电感

电感
电感

1.电感量及允许误差

电感量系指产品技术规范所要求的频率测量的电感标称数值。电感以NH(纳哼)、(微哼)、MH(毫哼)为量值单位,误差细分为:W级(±0.05);B级(±0.1);C级(±0.25);S级(±0.3);D级(±0.5);F级(±1%);G级(±2%);H级(±3%);J级(±5%);K级(±10%);M级(±20%);N级(±30%)。(精密误差为小容量,一般为10PF以下)

2.测试频率

用在DC-DC(升压降压电路)C转换的话,一般1K就可以了,主要测试它的额定电流值。如果是用的频率高一点的DC-DC电路就要用100K来测试了。如果是谐振电感就要在它指定的频率下测试,主要测试他的L值和Q值勤。如果是用在超高频率的电感则一般不用选定测试频率,比如从0-3GHz 只要看样品的插入损耗就可以了。看是不是能够满足电路特定频率的衰减要求。

3.直流电阻

直流电阻就是元件通上直流电,所呈现出的电阻,即元件固有的,静态的电阻。比如线圈,通直流电和交流电,它呈现的电阻是不一样的,通交流电,线圈除了直流电阻外,还有电抗作用,它反映的是电阻和电抗的合作用,叫阻抗。

4.最大工作电流

最大电流是指在在不影响设备安全状态下,所能承受的电流的一个极限值,一般只是允许短时间的出现,否则会引起设备损坏。电机的最大工作电流是电机可以长时间工作的工作电流,一般可以达到额定电流的1.2倍左右,一般由于设计功率计算不当而导致电机选择偏小,但是在超过额定功率的情况下电机可以持续工作,此时的工作电流是最大工作电流,

5.电感量的稳定性

电感器因为环境温度变化1℃所产生电感量的变化△L/△t与原有电感量L值的比值为电感的温度系a1,a1=△L/L*△t。除电感温度系数可决定其稳定性外,还应重视由于机械振动和时效老化所引起的电感量的变化。

6.抗电强度及防潮

对于有抗电强度要求的电感器要选用封装材料耐电压高的品种,一般耐压较好的电感器,防潮性能也较好。采用树脂浸渍、包封、压铸工艺都可满足该项要求。

7.焊盘或针脚

焊盘或针脚是选购和使用电感线圈不可忽视的重要方向,主要考核其拉力、扭力、耐焊接热和可焊性试验等,以保证焊接的可靠性。

对于贴片电感(SMD)一定要严格按设计的焊盘尺寸选购,带针脚的电感,一般无严格规定同参数和立式、卧式可互换,只是由于PC板安装位置限制而指定品种。

8.包装防护

a、电感器的磁性材料属于易碎品,在运输和贮存过程中应注意轻拿轻放;避免损坏。

b、产品的包装:一般选用小盒子作为内包装,外包装则选用坚固的双层纸箱,最大可承受40Kg重压。

9. 防潮和防氧化

本公司的产品在出厂前都通过了防氧化处理和盐雾试验,以保证产品良好的可焊性,在每个小包装袋和内箱内都有放置干燥剂和密封防止产品受潮。

10. 保存期限

一般电感的保存期限在6个月内为最佳使用期限,超过6个月的产品需要重新进行可焊性试验合格后方可再使用。丹兴达生产的电感经过防氧化处理,产品的最佳使用期限可延长至8个月

电阻、电容、电感规格、封装、尺寸、功率识别

公制长(L) 宽(W) 高(t) a

0402 1/16W 0603 1/10W 0805 1/8W 1206 1/4W 电容电阻外形尺寸与封装的对应关系是: 0402=1.0x0.5 0603=1.6x0.8 0805=2.0x1.2 1206=3.2x1.6 1210=3.2x2.5 1812=4.5x3.2 2225=5.6x6.5 常规贴片电阻(部分) 常规的贴片电阻的标准封装及额定功率如下表:英制(mil) 公制(mm) 额定功率(W)@ 70°C 0201 0603 1/20 0402 1005 1/16 0603 1608 1/10 0805 2012 1/8 1206 3216 1/4 1210 3225 1/3 1812 4832 1/2 2010 5025 3/4 2512 6432 1 国内贴片电阻的命名方法:

2、1%精度的命名:RS-05K1002FT R -表示电阻 S -表示功率0402是1/16W、0603是1/10W、0805是1/8W、1206是1/4W、1210是1/3W、1812是1/2W、2010是3/4W、2512是1W。 05 -表示尺寸(英寸):02表示0402、03表示0603、05表示0805、06表示1206、1210表示1210、1812表示1812、10表示1210、12表示2512。 K -表示温度系数为100PPM, 102-5%精度阻值表示法:前两位表示有效数字,第三位表示有多少个零,基本单位是Ω,102=10000Ω=1KΩ。1002是1%阻值表示法:前三位表示有效数字,第四位表示有多少个零,基本单位是Ω,1002=100000Ω=10KΩ。 J -表示精度为5%、F-表示精度为1%。 T -表示编带包装 1:0402(1/16W) 2:0603(1/10W) 3:0805(1/8W) 4:1206(1/4W) 5:1210(1/3W) 6:2010(1/2W) 7:2512(1W) 1206 20欧1/4 *4 5欧1w 120 贴片电阻各参数说明 国内贴片电阻的命名方法: 1、5%精度的命名:RS-05K102JT

2非线性电路混沌实验

非线性电路混沌实验 混沌是非线性系统中存在的一种普遍现象,它也是非线性系统所特有的一种复杂状态。 混沌研究最先起源于1963年洛伦兹(E.Lorenz)研究天气预报时用到的三个动力学方程,后来又从数学和实验上得到证实。无论是复杂系统,如气象系统、太阳系,还是简单系统,如钟摆、滴水龙头等,皆因存在着内在随机性而出现类似无轨、但实际是非周期有序运动,即混沌现象。由于电学量(如电压、电流)易于观察和显示,因此非线性电路逐渐成为混沌及混沌同步应用的重要途径,其中最典型的电路是美国加州大学伯克利分校的蔡少棠教授1985年提出的著名的蔡氏电路(Chua ’s Circuit)。就实验而言,可用示波器观察到电路混沌产生的全过程,并能得到双涡卷混沌吸引子。 本实验所建立的非线性电路包括有源非线性负阻、LC 振荡器和RC 移相器三部分;采用物理实验方法研究LC 振荡器产生的正弦波与经过RC 移相器移相的正弦波合成的相图(李萨如图),观测振动周期发生的分岔及混沌现象。 【实验目的】 观测振动周期发生的分岔及混沌现象;测量非线性单元电路的电流—电压特性;了解非线性电路混沌现象的本质;学会自己制作和测量一个使用带铁磁材料介质的电感器以及测量非线性器件伏安特性的方法。 【实验原理】 1.非线性电路与非线性动力学 实验电路如图1所示,图1中只有一个非线性元件R ,它是一个有源非线性负阻器件。电感器L 和电容C 2组成一个损耗可以忽略的谐振回路;可变电阻R V 和电容器C 1串联将振荡器产生的正弦信号移相输出。本实验中所用的非线性元件R 是一个三段分段线性元件。图2所示的是该电阻的伏安特性曲线,从特性曲线显示中加在此非线性元件上电压与通过它的电流极性是相反的。由于加在此元件上的电压增加时,通过它的电流却减小,因而将此元件称为非线性负阻元件。 图1非线性电路原理图 图2非线性元件伏安特性 图1电路的非线性动力学方程为: 1121)(1 C C C C U g U U G dt dU C ?--?= L C C C i U U G dt dU C +-?=)(2112 2 (1) 2C L U dt di L -=

电感计算公式

电感计算公式(转载) 加载其电感量按下式计算:线圈公式 阻抗(ohm) = 2 * 3.14159 * F(工作频率) * 电感量(mH),设定需用360ohm 阻抗,因此: 电感量(mH) = 阻抗(ohm) ÷ (2*3.14159) ÷ F (工作频率) = 360 ÷ (2*3.14159) ÷ 7.06 = 8.116mH 据此可以算出绕线圈数: 圈数= [电感量* { ( 18*圈直径(吋)) + ( 40 * 圈长(吋))}] ÷圈直径(吋) 圈数= [8.116 * {(18*2.047) + (40*3.74)}] ÷ 2.047 = 19 圈 空心电感计算公式 空心电感计算公式:L(mH)=(0.08D.D.N.N)/(3D+9W+10H) D------线圈直径 N------线圈匝数 d-----线径 H----线圈高度 W----线圈宽度 单位分别为毫米和mH。。 空心线圈电感量计算公式: l=(0.01*D*N*N)/(L/D+0.44) 线圈电感量l单位: 微亨 线圈直径D单位: cm 线圈匝数N单位: 匝 线圈长度L单位: cm 频率电感电容计算公式: l=25330.3/[(f0*f0)*c] 工作频率: f0 单位:MHZ 本题f0=125KHZ=0.125 谐振电容: c 单位:PF 本题建义c=500...1000pf 可自行先决定,或由Q 值决定 谐振电感: l 单位: 微亨 线圈电感的计算公式 作者:线圈电感的计算公式转贴自:转载点击数:299 1。针对环行CORE,有以下公式可利用: (IRON) L=N2.AL L= 电感值(H) H-DC=0.4πNI / l N= 线圈匝数(圈) AL= 感应系数 H-DC=直流磁化力I= 通过电流(A) l= 磁路长度(cm) l及AL值大小,可参照Microl对照表。例如: 以T50-52材,线圈5圈半,其L值为T50-52(表示OD为0.5英吋),经查表其AL值约为33nH L=33.(5.5)2=998.25nH≒1μH 当流过10A电流时,其L值变化可由l=3.74(查表) H-DC=0.4πNI / l = 0.4×3.14×5.5×10 / 3.74 = 18.47 (查表后) 即可了解L值下降程度(μi%) 2。介绍一个经验公式 L=(k*μ0*μs*N2*S)/l 其中 μ0 为真空磁导率=4π*10(-7)。(10的负七次方) μs 为线圈内部磁芯的相对磁导率,空心线圈时μs=1

电感的分类

电感(Inductor)(电感线圈)是用绝缘导线(例如漆包线、纱包线等)绕制而成的电磁感应元件,也是电子电路中常用的元器件之一。 一、电感的分类 按电感值分类:固定电感、可变电感。 按导磁体性质分类:空芯线圈、铁氧体线圈、铁芯线圈、铜芯线圈。 按工作性质分类:天线线圈、振荡线圈、扼流线圈、陷波线圈、偏转线圈。 按绕线结构分类:单层线圈、多层线圈、蜂房式线圈。 二、电感的主要参数及识别 1.电感量L 电感量L也称作自感系数,是表示电感元件自感应能力的一种物理量。感应电流总是阻碍磁通量的变化,犹如线圈具有惯性,这种电磁惯性的大小就用电感量L来表示。L的大小与线圈匝数、尺寸和导磁材料均有关,采用硅钢片或铁氧体作线圈铁芯,可以较小的匝数得到较大的电感量。L的基本单位为H(亨),实际用得较多的单位为mH(毫亨)、μH(微亨)和nH(纳亨),它们的换算关系如下:1H=103mH=106μH=109nH。 2.感抗X L 感抗X L在电感元件参数表上一般查不到,但它与电感量、电感元件有关,计算公式为:X L (Ω)=2лf(Hz)L(H)。不难看出,线圈通过低频电流时X L小。通过直流电时X L为零,仅线圈的直流电阻起阻力作用,因电阻:—般很小,所以近似短路。通过高频电流时X L大,若L也大,则近似开路。线圈的此种特性正好与电容相反,所以利用电感元件和电容器就可以组成各种高频、中频和低频滤波器,以及调谐回路、选频回路和阻流圈电路等等。 3.品质因数Q 品质因数表示电感线圈品质的参数,亦称作Q值或优值。线圈在一定频率的交流电压下工作时,其感抗X L和等效损耗电阻之比即为Q值,表达式如下:Q=2лfL/R。由此可见,线圈的感抗越大,损耗电阻越小,其Q值就越高。Q的数值大都在几十至几百,Q值越高,电路的损耗越小,效率越高。 4.直流电阻(DCR) 即电感线圈自身的直流电阻,可用万用表或欧姆表直接测得。

各种电感计算公式

导线线径与电流规格表 绝缘导线(铝芯/铜芯)载流量的估算方法 以下是绝缘导 线(铝芯/铜芯)载流量的估算 方法,这是电工基础,今天把这些知识教给大家,以便计算车上的导线允许通过的电流.(偶原在省供电局从事电能计量工作) 铝芯绝缘导线载流量与截面的倍数关系 导线截面(平方毫米) 1 1.5 2.5 4 6 10 16 25 35 50 70 95 120 载流量(A 安培) 9 14 23 32 48 60 90 100 123 150 210 238 300 载流是截面倍数 9 8 7 6 5 4 3.5 3 2.5 估算口诀:二点五下乘以九,往上减一顺号走。三十五乘三点五,双双成组减点五。(看不懂没关系,多数情况只要查上表就行了)。条件有变加折算,高温九折铜升级。穿管根数二三四,八七六折满载流。 说明:(1)本节口诀对各种绝缘线(橡皮和塑料绝缘线)的载流量(安全电流)不是直接指出,而是“截面乘上一定的倍数”来表示,通过心算而得。由表5 3可以看出:倍数随截面的增大而减小。“二点五下乘以九,往上减一顺号走”说的是2.5mm’及以下的各种截面铝芯绝缘线,其载流量约为截面数的9倍。如2.5mm’导线,载流量为2.5×9=22.5(A)。从4mm’及以上导线的载流量和截面数的倍数关系是顺着线号往上排,倍数逐次减l ,即4×8、6×7、10×6、16×5、25×4。“三十五乘三点五,双双成组减点五”,说的是35mm”的导线载流量为截面数的3.5倍,即35×3.5=122.5(A)。从50mm’及以上的导线,其载流量与截面数之间的倍数关系变为两个两个线号成一组,倍数依次减0.5。 表格为导线在不同温度下的线径与电流规格表。 (请注意:线材规格请依下列表格,方能正常使用)

电感

1.电感量及允许误差 电感量系指产品技术规范所要求的频率测量的电感标称数值。电感以NH(纳哼)、(微哼)、MH(毫哼)为量值单位,误差细分为:W级(±0.05);B级(±0.1);C级(±0.25);S级(±0.3);D级(±0.5);F级(±1%);G级(±2%);H级(±3%);J级(±5%);K级(±10%);M级(±20%);N级(±30%)。(精密误差为小容量,一般为10PF以下) 2.测试频率 用在DC-DC(升压降压电路)C转换的话,一般1K就可以了,主要测试它的额定电流值。如果是用的频率高一点的DC-DC电路就要用100K来测试了。如果是谐振电感就要在它指定的频率下测试,主要测试他的L值和Q值勤。如果是用在超高频率的电感则一般不用选定测试频率,比如从0-3GHz 只要看样品的插入损耗就可以了。看是不是能够满足电路特定频率的衰减要求。 3.直流电阻 直流电阻就是元件通上直流电,所呈现出的电阻,即元件固有的,静态的电阻。比如线圈,通直流电和交流电,它呈现的电阻是不一样的,通交流电,线圈除了直流电阻外,还有电抗作用,它反映的是电阻和电抗的合作用,叫阻抗。 4.最大工作电流 最大电流是指在在不影响设备安全状态下,所能承受的电流的一个极限值,一般只是允许短时间的出现,否则会引起设备损坏。电机的最大工作电流是电机可以长时间工作的工作电流,一般可以达到额定电流的1.2倍左右,一般由于设计功率计算不当而导致电机选择偏小,但是在超过额定功率的情况下电机可以持续工作,此时的工作电流是最大工作电流, 5.电感量的稳定性 电感器因为环境温度变化1℃所产生电感量的变化△L/△t与原有电感量L值的比值为电感的温度系a1,a1=△L/L*△t。除电感温度系数可决定其稳定性外,还应重视由于机械振动和时效老化所引起的电感量的变化。 6.抗电强度及防潮 对于有抗电强度要求的电感器要选用封装材料耐电压高的品种,一般耐压较好的电感器,防潮性能也较好。采用树脂浸渍、包封、压铸工艺都可满足该项要求。 7.焊盘或针脚 焊盘或针脚是选购和使用电感线圈不可忽视的重要方向,主要考核其拉力、扭力、耐焊接热和可焊性试验等,以保证焊接的可靠性。 对于贴片电感(SMD)一定要严格按设计的焊盘尺寸选购,带针脚的电感,一般无严格规定同参数和立式、卧式可互换,只是由于PC板安装位置限制而指定品种。 8.包装防护

电感专题详解

电感专题详解 From ItechBe@ts At 2012.06.13 一.电感简述 电感(电感线圈)是用绝缘导线(如漆包线、纱包线或塑皮线等)在绝缘骨架或磁心、铁心上绕制成的一组串联的同轴线匝,是电子电路中常用的元器件之一。它在电路中用字母“L”表示,单位为亨利(简称亨),用字母"H"表示,常用的单位还有毫亨(mH)和微亨(μH),它们之间的关系是:1H=1000mH;1mH=1000μH。 电感的主要作用是对交流信号进行隔离、滤波或与电容器、电阻器等组成谐振电路。 电感的计算公式: 串联:L = L1 + L2 + … + Ln 并联:1/L = 1/L1 + 1/L2 + … + 1/Ln 定义式:L = NΦ/i 决定式:一般用电感测试仪测试出来(欢迎补充) 二.电感之源 因磁通量变化产生感应电动势的现象,闭合电路的一部分导体在磁场里做切割磁感线的运动时,导体中就会产生电流,这种现象叫电磁感应。闭合电路的一部分导体在磁场中做切割磁感线运动,导体中就会产生电流。这种现象叫电磁感应现象。产生的电流称为感应电流。这就是法拉第与1831年发现并提出的电磁感应定律。 当线圈通过电流后,在线圈中形成磁场感应,感应磁场又会产生感应电流来抵制通过线圈中的电流。 我们把这种电流与线圈的相互作用关系称其为电的感抗,也就是电感。 这么说可能有些抽象,在网上找到一个举例相信能帮助大家理解:假定有一条人工渠,渠边有一个大大的水车,水车很繁重,需求较大流量的渠水才干推进它。首先,渠道中没有水的时分,水车是不会转动的。接下去工人开启闸门开端放水,在放水最开端的时分,水流会从小到大,那么水车是怎样样变化的呢? 水车会随着水的到来而快速旋转和水同步?显然不是,由于惯性和阻力的存在,水车会迟缓的开端转动,过一段时刻后才会和水流构成稳固的均衡。在水车“起步”,开端迟缓转动的进程,实践上也是水车在阻拦制止水流向前,抵抗水流变化的进程。在水流颠簸、水车转速也稳固后,水和水车构成一种调和共生的关系,就互不干预了。那么假如关掉闸门呢?关掉闸门后,水会逐步增加,流速也会下降。在水流流速下降的时分,水车并不能快速和水流树立新的均衡,它还会依据之前的速率持续旋转一段时刻,并带动水流在一定时刻内维持之前的速率,接着水车会随着水流速降低、水流增加而渐渐中止转动。恰是这种紧张电路中电流的变化幅度的特性,使得电感就像是电路中的一个“整理、梳理者”。 三.电感的种类 电感的体积大小可以分辨出能通过电流的大小。因为电感的使用环境千差万别,不可能用一种方式计

电感线圈匝数的计算公式

电感线圈匝数的计算公式 计算公式:N=0.4(l/d)开次方。N一匝数,L一绝对单位,luH=10立方。d-线圈平均直径(Cm) 。 例如,绕制L=0.04uH的电感线圈,取平均直径d= 0.8cm,则匝数N=3匝。在计算取值时匝数N取略大一些。这样制作后的电感能在一定范围内调节。 制作方法:采用并排密绕,选用直径0.5-1.5mm的漆包线,线圈直径根据实际要求取值,最后脱胎而成。 第一批加载其电感量按下式计算:线圈公式 阻抗(ohm) = 2 * 3.14159 * F(工作频率) * 电感量(mH),设定需用360ohm 阻抗,因此: 电感量(mH) = 阻抗(ohm) ÷ (2*3.14159) ÷ F (工作频率) = 360 ÷ (2*3.14159) ÷7.06 = 8.116mH 据此可以算出绕线圈数: 圈数= [电感量* { ( 18*圈直径(吋)) + ( 40 * 圈长(吋))}] ÷圈直径(吋) 圈数= [8.116 * {(18*2.047) + (40*3.74)}] ÷ 2.047 = 19 圈 空心电感计算公式 作者:佚名转贴自:本站原创点击数:6684 文章录入:zhaizl 空心电感计算公式:L(mH)=(0.08D.D.N.N)/(3D+9W+10H) D------线圈直径 N------线圈匝数 d-----线径 H----线圈高度 W----线圈宽度 单位分别为毫米和mH。。 空心线圈电感量计算公式: l=(0.01*D*N*N)/(L/D+0.44) 线圈电感量l单位: 微亨 线圈直径D单位: cm 线圈匝数N单位: 匝 线圈长度L单位: cm 频率电感电容计算公式: l=25330.3/[(f0*f0)*c] 工作频率: f0 单位:MHZ 本题f0=125KHZ=0.125 谐振电容: c 单位:PF 本题建义c=500...1000pf 可自行先决定,或由Q 值决定

电感参数计算

磁环外径 D 36.0mm 磁环内径 d 22.5mm 磁环高度 h 11.0mm 磁环导磁截面积 A 74.3mm^274.3mm^2磁环有效磁路长 l 90.2mm 90.2mm 磁环芯材磁导率 u 125125相对磁导率线圈匝数 N 88.0匝88.0匝↓↓环状线圈电感值 L 1000.92uH 1001uH 磁环电感饱 和磁通计算 ↓电感电流 I 10.00A 15319高斯1.532特斯拉 磁场强度H 9.75A/m 线径Φ1mm 股数n 1每匝线圈长度MLT 42.6mm 电阻mohm 108.59mohm 铜线总长度C 4.69m 蓝色字体为输入参数粉色字体为计算值磁环电感及饱和磁通计算 相对磁导率μr:26,40,60,75,90,125 750.6897966 磁通密度B l s N L μ2=)ln()(d D d D l -=πl iN B 0μμ=l iN H =

计算值 MPP铁镍钼合金,主要用于大电流功率电感, 抗偏流特性好,频率特性也比较好. Sendust合金(铁硅铝磁芯),是一种低损耗和相对高饱和度1.05T的材料,所 以非常适用于功率因数校正电路,以及单向驱动器应用,由于接近零磁 致伸缩,铁硅铝是消除在线噪音滤波器和电感器中的可听频率噪声的最 佳选择。 适当的成本,较低的损耗,高饱和度,接近零的磁致伸缩,无热老化 现象,软饱和,铁硅铝应用包括功率因数校正扼流圈,升压/降压稳压器,直流 输出电感器和回扫变压器.

铁镍(hi-flux),高磁通粉末磁芯是分布式气隙环形磁芯,有50%的镍和50%的铁合金粉末制成,其偏置性能在 所有粉末磁芯材料中最高 .高磁通磁芯所具备的优点,非常适用于高功率,高直流偏置以及高电源频率下的高交流偏差等的应用.与7,500高斯的标准钼坡莫合金MPP磁芯或4.500高斯的铁氧体相比,高磁通磁芯具有15,000高斯的饱和磁通密度.高磁通粉末磁芯的磁芯损耗显著低于铁粉磁芯的磁芯损耗.在大多数应用中,高磁通磁芯的尺寸可能都比铁粉芯的还要小. 高磁通磁粉芯主要应用在如开关调节电感器,在线噪音滤波器,回扫变压器,功率因数校正和脉冲变压器等。

15uH贴片电感规格_风华高科CMI100505J150M

L(长)尺寸 1.0±0.125mm W(宽)尺寸0.5±0.125mm D(高)尺寸0.3±0.125mm 公制封装代号100505 英制封装代号0402 声明: 1、本规格书是由风华高科授权代理商-南京南山半导体有限公司自风华高科官方网站下载整理,若有变更,恕不另行通知; 2、本规格书仅列明了产品基本规格、参数,更详细的电性能参数、使用说明等,请在订购产品之前与南京南山半导体有限公司确认。

|100505(0402)贴片电感特性数据图表 |焊接曲线 ■ 电感量-直流偏置特性 ■ 阻抗-频率特性 ■ 电感量-温度特性 ■ Q 值-频率特性

贴片电感样品申请单 南山联系资料 总机:技术支持:客服:传真:电邮: 客户基本资料 公司名称网址: 联系方式电话:传真:□生产型企业□贸易商 收货地址 生产产品 姓名:职务:□技术□采购□其他 联络人 电话:手机:电邮: 样品明细资料 元器件名称型号及封装单机用量申请数量备注 预计生产情况 预计小批量生产日期:规模生产日期:样品申请日期: 样品申请流程 1、请详细、全面、真实填写上列各项。表格不够填写,可自行复制。 Service@https://www.360docs.net/doc/1a2712338.html, 2、请以附件的形式将该文档通过E-mail发送,并请将此单打印盖章后,电邮至: :。 3、公司将根据客户所填信息并综合相关情况,由样品小组负责确定该样品申请单是否执行及如何执行。 4、收到样品申请单并经审核通过后,南京库有现货2个工作日内发出;如需订货,交期3-4周,非常规品顺延1-2周。 5、样品免费,运费到付(一般选择顺丰快递);样品数量:单个型号5~20pcs,或根据BOM表清单按2~5套提供。 6、说明:接单后,样品小组将努力跟进,但由于原厂生产等环节存有不确定因素,我们无法保证样品数量、型号完 全符合要求,也不承诺一定按期交出。 跟进记录 □已中止进行□中止原因描述: □已联系客户 □已建议生产□已发送样品/日期□客户已签收/日期

电源IC中的电感集成技术

Dramatic improvements in the rise- and fall-time characteristics of power MOSFETs enable PWM switching frequencies to increase by an order of magnitude. The resulting drop in required inductance permits co-packaging of the inductor and the power-supply controller. Fig. 1. Simplified schematic of a typical synchronous buck converter. The inductor current always flows through either Q1 or Q2. During the on-time, Q1 is ON, and inductor current increases. During the off-time, Q2 is ON,and the inductor current decreases. At the on/ off transition times, the inductor current has to quickly switch from one FET to the other one.I n the not-so-distant past, virtually ev-ery component of a power supply was a discrete unit—from the controller IC to the MOSFETs and everything around it. It was difficult and time-consuming just to lay out the board, and any changes in the design created headaches during redesign. In addition, designers had to worry about coupling the controller to the gate drive, which also had to be custom-designed, as well as the magnetics.The next phase of power-supply design saw the integration of the con-troller, gate drive and MOSFET in a single silicon chip, which was far sim-pler. However, one still had to inter-face this chip to an outside induc-tor, which histori-cally has been too large to integrate.Inductor size is a function of op-erating frequency.Clearly, the key to creating induc-tors small enough to integrate on a chip is to increase the switching fre-quency of the con-verter. Through recent proprietary innovations in MOSFET design, dra-matic improvements in rise- and fall-time characteristics have enabled switching-frequency increases of an order of magnitude over what is available today. The resulting drop in required inductance and component size provides a design breakthrough that enables the inductor to be fully incorporated into the power-supply package. The impediment to bringing the inductor inside the package is its value. Typically, if a power supply is running at frequencies of 500 kHz to 1 MHz, it needs a fairly large inductor. But if you crank up the frequency such that the power stage (controller, gate drive, MOSFETs) can with-stand high frequency and still be efficient, then the induc-tor size can drop. The challenge in raising the frequency is the ability to maintain the efficiency of the overall con-verter as the frequency goes up. The reward for accom-plishing this is a dramatically smaller dc-dc converter. Do the Math The following points offer a first-order empirical deri-vation of the correlation between the physical size of a buck converter’s inductor and its switching frequency.Point 1: Size is a function of inductance. The inductance value of an inductor is a function of the component’s physical parameters: N = the number of coil turns, A = the core cross sectional area, and l = the The challenge in raising the frequency is the ability to maintain the efficiency of the overall converter as the frequency goes up.

线圈电感量的计算(二)

5、矩型线圈的电感 矩形线圈如图2-36所示,其电感为: 6、螺旋线圈的电感

其中: L:螺旋线圈的电感[H] l :螺旋线圈的长度[m] N:线圈的匝数 S:螺旋线圈的截面积[m2] μ:螺旋线圈内部磁芯的导磁率[H/m] k:长冈系数(由2R/l 决定,表2-1) 【说明】上式用来计算空心线圈的电感,μ=μ0 ,计算结果比较准确。当线圈内部有磁芯时,磁芯的导磁率最好选用相对导磁率μr ,μr=μ/μ0 ,μ为磁芯的导磁率,即:有磁芯线圈的电感是空心线圈电感的μr 倍,μr可通过实际测量来决定,只需把有磁芯的线圈和空心线圈分别进行对比测试,即可求得μr 。但由于磁芯的导磁率会随电流变化而变化,所以很难决定其准确值。这个公式是从单层线圈推导出来的,但对多层线圈也可以近似地适 用。 7、多层绕组线圈的电感

其中: L:多层绕组线圈的电感[H] R:线圈的平均半径[m] l :线圈的总长度[m] N:线圈的总匝数 t:线圈的厚度[m] k:长冈系数(由2R/l 决定,见表2-1) c:由l/t 决定的系数(见表2-2) 【说明】上式是用来计算多层线圈绕组、截面为圆形的空心线圈的电感计算公式。长冈系数k可查阅表2-1,系数c可查阅表2-2。当线圈内部有磁芯时,有磁芯线圈的电感是空心线圈电感的μr 倍,μr是磁芯的相对导磁率。相对导磁率的测试方法很简单,只需把有磁芯的线圈和空心线圈分别进行测试,通过对比即可求出相对导磁率的大小。

8、变压器线圈的电感 变压器线圈如图2-39所示,其电感为: L=μN*NS/l (2-108) 其中: L:变压器线圈的电感[H] l :变压器铁芯磁回路的平均长度[m] N:线圈的匝数 S:变压器铁芯磁回路的截面积[m2] μ:变压器铁芯的导磁率[H/m] 【说明】上式是用来计算变压器线圈电感的计算公式。由于变压器铁芯的磁回路基本是封闭的,变压器铁芯的平均导磁率相对来说比较大。铁芯的导磁率一般在产品技术手册中都会给出,但由于大多数开关电源变压器的铁芯都留有气隙,留有气隙的磁回路会出现磁场强度以及磁感应强度分布不均匀,因此,(2-108)式中的导磁率只能使用平均导磁率,技术手册中的数据不能直接使用。 在这种情况下,最好的方法是先制作一个简单样品,例如,在某个选好的变压器铁芯的骨架上绕一个简单线圈(比如匝数为10),然后对线圈的电感量进行测试,或者找一个已知线圈匝数与电感量的样品作为参考。知道了线圈样品的电感量后,只需把已知参数代入(2-108)或(2-94)式,即可求出其它未知参数,然后把所有已知参数定义为一个常数k;最后电感的计算公司就可以简化为:L = kN2 ,这样,电感量的计算就变得非常简单。 9、两个线圈的互感 两线圈的连接方法如图2-40所示。其中图2-40-a和图2-40-b分别为正、反向串联;图2-40-c

各种电感特性

各种电感特性 1:工字型电感; 2:色环电感; 3:空芯电感: 4:环形线圈电感; 5:贴片叠层高频电感; 6:磁棒电感; 7:SMD贴片功率电感; 8:穿心磁珠 9:贴片磁珠; 10:贴片高频变压器,插件高频变压器; 归纳整理,我认为是应用,物理,技术,材料,制程,成本,…等等妥协后的产物。现时出现在市面上的产品,是综合以上妥协后,一时一地的最佳化产品。请留意我说”一时一地”这四个字,这意味着现时的产品,全都不是极致的产品! 这代表我们发展的空间是无限宽广的, 只要我们肯用心了解,用心去研究,更佳化的产品将陆续出现。 我举一例子,客户希望最有效利用空间,他们最喜欢方形形状的产品,而我们电感的中轴,我们最方便,最有效的制程形状是圆形,如何将圆形的东西放在方形的空间,发挥最大的效果,这就是妥协! 针对特性的问题简单回答,希望对大家有所帮助。 1:工字型电感 它的前身是挠线式贴片电感,工字型电感是它们的改良, 挡板有效加强储能能力,改变EMI方向和大小,亦可降低RDC。它亦可说是讯号通讯电感跟POWER电感的一种妥协。 贴片式的工字型电感主要用于几百kHz至一两MHz的较小型电源切换, 如数字相机的LED升压,ADSL…等等的较低频部份的讯号处理或POWER用途,它的Q值有20,30,做为讯号处理颇为适合;RDC比挠线式贴片电感低,作为POWER也是十分好用,当然,很大颗的工字型电感,那肯定是POWER用途了。 工字型电感最大的缺点,仍是开磁路,有EMI的问题, 另外,噪音的问题比挠线式贴片电感大。 我个人认为,工字型电感肯定不是最佳化的结构, 改良空间仍是十分大! 2:色环电感 色环电感是最简单的棒形电感的加工,主要是用作讯号处理。本身跟棒形电感的特性没有很大的差别,只是多了一些固的物,和加上一些颜色方便分辨感值, 因单价算是十分便宜,现时比较不注重体积,以及仍可用插件的电子产品,使用色环电感仍多。因为是插件式,而且太传统了,被时代

电感和电容的计算

当线圈通过电流后,在线圈中形成磁场感应,感应磁场又会产生感应电流来抵制通过线圈中的电流。我们把这种电流与线圈的相互作用关系称其为电的感抗,也就是电感。电容(或电容量,Capacitance)指的是在给定电位差下的电荷储藏量。 加载其电感量按下式计算:线圈公式 阻抗(ohm) = 2 * 3.14159 * F(工作频率) * 电感量(mH),设定需用360ohm 阻抗,因此: 电感量(mH) = 阻抗(ohm) ÷ (2*3.14159) ÷ F (工作频率) = 360 ÷ (2*3.14159) ÷ 7.06 = 8.116mH 据此可以算出绕线圈数: 圈数= [电感量* { ( 18*圈直径(吋)) + ( 40 * 圈长(吋))}] ÷圈直径(吋) 圈数= [8.116 * {(18*2.047) + (40*3.74)}] ÷ 2.047 = 19 圈 电容功率计算公式: P=1/2 * C * V2 * F 电感功率计算公式: P=1/2 * L * I2 * F 电容上携带的能量(焦耳),是二分之一乘以电容量(法拉)再乘以电容电压(伏特)的平方。 硅芯片功率的计算存在一个公式:功率=C(寄生电容)*F(频率)*V2(工作电压的平方)。对于同一种核心而言,C(寄生电容)是一个常数,所以硅芯片功率跟频率成正比,跟工作电压的平方也成正比 1法拉5V的电容携带的能量为12.5焦耳。1焦耳=1瓦每秒 全新1.2伏1.8A时的镍氢充电电池充满后携带的能量为1.2*1.8*3600=7776焦耳。在现在的商业环境条件下,镍氢充电电池和法拉电容的体积能量比为250:1,价格比为1:2。另外电容放电需要特殊的恒压输出调整电路。

电感的特性

什么是电感?及电感的特性 电感是开关电源中常用的,由于它的电流、电压相位不同,所以理论上损耗为零。电感常为储能元件,也常与电容一起用在输入滤波和输出滤波电路上,用来平滑电流。电感也被称为扼流圈,特点是流过其上的电流有“很大的惯性”。换句话说,由于磁通连续特性,电感上的电流必须是连续的,否则将会产生很大的电压尖峰。 电感为磁性元件,自然有磁饱和的问题。有的应用允许电感饱和,有的应用允许电感从一定电流值开始进入饱和,也有的应用不允许电感出现饱和,这要求在具体线路中进行区分。大多数情况下,电感工作在“线性区”,此时电感值为一常数,不随着端电压与电流而变化。但是,开关电源存在一个不可忽视的问题,即电感的绕线将导致两个分布参数(或寄生参数),一个是不可避免的绕线电阻,另一个是与绕制工艺、材料有关的分布式杂散电容。杂散电容在低频时影响不大,但随频率的提高而渐显出来,当频率高到某个值以上时,电感也许变成电容特性了。如果将杂散电容“集中”为一个电容,则从电感的等效电路可以看出在某一频率后所呈现的电容特性。 当分析电感在线路中的工作状况或者绘制电压电流波形图时,不妨考虑下面几个特点:

1. 当电感L中有电流I流过时,电感储存的能量为: E=0.5×L×I2 (1) 2. 在一个开关周期中,电感电流的变化(纹波电流峰峰值)与电感两端电压的关系为: V=(L×di)/dt (2) 由此可看出,纹波电流的大小跟电感值有关。 3. 就像电容有充、放电电流一样,电感器也有充、放电电压过程。电容上的电压与电流的积分(安·秒)成正比,电感上的电流与电压的积分(伏·秒)成正比。只要电感电压变化,电流变化率di/dt也将变化;正向电压使电流线性上升,反向电压使电流线性下降。 计算出正确的电感值对选用合适的电感和输出电容以获得最小的输出电压纹波而言非常重要。 从图1可以看出,流过开关电源电感器的电流由交流和直流两种分量组成,因为交流分量具有较高的频率,所以它会通过输出电容流入地,产生相应的输出纹波电压dv=di×RESR。这个纹波电压应尽

电感基础知识详细图示讲解

一、 电感概述 1.1 电感的定义: 电感是导线内通过交流电流时,在导线的内部及其周围产生交变磁通,导线的磁通量与生产此磁通的电流之比。 当电感中通过直流电流时,其周围只呈现固定的磁力线,不随时间而变化;可是当在线圈中通过交流电流时,其周围将呈现出随时间而变化的磁力线。根据法拉弟 电磁感应定律---磁生电来分析,变化的磁力线在线圈两端会产生感应电势,此感应电势相当于一个“新电源”。当形成闭合回路时,此感应电势就要产生感应电 流。由楞次定律知道感应电流所产生的磁力线总量要力图阻止原来磁力线的变化的。由于原来磁力线变化来源于外加交变电源的变化,故从客观效果看,电感线圈有 阻止交流电路中电流变化的特性。电感线圈有与力学中的惯性相类似的特性,在电学上取名为“自感应”,通常在拉开闸刀开关或接通闸刀开关的瞬间,会发生火 花,这就是自感现象产生很高的感应电势所造成的。 总之,当电感线圈接到交流电源上时,线圈内部的磁力线将随电流的交变而时刻在变化着,致使线圈不断产生电磁感应。这种因线圈本身电流的变化而产生的电动势 ,称为“自感电动势”。 由此可见,电感量只是一个与线圈的圈数、大小形状和介质有关的一个参量,它是电感线圈惯性的量度而与外加电流无关。 1.2 电感线圈与变压器 电感线圈:导线中有电流时,其周围即建立磁场。通常我们把导线绕成线圈,以增强线圈内部的磁场。 电感线圈就是据此把导线(漆包线、纱包或裸导线)一圈靠一圈(导线间彼此互相绝缘)地绕在绝缘管(绝缘体、铁芯或磁芯)上制成的。一般情况,电感线圈只有一个绕组。 变压器:电感线圈中流过变化的电流时,不但在自身两端产生感应电压,而且能使附近的线圈中产生感应电压,这一现象叫互感。两个彼此不连接但又靠近,相互间存在电磁感应的线圈一般叫变压器。 1.3 电感的符号与单位 电感符号:L 电感单位:亨 (H)、毫亨(mH)、微亨 (uH),1H=103mH=106uH。 1.4 电感的分类: 按 电感形式 分类:固定电感、可变电感。 按导磁体性质分类:空芯线圈、铁氧体线圈、铁芯线圈、铜芯线圈。 按 工作性质 分类:天线线圈、振荡线圈、扼流线圈、陷波线圈、偏转线圈。 按 绕线结构 分类:单层线圈、多层线圈、蜂房式线圈。 按 工作频率 分类:高频线圈、低频线圈。 按 结构特点 分类:磁芯线圈、可变电感线圈、色码电感线圈、无磁芯线圈等。 二、 电感的主要特性参数 2.1 电感量L 电感量L表示线圈本身固有特性,与电流大小无关。除专门的电感线圈(色码电感)外,电感量一般不专门标注在线圈上,而以特定的名称标注。 2.2 感抗XL 电感线圈对交流电流阻碍作用的大小称感抗XL,单位是欧姆。它与电感量L和交流电频率f的关系为 XL=2πfL 2.3 品质因素Q 品质因素Q是表示线圈质量的一个物理量,Q为感抗XL与其等效的电阻的比值,即:Q=XL/R。 线圈的Q 值愈高,回路的损耗愈小。线圈的Q值与导线的直流电阻,骨架的介质损耗,屏蔽罩或铁芯引起的损耗,高频趋肤效应的影响等因素有关。线圈的Q值通常 为几十到几百。采用磁芯线圈,多股粗线圈均可提高线圈的Q值。 2.4 分布电容 线圈的匝与匝间、线圈与屏蔽罩间、线圈与底版间存在的电容被称为分布电容。分布电容的存在使线圈的Q值减小,稳定性变差,因而线圈的分布电容越小越好。采用分段绕法可减少分布电容。

各种电感计算公式

导线线径与电流规格表 绝缘导线(铝芯/铜芯)载流量的估算方法 以下是绝缘导 线(铝芯/铜芯)载流量的估算 方法,这是电工基础,今天把这些知识教给大家,以便计算车上的导线允许通过的电流.(偶原在福建省南平供电局从事电能计量工作) 铝芯绝缘导线载流量与截面的倍数关系 导线截面(平方 毫米) 1 1.5 2.5 4 6 10 16 25 35 50 70 95 120 载流量(A 安培) 9 14 23 32 48 60 90 100 123 150 210 238 300 载流是截面倍数 9 8 7 6 5 4 3.5 3 2.5 表格为导线在不同温度下的线径与电流规格表。 (请注意:线材规格请依下列表格,方能正常使用)

估算口诀:二点五下乘以九,往上减一顺号走。三十五乘三点五,双双成组减点五。(看不懂没关系,多数情况只要查上表就行了)。条件有变加折算,高温九折铜升级。穿管根数二三四,八七六折满载流。说明:(1)本节口诀对各种绝缘线(橡皮和塑料绝缘线)的载流量(安全电流)不是直接指出,而是“截面乘上一定的倍数”来表示,通过心算而得。由表5 3可以看出:倍数随截面的增大而减小。“二点五下乘以九,往上减一顺号走”说的是2.5mm’及以下的各种截面铝芯绝缘线,其载流量约为截面数的9倍。如2.5mm’导线,载流量为2.5×9=22.5(A)。从4mm’及以上导线的载流量和截面数的倍数关系是顺着线号往上排,倍数逐次减l,即4×8、6×7、10×6、16×5、25×4。“三十五乘三点五,双双成组减点五”,说的是35mm”的导线载流量为截面数的3.5倍,即35×3.5=122.5(A)。从50mm’及以上的导线,其载流量与截面数之间的倍数关系变为两个两个线号成一组,倍数依次减0.5。即50、70mm’导线的载流量为截面数的3倍;95、120mm”导线载流量是其截面积数的2.5倍,依次类推。“条件有变加折算,高温九折铜升级”。上述口诀是铝芯绝缘线、明敷在环境温度25℃的条件下而定的。若铝芯绝缘线明敷在环境温度长期高于25℃的地区,导线载流量可按上述口诀计算方法算出,然后再打九折即可; 铜芯绝缘线,它的载流量要比同规格铝线略大一些,可按上述口诀方法算出比铝线加大一个线号的载流量。如16mm’铜线的载流量,可按25mm2铝线计算。

相关文档
最新文档