第六章 液压系统基本回路.

第六章 液压系统基本回路.
第六章 液压系统基本回路.

授课内容具体措施第六章液压基本回路

本章重点

1.压力控制回路的工作原理及应用;

2.节流阀节流调速回路的速度负载特性;

3.快速运动回路和速度换接回路的工作原理及应用;

4.多缸动作回路的实现方式。

本章难点

1.平衡回路的工作原理及应用;

2.容积调速回路的调节方法及应用;

3.互不干扰回路的工作原理。

基本思路:由一些液压元件组成完成特点功能的油路结构。

分类:压力控制回路、方向控制回路、速度控制回路、多缸动作

控制回路。

§6-1压力控制回路

工业实例:

钻床用于加工各种空心体的零件。工件被一台液压虎钳夹紧,根据

空心体的壁厚不同,必须能够调整夹紧力。同时通过单向节流阀来调节虎钳夹紧速度。

这是一个典型的压力控制回路,可以用到的主要控制元件是溢流阀和减压阀。减压阀用于降低系统压力,以满足不同液压设备的压力需要。

一、调压回路

1、单级调压

溢流阀的调定压力必须大于液压缸工作压力和油路中各种压力损失之和。

2、多级调压

液压系统在不同的工作阶段,液压系统需要不同的压力,多级调压就可实现这样的要求。

3、远程调压

远程调压阀调节的最高压力应低于溢流阀的调定压力。进行远程调压时,溢流阀的先导阀不起作用。绝大多数油液仍从主溢流阀溢走。考虑溢流阀与减压阀的区别。

二、卸荷回路

1、二位二通阀卸荷(a

二位二通阀的规格必须与液压泵的额定流量相适应,常用于泵流量小于63L/min 的场合。

2、M、H型三位换向阀的中位卸荷(b

一般适用于压力较低和小流量场合。且选用换向阀的通径应与泵的额定流量相适应。

3、用先导型溢流阀和二位二通电磁阀组成的卸荷回路(c

这种回路比直接用二位二通电磁阀的回路平稳,适合于大流量的系统。

a b c

三、保压回路

1、利用液压泵保压

2、利用蓄能器保压(下图a

3、自动补油保压回路

四、减压回路(下图b

在需要油液压力较低的情况下,在油路中串联一个减压阀。

常用于夹紧回路、控制油路和润滑油路。如果要从主油路中获得一个可调的稳定回路时,也可以使用减压阀。

a b

五、增压回路

用增压缸的增压回路。

1、单作用缸的增压回路

2、双作用缸的增压回路使用减压阀必须注意什么?

六、释压回路

液压缸在工作过程结束时由于先前的进油腔储存了一定的液压能,若迅速换向会产生液压冲击,在缸径大于25cm、压力大于7MPa的液压系统中,通常设置释压回路。换向前缓慢释放高压腔内压力。释压的快慢由节流阀调节。

七、平衡回路

为了防止立式液压缸或运动部件因自重而自行下滑,或造成失控

超速形成不稳定现象,可在下行的回路中增设适当的阻力,以平衡自重。注意平衡回路与背压回路的区别。

1、用单向顺序阀的平衡回路

2、用液控顺序阀的平衡回路

§6-2 方向控制回路

控制执行元件的启动、停止及换向作用的回路。主要元件是方向控制阀。

工业实例:

用一条链式传送带传送工件,使其经过一个烘箱。为了使传送带不脱离滚轴,必须借助一个传送带方向校正装置将偏移的传送带移正。此装置包括一个钢质滚筒,滚筒一端固定,另一端通过双作用液压缸将其调节到所需的位置。液压泵必须一直处于工作状态。为了节约能源,在换向阀不工作时,液压系统必须处于液压泵低压卸荷状态。用一个绷紧装置对传送带不断施加一个反作用力。用一个液控单向阀来防止阀门泄漏而引起的液压缸活塞杆的往返运动。

此例中既要考虑三位换向阀的中位机能,还要有液控单向阀对液压缸的锁紧。三位四通M型中位机能换向阀主要用于缸或马达由定量泵所驱动的情况下。M型中位时,液压油直接流回油箱,油泵压力几乎为零,这意味着油液的温升很小,功率损耗也很小。应用这种阀的缺点是,当换向阀中位时,不能驱动其它的液压回路。在应用液控单向阀时,最佳方案是配用的三位四通换向阀采用Y型中位机能,这样在换向阀处于中位时,液控单向阀的控制油路和输入油路都处于零压状态,此时液控单向阀可以被可靠的关闭。

一、换向回路

1、手动换向阀的换向回路]

2、机动换向阀的换向回路

3、电磁换向阀的换向回路使学生熟悉三位四通换向阀的功能、结构及其应用

4、液动或电液动换向阀的换向回路

注意不同操纵方式的换向阀具有不同的换向性能要求。

二、锁紧回路

在液压缸停止运动时,将缸锁紧。

1、由O型、M型三位四通换向阀实现锁紧

2、由液控单向阀实现锁紧

在应用液控单向阀时,最佳方案是采用Y型中位的三位四通换向阀,这样在换向阀处于中位时,液控单向阀的控制油路和输入油路都处于零压状态,此时液控单向阀可以被可靠的关闭。

小结:

一、七种压力控制回路的工作原理及应用

二、不同操纵方式的换向阀具有不同的换向性能要求及锁紧回路的原理与应用。

§6-3 速度控制回路

速度控制回路包括:空载时要求高效率的快速运动回路、工进时要求速度平稳的调速回路、由空载到工进或二次工进时的速度换接回路。

一、快速运动回路

为了提高生产效率,设备上的空行程一般都需作快速运动。

工业实例:

平面磨床的工作台是由一个液压缸驱动的。因为要求工作台往返速度相同,所以需要设计一个液压回路为液压缸两个不同体积的活塞腔提供不同流量,达到速度相同。建议采用带有一个二位三通换向阀和一个调节速度的调速阀的微分回路。

由于单杆液压缸两腔有效面积不同,所以要达到往返速度相同,必注意单杆液压缸的其他进油方式时的速度和负载的确定。

然在有杆腔进油时流量要大,所以在回路设计时一方面可以考虑用调速阀调节两个工作过程中的流量不同,另一方面可以采用差动连接的回路,可使回路简单,调节也较方便。

1、差动连接的快速运动回路

这种回路简单经济,但快慢速换接不平稳。

在上例中,假如液压缸无杆腔和有杆腔的面积比ɑ=2,前进行程和返回行程的速度是相同的,不需流量控制阀再进行流量的调节。

原因:当要求液压缸前进行程和返回行程的速度是相同时,液压缸无杆腔所需的流量是液压缸有杆腔所需流量的2倍。前进行程中,液压缸无杆腔所需的流量是由液压泵和有杆腔回油流量一起提供的。返回行程时,液压缸有杆腔所需的流量仅由液压泵提供,返回行程速度由此产生。仅当面积比是2时,前进行程速度和返回行程速度是相同的。

2、双泵供油的快速运动回路

效率高,利用合理,但复杂、成本高。

3、采用蓄能器的快速运动回路

短期供油。

T

a b c

4、变量泵供油增速回路

二、调速回路

工业实例:

用一个液压泵来驱动圆周自动进给机床的多个加工站。

作为单个工作站每次启动和关闭都会在整个液压回路产生压力波动。这些压力波动将钻床工作台产生影响。压力波动以及钻孔时所产生的力(反向力不允许对钻头的进给产生影响。为了达到可调的均匀进刀要求,必须在系统中设置一个调速阀用来确保获得平稳的进给速度,同时用一个溢流阀作为背压阀,以便产生背压力克服钻头排渣时的反作用力。

这是一个速度调节回路,主要用到流量控制阀。为了考虑到系统需要承受负值负载,需要用到背压阀。节流阀与调速阀的区别。

考虑哪些元件可以用作背压阀。

调速方法:

1、节流调速 :定量泵、流量控制阀

2、容积调速:变量泵、变量液压马达

3、容积节流调速:变量泵、流量控制阀

(一节流调速回路 1、进油路节流调速(a 流量控制阀放在进油路上

a b

(1速度负载特性:在回路中调速元件的调定值不变的情况下,负载变化所引起速度变化的性能。(b

11

(+-=m m

P T A F A P kA υ A 、T A 不变时,随着负载F 的增加,速度V 下降。 B 、当T A 不变时,重载区的速度刚性比轻载区域的速度刚性差。 C 、在相同F 的情况下,面积大的要比面积小的速度刚性差。 (2最大承载能力: Fmax=A p p

(3功率和效率:p p q p P =泵 11q p P =缸

11q p q p P P P p p -=?=-缸泵1pq q p y p ?+=

=节溢+P P ??

该回路功率损失由两部分组成,即溢流损失和节流损失回路的效率η: p

p p p q p Fv

q p q p =

=

11η 进油节流调速回路适用于轻载、低速、负载变化不大和对速度稳定性要求不高的小功率液压系统。

2、回油路节流调速(c

流量控制阀放在回油路上。回油路节流调速回路与进油路节流调速回路在速度负载特性、最大承载能力、功率损失和效率方面有相似的结论。

进、回油节流调速回路的不同之处:

(1回油节流调速回路回油腔有一定背压,故液压缸能承受负值负载,且运动速度比较平稳。

(2进油节流调速回路容易实现压力控制。工作部件运动碰到死挡铁后,液压缸进油腔压力上升至溢流阀调定压力,压力继电器发出信号,可控制下一步动作。

(3回油节流调速回路中,油液经节流阀发热后回油箱冷却,对系统泄漏影响小。

(4在组成元件相同的条件下,进油节流调速回路在同样的低速时节流阀不易堵塞。

( 5 回油节流调速回路回油腔压力较高,特别是负载接近零时,压力更高,这对回油管的安全、密封及寿命均有影响。

为了提高回路的综合性能,一般采用进油节流调速回路,并在回油路上加背压阀。

3、旁油路节流调速

流量控制阀与主油路并联。

该回路中只有节流损失,而无溢流损失,所以效率较高。适用于高速、重载、对速度平稳性要求很低的较大功率液压系统。

(二容积调速回路

容积节流调速,没有溢流损失和节流损失,故效率高发热小,适合于大功率的系统。(容积节流调速常用闭合回路

π2V 马

泵马p T =

马V q n =

1、变量泵和定量液压马达(或缸:恒转矩

2、定量泵和变量液压马达:恒功率

3、变量泵和变量液压马达:调速范围大,先恒转矩后恒功率输出。

(三容积节流调速

容积节流调速回路用压力补偿泵供油,用流量控制阀调定进入或流出液压缸的流量来调节液压缸的速度;并使变量泵的供油量始终随流量控制阀调定流量作相应的变化。这种回路无溢流损失,效率较高,速度稳定性比容积调速回路好。

三、速度切换回路

(一快慢速的切换回路

1、用电磁阀的快慢速切换回路

调节灵活、方便,但平稳性差。

2、用行程阀的快慢速切换回路

换接平稳可靠,但布局受限制。

(二两种进给速度的切换回路

1、串联调速阀的二次进给调速回路

调速阀2的开口必须小于调速阀1的开口。

2、并联调速阀的二次进给调速回路

小结:

一、快速运动回路和速度换接回路的工作原理及应用

二、节流阀节流调速回路的速度负载特性

6-4多缸动作控制回路

工业实例:

组装设备用于将工件装配起来以便于钻孔。液压缸1A1将工件压紧在工位上。这个操作应该被以缓慢且平稳的速度执行。当液压缸1A1中的压力达到

20bar(工件被压入位后,钻头由一个液压马达驱动,在液压缸1A2驱动下前伸,完成钻孔。当钻削的动作完成之后,钻头被停止钻削且1A2缩回,液压缸1A1缩回,释放工件。

此系统中包括三个执行元件,且存在顺序动作问题。

一、顺序动作回路

(一用压力控制的顺序动作回路

1、用顺序阀控制

顺序阀的调整压力应比先动作的液压缸的工作压力高0.8Mpa左右,以免在系统压力波动的情况下产生误动作。

2、用压力继电器控制

工件没有夹紧不能进给,由压力继电器来保证。当组装回路时,确保单向阀安装正确。以免系统不能正常工作。

(二用行程控制的顺序动作回路

1、用行程阀控制

换向位置精确,动作可靠。

2、用行程开关控制

改变行程大小及动作顺序均方便,也可利用电气互锁使动作可靠。

二、同步动作回路

使二个或二个以上的液压缸,在运动中保持相同位移或相同速度的回路称为同步回路。

两液压缸串联,右缸的有杆腔的有效面积与左缸的无杆腔的有效面积相等,进出两腔的流量相等,实现两缸基本同步。补偿措施使同步误差在每一次下行运动结束后都可消除。

三、互不干扰动作回路

为了防止液压系统中几个液压缸由于运动速度快慢不同导致动作上的相互干扰,需要采用互不干扰回路。

济南铁道职业技术学院授课教案附页小结:一、多缸动作回路的实现方式二、互不干扰回路的工作原理第页任课教师教研室主任年月日

液压系统回路设计

1、液压系统回路设计 1.1、 主干回路设计 对于任何液压传动系统来说,调速回路都是它的核心部分。这种回路可以通过事先的调整或在工作过程中通过自动调整来改变元件的运行速度,但它的主要功能却是在传递动力(功率)。 根据伯努力方程: d q C x = (1-1) 式中 q ——主滑阀流量 d C ——阀流量系数 v x ——阀芯流通面积 p ?——阀进出口压差 ρ——流体密度 其中d C 和ρ为常数,只有v x 和p ?为变量。 液压缸活塞杆的速度: q v A = (1-2) 式中A 为活塞杆无杆腔或有杆腔的有效面积 一般情况下,两调平液压缸是完全一样的,即可确定1121A A =和1222A A =所以要保证两缸同步,只需使12q q =,由式(1-2)可知,只要主滑阀流量一定,则活塞杆的速度就能稳定。又由式(1-1)分析可知,如果p ?为一定值,则主滑阀流量q 与阀芯流通面积成正比即:v q x ∞,所以要保证两缸同步,则只需满足以下条件: 11p c ?=,22p c ?=且12v v x x = 此处主滑阀选择三位四通的电液比例方向流量控制阀,如图1-1所示。 图1-1 三位四通的电液比例方向流量控制阀 它是一种按输入的电信号连续地、按比例地对油液的流量或方向进行远距离控制的阀。比例阀一般都具有压力补偿性能,所以它输出的流量可以不受负载变化的

影响。与手动调节的普通液压阀相比,它能提高系统的控制水平。它和电液伺服阀的区别见表1-1。 表1-1 比例阀和电液伺服阀的比较 所以它被广泛应用于要求对液压参数进行连续远距离控制或程序控制,但对控制精度和动态特性要求不太高的液压系统中。 又因为在整个举身或收回过程中,单缸负载变化范围变化比较大(0~50T),而且举身和收回时是匀速运动,所以调平缸的功率为P Fv =,为变功率调平,为达到节能效果,选择变量泵。 综上所可得,主干调速回路选用容积节流调速回路。容积节流调速回路没有溢流损失,效率高,速度稳定性也比单纯容积调速回路好。 为保证p?值一定,可采用负荷传感液压控制,其控制原理图如图1-2所示。它主要利用负荷传感和压力补偿技术,可用单泵(或一组泵)驱动多个执行元件,各执行元件运动速度仅依赖于各节流阀开启度,而与各执行元件的负载压力和其它执行元件的工作状态无关。即使当泵的输出流量达不到实际需要时,各执行元件运动速度的比例关系仍然可以得到保持。此系统的这一特有的独立调速功能大大减少了作业中操纵者协调各执行元件动作所花费的时间,不但显著提高了作业效率,而且有效减轻了操作者的劳动强度。另外,能够以最节省能量的方式实现调速,系统无溢流损失,并以推动执行元件动作所需的最低压力供油。在工作间隙(发动机不停机,各执行元件处于无载状态,不动作),系统自动调节泵的排量到最小值。可以有效降低功率损耗、减小液压系统的温升,所以它是一种性能较好的新型液压系统。

第六章液压基本回路课后作业

1、如图所示回路中,液压缸两腔面积分别为A 1=100cm 2,A 2=50cm 2。当液压缸的负载F 从0增大到30000N 时,液压缸向右运动速度保持不变,如调速阀最小压差△P=5×105Pa 。 试问: (1)溢流阀最小调定压力F ,是多少(调压偏差不计)? (2)负载F =0时,泵的工作压力是多少? (3)液压缸可能达到的最高工作压力是多少? 答案:解:(1)溢流阀的最小调定压力pr 由最大负载确定 112245522141150105103000032.51010010 p r A p A p F A p F p Pa A p p p --=++???+===??== (2)负载F =0时,泵的工作压力仍由溢流阀调定压力决定,532.510p p Pa =?。 (3)液压缸的最高工作压力为 4551124232.51001010065105010 p A F p Pa A ---???-===?? 2、在图示的定量泵——变量马达回路中,定量泵1的排量V P =80×10-6m 3/r ,转速n P =1500r/min ,机械效率ηPm =0.84,容积效率ηPv =0.9 ,变量液压马达的最大排量

V Mmax =65×10-6m 3/r ,容积效率ηMv =0.9,机械效率ηMm =0.84,管路高压侧压力损失Δp =1.3MPa ,不计管路泄漏,回路的最高工作压力p max =13.5MPa ,溢流阀4的调整压力p Y =0.5MPa 帕,变量液压马达驱动扭矩T M =34N ·m 为恒扭矩负载。求: (1)变量液压马达的最低转速及其在该转速下的压力降; (2)变量液压马达的最高转速; (3)回路的最大输出功率。 答案:解:(1)r/min 149565 0.90.9150080max M Mv Pv P P Mmin =???==V n V n ηη 3.91MPa Pa 1091.30.84 1065342266-Mm max M M M =?=???==?πηπV T p (2)马达的入口最大压力 MPa 2.123.15.13max M max =-=?-=p p p 马达的最大压力降 MPa 7.115.02.12Y M max M max =-=-=?p p p 由于马达输出的是恒扭矩,所以 M m M max min M M m M max M ηηp V p V ?=? /r m 107.2191.37 .111065366M Mmax max M min M --?=??=??=p p V V 马达的最大转速 r/min 4478149510 21.701656-6Mmin min M max M Mmax =???==-n V V n (3)W 159366024478342M max M M max =÷??=?=ππn T P

第八章液压基本回路(二)讲解

第八章液压基本回路(二) §4 速度控制回路 在很多液压装置中,要求能够调节液动机的运动速度,这就需要控制液压系统的流量,或改变液动机的有效作用面积来实现调速。 一、节流调速回路 在采用定量泵的液压系统中,利用节流阀或调速阀改变进入或流出液动机的流量来实现速度调节的方法称为节流调速。采用节流调速,方法简单,工作可靠,成本低,但它的效率不高,容易产生温升。 1.进口节流调速回路(如下图) 节流阀设置在液压泵和换向阀之间的压力管路上,无论换向阀如何换向,压力油总是通过节流之后才进入液压缸的。它通过调整节流口的大小,控制压力油进入液压缸的流量,从而改变它的运动速度。 2.出口节流调速回路(如下图) 节流阀设置在换向阀与油箱之间,无论怎样换向,回油总是经过节流阀流回油箱。通过调整节流口的大小,控制液压缸回油的流量,从而改变它的运动速度。 3.傍路节流调速回路(如下图) 节流阀设置在液压泵和油箱之间,液压泵输出的压力油的一部分经换向阀进入液压缸,另一部分经节流阀流回油箱,通过调整傍路节流阀开口的大小来控制进入液压缸压力油的流量,从而改变它的运动速度。 4.进出口同时节流调速回路(如下图) 在换向阀前的压力管路和换向阀后的回油管路各设置一个节流阀同时进行节流调速。 5.双向节流调速回路(如下图) 在单活塞杆液压缸的液压系统中,有时要求往复运动的速度都能独立调节,以满足工作的需要,此时可采用两个单向节流阀,分别设在液压缸的进出油管路上。 图(a)为双向进口节流调速回路。当换向阀1处于图示位置时,压力油经换向阀1、节流阀2进入液压缸左腔,液压缸向右运动,右腔油液经单向阀5、换向阀1流回油箱。换向阀切换到右端位置时,压力油经换向阀1、节流阀4进入液压缸右腔液压缸向左运动,左腔油液经单向阀3、换向阀1流回油箱。 图(b)为双向出口节流调速回路。它的原理与双向进口节流调速回路基本相同,只是两个单向阀的方向恰好相反。 6.调速阀的桥式回路(如下图) 调速阀的进出油口不能颠倒使用,当回路中必须往复流经调速阀时,可采用如图所示的桥式联接回路。换向阀6处于左端工作位置时,压力油经换向阀进入液压缸的左腔,活塞向右运动,右腔回油经单向阀1、调速阀5、单向阀2、换向阀6流回油箱,形成出口节流调速。换向阀6切换到右端工作位置时,压力油经换向阀6、单向阀3、调速阀5、单向阀4进入液压缸右腔,推动活塞向左运动,左腔油液经换向阀6流回油箱,形成进口节流调速。 二、容积调速回路 通过改变液压泵的流量来调节液动机运动速度的方法称为容积调速。采用容积调速的方法,系统效率高,发热少,但它比较复杂,价格较贵。 1.开式容积调速回路(如下图) 改变变量泵的流量可以调节液压缸的运动速度,单向阀用以防止停机时系统油液流空,溢流阀1在此回路作安全阀使用,溢流阀2作背压阀使用。

典型液压系统

单元七典型液压系统 学习目标: 1.掌握读懂液压系统图的阅读和分析方法 2.掌握YT4543型液压动力滑台液压系统的组成、工作原理和特点 3.掌握YB32-200型压力机液压系统的组成、工作原理和特点 4.掌握Q2—8汽车起重机液压系统的组成、工作原理和特点 5.能绘制电磁铁动作循环表? 重点与难点: 典型液压系统是对以前所学的液压件及液压基本回路的结构、工作原理、性能特点、应用,对液压元件基本知识的检验与综合,也是将上述知识在实际设备上的具体应用。本章的重点与难点均是对典型液压系统工作原理图的阅读和各系统特点的分析。对于任何液压系统,能否读懂系统原理图是正确分析系统特点的基础,只有在对系统原理图读懂的前提下,才能对系统在调速、调压、换向等方面的特点给以恰当的分析和评价,才能对系统的控制和调节采取正确的方案。因此,掌握分析液压系统原理图的步骤和方法是重中之重的内容。 1.分析液压系统工作原理图的步骤和方法 对于典型液压系统的分析,首先要了解设备的组成与功能,了解设备各部件的作用与运动方式,如有条件,应当实地考察所要分析的设备,在此基础上明确设备对液压系统的要求,以此作为液压系统分析的依据;其次要浏览液压系统图,了解所要分析系统的动力装置、执行元件、各种阀件的类型与功能,此后以执行元件为中心,将整个系统划分为若干个子系统油路;然后以执行元件动作要求为依据,逐一分析油路走向,每一油路均应按照先控制油路、后主油路,先进油、后回油的顺序分析;再后就是针对执行元件的动作要求,分析系统的方向控制、速度控制、压力控制的方法,弄清各控制回路的组成及各重要元件的作用;更后就是通过对各执行元件之间的顺序、同步、互锁、防干扰等要求,分析各子系统之间的联系;最后归纳与总结整个液压系统的特点,加深对系统的理解。 2.在此选用YT4543型组合机床动力滑台的液压系统,作为金属切削专用机床进给部件的典型代表。此系统是对单缸执行元件,以速度与负载的变换为主要特点。要求运动部件实现“快进一一工进一二工进一死挡铁停留一快退—原位停止”的工作循环。具有快进运动时速度高负载小与工进运动时速度低负载大的特点。系统采用限压式变量泵供油,调速阀调速的容积节流调速方式,该调速方式具有速度刚性好调速范围大的特点;系统的快速回路是采用三位五通电液换向阀与单向阀、行程阀组成的液压缸差动连接的快速运动回路,具有系统效率较高、回路简单的特点;速度的换接采用行程阀和液控顺序阀联合动作的快进与工进的速度换接回路,具有换接平稳可靠的特点;两种工进采用调速阀串联与电磁滑阀组成的速度变换回路实现两次工进速度的换接,换接平稳;采用中位机能为M型的电液换向阀实现执行元件换向和液压泵的卸荷。该系统油路设计合理,元件使用恰当,调速方式正确,能量利用充分。

液压回路设计分析

根据液压英才网袁工分享液压回路设计的分析要点: 优先流量控制 不论泵的转速、工作压力或支路需要的流量大小,定值一次流量控制阀总可保证设备工作所需的流量。在这种回路中,泵的输出流量必须大于或等于一次油路所需流量,二次流量可作它用或回油箱。定值一次流量阀(比例阀)将一次控制与液压泵结合起来,省去管路并消除外泄漏,故降低了成本。此种齿轮泵回路的典型应用是汽车起重机上常可见到的转向机构,它省去了一个泵。 负载传感流量控制阀的功能与定值一次流量控制的功能十分相近:即无论泵的转速、工作压力或支路抽需流量大小,均提供一次流量。但仅通过一次油口向一次油路提供所需流量,直至其最大调整值。此回路可替代标准的一次流量控制回路而获得最大输出流量。因无载回路的压力低于定值一次流量控制方案,故回路温升低、无载功耗小。负载传感比列流量控制阀与一次流量控制阀一样,其典型应用是动力转向机构。 旁路流量控制 对于旁路流量控制,不论泵的转速或工作压力高低,泵总按预定最大值向系统供液,多余部分排回油箱或泵的入口。此方案限制进入系统的流量,使其具有最佳性能。其优点是,通过回路规模来控制最大调整流量,降低成本;将泵和阀组合成一体,并通过泵的旁通控制,使回路压力降至最低,从而减少管路及其泄漏。 旁路流量控制阀可与限定工作流量(工作速度)范围的中团式负载传感控制阀一起设计。此种型式的齿轮泵回路,常用于限制液压操纵以使发动机达最佳速度的垃圾运载卡车或动力转向泵回路中,也可用于固定式机械设备。 干式吸油阀 干式吸油阀是一种气控液压阀,它用于泵进油节流,当设备的液压空载时,仅使极小流量(〈18.9t/min)通过泵;而在有负载时,全流量吸入泵。这种回路可省去泵与原动机间的离合器,从而降低了成本,还减小了空载功耗,因通过回路的极小流量保持了设备的原动机功率。另外,还降低了泵在空载时的噪声。干式吸油阀回路可用于由内燃机驱动的任何车辆中开关式液压系统,例如垃圾装填卡车及工业设备。 液压泵方案的选择 目前,齿轮泵的工作压力已接近柱塞泵,组合负载传感方案为齿轮泵提供了变量的可能性,这就意味着齿轮泵与柱塞泵之间原本清楚的界限变理愈来愈模糊了。 合理选择液压泵方案的决定因素之一,是整个系统的成本,与价昂的柱塞泵相比,齿轮泵以其成本较低、回路简单、过滤要求低等特点,成为许多应用场合切实可行的选择方案

第七章典型液压系统

授课内容具体措施 第七章典型液压传动系统 本章重点 1.组合机床动力滑台液压传动系统; 2.万能外圆磨床液压传动系统; 3.液压压力机液压传动系统。 本章难点 1.行程控制制动式换向回路的工作原理; 2.液压压力机液压传动系统中泄压换向原理。 §7—1 典型液压传动系统分析 液压传动系统是根据机械设备的工作要求,选用适当的液压基本回 路经有机组合而成的。 阅读一个较复杂的液压系统图,大致可按以下步骤进行: (1)了解机械设备工况对液压系统的要求,了解在工作循环中的 各个工步对力、速度和方向这三个参数的质与量的要求。 (2)初读液压系统图,了解系统中包含哪些元件,且以执行元件 为中心,将系统分解为若干个工作单元。 (3)先单独分析每一个子系统,了解其执行元件与相应的阀、泵 之间的关系和哪些基本回路。参照电磁铁动作表和执行元件的动作要 求,理清其液流路线。 (4)根据系统中对各执行元件间的互锁、同步、防干扰等要求,

分析各子系统之间的联系以及如何实现这些要求。 (5)在全面读懂液压系统的基础上,根据系统所使用的基本回路的性能,对系统作综合分析,归纳总结整个液压系统的特点,以加深对液压系统的理解。 一、组合机床动力滑台的液压系统 (一)概述 组合机床是一种高效率的专用机床,动力滑台是组合机床上用来实现进给运动的一种通用部件,它有机械动力滑台和液压动力滑台之分。液压动力滑台的运动是靠液压缸驱动的,根据加工需要,滑台上面可装上动力箱和多轴主轴箱,以完成钻,扩,铰,铣,镗,刮端面,倒角,攻丝等加工工序。 图7—1是YT4543型液压动力滑台的液压系统原理图。该滑台的进给速度范围为6.6—660mm/min,最大进给速度为6.5m/min,最大进给力为45000N,该系统采用的是限压式变量叶片泵和两个调速阀组成的容积节流调速回路,用电液动阀实现换向,二位二通电磁阀实现两种工作进给的转换,快速进给采用差动连接回路,快进和工进的切换由行程阀来实现。 滑台动作循环:快进—一工进—二工进—死挡铁停留—快退—原位停止。 (二)YT4543型动力滑台液压系统的工作原理 上述各种自动工作循环,是用挡铁控制电磁铁、行程阀的动作顺序来实现的。下面以二次工作进给死挡铁停留的自动工作循环为例来说明该系统的工作原理。 1、快进 按下启动按钮,换向阀6的电磁铁1YA通电,使其左位接入工作,

典型液压系统.

第八章典型液压系统 近年来,液压传动技术已经广泛应用于很多工程技术领域,由于液压系统所服务的主机的工作循环、动作特点等各不相同,相应的各液压系统的组成、作用和特点也不尽相同。以下通过对几个典型液压系统的分析,进一步熟悉各液压元件在系统中的作用和各种基本回路的组成,并掌握分析液压系统的方法和步骤。 阅读一个较为复杂的液压系统图,大致可按以下步骤进行: (1)了解设备的工艺对液压系统的动作要求; (2)初步游览整个系统,了解系统中包含有哪些元件,并以各个执行元件为中心,将 系统分解为若干子系统。 (3)对每一子系统进行分析,搞清楚其中含有哪些基本回路,然后根据执行元件的动 作要求,参照动作循环表读懂这一子系统。 (4)根据液压设备中各执行元件间互锁、同步、防干涉等要求,分析各子系统之间的 联系。 (5)在全面读懂系统的基础上,归纳总结整个系统有哪些特点,以加深对系统的理解。 第一节组合机床液压系统 一、组合机床液压系统 组合机床液压系统主要由通用滑台和辅助部分(如定位、夹紧)组成。动力滑台本身不带传动装置,可根据加工需要安装不同用途的主轴箱,以完成钻、扩、铰、镗、刮端面、铣削及攻丝等工序。 图8—1液压系统工作原理 所示为带有液压夹紧的他驱式动力滑台的液压系统原理图,这个系统采用限

压式变量泵供油,并配有二位二通电磁阀卸荷,变量泵与进油路的调速阀组成容积节流调速回路,用电液换向阀控制液压系统的主油路换向,用行程阀实现快进和工进的速度换接。它可实现多种工作循环,下面以定位夹紧→快进→工进→二工进→死挡铁停留→快退→原位停止松开工件的自动工作循环为例,说明液压系统的工作原理。 1. 夹紧工件夹紧油路一般所需压力要求小于主油路,故在夹紧油路上装有减压阀6,以减低夹紧缸的压力。 按下启动按钮,泵启动并使电磁铁4DT通电,夹紧缸24松开以便安装并定位工件。当工件定好位以后,发出讯号使电磁铁4DT断电,夹紧缸活塞夹紧工作。其油路:泵1→单向阀5→减压阀6→单向阀7→换向阀11→左位夹紧缸上腔,夹紧缸下腔的回油→换向阀11左位回油箱。于是夹紧缸活塞下移夹紧工件。单向阀7用以保压。 2.进给缸快进前进当工件夹紧后,油压升高压力继电器14发出讯号使1DT通电,电磁换向阀13和液动换向阀9均处于左位。其油路为: 进油路:泵1→单向阀5→液动阀9→左位行程阀23右位→进给缸25左腔 回油路:进给缸25右腔→液动阀9左位→单向阀10→行程阀23右位→进给缸25左腔。 于是形成差动连接,液压缸25快速前进。因快速前进时负载小,压力低,故顺序阀4打不开(其调节压力应大于快进压力),变量泵以调节好的最大流量向系统供油。 3.一工进当滑台快进到达预定位置(即刀具趋近工件位置),挡铁压下行程阀23,于是调速阀12接入油路,压力油必须经调速阀12才能进入进给缸左腔,负载增大,泵的压力升高,打开液控顺序阀4,单向阀10被高压油封死,此时油路为: 进油路:泵1→单向阀5→换向阀9左位→调速阀12→换向阀20右位→进给缸25左腔 回油路:进给缸25右腔→换向阀9左位→顺序阀4→背压阀3→油箱。 一工进的速度由调速阀12调节。由于此压力升高到大于限压式变量泵的限定,泵的流量便自动减小到与调速阀的节流量相适应。 压力p B 4.二工进当第一工进到位时,滑台上的另一挡铁压下行程开关,使电磁铁3DT 通电,于是阀20左位接入油路,由泵来的压力油须经调速阀12和19才能进入25的左腔。其他各阀的状态和油路与一工进相同。二工进速度由调速阀19来调节,但阀19的调节流量必须小于阀12的调节流量,否则调速阀19将不起作用。 5.死挡铁停留当被加工工件为不通孔且轴向尺寸要求严格,或需刮端面等情况时,则要求实现死挡铁停留。当滑台二工进到位碰上预先调好的死挡铁,活塞不能再前进,停留在死挡铁处,停留时间用压力继电器21和时间继电器(装在电路上)来调节和控制。 6.快速退回滑台在死挡铁上停留后,泵的供油压力进一步升高,当压力升高到压力继电器21的预调动作压力时(这时压力继电器入口压力等于泵的出口压力,其压力增值主要决定于调速阀19的压差),压力继电器21发出信号,使1DT断电,2DT通电,换向阀13和9均处于右位。这时油路为: 进油路:泵1→单向阀5→换向阀9右位→进给缸25右腔。 回油路:进给缸25左腔→单向阀22→换向阀9右位→单向阀8→油箱。 于是液压缸25便快速左退。由于快速时负载压力小(小于泵的限定压力p ), B

液压集成回路课程设计1

广西工学院鹿山学院 液压与气压传动课程设计说明书 设计题目液压站集成回路中间块设计 图7.18b采用液压锁的锁紧回路YJ二孔液压集成块设计尺 寸要求:130×120×85 系别机械工程系 专业班级模具081班 学生姓名胡福梅 学号20081008 指导教师丁黎光 日期2011.6.28.

目录 一.设计题目 (2) 二、前言 1、课程设计的目的和基本要求 (2) 2、液压系统及液压站简介 . (2) 三、课程设计的目的 (3) 四、课程设计的内容 (3) 五、集成块及中间块设计方法 (4) 5.1 通用集成块组的结构 (4) 5.2 集成块的特点 (4) 5.3 集成块装置的设计步骤 (5) 5.4集成块设计注意事项 (6) 六、液压集成回路设计 (9) 七、液压集成块及其设计 (9) 八、回路工作状况 (11) 九、参考资料 (12) 十、心得体会 (12) 十一、致谢辞

一.设计题目 图7.27采用液压锁的锁紧回路YJ二孔液压集成块设计 尺寸要求:130×120×85 液压传动与控制课程设计指导书 二、前言: 1. 课程设计的基本要求: ①每个设计题目由个人完成,学生学生之间可以自由讨论,课题要求每个人都有明确的工作任务,设计思路; ②每个课题必须提交一份液压集成块的中间块设计装配图一张及说明书; 2.液压系统及液压站简介 液压传动与控制简称为液压技术,它是以液体为工作介质,利用液体的静压能实现信息、运动和动力的传递及工程控制的技术,其工作原理基于流体力学的帕斯卡原理(液体静压力传递原理),所以又称为容积式液体传动或静液传动。 液压传动与控制的机械设备或装置中,其液压系统大部分使用具有连续流动性的液压油作为工作介质,通过液压泵将驱动泵的原动机的机械能转换成液体的压力能,然后经过封闭管路及控制阀(压力阀、流量阀、和方向阀),送至执行器(液压缸、液压马达或摆动液压马达)中,转换为机械能去驱动负载和实现工作机构的直线运动或回转运动。 液压站是现代液压技术中应用最为广泛的结构形态,既是各类液压系统设计过程的归宿,又是保证主机完成其工艺目的和长期可靠工作的重要装置。正确合

第六章 液压系统基本回路.

授课内容具体措施第六章液压基本回路 本章重点 1.压力控制回路的工作原理及应用; 2.节流阀节流调速回路的速度负载特性; 3.快速运动回路和速度换接回路的工作原理及应用; 4.多缸动作回路的实现方式。 本章难点 1.平衡回路的工作原理及应用; 2.容积调速回路的调节方法及应用; 3.互不干扰回路的工作原理。 基本思路:由一些液压元件组成完成特点功能的油路结构。 分类:压力控制回路、方向控制回路、速度控制回路、多缸动作 控制回路。 §6-1压力控制回路 工业实例: 钻床用于加工各种空心体的零件。工件被一台液压虎钳夹紧,根据 空心体的壁厚不同,必须能够调整夹紧力。同时通过单向节流阀来调节虎钳夹紧速度。

这是一个典型的压力控制回路,可以用到的主要控制元件是溢流阀和减压阀。减压阀用于降低系统压力,以满足不同液压设备的压力需要。 一、调压回路 1、单级调压 溢流阀的调定压力必须大于液压缸工作压力和油路中各种压力损失之和。 2、多级调压 液压系统在不同的工作阶段,液压系统需要不同的压力,多级调压就可实现这样的要求。 3、远程调压 远程调压阀调节的最高压力应低于溢流阀的调定压力。进行远程调压时,溢流阀的先导阀不起作用。绝大多数油液仍从主溢流阀溢走。考虑溢流阀与减压阀的区别。 二、卸荷回路 1、二位二通阀卸荷(a 二位二通阀的规格必须与液压泵的额定流量相适应,常用于泵流量小于63L/min 的场合。 2、M、H型三位换向阀的中位卸荷(b 一般适用于压力较低和小流量场合。且选用换向阀的通径应与泵的额定流量相适应。 3、用先导型溢流阀和二位二通电磁阀组成的卸荷回路(c 这种回路比直接用二位二通电磁阀的回路平稳,适合于大流量的系统。

第六章液压基本回路

第六章液压基本回路 授课班级:083012103/4 授课日期:18 教学课题:速度控制回路 教学目的及要求: 1.掌握节流调速回路、容积调速回路、容积节流调速回路的组成、调速原理、特点及应用。 2.掌握快速运动回路、速度转换回路的组成、调速原理、特点及应用。 教学重点:节流调速回路 教学难点:容积调速回路 教学方法:采用启发式、讨论式教学方法,辅助使用多媒体教学手段一般讲授。 教具:黑板、投影仪 教学过程及内容: 一、节流调速回路 定义:在定量泵供油系统中,用流量控制阀对执行元件的运动速度进行调节的回路。 联接方式:可以串联在执行元件的进、回油路上,也可以与执行元件并联,实现速度调节与控制,但必须与起溢流稳压作用的溢流阀配合使用。调速阀也可与变量泵组成容积节流调速回路,在提高速度稳定性的同时,提高系统效率。 特点:结构简单,成本低,使用维护方便,但有节流损失,且流量损失较大,发热多,效率低,仅适用于小功率液压系统。 种类:进油路、回油路和旁油路节流调速回路三种。 1.进、回油路节流调速回路 (1)回路组成:在执行元件的进油路上串接一个流量阀,即构成进油路节流调速回路。在执行元件的回油路上串接一个流量阀,即构成回油路节流调速回路。如图6-32所示。(2)调速原理:在这两种回路中,定量泵的供油压力均由溢流阀调定。液压缸的速度都靠调节流量阀开口的大小来控制,泵多余的流量由溢流阀溢回油箱。 (3)应用:根据速度特性曲线可知,当流量阀为节流阀时,进、回油路节流调速回路用于低速、轻载、且负载变化较小的液压系统,能使执行元件获得平稳的运动速度。当流量阀为调速阀时,进、回油路节流调速回路用于速度较高,且负载变化较大的液压系统,但效率更低。 (4)进、回油路节流调速回路的不同点: 回油路节流调速回路,其流量阀能使液压缸的回油腔形成背压,使液压缸运动平稳且能承受一定的负值负载。 进油路节流调速回路容易实现压力控制。 采用单杆液压缸的液压系统,将流量阀设置在进油路上能获得更低的运动速度。 综合上述两种回路的优点,实际应用中,常采用进油路节流调速回路,并在其回油路上加背压阀。 2.旁油路节流调速回路 组成:将流量阀设置在与执行元件并联的旁油路上,即构成旁油路节流调速回路。 原理分析:如图所示,调节节流阀的开口就调节了执行元件的运动速度,同时也调节了液压泵流回油箱流量的多少,从而起到了溢流的作用。它不需要溢流阀“常开”溢流,只在过载时才打开。液压泵出口的压力与液压缸的工作压力相等,直接随负载的变化而改变,不为定值。流量阀进、出油口的压差也等于液压缸进油腔的压力(出口压力视为零)。 回路特点:节流阀开口越大,活塞运动速度越低;节流阀开口一定时,速度刚性更软,且负载较大时,速度刚性较好;相同负载下,阀口较小,活塞运动速度较高时,刚性好;速度高时最大承载能力较大,速度越低其承载能力越小。有节流损失,但无溢流损失,发热较少,其效率比进、回油路节流调速回路高一些。 应用:负载较大,速度较高,且速度平稳性要求不高的中等功率的液压系统。 二、容积调速回路 调速原理及功能:利用改变变量泵或变量液压马达的排量来调节执行元件运动速度。 特点:无溢流损失和节流损失,效率高、发热少。

液压集成回路课程设计说明书

液压课程设计 说明书 设计题目液压集成回路及集成块设计 系别 专业班级 学生姓名 学号 指导教师 日期

目录 一、液压站 二、集成块连接装置 1、通用集成块组结构 2、集成块的特点 3、集成块装置设计步骤 4、集成块设计注意事项 5、过渡板 三、液压集成块设计 1、底板及供油块设计 2、底盖及测压块设计 3、中间块设计 4、集成块零件图的绘制 四、设计任务 五、心的体会 六、参考资料

一液压站 液压站是有液压油箱、液压泵装置及液压控制装置三大部分组成。液压油箱装有空气滤清器、滤油器、液面指示器和清洗孔等。液压泵装置包括不同类型的液压泵、驱动电机及其它们之间的联轴器等。液压控制装置是指组成液压系统的各阀元件及其联接体。 机床液压站的结构型式有分散式和集中式两种类型。 二集成块连接装置 1 通用集成块组结构 集成块组,是按通用的液压典型回路设计成的通用组件。它由集成块、底块和顶盖用四只长螺栓垂直固紧而成。 液压元件一般安装在集成块的前面、后面和右侧面、左侧面不安放元件,留着连接油管,以便向执行元件供油。为了操纵调整方便,通常把需要经常调节的元件,入调速阀、溢流阀、减压阀等,布置在右侧面和前面。 元件之间的联系借助于块体内部的油道孔。根据单元回路块在系统中的作用可分为调压、换向、调速、减压、顺序等若干种回路。每

块的上下两面为叠积结合面,布有公用的压力油孔P、回油孔O、泄漏油孔L和连接螺栓孔。 2 集成块的特点 从集成块的组成原理图可以看出,集成块由板式元件与通道体组成,元件可以根据设计要求任意选择,因此,集成块连接装置广泛地应用在机床及组合机床自动线中,其工作压力为0.3×106~3.5×107Pa,流量一般在30~60l/min,集成块与其它的连接方式相比有以下特点: (1)可以采用现有的板式标准元件,很方便地组成各种功能的单元集成回路,且回路的更换很方便,只须更换或增、减单元回路 就能实现,因而有极大的灵活性。 (2)由于是在小块体上加工各种孔道,故制造简单,工艺孔大为减少,便于检查和及时发现毛病。如果加工中出了问题,仅报废 其中一小块通道体,而不是整个系统报废。 (3)系统中的管道和管接头可以减少到最少程度,使系统的泄漏大为减少,提高了系统的稳定性,并且结构紧凑,占地面积小,装配与维修方便。 (4)由于装在通道体侧面的各液压元件间距离很近,油道孔短,而且通油孔径还可选择大一些,因而系统中管路压力损失小,系 统发热量也小。 (5)有利于实现液压装置的标准化、通用化、系列化,能组织成批生产。由于组成装置的灵活性大,故设计和制造周期大为缩短,

第七章 典型液压传动系统1

第六章典型液压传动系统 这章主要介绍各种设备上的液压系统是如何控制执行件的一系列的动作。 1.什么是液压传动系统? 首先,试分析普通车床的刀架在加工工件时要做哪些运动?是如何控制的?若用液压系统应怎样控制?(应采用一些基本回路来控制其运动方向、运动速度等。) 要控制方向、速度大小、推力,若用液压系统来控制,应采用哪些基本回路来控制? 液压传动系统是根据机械设备的工作要求,选用适当的液压基本回路经有机组合而成。即一个完整的液压传动系统,无论是复杂的还是简单的,都是由一些基本回路组成,故我们必须在切实掌握好前章液压基本回路的基础上来学习。 2.学习本章的重要性:是维护、维修及设计液压传动系统的基础。 3.本章要求掌握: 1)阅读液压传动系统图的方法; 2)进行液压系统性能、特点的分析,加深对液 压系统工作原理的理解。 阅读液压系统图的大致步骤如下: 1)了解该设备的用途、设备对液压系统的动作要求及性能要求。 2)初读液压系统图,且以执行件为中心,将系统分解成若干个子系统。 3)分析每一个子系统,按执行件动作要求,理清其实现每一动作的液流路线。 4)根据系统对各执行件间的联系要求,分析如何实现这些要求。 5)根据组成系统的各基本回路的性能,对系统进行综合分析,分析性能、特点。

分析液压系统的性能的方法,应从如下几点分析: 1)执行件的运动平稳性,如启动前冲等; 2)执行件的速度刚性; 3)换向性能:换向平稳性、换向精度; 4)液压系统的功耗、效率。 第一节YT4543型动力滑台液压系统 一、概述 1.组合机床的简介 组合机床是由一些通用和专用部件组合而成的专用机床,它操作简便、效率高,广泛应用于成批大量的生产中。其组成见图7-1。 2.液压滑台与机械滑台相比其优缺点: 运动平稳、调速范围大且可无级调速;自动化程度高、工作可靠。 3.加工范围: 一次装夹可完成钻、扩、铰、镗、刮端面、倒角等。 4.设备对液压系统的性能要求 主要是速度换接平稳,进给速度稳定,功率利用合理,效率高,发热少。 5.设备对液压系统的动作要求

完整word版液压系统回路设计

1、液压系统回路设计 1.1、主干回路设计 对于任何液压传动系统来说,调速回路都是它的核心部分。这种回路可以通过事先的调整或在工作过程中通过自动调整来改变元件的运行速度,但它的主要功能却是在传递动力(功率)。 根据伯努力方程: 2?pxq?C(1-1)vd?式中——主滑阀流量q C——阀流量系数d x——阀芯流通面积v——阀进出口压差p??——流体密度 ?xC和为变量。为常数,只有其中和p?vd液压缸活塞杆的速度: q (1-2)?v A式中为活塞杆无杆腔或有杆腔的有效面积A A?AA?A所一般情况下,两调平液压缸是完全一样的,即可确定和21112212q?q,由式(1-2)可知,只要主滑阀流量一定,以要保证两缸同步,只需使21则活塞杆的速度就能稳定。又由式(1-1)分析可知,如果为一定值,则主滑p?q?x,所以要保证两缸同步,则只需满足以阀流量与阀芯流通面积成正比即:q v下条件: ?p?c?p?cx?x,且112v2v21此处主滑阀选择三位四通的电液比例方向流量控制阀,如图1-1所示。 三位四通的电液比例方向流量控制阀图1-1 它是一种按输入的电信号连续地、按比例地对油液的流量或方向进行远距离控制所以它输出的流量可以不受负载变化的比例阀一般都具有压力补偿性能,的阀。.影响。与手动调节的普通液压阀相比,它能提高系统的控制水平。它和电液伺服阀的区别见表1-1。 表1-1 比例阀和电液伺服阀的比较

与电液伺服阀相比,它虽在某些性能方面稍逊色些,但它的结构简单,成本低,但对控制所以它被广泛应用于要求对液压参数进行连续远距离控制或程序控制,精度和动态特性要求不太高的液压系统中。,)又因为在整个举身或收回过程中,单缸负载变化范围变化比较大(0~50T为为变功率调平,而且举身和收回时是匀速运动,所以调平缸的功率为,Fv?P 达到节能效果,选择变量泵。综上所可得,主干调速回路选用容积节流调速回路。容积节流调速回路没有溢流损失,效率 高,速度稳定性也比单纯容积调速回路好。p?所示。值一定,可采用负荷传感液 压控制,其控制原理图如图为保证1-2驱动多个执行元件,可用单泵(或一组泵)它主要利用负荷传感和压力补偿技术,而与各执行元件的负载压力和其各执行元件运动速度仅依赖于各节流阀开启度,各执行元即使当泵的输出流量达不到实际需要时,它执行元件的工作状态无关。此系统的这一特有的独立调速功能大件运动速度的比例关系仍然可以得到保持。不但显著提高了作业大减少了作业中操纵者协调各执行元件动作所花费的时间,能够以最节省能量的方式实现效率,而且有效减轻了操作者的劳动强度。另外,在工作间系统无溢流损失,并以推动执行元件动作所需的最低压力供油。调速,系统自动调节泵的排量不动作),各执行元件处于无载状态,(隙发动机不停机,所以它是一种性能较可以有效降低功率损耗、到最小值。减小液压系统的温升,好的新型液压系统。.一般的同步回路还有:机械连接同步回路;用分流阀或分流集流阀的同步回路;用调速阀的同步回路;串联缸的同步回路等,但这些同步回路同步精度一般比较低,而且大多数只是保证速度同步而不能保证位置同步,受负载变化的影响较大。

第七章 典型液压传动系统

第七章典型液压传动系统 液压传动系统是根据机械设备的工作要求,选用适当的液压基本回路经有机组合而成。阅读一个较复杂的液压系统图,大致可按以下步骤进行: (1)了解机械设备工况对液压系统的要求,了解在工作循环中的各个工步对力、

速度和方向这三个参数的质与量的要求。 (2)初读液压系统图,了解系统中包含哪些元件,且以执行元件为中心,将系统分解为若干个工作单元。 (3)先单独分析每一个子系统,了解其执行元件与相应的阀、泵之间的关系和哪些基本回路。参照电磁铁动作表和执行元件的动作要求,理清其液流路线。 (4)根据系统中对各执行元件间的互锁、同步、防干扰等要求,分析各子系统之间的联系以及如何实现这些要求。 (5)在全面读懂液压系统的基础上,根据系统所使用的基本回路的性能,对系统作综合分析,归纳总结整个液压系统的特点,以加深对液压系统的理解。 液压传动系统种类繁多,它的应用涉及机械制造、轻工、纺织、工程机械、船舶、航空和航天等各个领域,但根据其工作情况,典型液压系统视液压传动系统的工况要求与特点可分为如下几种。 (一) 以速度变换为主的液压系统(例如组合机床系统) 1)能实现工作部件的自动工作循环,生产率较高 2)快进与工进时,其速度与负载相差较大 3)要求进给速度平稳、刚性好,有较大的调速范围 4)进给行程终点的重复位置精度高,有严格的顺序动作 (二)以换向精度为主的液压系统(如磨床系统) 1)要求运动平稳性高,有较低的稳定速度 2)启动与制动迅速平稳、无冲击,有较高的换向频率(最高可达150次/min) 3)换向精度高,换向前停留时间可调 (三)以压力变换为主的液压系统(例如液压机系统) 1)系统压力要能经常变换调节,且能产生很大的推力 2)空程时速度大,加压时推力大,功率利用合理 3)系统多采用高低压泵组合或恒功率变量泵供油,以满足空程与压制时,其速度与压力的变化 (四)多个执行元件配合工作的液压系统(例如机械手液压系统) 1)在各执行元件动作频繁换接,压力急剧变化下,系统足够可靠,避免误动作 2)能实现严格的顺序动作,完成工作部件规定的工作循环 3)满足各执行元件对速度,压力及换向精度的要求

液压基本回路复习题1

五、回路分析 1、下图所示液压系统是采用蓄能器实现快速运动的回路,试回答下列问题: (1)液控顺序阀3何时开启,何时关闭? (2)单向阀2的作用是什么? (3)分析活塞向右运动时的进油路线和回油路线。 答:(1)当蓄能器内的油压达到液控顺序阀3的调定压力时,阀3被打开,使液压泵卸荷。当蓄能器内的油压低于液控顺序阀3的调定压力时,阀3关闭。 (2)单向阀2的作用是防止液压泵卸荷时蓄能器内的油液向液压泵倒流。 (3)活塞向右运动时: 进油路线为:液压泵1 →单向阀2 →换向阀5左位→油缸无杆腔。 蓄能器→换向阀5左位→油缸无杆腔。 回油路线为:油缸有杆腔→换向阀5左位→油箱。 4、图示回路,若阀PY的调定压力为4Mpa,阀PJ的调定压力为2Mpa,回答下列问题:(1)阀PY 是()阀,阀P J是()阀; (2)当液压缸运动时(无负载),A点的压力值为()、B点的压力值为(); (3)当液压缸运动至终点碰到档块时,A点的压力值为()、B点的压力值为()。 解:(1)溢流阀、减压阀; (2)活塞运动期时P A=0,P B=0; (3)工件夹紧后,负载趋近于无穷大:P A=4MPa,P B=2MPa。 5、如图所示系统可实现“快进→工进→快退→停止(卸荷)”的工作循环。 (1)指出液压元件1~4的名称。 (2)试列出电磁铁动作表(通电“+”,失电“-”)。

解: 7、如图所示液压系统,完成如下动作循环:快进—工进—快退—停止、卸荷。试写出动作循环表,并评述系统的特点。 解:电磁铁动作循环表 1Y A 2Y A 3YA 4YA 快进+——— 工进+—+— 快退—+—— 停止、卸荷———+ 特点:先导型溢流阀卸荷回路卸荷压力小冲击小,回油节流调速回路速度平稳性好,发热、泄漏节流调速影响小,用电磁换向阀易实现自动控制。 8、如图所示系统能实现”快进→ 1工进→ 2工进→快退→停止”的工作循环。试画出电磁铁动作顺序表,7?

液压基本回路

第七章液压基本回路 7-4 多缸(马达)工作控制回路 一、顺序动作回路(sequencing circuit) 1、行程控制顺序动作回路 图a所示为用行程阀控制的顺序动作回路。在图示状态下,A、B两缸的活塞均在端。当推动手柄,使阀C左位工作,缸A左行,完成动作①;挡块压下行程阀D后,缸B左行,完成动作②;手动换向阀C复位后,缸A先复位,实现动作③;随着挡块后移,阀D复位,缸B退回实现动作④。完成一个工作循环。 图b所示为用行程开关控制的顺序动作回路。当阀E得电换向时,缸A左行完成 动作①;其后,缸A触动行程开关S 1使阀得电换向,控制缸B左行完成动作②;当缸B左 行至触动行程开关S 2使阀E失电时,缸A返回,实现动作③;其后,缸A触动S3使9断电, 缸B返回完成动作④;最后,缸月触动S4使泵卸荷或引起其它动作,完成一个工作循环。 2、压力控制顺序动作回路 图所示为使用顺序阀的压力控制顺序动作回路。

当换向阀左位接入回路且顺序阀D的调定压力大于缸A的最大前进工作压力时,压力油先进入缸A左腔,实现动作①;缸行至终点后压力上升,压力油打开顺序阀D进入缸B 的左腔,实现动作②;同样地,当换向阀右位接入回路且顺序阀C的调定压力大于缸B的最大返回工作压力时,两缸按③和④的顺序返回。 3、时间控制顺序动作回路 这种回路是利用延时元件(如延时阀、时间继电器等)使多个缸按时间完成先后动作的回路。图所示为用延时阀来实现缸3、4工作行程的顺序动作回路。

当阀1电磁铁通电,左位接通回路后,缸3实现动作①;同时,压力油进入延时阀2中的节流阀B,推动换向阀A缓慢左移,延续一定时间后,接通油路a、b,油液才进入缸4,实现动作②。通过调节节流阀开度,来调节缸3和4先后动作的时间差。当阀1电磁铁断电时,压力油同时进入缸3和缸4右腔,使两缸返向,实现动作③。由于通过节流阀的流量受负载和温度的影响,所以延时不易准确,一般都与行程控制方式配合使用。 二、同步回路(synchronizing circuit) 同步回路的功用是:保证系统中的两个或多个缸(马达)在运动中以相同的位移或相同的速度(或固定的速比)运动。在多缸系统中,影响同步精度的因素很多,如:缸的外负载、泄漏、摩擦阻力、制造精度、结构弹性变形以及油液中含气量,都会使运动不同步。为此,同步回路应尽量克服或减少上述因素的影响。 1、容积式同步回路 (1)、同步泵的同步回路:用两个同轴等排量的泵分别向两缸供油,实现两缸同步运动。正常工作时,两换向阀应同时动作;在需要消除端点误差时,两阀也可以单独动作。 (2)、同步马达的同步回路:用两个同轴等排量马达作配流环节,输出相同流量的油液来实现两缸同步运动。由单向阀和溢流阀组成交叉溢流补油回路,可在行程端点消除误差。 (3)、同步缸的同步回路:同步缸3由两个尺寸相同的双杆缸连接而成,当同步缸的活塞左移时,油腔a与b中的油液使缸1与缸2同步上升。若缸1的活塞先到达终点,则油腔a的余油经单向阀4和安全阀5排回油箱,油腔b的油继续进入缸2下腔,使之到达终点。同理,若缸2的活塞先达终点,也可使缸1的活塞相继到达终点。

液压系统设计方案书方法

液压系统设计方法 液压系统是液压机械的一个组成部分,液压系统的设计要同主机的总体设计同时进行。着手设计时,必须从实际情况出发,有机地结合各种传动形式,充分发挥液压传动的优点,力求设计出结构简单、工作可靠、成本低、效率高、操作简单、维修方便的液压传动系统。 液压系统的设计步骤 液压系统的设计步骤并无严格的顺序,各步骤间往往要相互穿插进行。一般来说,在明确设计要求之后,大致按如下步骤进行。 ⑴确定液压执行元件的形式; ⑵进行工况分析,确定系统的主要参数; ⑶制定基本方案,拟定液压系统原理图; ⑷选择液压元件; ⑸液压系统的性能验算: ⑹绘制工作图,编制技术文件。 1.明确设计要求 设计要求是进行每项工程设计的依据。在制定基本方案并进一步着手液压系统各部分设计之前,必须把设计要求以及与该设计内容有关的其他方面了解清楚。 ⑴主机的概况:用途、性能、工艺流程、作业环境、总体布局等; ⑵液压系统要完成哪些动作,动作顺序及彼此联锁关系如何; ⑶液压驱动机构的运动形式,运动速度; ⑷各动作机构的载荷大小及其性质; ⑸对调速范围、运动平稳性、转换精度等性能方面的要求; ⑹自动化程度、操作控制方式的要求; ⑺对防尘、防爆、防寒、噪声、安全可靠性的要求; ⑻对效率、成本等方面的要求。 2.进行工况分析、确定液压系统的主要参数 通过工况分析,可以看出液压执行元件在工作过程中速度和载荷变化情况,为确定系统及各执行元件的参数提供依据。 液压系统的主要参数是压力和流量,它们是设计液压系统,选择液压元件的主要依据。压力决定于外载荷。流量取决于液压执行元件的运动速度和结构尺寸。 2.1载荷的组成和计算 2.1.1液压缸的载荷组成与计算 图1表示一个以液压缸为执行元件的液压系统计算简图。各有关参数已标注在图上,其中F W是作用在活塞杆上的外部载荷。F m是活塞与缸壁以及活塞杆与导向

相关文档
最新文档