计算方法_数据拟合回顾

第三章数据拟合回顾

keywords

最小二乘法

转化的思想

使误差的平方和为最小:

按最小二乘法, 作直线拟合应使

∑=+-=N

i i i x y b a b a Q 1

2

)]([),(为最小,极小值点一阶导数为0:0,0=??=??b

Q

a Q 最小二乘法(least squares method )

2min,

()i

i

e

e y a bx i i i

=∑=-+2i i

i i i i aN b x y a x b x x y ?+=??+=??∑∑∑∑∑得正规方程组:

2i i i i i i i i i i i i

a b x y a x b x x y ωωωωωω?+=??+=??∑∑∑∑∑∑加权正规方程组:

IF Y*=a0+a1X1+a2X2+a3X3+……+akXk

(n>k ),THEN?

最小二乘法的几何意义(p51)

y=a0x0+a1x1+a2x2+a3x3+……+akxk(n>k)其中x0=(1,1,1,.....1),x i=(xi1,xi2,xi3,.....,xin),i=1,2,3.....n

数据拟合方法一览表

线性关系直线拟合非线性关系曲线拟合

单变量直线拟合多

线

多项式拟合非多项式拟合

变量

替换

转换

为直

线拟

多项

式拟

合的

最小

二乘

变量

替换

为多

变量

直线

拟合

方程

两边

取对

数转

换为

直线

拟合

Y*=a0+a1X1+a2X2+a3X3+……+akXk(n>k)本

thank u

曲线拟合的数值计算方法实验

曲线拟合的数值计算方法实验 【摘要】实际工作中,变量间未必都有线性关系,如服药后血药浓度与时间的关系;疾病疗效与疗程长短的关系;毒物剂量与致死率的关系等常呈曲线关系。曲线拟合(curve fitting)是指选择适当的曲线类型来拟合观测数据,并用拟合的曲线方程分析两变量间的关系。曲线直线化是曲线拟合的重要手段之一。对于某些非线性的资料可以通过简单的变量变换使之直线化,这样就可以按最小二乘法原理求出变换后变量的直线方程,在实际工作中常利用此直线方程绘制资料的标准工作曲线,同时根据需要可将此直线方程还原为曲线方程,实现对资料的曲线拟合。常用的曲线拟合有最小二乘法拟合、幂函数拟合、对数函数拟合、线性插值、三次样条插值、端点约束。 关键词曲线拟合、最小二乘法拟合、幂函数拟合、对数函数拟合、线性插值、三次样条插值、端点约束 一、实验目的 1.掌握曲线拟合方式及其常用函数指数函数、幂函数、对数函数的拟合。 2.掌握最小二乘法、线性插值、三次样条插值、端点约束等。 3.掌握实现曲线拟合的编程技巧。 二、实验原理 1.曲线拟合 曲线拟合是平面上离散点组所表示的坐标之间的函数关系的一种数据处理方法。用解析表达式逼近离散数据的一种方法。在科学实验或社会活动中,通过 实验或观测得到量x与y的一组数据对(X i ,Y i )(i=1,2,...m),其中各X i 是彼此不同的。人们希望用一类与数据的背景材料规律相适应的解析表达式,y=f(x,c)来反映量x与y之间的依赖关系,即在一定意义下“最佳”地逼近或 拟合已知数据。f(x,c)常称作拟合模型,式中c=(c 1,c 2 ,…c n )是一些待定参 数。当c在f中线性出现时,称为线性模型,否则称为非线性模型。有许多衡量拟合优度的标准,最常用的一种做法是选择参数c使得拟合模型与实际观测值在

实验数据与曲线拟合

实验数据与曲线拟合 1. 曲线拟合 1. 曲线拟合的定义 2. 简单线性数据拟合的例子 2. 最小二乘法曲线拟合 1. 最小二乘法原理 2. 高斯消元法求解方程组 3. 最小二乘法解决速度与加速度实验 3. 三次样条曲线拟合 1. 插值函数 2. 样条函数的定义 3. 边界条件 4. 推导三次样条函数 5. 追赶法求解方程组 6. 三次样条曲线拟合算法实现 7. 三次样条曲线拟合的效果 4. 12.1 曲线拟合 5. 12.1.1 曲线拟合的定义 6. 曲线拟合(Curve Fitting)的数学定义是指用连续曲线近似地刻画或比拟平面上一组离散点所表示的坐 标之间的函数关系,是一种用解析表达式逼近离散数据的方法。曲线拟合通俗的说法就是“拉曲线”,也就是将现有数据透过数学方法来代入一条数学方程式的表示方法。科学和工程遇到的很多问题,往往只能通过诸如采样、实验等方法获得若干离散的数据,根据这些数据,如果能够找到一个连续的函数(也就是曲线)或者更加密集的离散方程,使得实验数据与方程的曲线能够在最大程度上近似吻合,就可以根据曲线方程对数据进行数学计算,对实验结果进行理论分析,甚至对某些不具备测量条件的位置的结果进行估算。 7. 12.1.2 简单线性数据拟合的例子 8. 回想一下中学物理课的“速度与加速度”实验:假设某物体正在做加速运动,加速度未知,某实验人员 从时间t0 = 3秒时刻开始,以1秒时间间隔对这个物体连续进行了12次测速,得到一组速度和时间的离散数据,请根据实验结果推算该物体的加速度。 9. 表 12 – 1 物体速度和时间的测量关系表 10. 在选择了合适的坐标刻度之后,我们就可以在坐标纸上画出这些点。如图12–1所示,排除偏差明显 偏大的测量值后,可以看出测量结果呈现典型的线性特征。沿着该线性特征画一条直线,使尽量多的测量点能够位于直线上,或与直线的偏差尽量小,这条直线就是我们根据测量结果拟合的速度与时间的函数关系。最后在坐标纸上测量出直线的斜率K,K就是被测物体的加速度,经过测量,我们实验测到的物体加速度值是1.48米/秒2。

曲线拟合的方法及过程

一、课程设计题目: 对于函数 x e x x f --=)( 从00=x 开始,取步长1.0=h 的20个数据点,求五次最小二乘拟合多项式 5522105)()()()(x x a x x a x x a a x P -++-+-+= 其中 ∑ ===19 95.020 i i x x 二、原理分析 (1)最小二乘法的提法 当数据量大且由实验提供时,不宜要求近似曲线)(x y φ=严格地经过所有数据点),(i i y x ,亦即不应要求拟合函数)(x ?在i x 处的偏差(又称残差) i i i y x -=)(φδ (i=1,2,…,m) 都严格的等于零,但是,为了使近似曲线能尽量反应所给数据点的变化趋势,要求偏差i δ适当的小还是必要的,达到这一目标的途径很多,例如,可以通过使最大偏差i δmax 最小来实现,也可以通过使偏差绝对值之和∑i i δ最小来实 现……,考虑到计算方便等因素,通常用使得偏差平方和∑i i 2δ最小(成为最小 二乘原则)来实现。 按最小二乘原则选择近似函数的方法称为最小二乘法。 用最小二乘法求近似函数的问题可以归结为:对于给定数据),(i i y x (i=1,2,…,m),要求在某个函数类Φ中寻求一个函数)(x * ?,使 [][]2 1 )(2 1 * )()(mi n ∑∑=Φ∈=-=-m i i i x m i i i y x y x ??? (1-1) 其中)(x ?为函数类Φ中任意函数。 (1)确定函数类Φ,即确定)(x ?的形式。这不是一个单纯的数学问题,还与其他领域的一些专业知识有关。在数学上,通常的做法是将数据点),(i i y x 描

计算方法_数据拟合回顾

第三章数据拟合回顾 keywords 最小二乘法 转化的思想

使误差的平方和为最小: 按最小二乘法, 作直线拟合应使 ∑=+-=N i i i x y b a b a Q 1 2 )]([),(为最小,极小值点一阶导数为0:0,0=??=??b Q a Q 最小二乘法(least squares method ) 2min, ()i i e e y a bx i i i =∑=-+2i i i i i i aN b x y a x b x x y ?+=??+=??∑∑∑∑∑得正规方程组: 2i i i i i i i i i i i i a b x y a x b x x y ωωωωωω?+=??+=??∑∑∑∑∑∑加权正规方程组: IF Y*=a0+a1X1+a2X2+a3X3+……+akXk (n>k ),THEN?

最小二乘法的几何意义(p51) y=a0x0+a1x1+a2x2+a3x3+……+akxk(n>k)其中x0=(1,1,1,.....1),x i=(xi1,xi2,xi3,.....,xin),i=1,2,3.....n

数据拟合方法一览表 线性关系直线拟合非线性关系曲线拟合 单变量直线拟合多 变 量 直 线 拟 合 多项式拟合非多项式拟合 变量 替换 转换 为直 线拟 合 多项 式拟 合的 最小 二乘 法 变量 替换 为多 变量 直线 拟合 方程 两边 取对 数转 换为 直线 拟合 正 交 多 项 式 拟 合 Y*=a0+a1X1+a2X2+a3X3+……+akXk(n>k)本

thank u

数据拟合法

第四章 数据拟合法 在科学实验和生产实践中,有许多函数关系仅能用由实验或观测得到的一组数据表 (,)(0,1, ,)i i x y i m =来表示,例如某种物质的化学反应,能够测得生成物的浓度与时间关 系的一组数据表.而它们的解析表达式)(t f y =是不知道的。但是为了要知道化学反应速度,必须要利用已知数据给出它的近似表达式,有了近似表达式,通过求导数便可知道化学反应速度。可见已知一组数据求它的近似表达式是非常有意义的.如何求它的近似表达式呢?第二章介绍的插值方法是一种有效的方法.但是由于数据(,)(0,1, ,)i i x y i m =是由测量或观测得 到的,它本身就有误差,作插值时一定要通过型值点),(i i y x 似乎没有必要;其次当m 很大时,采用插值(特别是多项式插值)很不理想(会出现龙格现象),非多项式插值计算又很复杂。为此,本章介绍一种“整体”近似的方法,即对于给定的数据(,),0,1,,i i x y i n =,选一个 线性无关函数系)(,),(),(10x x x n ??? ,以它们为基底构成的线性空间为 {}0span (), ,()n x x ??=Φ. 在此空间内选择函数 ()()n j j j x x ?α?==∑ 其中(0,1,,)j j n α=为待定常数。要求它逼近真实函数)(x f y =的误差尽可能小,这就是 数据拟合问题. §1 最小二乘法 一、最小二乘法 设有数据(,),0,1, ,i i x y i m =,令 ()(),0,1, ,n i i i i j j i j r y x y x i m ?α?==-=-=∑. 并称T m r r r r ),,,(10 =为残向量,用)(x ?去拟合)(x f y =的好坏问题变成残量的大小问题。 判断残量大小的标准,常用的有下面几种: (1) 确定参数(0,1, ,)j j n α=,使残量绝对值中最大的一个达到最小,即 i m i r ≤≤0max 为最小。 (2) 确定参数(0,1, ,)j j n α=,使残量绝对值之和达到最小,即 ∑=m i i r 为最小。 (3) 确定参数(0,1, ,)j j n α=,使残量的平方和达到最小,即

实验四 插值法与曲线拟合

计算方法实验报告 专业班级:医学信息工程一班姓名:陈小芳学号:201612203501002 实验成绩: 1.【实验题目】 插值法与曲线拟合 2.【实验目的】 3.【实验内容】 4. 【实验要求】

5. 【源程序(带注释)】 (1)拉格朗日插值 #include #include #include #include #include #define n 4 //插值节点的最大下标 main() { double x1[n+1]={0.4,0.55,0.65,0.8,0.9}; double y1[n+1]={0.4175,0.57815,0.69657,0.88811,1.02652}; double Lagrange(double x1[n+1],double y1[n+1],float t); int m,k;float x,y;float X;double z; printf("\n The number of the interpolation points is m ="); //输入插值点的个数 while(!scanf("%d",&m)) { fflush(stdin); printf("\n输入错误,请重新输入:\n"); printf("\n The number of the interpolation points is m ="); } for(k=1;k<=m;k++) { printf("\ninput X%d=",k); while(!scanf("%f",&X)) { fflush(stdin); printf("\n输入错误,请重新输入:\n"); printf("\ninput X%d=",k); } z=Lagrange(x1,y1,X); printf("P(%f)=%f\n",X,z); } getch(); return (0); } double Lagrange(double x[n+1],double y[n+1],float X) { int i,j;

数据拟合方法

第二讲 数据拟合方法 在实验中,实验和戡测常常会产生大量的数据。为了解释这些数据或者根据这些数据做出预测、判断,给决策者提供重要的依据。需要对测量数据进行拟合,寻找一个反映数据变化规律的函数。数据拟合方法与数据插值方法不同,它所处理的数据量大而且不能保证每一个数据没有误差,所以要求一个函数严格通过每一个数据点是不合理的。数据拟合方法求拟合函数,插值方法求插值函数。这两类函数最大的不同之处是,对拟合函数不要求它通过所给的数据点,而插值函数则必须通过每一个数据点。例如,在某化学反应中,测得生成物的质量浓度y (10 –3 g/cm 3)与时间t (min )的关系如表所示 显然,连续函数关系 y (t )是客观存在的。但 是通过表中的数据不可能确切地得到这种关系。何况,由于仪器和环境的影响,测量数据难免有误差。因此只能寻求一个近拟表达式 y = (t )

寻求合理的近拟表达式,以反映数据变化的规律,这种方法就是数据拟合方法。数据拟合需要解决两个问题:第一,选择什么类型的函数)(t ?作为拟合函数(数学模型);第二,对于选定的拟合函数,如何确定拟合函数中的参数。 数学模型应建立在合理假设的基础上,假设的合理性首先体现在选择某种类型的拟合函数使之符合数据变化的趋势(总体的变化规律)。拟合函数的选择比较灵活,可以选择线性函数、多项式函数、指数函数、三角函数或其它函数,这应根据数据分布的趋势作出选择。为了问题叙述的方 假设拟合函数是线性函数,即拟合函数的图形是一条平面上的直线。而表中的数据点未能精确地落在一条直线上的原因是实验数据的误差。则下一步是确定函数 y= a + b x 中系数a 和b 各等于多少从几何背景来考虑,就是要以a 和b 作为待定系数,确定一条平面直线使得表中数据所对应的10个点尽可能地靠近这条直线。一般来讲,数据点将不会全部落在这条直线上,如果第k 个点的数据恰好落在这条直线上,则这个点的坐标满足直线的方程,即 a + b x k = y k 如果这个点不在直线上,则它的坐标不满足直线方程,有一个绝对值为 k k y bx a -+的差异(残差) 。于是全部点处的总误差是 ∑=-+10 1 k k k y bx a 这是关于a 和b 的一个二元函数,合理的做法是选取a 和b ,使得这个函 数取极小值。但是在实际求解问题时为了操作上的方便,常常是求a 和b 使得函数 ∑=-+=10 12)(),(k k k y bx a b a F 达到极小。为了求该函数的极小值点,令 0=??a F ,0=??b F , 得

曲线拟合方法浅析

曲线拟合方法概述 工业设计张静1014201056 引言:在现代图形造型技术中,曲线拟合是一个重要的部分,是曲面拟合的基础。现着重对最小二乘法、移动最小二乘法、NURBS 三次曲线拟合法和基于RBF 曲线拟合法进行 比较,论述这几种方法的原理及其算法,基于实例分析了上述几种拟合方法的特性,以分析拟合方法的适用场合,从而为图形造型中曲线拟合的方法选用作出更好的选择。 1 曲线拟合的概念 在许多对实验数据处理的问题中,经常需要寻找自变量和对应因变量之间的函数关系,有的变量关系可以根据问题的物理背景,通过理论推导的方法加以求解,得到相应关系式。但绝大多数的函数关系却很复杂,不容易通过理论推导得到相关的表达式,在这种情况下,就需要采用曲线拟合的方法来求解变量之间的函数关系式。 曲线拟合(Curve Fitting) ,是用连续曲线近似地刻画或比拟平面上离散点组所表示的坐标之问的函数关系的一种数据处理方法。在科学实验或社会活动中,通过实验或观测得到量x与y的一组数据对(X i,y i), i=1 , 2, 3…,m,其中各X i是彼此不同的。人们希望用一类与数据的规律相吻合的解析表达式y=f(x)来反映量x与y之间的依赖关系。即在一定意义下“最佳”地逼近或拟合已知数据。f(x)称作拟合函数,似的图 像称作拟合曲线。 2 曲线拟合的方法 2.1 最小二乘法 最小二乘法通过最小化误差的平方和寻找数据的最佳函数匹配,是进行曲线拟合的一种早期使用的方法一般最小二乘法的拟合函数是一元二次,可一元多次,也可多元多次。该方法是通过求出数据点到拟合函数的距离和 最小的拟合函数进行拟合的方法令f(x)=ax 2+bx+c ,计算数据点到该函数 所表示的曲线的距离和最小即:

数值计算_第6章 曲线拟合的最小二乘法

第6章曲线拟合的最小二乘法 6.1 拟合曲线 通过观察或测量得到一组离散数据序列,当所得数据比较准确时,可构造插值函数逼近客观存在的函数,构造的原则是要求插值函数通过这些数据点,即。此时,序列与 是相等的。 如果数据序列,含有不可避免的误差(或称“噪音”),如图6.1 所示;如果数据序列无法同时满足某特定函数,如图6.2所示,那么,只能要求所做逼近函数最优地靠近样点,即向量与的误差或距离最小。按与之间误差最小原则作为“最优”标准构造的逼近函数,称为拟合函数。 图6.1 含有“噪声”的数据

图6.2 一条直线公路与多个景点 插值和拟合是构造逼近函数的两种方法。插值的目标是要插值函数尽量靠近离散点;拟合的目标是要离散点尽量靠近拟合函数。 向量与之间的误差或距离有各种不同的定义方法。例如: 用各点误差绝对值的和表示: 用各点误差按模的最大值表示: 用各点误差的平方和表示: 或(6.1) 其中称为均方误差,由于计算均方误差的最小值的方法容易实现而被广泛采用。按 均方误差达到极小构造拟合曲线的方法称为最小二乘法。本章主要讲述用最小二乘法构造拟合曲线的方法。 在运筹学、统计学、逼近论和控制论中,最小二乘法都是很重要的求解方法。例如,它是统计学中估计回归参数的最基本方法。

关于最小二乘法的发明权,在数学史的研究中尚未定论。有材料表明高斯和勒让德分别独立地提出这种方法。勒让德是在1805年第一次公开发表关于最小二乘法的论文,这时高斯指出,他早在1795年之前就使用了这种方法。但数学史研究者只找到了高斯约在1803年之前使用了这种方法的证据。 在实际问题中,怎样由测量的数据设计和确定“最贴近”的拟合曲线?关键在选择适当的拟合曲线类型,有时根据专业知识和工作经验即可确定拟合曲线类型;在对拟合曲线一无所知的情况下,不妨先绘制数据的粗略图形,或许从中观测出拟合曲线的类型;更一般地,对数据进行多种曲线类型的拟合,并计算均方误差,用数学实验的方法找出在最小二乘法意义下的误差最小的拟合函数。 例如,某风景区要在已有的景点之间修一条规格较高的主干路,景点与主干路之间由各具特色的支路联接。设景点的坐标为点列;设主干路为一条直线 ,即拟合函数是一条直线。通过计算均方误差最小值而确定直线方程(见图6.2)。 6.2线性拟合和二次拟合函数 线性拟合 给定一组数据,做拟合直线,均方误差为 (6.2) 是二元函数,的极小值要满足

数据拟合方法研究

数据拟合方法研究 中文摘要 在我们实际的实验和勘探中,都会产生大量的数据。为了解释这些数据或者根据这些数据做出预测、判断,给决策者提供重要的依据。需要对测量数据进行拟合,寻找一个反映数据变化规律的函数。 本文介绍了几种常用的数据拟合方法,线性拟合、二次函数拟合、数据的n次多项式拟合等。并着重对曲线拟合进行了研究,介绍了线性与非线性模型的曲线拟合方法,最小二乘法、牛顿迭代法等。在传统的曲线拟合基础上,为了提高曲线拟合精度,本文还研究了多项式的摆动问题,从实践的角度分析了产生这些摆动及偏差的因素和特点,总结了在实践中减小这些偏差的处理方法。采用最小二乘法使变量转换后所得新变量离均差平方和最小,并不一定能使原响应变量的离均差平方和最小,所以其模型的拟合精度仍有提高的空间。本文以残数法与最小二乘法相结合,采用非线性最小二乘法来得到拟合效果更好的曲线模型。随着计算机技术的发展,实验数据处理越来越方便。但也提出了新的课题,就是在选择数据处理方法时应该比以往更为慎重。因为稍有不慎,就会非常方便地根据正确的实验数据得出不确切的乃至错误的结论。所以提高拟合的准确度是非常有必要的 关键词:数据拟合、最小二乘法、曲线拟合、多项式摆动、残数法

Data Fitting Method Abstract In our experiments and exploration, it will produce large amounts of data. In order to explain these data to make predictions based on these data to determine, provide an important basis for policy makers .Need to fit the measured data to find a function to reflect data changes in the law.This article describes several commonly used data fitting methods, and focused on a nonlinear curve fitting of the model. This paper introduces some commonly used data fitting method, linear fitting, secondary function fitting, data n times polynomial fitting etc. T And focuses on the curve fitting, introduced the linear and nonlinear model of curve fitting method, the least square method, Newton iterative method, etc. In the traditional curve fitting basis, in order to improve the curve fitting precision, this paper also studies the polynomial swing, from the perspective of the practice the oscillation and deviation of factors and characteristics, and summarizes the decrease in practice the treatment method of these deviations. The least square method to variable after converting from new variables are the sum of squared residuals minimum, not necessarily make the original response from all the variables of the sum of squared residuals minimum, so the model fitting precision still has room to improve.Based on the number of residual method and least square method, and the combination of nonlinear least square method to get better fitting effect of curve model.With the development of computer technology, the experiment

一种分段曲线拟合方法研究

一种分段曲线拟合方法研究 摘要:分段曲线拟合是一种常用的数据处理方法,但在分段点处往往不能满足连续与光滑.针对这一问题,本文给出了一种能使分段点处连续的方法.该方法首先利用分段曲线拟合对数据进行处理;然后在相邻两段曲线采用两点三次Hermite插值的方法,构造一条连结两条分段曲线的插值曲线,从而使分段点处满足一阶连续.最后通过几个实例表明该方法简单、实用、效果较好. 关键词:分段曲线拟合Hermite插值分段点连续 Study on A Method of Sub-Curve Fitting Abstract:Sub-curve fitting is a commonly used processing method of data, but at sub-points it often does not meet the continuation and smooth, in allusion to to solve this problem, this paper presents a way for making sub-point method continuous. Firstly, this method of sub-curve fitting deals with the data; and then uses the way of t wo points’ cubic Hermite interpolation in the adjacent, structures a interpolation curve that links the two sub-curves, so the sub-point meets first-order continuation; lastly, gives several examples shows that this method is simple, practical and effective. Key words:sub-curve fitting Hermite interpolation sub-point continuous

实验数据曲线拟合方法研究

本科毕业设计论文题目实验数据曲线拟合方法研究 专业名称 学生姓名 指导教师 毕业时间

毕业 一、题目 实验数据曲线拟合方法研究 二、指导思想和目的要求 通过毕业设计,使学生对所学自动控制原理、现代控制原理、控制系统仿真、电子技术等的基本理论和基本知识加深理解和应用;培养学生设计计算、数据处理、文件编辑、文字表达、文献查阅、计算机应用、工具书使用等基本事件能力以及外文资料的阅读和翻译技能;掌握常用的实验数据曲线拟合方法,培养创新意识,增强动手能力,为今后的工作打下一定的理论和实践基础。 要求认真复习有关基础理论和技术知识,认真对待每一个设计环节,全身心投入,认真查阅资料,仔细分析被控对象的工作原理、特性和控制要求,按计划完成毕业设计各阶段的任务,重视理论联系实际,写好毕业论文。 三、主要技术指标 设计系统满足以下要求: 数据拟合误差要尽量的小的同时保证曲线的线形形状最佳。 四、进度和要求 1、搜集中、英文资料,完成相关英文文献的翻译工作,明确本课题的国内外研 究现状及研究意义;(第1、2周) 2、撰写开题报告;(第 3、4周) 3、应用最小二乘法进行曲线拟合;(第5、6周) 4、应用Matlab命令曲线拟合;(第7、8周) 5、应用Matlab图形用户界面曲线拟合;(第9、10周) 6、研究其他曲线拟合方法;(第11周) 7、整理资料撰写毕业论文; (1)初稿;(第12、13周)(2)二稿;(第14周)

8、准备答辩和答辩。(第15周) 五、主要参考书及参考资料 [1]卢京潮,《自动控制原理》,西北工业大学出版社,2010.6 [2]胡寿松,《自动控制原理》,科学出版社,2008,6 [3]薛定宇,陈阳泉,《系统仿真技术与应用》,清华大学出版社,2004.4 [4]王正林,《Matlab/Simulink与控制系统仿真》,电子工业出版社,2009.7 [5]李桂成,《计算方法》,电子工业出版社,2013.8 [6]蒋建飞,胡良剑,唐俭.数值分析及其Matlab实验【M】.北京:科学出版社,2008 学生指导教师系主任

计算方法离散数据曲线拟合

第三章 数据拟合 知识点:曲线拟合概念,最小二乘法。 1.背景 已知一些离散点值时,可以通过构造插值函数来近似描述这些离散点的运动规律或表现这些点的隐藏函数 曲线拟合方法也可以实现这个目标,不同的是构造拟合函数。两种方法的一个重要区别是:由插值方法构造的插值函数必须经过所有给定离散点,而曲线拟合方法则没有这个要求,只要求拟合函数(曲线)能“最好”靠近这些离散点就好。 2.曲线拟合概念 实践活动中,若能观测到函数y=f(x )的一组离散的实验数据(样点):(x i ,y i ), i =1,2…,n 。就可以采用插值的方法构造一个插值函数?(x),用?(x)逼近f(x )。插值方法要求满足插值原则 ?(x i )=y i ,蕴涵插值函数必须通过所有样点。另外一个解决

逼近问题的方法是考虑构造一个函数?(x )最优靠近样点,而不必通过所有样点。如图。 即向量T=(?(x 1), ?(x 2),…?(x n ))与Y=(y 1,y 2,。。。,y n )的某种误差达到最小。按T 和Y 之间误差最小的原则作为标准构造的逼近函数称拟合函数。 曲线拟合问题:如何为f(x )找到一个既简单又合理的逼近函数?(x)。 曲线拟合:构造近似函数?(x),在包含全部基节点x i (i =1,2…,n)的区间上能“最好”逼近f(x )(不必满足插值原则)。 逼近/近似函数y =?(x)称经验公式或拟合函数/曲线。 拟合法则:根据数据点或样点(x i ,y i ),i =1,2…,n ,构造出一条反映这些给定数据一般变化趋势的逼近函数y =?(x),不要求曲线?(x )经过所有样点,但要求曲线?(x)尽可能靠近这些样点,即各点误差δi =?(x i )-y i 按某种标准达到最小。 均方误差/误差平方和/误差的2-范数平方: 常用误差的2-范数平方作为总体误差的度量,以误差平方和达到最小作为最优标准构造拟合曲线的方法称为曲线拟合的最小二乘法(最小二乘原理)。 3.多项式拟合 2 4 4 2 ? ? ? ? ? ? ? ? -4 -2 样点 y =?(x) ?(x i ) y i =f(x i ) ∑==n i i 122 2 ||||δδ

数据拟合

数据拟合 数据拟合成曲线的思想,简称为曲线拟合(fitting a curve)。根据一组二维数据,即平面上的若干点,要求确定一个一元函数()y f x =,即曲线,使这些点与曲线总体来说尽量接近,曲线拟合其目的是根据实验获得的数据去建立因变量与自变量之间有效的经验函数关系,为进一步的深入研究提供线索。本章的目的,掌握一些曲线拟合的基本方法,弄清楚曲线拟合与插值方法之间的区别,学会使用Matlab 软件进行曲线拟合。 最小二乘法 给定平面上的点(,)i i x y ,(1,2,)i n =……,进行曲线拟合有多种方法,其中最小二乘法是解决曲线拟合最常用的方法。最小二乘法的原理是: 求()f x ,使2 211[()]n n i i i i i f x y δδ====-∑∑达到最小。 如图1所示,其中i δ为点(,)i i x y 与曲线()y f x =的距离。曲线拟合的实际含义是寻求一个函数()y f x =,使()f x 在某种准则下与所有数据点最为接近,即曲线拟合得最好。最小二乘准则就是使所有散点到曲线的距离平方和最小。拟合时选用一定的拟合函数()f x 形式,设拟合函数可由一些简单的“基函数”(例如幂函数,三角函数等等)01(),(),()m x x x ???…… 来线性表示: 0011()()()()m m f x c x c x x ???=++……+c 图1 曲线拟合示意图 现在要确定系数01,,m c c c ……,,使δ达到极小。为此,将()f x 的表达式代入δ中,δ就成为01,,m c c c ……,的函数,求δ的极小,就可令δ对i c 的偏导数等于零,于是得到1m +个方程组,从中求解出i c 。通常取基函数为231,,,,,m x x x x ……,这时

曲线拟合的数值计算方法实验.

曲线拟合的数值计算方法实验 郑发进 2012042020022 【摘要】实际工作中,变量间未必都有线性关系,如服药后血药浓度与时间的关系;疾病疗效与疗程长短的关系;毒物剂量与致死率的关系等常呈曲线关系。曲线拟合(curve fitting)是指选择适当的曲线类型来拟合观测数据,并用拟合的曲线方程分析两变量间的关系。曲线直线化是曲线拟合的重要手段之一。对于某些非线性的资料可以通过简单的变量变换使之直线化,这样就可以按最小二乘法原理求出变换后变量的直线方程,在实际工作中常利用此直线方程绘制资料的标准工作曲线,同时根据需要可将此直线方程还原为曲线方程,实现对资料的曲线拟合。常用的曲线拟合有最小二乘法拟合、幂函数拟合、对数函数拟合、线性插值、三次样条插值、端点约束。 关键词曲线拟合、最小二乘法拟合、幂函数拟合、对数函数拟合、线性插值、三次样条插值、端点约束 一、实验目的 1.掌握曲线拟合方式及其常用函数指数函数、幂函数、对数函数的拟合。 2.掌握最小二乘法、线性插值、三次样条插值、端点约束等。 3.掌握实现曲线拟合的编程技巧。 二、实验原理 1.曲线拟合 曲线拟合是平面上离散点组所表示的坐标之间的函数关系的一种数据处理方法。用解析表达式逼近离散数据的一种方法。在科学实验或社会活动中,通过实验或观测得到量x与y的一组数据对(X i,Y i)(i=1,2,...m),其中各X i 是彼此不同的。人们希望用一类与数据的背景材料规律相适应的解析表达式,y=f(x,c)来反映量x与y之间的依赖关系,即在一定意义下“最佳”地逼近或拟合已知数据。f(x,c)常称作拟合模型,式中c=(c1,c2,…c n)是一些待定参数。

曲线拟合方法

今天帮同学做了一个非线性函数的曲线拟合,以前没做过,所以是摸着石头过河。费了一下午时间,终于把曲线拟合出来了,顺道也学习了使用Matlab进行曲线拟合的方法,把学习所得记录下来,和大家共享。 一、单一变量的曲线逼近 Matlab有一个功能强大的曲线拟合工具箱 cftool ,使用方便,能实现多种类型的线性、非线性曲线拟合。下面结合我使用的 Matlab R2007b 来简单介绍如何使用这个工具箱。 假设我们要拟合的函数形式是y=A*x*x + B*x, 且A>0,B>0 。 1、在命令行输入数据: 》x=[110.3323 148.7328 178.064 202.8258033 224.7105 244.5711 262.908 280.0447 296.204 311.5475]; 》y=[5 10 15 20 25 30 35 40 45 50]; 2、启动曲线拟合工具箱 》cftool 3、进入曲线拟合工具箱界面“Curve Fitting tool” (1)点击“Data”按钮,弹出“Data”窗口; (2)利用X data和Y data的下拉菜单读入数据x,y,可修改数据集名“Data set name”,然后点击“Create data set”按钮,退出“Data”窗口,返回工具箱界面,这时会自动画出数据集的曲线图; (3)点击“Fitting”按钮,弹出“Fitting”窗口; (4)点击“New fit”按钮,可修改拟合项目名称“Fit name”,通过“Data set”下拉菜单选择数据集,然后通过下拉菜单“Type of fit”选择拟合曲线的类型,工具箱提供的拟合类型有: ?Custom Equations:用户自定义的函数类型 ?Exponential:指数逼近,有2种类型, a*exp(b*x) 、 a*exp(b*x) + c*exp(d*x) ?Fourier:傅立叶逼近,有7种类型,基础型是 a0 + a1*cos(x*w) + b1*sin(x*w) ?Gaussian:高斯逼近,有8种类型,基础型是 a1*exp(-((x-b1)/c1)^2) ?Interpolant:插值逼近,有4种类型,linear、nearest neighbor、cubic spline、shape-preserving ?Polynomial:多形式逼近,有9种类型,linear ~、quadratic ~、cubic ~、4-9th degree ~ ?Power:幂逼近,有2种类型,a*x^b 、a*x^b + c ?Rational:有理数逼近,分子、分母共有的类型是linear ~、quadratic ~、cubic ~、4-5th degree ~;此外,分子还包括constant型 ?Smoothing Spline:平滑逼近(翻译的不大恰当,不好意思) ?Sum of Sin Functions:正弦曲线逼近,有8种类型,基础型是 a1*sin(b1*x + c1)?Weibull:只有一种,a*b*x^(b-1)*exp(-a*x^b) 选择好所需的拟合曲线类型及其子类型,并进行相关设置: ——如果是非自定义的类型,根据实际需要点击“Fit options”按钮,设置拟合算法、修改待

曲线拟合的数值计算方法实验

曲线拟合的数值计算方 法实验 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

曲线拟合的数值计算方法实验 【摘要】实际工作中,变量间未必都有线性关系,如服药后血药浓度与时间的关系;疾病疗效与疗程长短的关系;毒物剂量与致死率的关系等常呈曲线关系。曲线拟合(curve fitting)是指选择适当的曲线类型来拟合观测数据,并用拟合的分析两变量间的关系。曲线直线化是曲线拟合的重要手段之一。对于某些非线性的资料可以通过简单的变量变换使之直线化,这样就可以按原理求出变换后变量的,在实际工作中常利用此直线方程绘制资料的标准工作曲线,同时根据需要可将此直线方程还原为,实现对资料的曲线拟合。常用的曲线拟合有最小二乘法拟合、幂函数拟合、对数函数拟合、线性插值、三次样条插值、端点约束。 关键词曲线拟合、最小二乘法拟合、幂函数拟合、对数函数拟合、线性插值、三次样条插值、端点约束 一、实验目的 1.掌握曲线拟合方式及其常用函数指数函数、幂函数、对数函数的拟合。 2.掌握最小二乘法、线性插值、三次样条插值、端点约束等。

3.掌握实现曲线拟合的编程技巧。 二、实验原理 1.曲线拟合 曲线拟合是平面上离散点组所表示的坐标之间的函数关系的一种数据处理方法。用解析表达式逼近的一种方法。在或社会活动中,通过实验或观测得到量x 与y 的一组数据对(X i ,Y i )(i=1,2,...m ),其中各X i 是彼此不同的 。人们希望用一类与数据的背景材料规律相适应的解析表达式,y=f(x ,c )来反映量x 与y 之间的依赖关系,即在一定意义下“最佳”地逼近或拟合已知数据。f(x ,c)常称作拟合模型 ,式中c=(c 1,c 2,…c n )是一些待定参数。当c 在f 中出现时,称为线性模型,否则称为。有许多衡量拟合优度的标准,最常用的一种做法是选择参数c 使得拟合模型与实际在各点的(或),c)-f (f y e k k k 的平方和达到最小,此时所求曲线称作在加权最小二乘意义下对数据的拟合曲线。有许多求解拟合曲线的成功方法,对于线性模型一般通过建立和求解来确定参数,从而求得拟合曲线。至于,则要借助求解非线性方程组或用最优化方法求得所需参数才能得到拟合曲线,有时称之为非线性。 曲线拟合:与路径转化时的误差。值越大,误差越大;值越小,越精确。 2.最小二乘法拟合:

数值计算方法教案_曲线拟合与函数逼近

第三章 曲线拟合与函数逼近 一.曲线拟合 1.问题提出: 已知多组数据(),,1,2,,i i x y i N = ,由此预测函数()y f x =的表达式。 数据特点:(1)点数较多。(2)所给数据存在误差。 解决方法:构造一条曲线反映所给数据点的变化总趋势,即所谓的“曲线拟合”。 2.直线拟合的概念 设直线方程为y=a+bx 。 则残差为:?i i i e y y =-,1,2,,i N = ,其中?i i y a bx =+。 残差i e 是衡量拟合好坏的重要标志。 可以用MATLAB 软件绘制残差的概念。 x=1:6; y=[3,4.5,8,10,16,20]; p=polyfit(x,y,1); xi=0:0.01:7; yi=polyval(p,xi); plot(xi,yi,x,y, 'o'); y1=polyval(p,x); hold on for i=1:6 plot([i,i],[y(i),y1(i)], 'r'); end 可以绘制出如下图形:

三个准则: (1)max i e 最小 (2)1n i i e =∑最小 (3)21 N i i e =∑最小 3.最小二乘法的直线拟合 问题:对于给定的数据点(),,1,2,,i i x y i N = ,求一次多项式y=a+bx ,使得总误差Q 最小。其中()2 21 1 N N i i i i i Q e y a bx ====-+????∑∑。根据 0,0.Q Q a b ??==?? 2222 1 222N i i i i i i i Q y a b x y a y x b x ab =??=++--+??∑

曲线拟合方法浅析

曲线拟合方法概述 工业设计 张静 1014201056 引言:在现代图形造型技术中,曲线拟合是一个重要的部分,是曲面拟合的基础。现着重对最小二乘法、移动最小二乘法、NURBS 三次曲线拟合法和基于RBF 曲线拟合法进行比较,论述这几种方法的原理及其算法,基于实例分析了上述几种拟合方法的特性,以分析拟合方法的适用场合,从而为图形造型中曲线拟合的方法选用作出更好的选择。 1 曲线拟合的概念 在许多对实验数据处理的问题中,经常需要寻找自变量和对应因变量之间的函数关系,有的变量关系可以根据问题的物理背景,通过理论推导的方法加以求解,得到相应关系式。但绝大多数的函数关系却很复杂,不容易通过理论推导得到相关的表达式,在这种情况下,就需要采用曲线拟合的方法来求解变量之间的函数关系式。 曲线拟合(Curve Fitting),是用连续曲线近似地刻画或比拟平面上离散点组所表示的坐标之问的函数关系的一种数据处理方法。在科学实验或社会活动中,通过实验或观测得到量x 与y 的一组数据对(x i ,y i ),i =1,2,3…,m ,其中各x i 是彼此不同的。人们希望用一类与数据的规律相吻合的解析表 达式y =f(x)来反映量x 与y 之间的依赖关系。即在一定意义下“最佳”地逼近或拟合已知数据。f(x)称作拟合函数,似的图像称作拟合曲线。 2 曲线拟合的方法 2.1最小二乘法 最小二乘法通过最小化误差的平方和寻找数据的最佳函数匹配,是进行曲线拟合的一种早期使用的方法 一般最小二乘法的拟合函数是一元二次,可一元多次,也可多元多次。该方法是通过求出数据点到拟合函数的距离和最小的拟合函数进行拟合的方法令f(x)=ax 2+bx+c ,计算数据点到该函数所表示的曲线的距离和最小 即: δ=∑-=n i y x f i i 02) )(( 对上式求导,使其等于0,则可以求出f(x)的系数a,b,c ,从而求解出拟合函数。 2.2 移动最小二乘法 移动最小二乘法在最小二乘法的基础上进行了较大的改进,通过引入紧支概

相关文档
最新文档