能保证有2个同色的? 5×3÷3=5(个) 错解分析此题错在把小球的总数作为要分放物体的数量了,求得的结果也是 与问题要求不符。本题属于已知鸽巢数量(3中颜色即3个 鸽巢)和分的结果(保证一个鸽巢里至少有2个同色的), 求要分放物体的数量,各种颜色小球的数量并与参与运算。 错解改正3+1=4(个) 【方法运用】运用逆推法解决鸽巢问题 典型例题把25个玻璃球最多放进几个盒子里,才能保证至少有一个盒子里有5 个玻璃球?

思路分析由“鸽巢原理”(二)可知,用分放的物体总数除以鸽巢数量求出平均 每个鸽巢里所放物体的数量和余数,其中至少有一个鸽巢中 有(平均每个鸽巢里所放物体的数量+1)个物体。 此题可以把玻璃球的总数看成分放的物体总数,把盒子数看成鸽巢数, 要使其中一个鸽巢里至少有5个玻璃球,则玻璃球的个数至 少要比鸽巢数的(5-1)倍多1个。 正确解答(25-1)÷(5-1)=6个(个) 方法总结(分放的物体总数-1)÷(其中一个鸽巢里至少有的物体个数-1)= a....b(a.b为自然数,且b>a),则a就是所求的 鸽巢数。 典型例题平安路小学组织862名同学去参观甲、乙、丙处景点。规定每名同学 至少参观一处,最多可以参观两处,至少有多少名同学参观 的景点相同? 思路分析参观甲、乙、丙3处景点,若只参观一处,则有3种参观方案;若参观 两处,则有“甲乙、乙丙和甲丙”这3种参观方案。所以, 一共有3+3=6(种)参观方案。求至少有多少名同学参 观的景点相同,可以转化为“鸽巢问题”解答,把862名 同学看成要分放的物体,把6中参观方案看成6个鸽巢。 正确解答3+3=6(种) 862÷6=143(名).....4(名) 143+1=144(名) 【综合测评】 1、 (1)小东玩掷骰子游戏(掷一枚骰子),要保证掷出的骰子数至少有两次是相同 的,小东至少应该掷()次 (2)李阿姨给幼儿园的孩子买衣服,有红、黄、白3种颜色,结果总是至少有2 个孩子的衣服颜色一样,她至少给()个孩子买衣服。 2、11名学生到老师家借书,老师的书房中有A、B、C、D四类书,每名学生最多可借两本不同类型的书,最少可借一本。至少有几名学生所借的书的类型完全相 同?

人教版数学六年级下册鸽巢问题

《鸽巢问题》教学反思 日照第四小学朱玉雪 数学广角的教学是为了丰盛学生解决问题的方法和策略,使学生感受到数学的魅力。本节课我让学生经历探究“鸽巢原理”的过程,初步了解了“鸽巢原理”,并能够应用于实际,学会思考数学问题的方法,培养学生的数学思维。 一、情境导入,初步感知 兴趣是最佳的老师。在导入新课时,我让四人玩“抢凳子”的游戏,这个游戏虽简单却能真实的反映“鸽巢原理”的本质。通过小游戏,一下就抓住学生的注意力,有用地调动和激发学生的学习主动性和兴趣,让学生觉得这节课要探究的问题,好玩又有意义。 二、活动中恰当引导,建立模型 采用列举法,让学生把4枝铅笔放入3个笔筒中的所有情况通过摆一摆、画一画或写一写等方式都列举出来,运用直观的方式,发现并描述,理解最简单的“鸽巢原理”即“铅笔数比笔筒数多1时,总有一个笔筒里至少有2枝笔”。 在例2的教学时,让学生借助直观操作发现列举法适用于数字较小时,有局限性,而假设法应用范围广,假设把书尽量多的“平均分”到各个抽屉,看每个抽屉能分到多少本书,剩下的书不管放到哪个抽屉里,总有一个抽屉比平均分得的本数多1本,可以用有余数的除法这一数学规律来表示。 大量例举之后,再引导学生总结归纳这一类“鸽巢原理”的大凡规律,让学生借助直观操作、观察、表达等方式,让学生经历从例外的角度认识鸽巢原理。特别是通过学生归纳总结的规律:到底是“商+余数”还是“商+1”,引发学生的思维步步深入,并通过讨论和说理活动,使学生经历了一个初步的“数学证明”的过程,培养了学生的推理能力和初步的逻辑能力。 三、通过练习,解释应用 合适设计形式多样化的练习,可以引起并保持学生的练习兴趣。如“从扑克牌中取出两张王牌,在剩下的52张中任意抽出18张,至少有几张是同花色

鸽巢原理及其应用+6

学号:20115034032 学院数学与信息科学学院 专业信息与计算科学 年级2011级 姓名陈婷婷 论文题目鸽巢原理及其应用 指导教师沈明辉职称教授 成绩 2014年3月16日

学年论文成绩评定表评语 成绩: 指导教师(签名): 201 年月日学院意见:____________________ 学院院长(签名): 201 年月日

目录 摘要 (1) 关键字 (1) Abstract (1) Key words (1) 前言 (2) 1.鸽巢原理 (2) 1.1 鸽巢原理的简单形式 (2) 1.2 鸽巢原理的一般形式 (3) 1.3 鸽巢原理的加强形式 (3) 2. 鸽巢原理的相关推论 (4) 3.鸽巢原理的应用 (6) 3.1 鸽巢原理应用于数的整除关系 (6) 3.2 鸽巢原理应用于实际生活 (7) 参考文献 (9)

鸽巢原理及其应用 姓名:陈婷婷学号:20115034032 数学与信息科学学院信息与计算科学专业 指导老师:沈明辉职称:教授 摘要:鸽巢原理是组合数学中研究存在性问题的基本原理之一,也是非常规解题方法的重要类型之一,在数论和组合论中有着广泛的应用. 本文简单介绍了鸽巢原理的几种形式,便于了解鸽巢原理到底是什么东西.本文主要研究鸽巢原理和其原理的应用.应用主要从数学领域的应用和现实生活中的应用两大方面进行研究,数学领域方面主要应用于整除关系的证明等几方面的解题. 关键字:鸽巢原理; 组合数学; 鸽巢原理的应用 Pigeonhole principle and the application of the pigeonhole Abstract:Pigeonhole principle is a mathematical combination of problem of the existence of one of the basic principles of nonconventional problem solving method , is also one of the important types in number theory and combination has a wide range of applications. This paper briefly introduces the principle of Pigeonhole in several forms, easy to understand what the Pigeonhole principle is. This paper mainly studies the principle of Pigeonhole principle and the application of the principle. Application mainly from the mathematical field of application and the reality of life in the application of the two major aspects of research, mathematical fields mainly used in number theory, algebra, geometry and so on several aspects of the problem solving, in real life, most used computer fortune-telling, predict some existence results etc.. Key words:Pigeonhole principle;Mathematical combination ;The application of the principle

人教版六年级下册鸽巢问题单元教材分析

鸽巢问题单元教材分析 一、单元总目标 1、经历从实际生活中发现问题、提出问题、解决问题的过程,体会数学在日常生活中的作用,初步形成综合运用数学知识解决问题的能力。 2、经历对“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题,发展分析、推理的能力。 3、体会学习数学的乐趣,提高学习数学的兴趣,建立学好数学的信心。 二、单元重难点 重点:1、了解抽屉原理的基本内容,能够利用抽屉原理创造性的解决实际问题。 2、指导学生完成水资源浪费情况调查的实践课题。 难点:理解抽屉原理的思维方法并应用解决问题。 三、单元学情分析 本单元重在培养学生的数学思想方法和训练其思维能力,以及通过实践活动用探究式的课题活动培养学生的动手实践能力及解决问题的能力。经历从实际生活中发现问题、提出问题、解决问题的过程,体会数学在日常生活中的作用,初步形成综合运用数学知识解决问题的能力。经历对“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题,发展分析、推理的能力。 四、具体编排 例1及其做一做 例1借助把4支笔放进3个杯子里,不管怎么放,总有一个杯子至少放进了2支笔的情境,介绍了一类比较简单的鸽巢问题。为解释这一现象,教材呈现了两种思考方法:枚举法和假设法。

教学时,教师可引导学生对枚举法和假设法进行比较,并通过逐步类推,使学生逐步理解抽屉原理的一般化模式。 做一做中安排了抽纸牌的原理,和例题紧紧呼应。 例2及其做一做 例题介绍了另外一种抽屉问题,把多于kn个物体任意放进n个空抽屉,那么一定有一个抽屉放进了至少(k+1)个物体。教材提供了7本书放进了3个抽屉的情境。仍然用枚举法及其假设法探究该问题,并用有余数的除法形式7÷3=2……1表达假设法的思路。 教学时,引导学生理解假设法最核心的思路是把书尽量多地平均分给各个抽屉。 做一做中让学生利用在例2的基础上进行迁移类推。 例3 例3是抽屉原理的具体应用,也是运用抽屉原理进行逆向思维的一个典型的例子。 教学时,先引导学生思考这个问题与抽屉原理有什么联系,找出这里的抽屉是什么,抽屉有几个,在利用前面学习的抽屉原理进行反向推理。 四、教学建议 1、应让学生初步经历数学证明的过程。 在小学阶段,虽然不需要学生对涉及到抽屉原理的相关现象给出严格的形式化的证明,但是仍然乐意引导学生用直观的方式进行就事论事的解释。教学时,可以鼓励学生借助学具实物操作或者画草图的方式进行说理。通过这样的方式,有助于提高学生的逻辑思维能力。 2、应该有意识的培养学生模型思想 抽屉原理的变式很多,应用更加具有灵活性。但是能否将这个具体问题和抽屉问题联系起来,能否找到问题中的具体情境和抽屉问题的一般化模型之间的内在关系是影响能

鸽巢原理及其应用

鸽巢原理是组合数学中最基本的计数原理之一,也是证明存在性问题的一种重要方法.本文首先介绍了鸽巢原理的不同表述形式及其推论,然后从整除关系的证明、几何图形的分割以及解决实际问题等几个角度介绍了鸽巢原理的应用,并对例题中鸽巢的构造技巧做了分析. 关键词:鸽巢原理;简单形式;一般形式;加强形式

Abstract The pigeonhole principle is one of the basic counting principle in combinatorics, but also it is an important method to prove the problem of the existence. This paper first introduces the different expressions of the pigeonhole principle and its deduction, then the applications of the pigeonhole principle are introduced from several angles of proof of aliquot relationship, division of the geometrical figure and solving practical problems, the structured skills of the pigeonhole principle in examples are analysed. Key words: pigeonhole principle; simple form; general form; strengthend form

容斥原理与鸽巢原理的应用

摘要 容斥原理和鸽巢原理作为组合数学中的基本内容,就原理本身而言简单易懂.然而,由于此二者分别在组合计数问题和存在性问题的应用中所展现出来的魅力,国内外学者在很多书籍、学术性论文中关于容斥原理和鸽巢原理的应用进行了探讨,并且关于此方面的研究已取得一系列的成果. 本文主要是以综述的方式从起源、理论和应用三方面对容斥原理和鸽巢原理进行了介绍和分类探讨. 首先介绍了容斥原理分别与加法理论、减法理论的区别与优势,并与实际问题相结合突出其优势所在.其次本文介绍了鸽巢原理的两种具体形式及其推论,并对鸽巢原理在数学理论研究、数学竞赛题目、解决实际生活中的问题等方面的应用进行介绍后,对鸽巢原理的应用中所常见的几种构造“鸽巢”的方法进行了分类谈论. 最后,针对鸽巢原理,我们给出针对新疆某区域关于旅游产品的实际应用实例,并提出了个人见解. 关键词:容斥原理,鸽巢原理,构造方法,鸽巢,鸽子

ABSTRACT As the basic content of combinatorial mathematics, the principle of tolerance and the theory of pigeon nest the principle itself is simple and understandable. However, due to the charm of the two applications in combinatorial counting and existential problems, scholars at home and abroad have probed into the application of the principle of tolerance and the pigeon nest in many books and academic papers, And the research on this aspect has made a series of achievements. In this paper, the author introduces and classifies the theory of tolerance and doctrine and the principle of pigeon nest in the way of summarization from the origin, theory and application. Firstly, the differences and advantages between the theory of tolerance and exclusion and the theory of addition and subtraction were introduced. and the actual problem with the combination of highlighting its advantages. Secondly, this paper introduces two concrete forms of pigeon nest principle and its inference, and introduces the application of pigeon nest principle in mathematics theory research, Maths contest problem, solving real life problems and so on. , several common methods of constructing pigeon nest in the application of pigeon nest principle are classified and discussed. Finally, according to the pigeon Nest principle, we give a practical example of the tourism products in a region of Xinjiang, and put forward personal opinions. KEY WORDS: inclusion-exclusion principle, pigeonhole principle, construction method, pigeonhole, pigeon

抽屉原理又称鸽巢原理,它是组合数学的一个基本原理,最先是由德.

抽屉原理又称鸽巢原理,它是组合数学的一个基本原理,最先是由德国数学家狭利克雷明确地提出来的,因此,也称为狭利克雷原理。 把3个苹果放进2个抽屉里,一定有一个抽屉里放了2个或2个以上的苹果。这个人所皆知的常识就是抽屉原理在日常生活中的体现。用它可以解决一些相当复杂甚至无从下手的问题。 原理1:把n+1个元素分成n类,不管怎么分,则一定有一类中有2个或2个以上的元素。 原理2:把m个元素任意放入n(n<m=个集合,则一定有一个集合呈至少要有k个元素。 其中 k=n (当n能整除m时) 〔 n〕+1 (当n不能整除m时) 原理3:把无穷多个元素放入有限个集合里,则一定有一个集合里含有无穷多个元素。 二、应用抽屉原理解题的步骤 第一步:分析题意。分清什么是“东西”,什么是“抽屉”,也就是什么作“东西”,什么可作“抽屉”。 第二步:制造抽屉。这个是关键的一步,这一步就是如何设计抽屉。根据题目条件和结论,结合有关的数学知识,抓住最基本的数量关系,设计和确定解决问题所需的抽屉及其个数,为使用抽屉铺平道路。 第三步:运用抽屉原理。观察题设条件,结合第二步,恰当应用各个原则或综合运用几个原则,以求问题之解决。

例1、教室里有5名学生正在做作业,今天只有数学、英语、语文、地理四科作业 求证:这5名学生中,至少有两个人在做同一科作业。 证明:将5名学生看作5个苹果 将数学、英语、语文、地理作业各看成一个抽屉,共4个抽屉 由抽屉原理1,一定存在一个抽屉,在这个抽屉里至少有2个苹果。 即至少有两名学生在做同一科的作业。 例2、木箱里装有红色球3个、黄色球5个、蓝色球7个,若蒙眼去摸,为保证取出的球中有两个球的颜色相同,则最少要取出多少个球? 解:把3种颜色看作3个抽屉 若要符合题意,则小球的数目必须大于3 大于3的最小数字是4 故至少取出4个小球才能符合要求 答:最少要取出4个球。 例3、班上有50名学生,将书分给大家,至少要拿多少本,才能保证至少有一个学生能得到两本或两本以上的书。 解:把50名学生看作50个抽屉,把书看成苹果 根据原理1,书的数目要比学生的人数多 即书至少需要50+1=51本 答:最少需要51本。

六年级数学鸽巢问题

第十讲鸽巢问题 一、知识点: 鸽巢原理又称抽屉原理,它是组合数学的一个基本原理,最先是由德国数学家 狭利克雷明确地提出来的,因此,也称为狭利克雷原理。把3个苹果放进2个抽屉里,一定有一个抽屉里放了2个或2个以上的苹果。类似的, 如果有5只鸽子飞进四个鸽笼里, 那么一定有一个鸽笼飞进了2只或2只以上的鸽子。 鸽巢原理(一):如果把m个物体任意放进n个抽屉里(m>n,且n是非零自然数),那么一定有一个抽屉里至少放进了放进了2个物体。 如:将4支铅笔放入3个笔筒,总有一个笔筒至少有2支铅笔,“总有”和“至少”是指把4支铅笔放进3个笔筒中,不管怎么放,一定有1个笔筒里的铅笔数大于或等于2支。 鸽巢原理(二):如果把多于kn个的物体任意分别放进n个空抽屉(k是正整数,n是非0的自然数),那么一定有一个抽屉中至少放进了(k+1)个物体。如:把10本书放进3个抽屉中,不管怎么放,总有1个抽屉里至少放进4本书。 我们把这些例子中的“苹果”、“鸽子”、“信”看作一种物体,把“盒子”、“鸽笼”、“信箱”看作鸽巣, 可以得到鸽巣原理最简单的表达形式 物体个数÷鸽巣个数=商……余数至少个数=商+1 摸同色球计算方法: ①要保证摸出同色的球,摸出的球的数量至少要比颜色数多1。 物体数=颜色数×(相同颜色数-1)+1 ②极端思想(最坏打算):用最不利的摸法先摸出两个不同颜色的球,再无论摸出 一个什么颜色的球,都能保证一定有两个球是同色的。

二、例题讲解: 1、教室里有5名学生正在做作业,今天只有数学、英语、语文、地理四科作业求证:这5名学生中,至少有两个人在做同一科作业。 2、班上有50名学生,将书分给大家,至少要拿多少本,才能保证至少有一个学生能得到两本或两本以上的书。 3、木箱里装有红色球3个、黄色球5个、蓝色球7个,若蒙眼去摸,为保证取 出的球中有两个球的颜色相同,则最少要取出多少个球? 4、把红、白、蓝三种颜色的球各10个放到一个袋子里,至少取多少个球,可 以保证取到3个颜色相同的球。 5、证明:某班有52名学生,至少有5个人在同一个月出生 6、一幅扑克牌除大小王有52张,最少要抽取几张牌,方能保证其中至少有2张牌有相同的点数?最少要抽取几张牌,方能保证其中至少有2张牌有相同的花色?

人教版数学六年级下册数学广角---鸽巢问题

数学广角---鸽巢问题 教学内容 教材第68、69页,例1、例2. 教学目标 1.经历“鸽巢问题”的探究过程,初步了解“鸽巢问题”,会用“鸽巢问题”解决简单的实际问题。 2.通过动手操作发展学生的类推能力,形成比较抽象概括的数学思维。 3.通过“鸽巢问题”的灵活应用感受数学的魅力。 教学重点 经历“鸽巢问题”的探究过程,初步了解“鸽巢问题”。 教学难点 理解“鸽巢问题”,并对一些简单实际问题加以“模型化”。 教具、学具准备 课件、每组都有相应数量的杯子、铅笔。 教学过程 一、魔术游戏引入 1、魔术游戏。 2、引入课题,师板书课题:鸽巢问题. 3、看到课题你有什么问题想问的? 二、探究新知 1、动手操作,感知模型

(1)小组合作研究:把4枝铅笔放入3个杯子,有几种放法? 学生动手操作、交流,师巡视、指导。 (2)全班交流: 哪个小组愿意到前面展示一下你们的研究结果? 观察这四种方法,你能发现什么? 总有是什么意思?至少2支铅笔是什么意思? (3)质疑:如果只摆一种能得出刚才的结论吗? (4)师总结。 (5)既然是平均分,能用算式表示吗? 2、逐步深入,建立模型 (1)把5枝铅笔放进4个杯子里,总有一个杯子里要放进几枝铅笔?并说一说为什么?把6枝笔放进5个杯子里呢?还用摆吗? 把7枝笔放进6个杯子里呢?把10枝笔放进9个杯子里呢? 把100枝笔放进99个杯子里呢?…… (2)你有什么发现? (3)如果铅笔的数量不是比杯子数多1时,你们的这个发现还能成立吗? (4)课件出示:5只鸽子飞进了3个鸽笼。 问:看到这个条件你想提怎样的数学问题? (5)我们一起来解决“总有一个鸽笼里至少有几只鸽子?”这个问题,你们在小组里用学具摆一摆看,有什么发现?如果用算式怎样表示呢?小组讨论说说你的想法。

数学人教版六年级下册《鸽巢问题》教材分析

《鸽巢问题》教材分析 “鸽巢原理”来源于一个基本的数学事实。将三个苹果放到两只抽屉里,要么在一只抽屉里放两个苹果,而另一只抽屉里放一个苹果;要么在一只抽屉里放三个苹果,而另一只抽屉里不放。这两种情况可用一句话概括:一定有一只抽屉里放入两个或两个以上的苹果。虽然我们无法断定哪只抽屉里放入至少两个苹果,但这并不影响结论。如果我们把一切可以与苹果互换的事物称为元素,而把一切可以与抽屉互换的事物称为集合,那么上面的结论就可以表述为:假如把多于 个元素按任一确定的方式分成个集合,那么有一个集合中至少含有2个元素。还可以表述为:把多于 (是正整数)个元素按任一确定的方式分成个集合,那么一定有一个集合中至少含有(+1)个元素。“抽屉原理”是数学的重要原理之一,在数论、集合论和组合论中有很多应用。它也被广泛地应用于现实生活中,如招生录取、就业安排、资源分配、职称评定等方面,我们经常会看到隐含在其中的“抽屉原理”。 由此可见,所谓“鸽巢原理”,实际上是一种解决某种特定结构的数学或生活问题的模型,体现了一种数学的思想方法。让学生经历将具体问题数学化的过程,初步形成模型思想,体会和理解数学与外部世界的紧密联系,发展抽象能力、推理能力和应用能力,这是《义务教育数学课程标准(2011年版)》的重要要求,也是本单元的编排意图和价值取向。 教材编排的“鸽巢原理”涉及三种基本的形式:第一种,只要鸽子的数量比鸽巢多,那么一定有一个鸽巢放进了至少飞进2只鸽子。那么,这里的“一定有一个鸽巢”是什么意思?“至少两只鸽子”是什么意思?“一定有一个鸽巢”是存在性;“至少两只鸽子”是可以多于两只鸽子,可以是两个,也可以是三个、四个甚至更多。第二种,即是“把多于kn(k是正整数)个元素放入n个集合,总有一个集合里至少有(k+1)元素”。若k为1,就是第一种情况,可见第一种情形实际是第二种情形的特例。 一、与实验教材(《义务教育课程标准实验教科书数学六年级》,下同)的主要区别 在例题的教学前,编排了一个给学生表现“魔术”的主题情境,使学生产生探究魔术背后的数学原理的强烈欲望。修订后的教材对本单元例2的相关数据进行了调整。 二、教材例题分析 例1:本例描述“鸽巢原理”的最简单的情况。着重探讨为什么这样的结论是成立的。教材呈现了两种思考方法:第一种方法是用操作的方法,罗列所有的方法,通过完全归纳的方法看到在这四种情况都是满足结论的;还可以是说理的方式,先飞进3只,在每个鸽巢里飞进1只,这时剩下1只。剩下的1只鸽子不管飞入哪个鸽巢里,这时都会有一个鸽巢里飞进2只鸽子。这种

六年级下册--鸽巢问题教案

六年级下册--鸽巢问题教案

第1课时鸽巢问题(1) 【教学内容】 最简单的鸽巢问题(教材第68页例1和第69页例2)。 【教学目标】 1.理解简单的鸽巢问题及鸽巢问题的一般形式,引导学生采用操作的方法进行枚举及假设法探究“鸽巢问题”。 2.体会数学知识在日常生活中的广泛应用,培养学生的探究意识。 【重点难点】 了解简单的鸽巢问题,理解“总有”和“至少”的含义。 【教学准备】 实物投影,每组3个文具盒和4枝铅笔。 【情景导入】 教师:同学们,你们在一些公共场所或旅游景点见过电脑算命吗?“电脑算命”看起来很深奥,只要你报出自己的出生年月日和性别,一按键,屏幕上就会出现所谓性格、命运的句子。通过今天的学习,我们掌握了“鸽巢问题”之后,你就不难证明这种“电脑算命”是非常可笑和荒唐的,是不可相信的鬼把戏了。(板书课题:鸽巢问题) 教师:通过学习,你想解决哪些问题? 根据学生回答,教师把学生提出的问题归结为:“鸽巢问题”是怎样的?这里的“鸽巢”是指什么?运用“鸽巢问题”能解决哪些问题?怎样运用“鸽巢问题”解决问题? 【新课讲授】 1.教师用投影仪展示例1的问题。 同学们手中都有铅笔和文具盒,现在分小组形式动手操作:把四支铅笔放进三个标有序号的文具盒中,看看能得出什么样的结论。 组织学生分组操作,并在小组中议一议,用铅笔在文具盒里放一放。

教师指名汇报。 学生汇报时会说出:1号文具盒放4枝铅笔,2号、3号文具盒均放0枝铅笔。 教师:不妨将这种放法记为(4,0,0)。〔板书:(4,0,0)〕 教师提出:(4,0,0)(0,4,0)(0,0,4,)为一种放法。 教师:除了这种放法,还有其他的方法吗?教师再指名汇报。学生会有(4,0,0)(0,1,3)(2,2,0)(2,1,1)四种不同的方法。教师板书。 教师:还有不同的放法吗? 教师:通过刚才的操作,你能发现什么?(不管怎么放,总有一个盒子里至少有2枝铅笔。) 教师:“总有”是什么意思?(一定有) 教师:“至少”有2枝什么意思?(不少于两只,可能是2枝,也可能是多于2枝) 教师:就是不能少于2枝。(通过操作让学生充分体验感受) 教师进一步引导学生探究:把5枝铅笔放进4个文具盒,总有一个文具盒要放进几枝铅笔?指名学生说一说,并且说一说为什么?教师:把4枝笔放进3个盒子里,和把5枝笔放进4个盒子里,不管怎么放,总有一个盒子里至少有2枝铅笔。这是我们通过实际操作发现的这个结论。那么,我们能不能找到一种更为直接的方法,只摆一种情况,也能得到这个结论呢? 学生思考——组内交流——汇报 教师:哪一组同学能把你们的想法汇报一下? 学生会说:我们发现如果每个盒子里放1枝铅笔,最多放3枝,剩下的1枝不管放进哪一个盒子里,总有一个盒子里至少有2枝铅笔。 教师:你能结合操作给大家演示一遍吗?(学生操作演示) 教师:同学们自己说说看,同桌之间边演示边说一说好吗? 教师:这种分法,实际就是先怎么分的? 学生:平均分。 教师:为什么要先平均分?(组织学生讨论) 学生汇报:要想发现存在着“总有一个盒子里一定至少有2枝”,先平均分,

人教版六年级数学下册《鸽巢问题》教学设计

人教版六年级下册《鸽巢问题》教学设计 【教学课题】鸽巢问题 【教学内容】教材第68-70页例1、例2及“做一做”,及第71页1-2题。 【教学目标】 1、知识与技能:了解“鸽巢问题”的特点,理解“鸽巢原理”的含义。使学生学会用此原理解决简单的实际问题。 2、过程与方法:经历探究“鸽巢原理”的学习过程,体验观察、猜测、实验、推理等活动的学习方法,渗透数形结合的思想。 3、情感、态度和价值观:通过用“鸽巢问题”解决简单的实际问题,激发学生的学习兴趣,使学生感受数学的魅力。 【教学重点】引导学生把具体问题转化成“鸽巢问题”。【教学难点】找出“鸽巢问题”解决的窍门进行反复推理。【教学过程】 一、创设情境,导入新知 老师组织学生做“抢椅子”游戏(请5位同学上来,摆4张椅子),并宣布游戏规则。 师:像这样的现象中隐藏着什么数学奥秘呢?这节课我们就一起来研究这个原理。-------出示课题 二、合作交流,探究新知

1、教学例1(出示例题1情境图) 思考问题:把4支铅笔放进3个笔筒中,不管怎么放,总有1个笔筒里至少有2支铅笔。为什么呢?“总有”和“至少”是什么意思? 学生通过操作发现规律→理解关键词的含义→探究证明→认识“鸽巢问题”的学习过程来解决问题。 (1)操作发现规律:通过吧4支铅笔放进3个笔筒中,可以发现:不管怎么放,总有1鸽笔筒里至少有2支铅笔。 (2)理解关键词的含义:“总有”和“至少”是指把4支铅笔放进3个笔筒中,不管怎么放,一定有1个笔筒里的铅笔数大于或等于2支。 (3)探究证明。 组织学生分组操作,并在小组中议一议,用铅笔在文具盒里放一放。 教师指名汇报。 学生汇报时会说出:1号文具盒放4枝铅笔,2号、3号文具盒均放0枝铅笔。 教师:不妨将这种放法记为(4,0,0)。〔板书:(4,0,0)〕教师提出:(4,0,0)(0,4,0)(0,0,4,)为一种放法。 教师:除了这种放法,还有其他的方法吗?教师再指名汇报。学生会有(4,0,0)(0,1,3)(2,2,0)(2,1,1)四种不同的方法。教师板书。 教师:还有不同的放法吗?

鸽巢原理

摘要 鸽巢原理是组合数学中最基本的计数原理之一,也是证明存在性问题的一种重要方法.本文首先介绍了鸽巢原理的不同表述形式及其推论,然后从整除关系的证明、几何图形的分割以及解决实际问题等几个角度介绍了鸽巢原理的应用,并对例题中鸽巢的构造技巧做了分析. 关键词:鸽巢原理;简单形式;一般形式;加强形式

Abstract The pigeonhole principle is one of the basic counting principle in combinatorics, but also it is an important method to prove the problem of the existence. This paper first introduces the different expressions of the pigeonhole principle and its deduction, then the applications of the pigeonhole principle are introduced from several angles of proof of aliquot relationship, division of the geometrical figure and solving practical problems, the structured skills of the pigeonhole principle in examples are analysed. Key words: pigeonhole principle; simple form; general form; strengthend form

人教版数学六年级下册《鸽巢问题(例1)》教学设计

《鸽巢问题》教学设计 汝城县土桥镇永丰中心小学曹优明 教学目标: 1.使学生理解“抽屉原理” (“鸽巢原理”)的基本形式,并能初步运用“抽屉原理”解决相关的实际问题或解释相关的现象。 2.通过操作、观察、比较、说理等数学活动,使学生经历抽屉原理的形成过程,体会和掌握逻辑推理思想和模型思想,提高学习数学的兴趣。 教学重点:理解鸽巢原理,掌握先“平均分” ,再调整的方法。 教学难点:理解“总有”“至少”的意义,理解“至少数=商数+1” 教学过程: (一)呈现问题,引出探究 课件呈现:把4 支铅笔放进3 个笔筒中,不管怎么放,总有一个笔筒里至少有2 支铅笔。 师:“总有”和“至少”这两个词是什么意思?生:“总有”就是一定有,至少就是“最少,最起码” 。(学生都有类似的理解。) 师:你觉得这句话说得对吗?请你静静思考一下。 师:大家可以用摆一摆、画一画、写一写等方法把自己的想法表示出来。 (二)自主探究,初步感知 1.学生探究。(略) 2.反馈交流。 (l )枚举法。

生1:我们是用铅笔模拟摆出来的,一共有四种情况。这四种情况中,不管哪一种,都有一个笔筒里至少有2支铅笔。 师:我们来看这些摆法,凭什么说“总有一个笔筒里至少有2支铅笔”? 生:第一种摆法有一个笔筒是4支,第二种摆法有一个笔筒是3支,第三种摆法有一个笔筒是2支,第四种摆法有两个笔筒都是2支,所以“总有一个笔筒里至少放进2支铅笔”。 师:比2支多也可以吗? 生:至少放进2支笔就是最少是2支,比2支多也是可以的,3支、4支都是符合要求的。 教师再次引导学生观察四种摆法,把符合要求的笔筒用彩色粉笔标出予以“检验”,理解总有一个笔筒里至少有2支铅笔,对学生的方法给予肯定。 生2:我们是用数表示的,比他的方法要简单。 1 0 0 3 1 0 2 I 1 2 2 0 ① ② ③ ④ 师生一起圈出每种分法中不小于2的数,认可这种方法,对学生简洁的表示法予以表扬。 (2)假设法。 师:除了像这样把所有可能的情况都列举出来,还有没有别的方法也可以证 明这句话是正确的? 生:我是这样想的,先假设每个笔筒中放1 支,这样还有1 支。这时无论放到哪个笔

高中数学抽屉原理容斥原理

高中数学抽屉原理容斥原理 在数学问题中有一类与“存在性”有关的问题,例如:“13个人中至少有两个人出生在相同月份”;“某校400名学生中,一定存在两名学生,他们在同一天过生日”;“2003个人任意分成200个小组,一定存在一组,其成员数不少于11”;“把[0,1]内的全部有理数放到100个集合中,一定存在一个集合,它里面有无限多个有理数”。这类存在性问题中,“存在”的含义是“至少有一个”。在解决这类问题时,只要求指明存在,一般并不需要指出哪一个,也不需要确定通过什么方式把这个存在的东西找出来。这类问题相对来说涉及到的运算较少,依据的理论也不复杂,我们把这些理论称之为“抽屉原理”。 “抽屉原理”最先是由19世纪的德国数学家迪里赫莱(Dirichlet)运用于解决数学问题的,所以又称“迪里赫莱原理”,也有称“鸽巢原理”的。这个原理可以简单地叙述为“把10个苹果,任意分放在9个抽屉里,则至少有一个抽屉里含有两个或两个以上的苹果”。这个道理是非常明显的,但应用它却可以解决许多有趣的问题,并且常常得到一些令人惊异的结果。抽屉原理是国际国内各级各类数学竞赛中的重要内容,本讲就来学习它的有关知识及其应用。 (一)抽屉原理的基本形式 定理1、如果把n+1个元素分成n个集合,那么不管怎么分,都存在一

个集合,其中至少有两个元素。 证明:(用反证法)若不存在至少有两个元素的集合,则每个集合至多1个元素,从而n个集合至多有n个元素,此与共有n+1个元素矛盾,故命题成立。 在定理1的叙述中,可以把“元素”改为“物件”,把“集合”改成“抽屉”,抽屉原理正是由此得名。 同样,可以把“元素”改成“鸽子”,把“分成n个集合”改成“飞进n个鸽笼中”。“鸽笼原理”由此得名。 例题讲解 1.已知在边长为1的等边三角形内(包括边界)有任意五个点(图1)。证明:至少有两个点之间的距离不大于 2.从1-100的自然数中,任意取出51个数,证明其中一定有两个数,它们中的一个是另一个的整数倍。 3.从前25个自然数中任意取出7个数,证明:取出的数中一定有两个数,这两个数中大数不超过小数的1.5倍。 4.已给一个由10个互不相等的两位十进制正整数组成的集合。求证:这个集合必有两个无公共元素的子集合,各子集合中各数之和相等。 5.在坐标平面上任取五个整点(该点的横纵坐标都取整数),证明:其中一定存在两个整点,它们的连线中点仍是整点。 6.在任意给出的100个整数中,都可以找出若干个数来(可以是一个数),它们的和可被100整除。 7.17名科学家中每两名科学家都和其他科学家通信,在他们通信时,只讨论三个题目,而且任意两名科学家通信时只讨论一个题目,证明:其中至少有三名科学家,他们相互通信时讨论的是同一个题目。

六年级下册鸽巢问题教案

“鸽巢问题”教案 教学内容:教材第68-70页例1、例2,及“做一做”。 学习目标: 1、知识与技能:了解“鸽巢问题”的特点,理解“鸽巢原理”的含义。使学生学会用此原理解决简单的实际问题。 2、过程与方法:经历探究“鸽巢原理”的学习过程,体验观察、猜测、实验、推理等活动的学习方法,渗透数形结合的思想。 3、情感态度与价值观:通过用“鸽巢问题”解决简单的实际问题,激发学生的学习兴趣,使学生感受数学的魅力。学习重点:引导学生把具体问题转化成“鸽巢问题”。 学习难点:找出“鸽巢问题”解决的窍门进行反复推理。 教具准备:多媒体课件。 学习过程: 一、创设情境,导入新知 老师组织学生做“抢椅子”游戏(请3位同学上来,摆开2条椅子),并宣布游戏规则。 其实这个游戏中蕴藏着一个非常有趣的数学原理,这节课我们就一起来研究这类问题。-----出示课题《鸽巢问题》“鸽巢原理”又称“抽屉原理”,最先是由19世纪的德国数学家狄利克雷提出来的,所以又称“狄利克雷原理”,

这一原理在解决实际问题中有着广泛的应用。“抽屉原理”的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结果。下面我们就来研究这一原理。 二、合作交流,探究新知 1、教学例1(课件出示例题1情境图) 思考问题:把4支铅笔放进3个笔筒中,不管怎么放,总有1个笔筒里至少有2支铅笔。为什么呢 问题:“总有”和“至少”是什么意思 学生通过操作发现规律→理解关键词的含义→探究证明→认识“鸽巢问题”的学习过程来解决问题。 (1)操作发现规律:通过把4支铅笔放进3个笔筒中,可以发现:不管怎么放,总有1个笔筒里至少有2支铅笔。 (2)理解关键词的含义:“总有”和“至少”是指把4支铅笔放进3个笔筒中,不管怎么放,一定有1个笔筒里的铅笔数大于或等于2支。这里的“总有”指的是“一定有”或“肯定有”的意思;而“至少”指的是最少,即在所有方法中,放的鸽子最多的那个“笼子”里鸽子“最少”的个数。 (3)探究证明。个人调整意见 方法一:用“分解法”证明。把4分解成3个数。由图可知,把4分解成3个数,有4中情况,每种分法中最多的

相关文档
最新文档