空气离子化敞开式质谱仪的应用及反思

空气离子化敞开式质谱仪的应用及反思
空气离子化敞开式质谱仪的应用及反思

敞开式质谱及其联用技术的发展

丁晨

(中国药科大学 生命科学与技术学院,江苏 南京210009)

摘要 敞开式离子化方式日益成为质谱分析研究的一种重要手段。在敞开条件下,气流和大气压能严重离子的转运和聚焦。在此介绍一种新型、高效的远程采样敞开式质谱的设计与装配,即空气流辅助离子化质谱(AFAI-MS )。AFAI 系统中空气流的提取不仅能高效的捕获和运输荷电雾滴,且能促进去溶剂化以及离子的形成,更甚至能够在离子化过程中保护离子碎片,这些均已被深入研究。此外,AFAI 也显著提高了敞开式远程取样质谱分析的灵敏度。质谱成像技术(IMS ),一种无须标记的分子成像手段,能够在单一测量中专属性的对多分子进行成像。通过与AFAI 的连接,发展了一种在敞开条件下无需样品处理的新型的整体分子的质谱成像技术。 关键词 敞开式质谱;AFAI ;IMS ;整体水平分子成像1 敞开式质谱技术

在Ambient mass spectrometry (AMS )[1]敞开式质谱技术得到很好发展的背景下许多新兴的敞开式离子化技术应运而生,例DESI 、MALDESI 、DAPCI 等,在此对这些离子化方式不做详细说明。得益于实时及就地取样即能进行化学分析的优点,AMS 技术在被广泛研究后也暴露出了些许缺点,包括分析大型或是远距离样品基质时,尤其是在固体基质上的非挥发性样本的测定中,受到诸如采集效率低以及从样品至质谱采样空间的采样距离低的诸多限制。 2 空气辅助离子化敞开质谱(AFAI-MS )

Zepe Abliz 发现敞开离子化条件下,空气流

及大气压力对转运以及离子或荷电雾滴的聚集有很大程度的影响,加之对简便以及普遍远程采样中灵敏度的需求,发展了使用一个附加的大容量低流速抽吸空气流的泵的空气流辅助离

子化(AFAI )技术[2]。

AFAI 离子源的装配:使用一段不锈a 钢转运管,一段PMMA 逆流管用以抽回空气流以及连接AFAI 与MS ,一个气流计…如下图所示:

Fig.1 a,b 为AFAI 装置的概念图及实物图

AFAI-MS 分析时质量分析器使用AccuTOF

CS 或是QTRAP ,

通过与不同离子化方式的联用,

AFA-DESI-MS 适用于于分析包括染料、药片制剂中的活性成分、炸药、麻醉药等,AFA-APCI-MS 用于相对分子质量,小或是非极性的小分子,包括挥发性有机化合物及挥发性药物样本及固体样本的分析。这些应用都充分说明了AFAI 对于大型物体的表面分析及实时监控的作用。

进一步的研究发现AFAI 既能有效的捕获和运输荷电雾滴,又能促进去溶剂化以及离子化,更甚至能在离子化过程中阻碍碎片例子进行进一步裂解。在此,设计的AFAI 体系中的运输管亦能被加热用以辅助去溶剂化。一般来说,在高速空气气流中样本荷电雾滴的聚集减少但离子信号的强度得到很大提升,在Zeper 老师的研究实例中都能看到。此外,荷电雾滴的运输距离的加长是由于他们的相对分子量远大于空气和溶剂分子而拥有更大的动量,因此荷电雾

滴得以富集于质谱接口处。

总而言之,AFAI 方法具有如下特点:有效的捕获和转运荷电雾滴,辅助去溶剂及离子构造的保护,簇离子的形成及离子碎片的保护。AFAI-MS 的研究显示了其在大型物体的分析、残留指纹的检测以及实时的远程检测与监控等都具有很大优势。下面我也具体谈谈Zeper 老师后续所做的有关AFAI 与质谱成像技术连用进行生物体整体分子成像的研究。

3 空气辅助离子化质谱成像技术(AFAI-IMS )

Imaging Mass spectrometry (IMS )即质谱

成像技术,AFAI-IMS 用于生物样本的分析时具有以下诸多优点:在环境条件下无需样品的前处理能高效的对整体切片进行分子成像;信号强度提高,整体测量误差被消除;此外该方法也获得了高质量的整体图像。

Fig.2 AFAI-IMS 联用技术的原理示意图

关键的AFAI-MS 与IMS 的连接在文中为得

以详尽的叙述但从叙述中得知,样本使用整体

的实验白鼠切片(143mm*48mm),分子成像的环节中已非直接扫描的模式实施,该模式借由y

方向400μm/s的速度连续的移动失状切面表面, 200ms驻留时间内一次质谱扫描是综合所成的

影像中的一个像素点(500μm*162μm),一条

路线扫描完成后样本表面降下2mm,薄片复位到初始路线的下一条以此顺序的扫描以避免重复

扫描。考虑到药物分布分析的需要,要解决整

体分子水平的IMS实验中确定组织的亚结构,伴随取样时间、样品稳定性以及灵敏度等多重问题,实验人员选择了一个空间分辨率为300μm的ESI喷雾器。以这种分辨率,运用IMS 分析一个目标区域(14cm*5cm)需要9小时。

AFAI-IMS最大的特点即整体层面上药物定位的成像,图d显示了抗肿瘤药物候选物CAT 借由AFADESI-IMS在多反应监控扫描模式下进行的整体水平成像。

Fig.3a、b为同一小鼠(静脉注射10 mg/mL CAT)给药20min后安乐死所得的两张不同片层的失状切面的光学图像;b、d为使用AFADESI-IMS所测试的CAT在a、c中的IMS成像。空间分辨率为300μm *500μm.

上图给出了IMS成像与光学图像的直接对照,IMS成像直观的揭示了药物及其代谢产物在体

内的不同组织分布的差异。图中可以轻易地观

察到CAT在胰腺、肾上腺、椎骨、肺、大脑、肾、肠中富集,而心脏和肝脏中分布较少。

此外,在一些器官例如脑壳、脊椎及大脑中,亚区强度的变化能轻易的看到(图3 a、c)。CAT的含量能被LC-MS/MS进一步定量检测(Fig.4),LC-MS/MS与IMS一致的结果确证了AFADESI-IMS方法进行要为定位分析的的可行性与可靠性。

Fig.4 给药20min 后安乐死的大鼠中独立器官中CAT 含量的LC-MS/MS 的定量测定

4. 讨论

空气辅助离子化条件下的解吸电喷雾电离模式与质谱成像的技术(AFADESI-IMS )便于操作,能够绘制多个目标分子在大的整体组织切片的图像,而无须矩阵定位、切片分割以及高真空条件(比之于其他封闭式的质谱成像技术)。同时该方法也解决了传统放整体分子成像技术中样品大小及灵敏度的难题。得益于

该技术足够的采样空间以及远距离离子转运仍具有高灵敏度的特性,动物整体水平的分子活动的研究将步入新的阶段。Zeper 老师给予我最新名的印象是他关于科学研究的一种整体思想,学科与学科之间的相互渗透、相互融合,不把问题看的太单一、片面,更多的以一种整体的思维、多元化的手段分数阐述问题,如他本人提出的代谢产物稳定性的变化引起的分析偏差,又如离子

源差异对代谢物检出的差异,亦如分析疾病相关指标时检测该代谢物的一系列代谢转化途径中所有产物以减少误诊额可能…由于精力有限,我突出的研读了Zeper 老师关于AFAI 及其与IMS 连用的相关文章。诚然,我冒昧的认为其中亦有可以继续钻研改进之处,例改质谱成像技术依然涉及了动物死后全身组织中药物及其代谢产物的分布,但生物死后对这么代谢物分布的影响又很难预知,动物技能谓之有机体,在于它是内在亦是一个活得生态体系,一点细微的内在环境变化都能有牵一发而动全身的效果,若是能应运而生一种活体样本的在线代谢组学研究势必会更加深入乃至让我们完善对生命体的生命行为本质的理解。

参考文献

[1] Z. Takats; J.M. Wiseman; B. Gologan; R. G. Cooks. Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science 2004,360,471

[2] Zeper Abliz; Jiuming He. et.al. Air foow assisted ionization for remote sampling of ambient mass spectrometry and its application, Rapid Commun. Mass Spectrom.2011,25,843-850

[3] Zeper Abliz;Zhigang Luo .et al.Air Flow-Assisted Ionization Imaging Mass Spectrometry Method for Easy Whole-body Molecular Imaging under Ambient Conditions,Anal.chem.

2013,85,2977-2982

赛默飞(thermofisher)X2-ICP-MS电感耦合等离子体质谱技术参数及价格

赛默飞(thermofisher)X2 ICP-MS 电感耦合等离子体质谱技术参数品牌:赛默飞(thermofisher) 型号:X2 价格(含税价):120万 1 货物名称:电感耦合等离子体质谱仪 2 生产地:德国 3主要用途:适用于应用领域广泛的各种样品的元素分析和同位素分析任务,包括生活饮用水、食品和(血液)生物样品等。 4 工作条件: 3.1 温度: 15℃~30℃ 3.2 相对湿度: <80% 3.3 电源:220 V (±10%),单相,50Hz (±1%) 5 电感耦合等离子体质谱主要技术指标5.1仪器硬件要求 5.1.1 雾化器:PFA-ST MicroFlow雾化器。 5.1.2 雾化室:小体积的撞击球或旋流型雾化室。 *5.1.3 接口:拥有两种不同类型的接口技术,截取锥口径必须>0.6 mm。 5.1.4 质量流量计:有等离子体气,辅助气,雾化气三路质量流量计 *5.1.5 ICP 源:固体晶体稳频RF 发生器,频率27.12 MHz,稳定性<±0.01% 5.1.6 RF功率稳定性<0.01% *5.1.7 真空系统:要求从大气压开始抽至可工作的真空度的时间小于30分-8钟。滑动阀关闭后,静态真空度维持在<6×10mbar(滑阀关闭),

要求提供证明文件。 5.1.8 离子光学:离轴四极杆质谱仪系统。*5.1.9 四极杆:纯Mo质四极杆。*5.1.10 质谱仪要求是的免拆洗系统,透镜系统(包括提取透镜和偏转透镜或其它透镜组件以及碰撞反应池)均为免维护清洗,且非消耗品,在使用过程中无需任何定期清洗维护工作。 5.1.11 如果仪器的离子透镜以及碰撞反应池组件需要定期维护或定期更换,请提供额外的离子透镜组或者碰撞反应池组件备品至少1套,以满足仪器日常分析不停机工作的需要。5.1.12 等离子体炬位调整: 由计算机三维(X,Y, Z 方向)控制。 5.1.13 数据采集:要求拥有60000道以上的多通道数据分析系统,以适应瞬间信号采集要求。 5.1.14 质谱范围:2-255amu。 *5.1.15 仪器分辨率:具有高分辨和标准分辨率两种模式,可以对不同元素进行不同分辨率的设定,要求在一次样品测试中,四级杆在不同分辨率下自动切换,请提供文献证明。*5.1.16 要求带等离子体屏蔽技术附件(包括冷焰屏蔽和热焰屏蔽高灵敏度模式技术) 5.1.17 要求配置多级杆碰撞反应池,配置2路MFC质量流量计,碰撞池条件和标准条件的切换为全自动化. 要求在同一个试验方法中可以同时使用多种气体,包括:简单碰撞气体(氦气)以及各种反应性气体(氢气,氨

二次离子质谱

二次离子质谱 Secondary Ion Mass Spectrometry (SIMS) 1 引言: 离子探针分析仪,即离子探针(Ion Probe Analyzer,IPA),又称二次离子质谱(Secondary Ion Mass Spectrum,SIMS),是利用电子光学方法把惰性气体等初级离子加速并聚焦成细小的高能离子束轰击样品表面,使之激发和溅射二次离子,经过加速和质谱分析,分析区域可降低到1-2μm直径和5nm的深度,正是适合表面成分分析的功能,它是表面分析的典型手段之一。 应用离子照射样品产生二次离子的基础研究工作最初是R.H.斯隆(1938)和R.F.K.赫佐格(1949)等人进行的。1962 年R.卡斯塔因和G.斯洛赞在质谱法和离子显微技术基础上研制成了直接成像式离子质量分析器。1967 年H.利布尔在电子探针概念的基础上,用离子束代替电子束,以质谱仪代替X 射线分光计研制成扫描式离子探针质量显微分析仪[1]。 二次离子质谱(SIMS)比其他表面微区分析方法更灵敏。由于应用了中性原子、液态金属离子、多原子离子和激光一次束,后电离技术,离子反射型飞行时间质量分析器,离子延迟探测技术和计算机图像处理技术等,使得新型的IWHI 的一次束能量提高到MeV,束斑至亚μm,质量分辨率达到15000,横向和纵向分辨率小于0.5μm和5nm,探测限为ng/g,能给出二维和三维图像信息。SIMS 已发展为一种重要的材料成分分析方法,在微电子、光电子、材料科学、催化、薄膜和生物领域有广泛应用[2]。 2 SIMS的基本原理[3] 离子探针的原理是利用能量为1~20KeV的离子束照射在固体表面上,激发出正、负离子(溅射),利用质谱仪对这些离子进行分析,测量离子的质荷比和强度,从而确定固体表面所含元素的种类和数量。

浅谈质谱技术及其应用word精品

浅谈质谱技术及其应用 摘要:质谱分析灵敏度高,分析速度快,被广泛应用于化学,化工,环境,能源,医药,运动医学,刑事科学技术,生命科学,材料科学等各个领域。本文对质谱仪原理进行了介绍,并叙述了质谱仪的发展过程,对质谱仪技术在各个领域的应用进行了综述,并对其发展提出了展望。 关键词:质谱仪应用发展 1质谱技术 质谱(又叫质谱法)是一种与光谱并列的谱学方法,通常意义上是指广泛应用于各个学科领域中通过制备、分离、检测气相离子来鉴定化合物的一种专门技术。质谱法在一次分析中可提供丰富的结构信息,将分离技术与质谱法相结合是分离科学方法中的一项突破性进展。在众多的分析测试方法中,质谱学方法被认为是一种同时具备高特异性和高灵敏度且得到了广泛应用的普适性方法。 1.1质谱原理 质谱分析是一种测量离子质荷比(质量-电荷比)的分析方法,其基本原理是使试样中各组分在离子源中发生电离,生成不同荷质比的带电荷的离子,经加速电场的作用,形成离子束,进入质量分析器。在质量分析器中,再利用电场和磁场使发生相反的速度色散,将它们分别聚焦而得到质谱图,从而确定其质量。 1.2质谱技术的发展 1910年,英国剑桥卡文迪许实验室的汤姆逊研制出第一台现代意义上的质谱仪器。这台质谱仪的诞生,标志着科学研究的一个新领域一质谱学的开创。第一台质谱仪是英国科学家弗朗西斯阿斯顿于1919年制成的。阿斯顿用这台装置发现了多种元素同位素,研究了53个非放射性元素,发现了天然存在的287种核素中的212种,第一次证明原子质量亏损。他为此荣获1922年诺贝尔化学奖。1934年诞生的双聚焦质谱仪是质谱学发展的又一个里程碑。在此期间创立的离子光学理论为仪器的研制提供了理论依据。双聚焦仪器大大提高了仪器的分辨率,为精确原子量测定奠定了基础 1.3质谱技术的分类

XSERIES 2 电感耦合等离子质谱仪样本

元素分析 XSERIES 2 ICP-MS 等离子体质谱仪 更强的实用性 更高的分析效率 更卓越的仪器性能

围宽广的或交叉的领域内应用,并获得最大的仪器样品分析效率。 系列等离子体质谱仪除了作为是一个结实可靠的分析仪我们更强调的是您得到的将是一个用户可以信赖的完整的分析

3 仪器的综合性能 拥有 20年以上的四极杆等离子体质谱仪制造方面的经验, 并拥有ICP-MS 仪器在日常分析和研究级应用方面的最新发展技术 拥有当前四极杆ICP-MS 仪器中最高的信噪比性能高信噪比与高稳定性,高可靠性,高分析效率完美的结合 技术简单可靠,性能优异的离子透镜系统 独一无二的Infinity Ⅱ型的离子透镜系统 高效率的六极杆离子引导装置,保证最大的离子传输效率新颖的chicane 离子偏转镜结构,离轴的四极杆质谱仪和检测器,在最大范围内降低背景,消除因等离子体炬引起的光子和其他中性分子的进入,使背景 < 0.5cps 插入式的离子透镜,非对称定位的组件架结构,保证快速安装和定位 性能最好的四极杆质谱仪-最长的四极杆,最大的场径-保持最高的仪器信噪比性能-保持最优的同位素丰度灵敏度-保持质谱数校正高稳定性 -最大的灵活性 —— 计算机控制可变分辨率,允许在一次样品分析中切换使用高低分辨率两种接口-Xt 接口 一种特殊设计的接口、能有效地降低源于基体的多原子干扰离子的形成。确保56Fe 的3ppb 的方法检出限,满足有关国际标准的要求。 更进一步改善接口的长时间耐高基体样品的能力。有效地扩展了测试工作范围,能够在测试几百ppm 以上的碱金属元素的同时检测ng/L 水平的痕量有害元素,如Pb 、Cd 。 -Xs 接口 最佳化几何设计。 最高的离子传输效率,同时获得高灵敏度和低的背景。 全质量范围内均匀的响应。 新工艺制造的质谱仪系统 具有π型离子提取模式的离子光学系统独一无二的Infinity II 型离子透镜,具有最低的背景噪声,同时提供所有四极杆ICP-MS 中最高的信噪比。 Infinity II 中使用的新的π型离子提取模式极大地减少了空白等效浓度。伴随着新的接口应用,进一步改善了检出限,用户能够在更广泛的应用领域内获得更高水准的仪器性能。

有机质谱仪及MS的发展与应用

有机质谱仪及MS的发展与应用 ……专业聂荣健学号:………指导老师:…… 摘要:质谱方法是一种有效的分离、分析方法。质谱仪器和光谱仪、色谱仪、核磁共振波谱仪等仪器,都是能用一台仪器分析多种物质的谱仪,都是不可缺少的近代分析仪器。有机质谱仪的应用是非常广泛的,特别是在化学及生物领域。本文介绍了质谱仪的主要组成离子进样系统及质量分析器,以及MS的发展与应用。 关键词:有机质谱离子进样系统质量分析器应用

Development and application of organic mass spectrometry and MS Name Nie Rongjian Abstract: Mass spectrometry method is an effective separation of analysis method. Mass spectrometer、 Optical measuring equipment、Chromatographic instrument、Nuclear magnetic resonance spectral instrument and so on are all the equipments that indispensability. Organic mass spectrometry has a very wide range of applications, especially in chemical and biological field. This article introduced the major composition of Mass spectrometry about Ion Injection system and Mass Analyzer and the development of MS. Key words:Organic Mass SpectrometryIon Injection System Mass Analyzer Application

信息技术的定义与发展

信息技术的定义与发展 摘要 随着社会的发展和科技的进步,信息技术的应用已经涉及到各个领域,在信息化时代的背景下,信息技术还处在不断变化和发展的过程,信息技术学科的特点就是还有能够发展的空间,在这种情况下,了解信息技术的定义与发展,对信息技术在生活中的应用有着重要的研究价值。 【关键词】信息技术发展 1 信息技术的含义与发展 信息技术是目前在科学技术发展史上发展最为广泛和影响深远的技术,我们人类也在逐渐的进入到信息社会。 1.1 信息技术 信息技术是在信息科学的基本原理和方法下的关于一切信息的产生、信息的传输、信息的发送、信息的接收等应用技术的总称。信息技术使我们人类对于了解自然世界的一种抽象或者数字化的表现形式。信息技术是一个看不见摸不到的抽象的东西,但是信息技术可以通过我们写在纸上或者在计算机上的数据信息表现出来,让我们通过这些数据来更详细的了解事物的具体信息。通过我们的的指令或者描述的概念来展现出的一种形式。信息技术包括信息的基础技术、

信息的处理技术和信息的应用技术、信息的安全技术等。 1.2 信息技术的发展历程 (1)在我们人类最开始的时期,人类语言的产生就是信息产生的最开始时期。人类可以通过语言来进行信息的交流,来促进情感的表达,语言信息促进人类的思维能力不断的进行发展,人类通过语言信息提高了人类的认识和对自然的改造能力,推动了社会的进步; (2)随着人类对生活不断的创造和自身思维能力的提高,就出现了在我们小学历史课本上所知道的象形文字和印刷术,文字和印刷术的发明使文字信息的发展加以迅速,推动了我们人类的发展和文明社会的进步; (3)人类发明的第一台电报机、发明的第一部电话、无线电将信息技术的开发和利用,这些发明和应用让我们的生活彻底的向信息化社会发展。通过社会的不断进步,信息技术的广泛传播,电视、广播、电报、传真和卫星、微波通信等技术的发明,快速的推动了我们人类趋于信息化社会的的发展; (4)电脑的发明使信息技术趋向多样化和综合化方向发展,人们的生活随着信息时代的到来也在不断的进行着变化; (5)六十年代末期美国引用电脑在军事方面取得了显著地成效,开发出了第一个军事目的的计算机网络系统,通

空气离子化敞开式质谱仪的应用及反思

敞开式质谱及其联用技术的发展 丁晨 (中国药科大学 生命科学与技术学院,江苏 南京210009) 摘要 敞开式离子化方式日益成为质谱分析研究的一种重要手段。在敞开条件下,气流和大气压能严重离子的转运和聚焦。在此介绍一种新型、高效的远程采样敞开式质谱的设计与装配,即空气流辅助离子化质谱(AFAI-MS )。AFAI 系统中空气流的提取不仅能高效的捕获和运输荷电雾滴,且能促进去溶剂化以及离子的形成,更甚至能够在离子化过程中保护离子碎片,这些均已被深入研究。此外,AFAI 也显著提高了敞开式远程取样质谱分析的灵敏度。质谱成像技术(IMS ),一种无须标记的分子成像手段,能够在单一测量中专属性的对多分子进行成像。通过与AFAI 的连接,发展了一种在敞开条件下无需样品处理的新型的整体分子的质谱成像技术。 关键词 敞开式质谱;AFAI ;IMS ;整体水平分子成像1 敞开式质谱技术 在Ambient mass spectrometry (AMS )[1]敞开式质谱技术得到很好发展的背景下许多新兴的敞开式离子化技术应运而生,例DESI 、MALDESI 、DAPCI 等,在此对这些离子化方式不做详细说明。得益于实时及就地取样即能进行化学分析的优点,AMS 技术在被广泛研究后也暴露出了些许缺点,包括分析大型或是远距离样品基质时,尤其是在固体基质上的非挥发性样本的测定中,受到诸如采集效率低以及从样品至质谱采样空间的采样距离低的诸多限制。 2 空气辅助离子化敞开质谱(AFAI-MS ) Zepe Abliz 发现敞开离子化条件下,空气流 及大气压力对转运以及离子或荷电雾滴的聚集有很大程度的影响,加之对简便以及普遍远程采样中灵敏度的需求,发展了使用一个附加的大容量低流速抽吸空气流的泵的空气流辅助离 子化(AFAI )技术[2]。 AFAI 离子源的装配:使用一段不锈a 钢转运管,一段PMMA 逆流管用以抽回空气流以及连接AFAI 与MS ,一个气流计…如下图所示: Fig.1 a,b 为AFAI 装置的概念图及实物图 AFAI-MS 分析时质量分析器使用AccuTOF CS 或是QTRAP , 通过与不同离子化方式的联用,

电感耦合等离子体质谱仪技术参数

仪器技术参数 技术规格 1.仪器应用要求 1.1本仪器要求能适用于应用领域广泛的各种样品的元素分析、同位素分析和元素形态分析任务,满足环保、食品、地质、金属、生物样品、化工材料分析等等。 2.仪器工作环境 2.1工作环境温度: 15-30℃. 2.2工作环境湿度: < 80% (无冷凝) 2.3电源:单相200-240V ,50 Hz 3. 仪器规格要求: 3.1 仪器硬件; 3.1.1 雾化器:高效率PFA同心雾化器,提供最佳的雾化效率。 3.1.2 雾化室:小体积旋流型雾化室,死体积小,低记忆效应, 带半导体制冷装置,对雾化室制冷控温范围-10~20℃,用于精确控制雾化室温度,消除由于实验室条件的波动所引起的任何漂移,并提升仪器长期的稳定性。 *3.1.3 等离子体可视系统:具有Plasma TV功能,可以实时监控等离子体状态。 3.1.4 接口:拥有两种不同类型的接口技术,接口采用耐高盐设计,截取锥口径范围0.5~0.75mm,保证长期分析高盐样品的稳定性,满足高通量分析与大进样量的要求。 3.1.5 仪器主机ICP部分,配置质量流量计:包括等离子体气,辅助气,雾化气3路质量流量计。 *3.1.6 离子源:自激式全固态RF发生器,频率为27.12 MHz,采用变频技术快速匹配,适用乙腈等有机试剂直接进样。 *3.1.7 真空系统:要求从大气压开始抽至可工作的真空度的时间小于15分钟。滑动阀关闭后,静态真空度维持在<6×10-8mbar(滑阀关闭)。 *3.1.8 离子光学:低背景的90度偏转加离轴偏转透镜或双离轴偏转透镜设计。 3.1.9 四极杆材料:纯Mo材料四极杆。 3.1.10偏转透镜、碰撞反应池和四极杆质量分析器均为免拆洗维护。 3.1.11脉冲模拟双模式同时型电子倍增器,必须可以在一次进样过程中同时完成扫描和跳

液相色谱-质谱联用技术的发展与应用

液相色谱-质谱联用技术的发展与应用 摘要:本文主要介绍了液相色谱-质谱联用技术在药物分析、食品安全检测以及临床疾病诊断等方面的研究进展。 关键词:液相色谱—质谱联用;分析 液相色谱-质谱联用技术(LC-MS)是以质谱仪为检测手段,集HPLC高分离能力与MS高灵敏度和高选择性于一体的强有力分离分析方法[1]。特别是近年来,随着电喷雾、大气压化学电离等软电离技术的成熟,使得其定性定量分析结果更加可靠,同时,由于液相色谱-质谱联用技术对高沸点、难挥发和热不稳定化合物的分离和鉴定具有独特的优势,因此,它已成为中药制剂分析、药代动力学、食品安全检测和临床医药学研究等不可缺少的手段。 1 液相色谱-质谱联用技术的发展 1977年,LC-MS开始投放市场;1978年,LC-MS首次用于生物样品中的药物分析;1989年,LC-MS-MS取得成功;1991年,API LC-Ms用于药物开发;1997年,LC-MS用于药物动力学筛选;1999年,API Q-TOFLC-MS-MS投放市场,大气压离子化接口的应用,彻底改变了面貌,使其迅速成为制药工业中应用最广的分析仪器[2]。 2 液相色谱-质谱联用技术的应用 2.1在食品安全检测中的应用 随着人们的生活水平日益提高,对食品的营养性、保健性和安全性的关注均趋于理性化、科学化。国家对食品的监管也愈加重视起来,因此食品监督部门在食品检测中应用了一种准确的分析手段—高效液相色谱法(HPLC)。近几年发展起来的高效液相色谱-质谱联用技术(HPLC-MS),集液相色谱对复杂基体化合物的高分离能力和质谱独特的选择性、灵敏度、相对分子质量及结构信息于一体而广泛应用于食品检测方面,为食品工业中原材料筛选、生产过程中质量控制、成品质量检测等提供了有效的分析检测手段[3]。目前,LC-MS主要检测食品中农兽药的残留、食品中违禁物质和有害添加剂的检测、保健品中功效成分的检测等。该技术在食品分析检验方面具有十分广阔的前景。 2.1.1食品中农兽药残留的检测 食品及农产品的残留分析对灵敏度、重现性与选择性的要求非常高,常常需

电感耦合等离子体质谱仪

电感耦合等离子体质谱仪 1 仪器总体要求 *1.1 电感耦合等离子体质谱仪要求为“三重四极杆串联质谱仪或“双重四级杆+单八级杆”的串联四级杆质谱仪,而非普通的单极四极杆质谱仪; *1.2 第一重四极杆-四级杆离子选择偏转器,可以实现将所需的特定质荷比的离子依次进入第二重四极杆的反应池内; 1.3 第二重四极杆-通用池,通过反应气与待分析离子相同质荷比的干扰离子反应产生新的不同质荷 比的离子,通过四极杆质量扫描过滤,彻底消除干扰物和反应副产物,只允许待分析的离子进入第三重四极杆; 1.4 第三重四极杆-质量分析器,将待分析的单原子离子依次分开进行检测; 1.5 具有彩色等离子体观测窗,无需打开仪器,可对锥、炬管和负载线圈进行观测,使等离子体采 样深度的优化和有机物的分析简单、方便。同时可实时监测锥孔及喷射管孔样品沉积情况,便于维护和清洗; 1.6 电感耦合等离子体质谱仪具有与高效液相色谱技术联机进行元素价态、结合形态的分析能力, 具有专业的形态分析软件; 1.7 仪器要求能进行样品定性、半定量、定量、同位素比、同位素稀释、单颗粒分析、单细胞分析。 1.8 至少能用于硫和磷同位素标记的定量研究; 1.9 能够分析纳米材料的元素组成与浓度、尺寸及其尺寸分布。 2 仪器工作环境 2.1 工作环境温度:15-30℃。 2.2 工作环境湿度:<80% (无冷凝)。 2.3电源:单相200-240V,50 Hz。 3 技术要求 3.1 仪器硬件 3.1.1 雾化器:高效石英或PFA同心雾化器; 3.1.2 雾化室:小体积石英旋流雾化室; *3.1.3 全基体进样系统控制气路:可实现样品气体稀释,稀释倍数大于100倍;可通入氧气,实现有机样品的直接进样分析;可通入甲烷气,实现难电离元素,如砷、硒等元素的超痕量分析; 3.1.4 等离子体可视系统:可以从实际观测窗中实时监控等离子体状态; *3.1.5 接口设计:为实现对离子射束紧凑控制,接口至少采用三级锥设计,应至少包括一个采样锥、一个截取锥和一个超级锥或嵌片。锥接口设计要求具高灵敏度、高复杂基体耐受和低干扰水平的大锥口设计。采样锥口径要求必须≥1.0mm,所有截取锥或超级锥要求必须≥0.75mm,从而保证长期分析高基体、高盐样品的稳定性,并延长了锥体的使用寿命。投标设备如在接口设计上采用简单两锥设计时,必须额外提供样品锥及截取锥各3套备用;

二次离子质谱仪讲课讲稿

二次离子质谱仪原理简介 二次离子质谱仪(Secondary Ion Mass Spectrometry, SIMS)又称离子探针(Ion Microprobe),是一种利用高能离子束轰击样品产生二次离子并进行质谱测定的仪器,可以对固体或薄膜样品进行高精度的微区原位元素和同位素分析。由于地学样品的复杂性和对精度的苛刻要求,在本领域内一般使用定量精度最高的大型磁式离子探针。该类型的商业化仪器目前主要有法国Cameca公司生产的IMS1270-1300系列和澳大利亚ASI公司的SHRIMP系列。最近十年来,两家公司相继升级各自产品,在灵敏度、分辨率及分析精度等方面指标取得了较大的提升,元素检出限达到ppm-ppb级,空间分辨率最高可达亚微米级,深度分辨率可达纳米级。目前,大型离子探针可分析元素周期表中除稀有气体外的几乎全部元素及其同位素,涉及的研究领域包括地球早期历史与古老地壳演化、造山带构造演化、岩石圈演化与地球深部动力学、天体化学与比较行星学、全球变化与环境、超大型矿床形成机制等。因而国内各大研究机构纷纷引进大型离子探针(北京离子探针中心的SHRIMP II 和SHRIMP IIe-MC、中科院地质与地球物理研究所的Cameca IMS-1280、Cameca IMS-1280HR和NanoSIMS 50L、中科院广州地球化学研究所的Cameca IMS-1280HR、中核集团核工业北京地质研究院的IMS-1280HR),大大提高了国内微区分析的能力。 本实验室配备了Cameca公司生产的IMS1280离子探针和其升级型号IMS1280HR。两台仪器的基本原理及设计相同,升级型号IMS1280HR主要在磁场设计上有所改进,具

质谱发展前景分析

质谱仪的应用范围非常广,涉及食品、环境、人类健康、药物、国家安全、和其他与分析测试相关的领域。现已成为最具发展前景的分析仪器之一,近几年全球市场需求增长率超过10%,中国市场的需求增长远甚至还要大于这个比例,质谱仪其在分析检测过程中准确的定性和定量能力而受到格外青睐。随着社会的发展,质谱仪已经成为了我们生活中常用的一种仪器产品了,我们的生活中却时常出现全质谱仪的身影。比如我们日常生活当中用过的很多东西都是经过质谱仪才能完成的,可以说质谱仪的出现改变了我们生活当中很多的东西,在无形当中给我们带来了生活当中的保护,也就是因为这个因素才促使了质谱仪在市场当中有着更稳定的客户。 有了这个因素之后那么就一定会出现各式各样的问题,其中最大也是最明显都就要数竞争了,竞争在每个行业当中都会出现,同样在质谱仪当中也会出现的,如果将它处理好的话,产品在未来的发展将会是一帆风顺,如果相反的话那么结果一定是被淘汰掉的,所以质谱仪想要有好的发展就一定要将这个问题处理好才能有更为好的发展,也会使质谱仪企业获胜的得到更好的发展。质谱仪则是在市场当中最为优秀的企业当中成长起来的,这也为其的发展奠定了良好的基础,质谱仪的质量更是企业发展的保证,只要我们将质谱仪的提升上去,相信其一定可以在众多的品牌当中脱引而出,最终成为最大的赢家。 以质量求生存以质量谋发展,一直以来都是质谱仪坚持的底线,我们一定要将此项做好,勇于创新制作出更多精良的产品,让市场接受我们,当然还是要得到消费者的喜爱才是最为重要的,质谱仪也会朝着这个目标不断的前进,让自己成为市场当中最为出色的产品。

基于质谱仪发展的质谱分析技术 席琳蒂娜(WSL) (天津师范大学物电学院,天津西青30038) 摘要:质谱分析法(Mass Spectroscopy)是利用电磁学原理,将化合物电离成具有不同质量的离子,然后按照其质荷比(m/z)的大小为序,依次排列成谱收集记录下来,然后利用收集的质谱进行定性定量分析及研究分子结构的方法。随着科学技术的发展质谱分析技术也在不断的发展 关键词:发展史质谱仪原理特点应用前景 引言:人类从很早以前就对物质的结构感兴趣,我们很想知道物质结构的特点它的成分, 因此一直在不断努力发明创造能够检测和观察物质结构分析物质结构的仪器。质谱分析技术是一种很重要的分析技术,它可以对样品中的有机化合物和无机化合物进行定性定量分析,同时它也是唯一能直接获得分子量及分子式的谱学方法。基于质朴分技术的特性它在化学生物学的很多领域都这广泛的应用。随着近代物理学、真空技术、材料科学、计算机及精密械等方面的进展,使质谱分析技术的应用领域不断地扩展。 正文: 一、发展史 质谱分析技术的发展里程要从质谱仪的发展开始。质谱仪器是一类将物质粒子(原子、分子)电离成离子,通过适当的稳定或变化的电磁场将他们按空间位置、时间先后等方式实现荷质比分离,并检测其强度来作定性定量分析的分析仪器。 1885年W.Wien在电场和磁场中实现了正粒子束的偏转。1912年J.J.Thompson使用磁偏仪证明氖有相对质量20和22的两种同位素。世界上第一台质谱仪是由J.Dempster和F.W.Aston于1919年制作的,用于测量某些同位素的相对丰度。 20世纪30年代,离子光学理论的发展,使得仪器性能在很大程度上得到改善,为精确测定相对原子质量奠定了基础。其中,Mattauch和R.Herzog在1935年首先阐述了双聚焦理论,然后根据这一理论制成了双聚焦质谱仪。在30年代末,由于石油工业的发展,需要测定油的成份。 40年代初开始将MS用于石油工业中烃的分析,并大缩短了分析时间。50年代初,质谱仪器开始商品化,并被广泛用于各类有机物的结构分析。同时质谱方法与NMR、IR等方法结合成为分子结构分析的最有效的手段。1960年对离子在磁场和电场中的运动轨迹,已发展到二级近似计算方法。1972年,T.Mastuo和H.Wollnik等合作完成了考虑边缘场的三级轨迹计算法。这些为质谱仪器的设计提供了强有力的计算手段。80年代新的质谱技术出现:快原子轰击电离子源,基质辅助激光解吸电离源,电喷雾电离源,大气压化学电离源;LC-MS联用仪,感应耦合等离子体质谱仪,富立叶变换质谱仪等。非挥发性或热不稳定分子的分析进一步促进了MS的发展;90年代,由于生物分析的需要,一些新的离子化方法得到快速发展;目前一些仪器联用技术如GC-MS,HPLC-MS,GC-MS-MS,ICP-MS等正大行其道。 我国解放前质谱技术处于空白。1969年,中国科学院上海冶金所、上海电子光学技术研究所、中国科学院科学仪器厂、北京分析仪器厂先后研制成功了双聚焦火花离子质谱仪。1975年,上海新跃仪表厂制成采用二次离子质谱技术的ZLF-300型直接成象离子分析

信息技术的发展与应用教案

《信息技术的发展与应用》教案设计 一、教案背景 1,面向学生:□中学2,学科:信息技术 2,课时:1 3,学生课前准备: ①课前预习了解。 ②有条件的同学,上网查找有关课程资源。 二、教学课题 通过学习本课及运用“百度搜索”查询相关资料,了解信息技术的发展过程和信息技术在社会生活中的应用等内容。使学生了解信息技术的历史和发展趋势,体验信息技术所蕴含的文化内涵;列举信息技术在社会生活中的应用实例,体验信息技术对社会生活的影响。 通过学生的合作学习,让学生展示自己,体验成功,提高他们的信息展示的能力。同时通过接受他人的意见和对他人作品的评价,提高学生的欣赏和评价能力,同时逐步培养学生之间相互尊重、相互欣赏的感情,以及团结、协作、相互交流的学习精神。 三、教材分析 教材选用广西教育出版社的桂教版《信息技术》七年级上册第一单元第三课《信息技术的发展与应用》。 本课内容,主要讲述信息技术的发展过程和信息技术在社会生活中的应用等内容。使学生了解信息技术的历史和发展趋势,体验信息技术所蕴含的文化内涵;列举信息技术在社会生活中的应用实例,体验信息技术对社会生活的影响。 在学生学习活动过程中,需要学生通过小组合作,根据课文内容、个人经验以及利用互联网搜索有关资料,来进行知识的总结和归纳。教师需要铺设好思维阶梯,让学生主动地思考、学习。 教学目标: 1、认知目标: ①掌握利用搜索引擎查找有用信息;学会搜集和展示信息; ②了解信息技术的发展过程和信息技术的应用情况。 2、能力目标 ①培养学生运用互联网有目的地进行学习探究的能力; ②培养学生的信息沟通能力和信息展示能力; ③培养学生的欣赏和评价能力。 3、情感目标 ①体验信息技术所蕴含的文化内涵,培养学生主动探究知识和获取信息的兴趣; ②培养学生合作学习的意识和能力,以及团结、协作、相互交流的学习精神; ③培养学生之间相互尊重、相互欣赏的感情。

电感耦合等离子体飞行时间质谱仪 icp-tof-ms简介

ICP-MS 的质量分析器系统的作用是将离子束中的离子按质荷比的大小而分开。根据离子束的特点和分析工作的要求,质量分析器系统应具有足够的离子传输效率和分辨本领。通常,这两者是相互矛盾的。完善质量分析器离子光学系统的设计,就是要保证足够分辨本领的条件下,达到最高的离子传输效率。目前,飞行时间质量分析器系统的离子传输效率已接近100%。 相比之下四极杆只是一个质量选择器,而不是一个质量分析器,在一个离子通过四极杆时,其它质荷比的离子将被过滤掉。ICP-MS 的联用技术是当前进行价态、形态研究的热点技术,四极杆ICP -MS 由于其单道扫描特性,不适于监测联用技术中的瞬时多元素信号。 飞行时间质谱仪的基本原理 飞行时间质谱仪作为一种带电粒子的质量鉴定方法,很早就已经得到采用,它的工作原理十分简单,这就是,初始能量相同的带电原子或者带电分子,漂移一段固定的路程所用的时间与它本身的质量有关。测定漂移时间的差别,即可对不同质量的离子进行鉴别。1932 年,斯迈思和马赫建造了第一台基于飞行时间原理的质谱计,并成功地进行了氧同位素丰度的分析。这是历史上第一台动态质谱仪器。二次世界大战后,由于脉冲技术的发展,促进了飞行时间质谱技术的发展进程。1946 年,斯蒂芬斯提出了直线脉冲飞行时间质谱仪器的设想,而在1948 年,卡梅伦和埃格斯从实验上给以实现。1955 年,威利和麦克伦完成了这种质谱仪器的系统设计,使之成为近代商品飞行时间质谱仪器的原型。 ICP-oa-TOF-MS 相当于全谱直读的仪器,特别适合获取瞬时信号的信息,是进行FI、ETV、LA 和多种色谱方法进行样品引入研究的强大工具。这种方法也非常适合同位素稀释法的应用或者其它内标校准方法。 飞行时间质谱仪具有一系列显著的特点。其中包括:仪器的分析部分只是一支漂移管,机械结构简单;仪器性能指标主要依靠调节电参数而获得,机械调整方面不多,因此使用方便,能实现快速扫描,可用于监控极短的瞬时事件;在短时间内能记录任一反应过程的全部质谱,给出反应的全部信息。 1973 年,马米林把静电离子反射技术引入飞行时间质谱计。当质量相同而能量存在发散的离子进入静电离子反射区域时,能量较高的离子会比能量较低的离子穿透较深距离,因此能量较高离子将比能量较低离子飞行时间更长,而在漂移区间则刚好相反,因此它们最终可以同时到达接收器,因而实现了时间聚焦,从而使仪器的分辨本领大为提高。

二次离子质谱(SIMS) 分析技术及应用进展

收稿日期:2003207207;修回日期:2003209217 作者简介:周强(1973~),男(汉族),黑龙江尚志市人,工程师,仪器分析专业。E 2m ail :zq @cum tb .edu .cn 第25卷第2期 2004年5月 质谱学报 Jou rnal of Ch inese M ass Spectrom etry Society V o l .25 N o .2M ay 2004 二次离子质谱(SI M S )分析技术及应用进展 周 强1,李金英2,梁汉东1,伍昌平2 (1.煤炭资源教育部重点实验室(中国矿业大学),北京 100083; 2.中国原子能科学研究院,北京102413 ) [作者简介]:周强,1993年毕业于吉林大 学,现为中国原子能科学研究院在读硕士(仪器分析专业),就职于中国矿业大学煤 炭资源教育部重点实验室。多年来从事 TO F 2S I M S 、X 射线衍射仪等分析仪器的开发和应用工作,并承担一定的教学、科研和实验室管理任务。先后参加4项国家自然基金科研项目和3项省部级科研基金项目,独自或合作发表十余篇论文,曾作为主要参加者获得两项校级科技进步 教学奖。 摘要:二次离子质谱(S I M S )比其他表面微区分析方法更灵敏。由于应用了中性原子、液态金属离子、多原子离子和激光一次束,后电离技术,离子反射型飞行时间质量分析器,离子延迟探测技术和计算机图像处理技术等,使得新型的S I M S 的一次束能量提高到M eV ,束斑至亚Λm ,质量分辨率达到15000,横向和纵向分辨率小于0.5Λm 和5nm ,探测限为ng g ,能给出二维和三维图像信息。S I M S 能用于矿物、核物质、陨石和宇宙物质的半定量元素含量和同位素丰度测定,能鉴定出高挥发性、热不稳定性的生物大分子,能进行横向和纵向剖析,能进行单颗粒物、团蔟、聚合物、微电子晶体、生物芯 片、生物细胞同位素标记和单核苷酸多肽性分型(SN P )测定,能观测出含有2000碱基对的脱氧核糖核酸(DNA )的准分子离子峰。以S I M S 在同位素、 颗粒物、大分子、生物等研究领域的应用为重点,结合实例,对S I M S 仪器和技术进展进行了综述。 关键词:质谱学;二次离子质谱技术进展;综述;剖析;应用 中图分类号:O 657163;O 56214 文献标识码:A 文章编号: 100422997(2004)022113208 Recen t D evelopm en ts on Secondary Ion M a ss Spectrom etry ZHOU Q iang 1,L I J in 2ying 2,L I AN G H an 2dong 1,W U Chang 2p ing 2 (1.K ey L abora tory of Coa l R esou rces (Ch ina U n iversity of M in ing &T echnology ), M in istry of E d uca tion ,B eij ing 100083,Ch ina ; 2.Ch ina Institu te of A to m ic E nergy ,B eij ing 102413,Ch ina ) Abstract :Secondary i on m ass sp ectrom etry (S I M S )is m o re sen sitive than o ther su rface m i 2cro regi on analysis in strum en tals .B ecau se the neu tral atom ,liqu id m etal i on and laser p ri 2m ary beam ,the po st i on izati on ,the ti m e of fligh t analyzer w ith retarding electrode ,the i on delay detecti on and the com p u tarizing i m age techn ique have been u sed in S I M S ,it has the

信息技术的发展及其应用

信息技术的发展及其应用 现代信息技术正以其它技术从未有过的速度向前发展,并以其它任何一种技术从未有过的深度和广度介入到社会的方方面面,从20年中期到现在,信息技术的发展让人类生活发生重大的变化,电话、电报、无线电通信、广播、电视、雷达、自动化系统、计算机、数据库系统、因特网等汇成了现代技术发展的核心与主流,他们的本质都是人类信息器官的延伸,都属于现代信息技术。具体可分为: 1、现代信息处理技术 信息处理技术的基本功能相当于人脑的思维功能, 是信息技术群的核心。从公元前中国人发明的算盘,到17 世纪初欧洲人发明的计算尺,在漫长的岁月里,信息处理主要是靠人脑的筹算并辅之以简单的计算工具。这种人工信息处理方式虽然十分简便,但在速度和准确性方面存在着明显的缺陷。 2、现代信息表述技术 计算机技术出现以后,随之出现了与之相应的信息表述技术。计算机是一个自动化的信息加工工具, 其指令与被处理的数据都是采用二进制数字系统。计算机只能识别二进制数,因此处理的所有数、字母、符号等均要用二进制编码表示。3、现代信息传输技术 有这样一种说法:如果说以计算机技术为核心的现代信息处理技术是社会的“大脑”,那么通信技术就是现代社会的“中枢神经系统”。这里提到的通信技术应当广义地理解为现代信息传输技术。现代信息存贮技术 可以预见, 在本世纪中叶之前, 现代信息技术仍将保持它在全球高技术中的先导地位, 在向着它的顶峰攀登的同时, 持续不断地影响和决定着其他科学技术领域, 包括生物和材料科学与技术的进程, 同时, 也影响着人类社会的发展信 息革命方兴未艾我们正处于人类科学技术的更大变革的前夜, 信息化核心科学与技术的发展, 不仅值得科学家们高度关注, 更值得所有人类高度重视。如今,西方社会信息产业的发展仍然领先中国,并且差距还比较大,国外信息化发展有着许多亮点,如电子信息材料整体稳步向前, 环保节能材料领域发展令人瞩目……展望未来,现代信息化的发展趋势主要是(1)高速、大容量。速度越来越高、容量越来越大,无论是通信还是计算机发展都是如此。(2)综合化。包括业务综合以及网络综合。(3)数字化。一是便于大规模生产。过去生产一台模拟设备需要花很多时间,模拟电路每一个单独部分都需要进行单独设计单独调测。而数字设备是单元式的,设计非常简单,便于大规模生产,可大大降低成本。二是有利于综合。每一个模拟电路其电路物理特性区别都非常大,而数字电路由二进制电路组成,非常便于综合,要达到一个复杂的性能用模拟方式往往综合不起来。现在数字化发展非常迅速,各种说法也很多,如数字化世界、数字化地球等。而搞数字化最主要的优点就是便于大规模生产和便于综合这两大方面。(4)个人化。即可移动性和全球性。一个人在世界任何一个地方都可以拥有同样的通信手段,可以利用同样的信息资源和信息加工处理的手段。

NexION350X 电感耦合等离子质谱仪操作规程

NexION350X电感耦合等离子体质谱仪操作规程(SOP) 1. 目的:规范NexION350X型电感耦合等离子体质谱仪的操作,确保检测设备安全稳定的运行。 2. 范围:适用于NexION350X型电感耦合等离子体质谱仪的操作使用。 3. 职责:检验员负责本规程的执行。 4. 操作步骤 4.1 开机前检查与准备 4.1.1确认仪器供电系统正常。 4.1.2 打开排风系统,确认排风系统正常(风速9~11米/秒)。 4.1.3确认仪器气路系统(氩气)正常,打开氩气。 纯度(Ar > 99.996%),准备充足的工作气体(氩气:一个40L钢瓶气的使用时间大约为4~5小时),检查次级气体压力(氩气95~100 psi),总压<2Mpa时需更换气瓶。 注:当采用碰撞模式时,氦气减压表流量调节(红表调至120~130 psi,小开关打开,黑表18 psi)4.2 开机 4.2.1 开电脑主机、显示器。 4.2.2 开NexION 仪器开关。主机电源Instrument,RF电源RGF。仪器左侧面板包括三个开关,分别是主机电源(Instrument)开关,RF电源(RGF)开关以及真空(Vacuum)开关。打开真空泵电源开关。 4.2.3 开启真空:通过NexION软件。双击进入NexION软件,单击单击“Main”菜单下的“Vacuum”的“start”,仪器开始抽真空。当工作站主界面的真空压力达到9×10-7时,且仪器真空达到绿色“ready”状态后,仪器准备就绪(当真空度达到后,而仪器待机不进样,可暂时关闭氩气)。 4.2.4 确认蠕动泵管完好、并且连接正常 如果出现明显的磨损,或者破裂则需要更换泵管。更换泵管后注意蠕动泵的转动方向。可通过单击“peristaltic” “Fast”,观察连接管路,确定进液和排液正确。 4.2.5 打开炬箱,确认炬管、线圈、锥、垫圈等完好正常 打开ICP-MS顶盖,支起支架;在ICP-MS左侧面板上按下Cone Access按钮或点击“Main”“Cone Access”的“Open”,可以观察到LED指示灯连续的闪烁,同时进行平台自动向外移动;此

信息技术新发展及其应用综述

信息技术新发展及其应用 陆以勤(华南理工大学电子与信息学院、教授) 本专题从七个方面介绍信息技术的新发展及其应用,第一个是微电子与光电子,第二个是现代通信技术,第三个是遥感技术,第四是智能技术,第五是高性能计算机与网络,第六是消费类电子技术,第七是信息安全技术。 一、微电子与光电子 在讲这个之前,我想请教一下各位老师,到目前为止,唯一一个在同一个领域都取得诺贝尔奖的一个科学家,能不能说出来?不是爱因斯坦,爱因斯坦只拿过一次诺贝尔物理奖;也不是居里夫人,居里夫人是在化学和物理,不是同一个领域,她拿了两次诺贝尔奖。这个科学家叫巴丁,他是晶体管的发明人,因为他和肖克莱、布拉顿三个人一起发明了晶体管,1946年他们开展了这个研究,1947年观察到了晶体管,1956年获得诺贝尔奖,1972年因为他和另外两个科学家发明了超导,所以第二次拿到了诺贝尔物理奖。他曾经开玩笑说他每次都得了三分之一,得了两次才拿到三分之二,他还必须和另外两个科学家再合作一次,再拿一次,才能拿到整个诺贝尔奖。 我们言归正传,微电子学是什么?它是电子学的分支,它主要是研究半导体材料上构成的微小型化电路的技术,包括我们刚才说的半导体器件,集成电路设计,集成电路的工艺和测试等。在信息社会,我们要求高集成度、低功耗、高性能、高可靠性的电子产品,那如何研究出这种器件就是微电子学研究的内容。我们以一个它的发展线路来看一下,我刚才谈到巴丁和另外两个科学家,一个是肖克莱,他提出了著名的PN结理论,另外一个科学家叫布拉顿,他们三个于1946年1月在贝尔实验室成立了半导体研究小组,经过差不多两年,他们观察到了具有放大作用的晶体管,1956年获得诺贝尔奖。晶体管是分离电路,还不能满足我们体积小、低功耗的要求,能满足这个要求的就是集成电路。从晶体管发展到集成电路已经有50年了,1952年英国科学家G.W.A. Dummer第一次提出了集成电路的设想,1958年以德克萨斯仪器公司的科学家基尔比(Clair Kilby)为首的研究小组研究出世界上第一块集成电路,2000年获得诺贝尔奖。集成电路发展了五十年,它的集成度越来越高,我们有一个著名的摩尔定律,摩尔(Gordon Moore)是Intel公司的创始人,他提出这个定律的时候是1965年,那时候他还不是在Intel,而是在仙童半导体公司做实验室主任,他为《电子学》杂志35周年专刊写了一篇报告,题目是“让集成电路填满更多的元件”。摩尔定律说的是芯片上的晶片上的晶体管数量每隔两年,就是24个月翻一番,到现在摩尔定律还在起作用。 我们前面说的是微电子技术,下面我们就再说一下光电子技术,为什么把微电子技术和光电子技术放在一起谈?光电看起来好像不相干,是两个独立的学科,实际上他们是有密

相关文档
最新文档