差动变压器的性能实验

差动变压器的性能实验
差动变压器的性能实验

传感器技术

实验报告

实验序号:实验十二

系别:电子通信工程系

班级: ********班

组别:第一组

成员:7 ****** 实验操作

5 ****** 实验阅读

8 ******* 实验记录

2015年3月23日

实验十二 差动变压器的性能实验

一、实验目的:

了解差动变压器的工作原理和特性。

二、基本原理:

差动变压器由一只初级线圈和两只次级线圈及一个铁芯组成(铁芯在可移动杆的一端),根据内外层排列不同,有二段式和三段式,本实验采用三段式结构。当传感器随着被测体移动时,由于初级线圈和次级线圈之间的互感发生变化,促使次级线圈感应电势产生变化,一只次级感应电势增加,另一只感应电势则减少,将两只次级线圈反向串接(同名端连接),就引出差动输出。其输出电势反映出被测体的移动量。

三、需用器件与单元:

差动变压器实验模块、测微头、双线示波器、差动变压器、音频信号源(音频振荡器)、直流电源、万用表。

四、实验步骤:

1、根据图3-1,将差动变压器装在差动变压器实验模块上。

接第一通道示波器接第二通道示

波器

插座管脚编号

图3-2 双线示波器与差动变压器连接示意图

图3-1 差动变压器电容传感器安装示意

2、在模块上按照图3-2接线,音频振荡器信号必须从主控箱中的L

V

端子输

出,调节音频振荡器的频率,输出频率为5~10KHz(可用主控箱的数显表的频率

档f

i

输入来监测,实验中可调节频率使波形不失真)。调节幅度使输出幅度为峰

-峰值V

p-p =2V(可用示波器监测:X轴为div、Y轴CH

1

为1V/div、CH

2

为div)。

判别初次级线圈及次级线圈同名端方法如下:设任一线圈为初级线圈(1和2实验插孔作为初级线圈),并设另外两个线圈的任一端为同名端,按图3-2接线。当铁芯左、右移动时,观察示波器中显示的初级线圈波形,次级线圈波形,当次级波形输出幅值变化很大,基本上能过零点(即3和4实验插孔),而且相位与初

级线圈波形(L

V 音频信号V

p-p

=2V波形)比较能同相和反相变化,说明已连接的

初、次级线圈及同名端是正确的,否则继续改变连接再判断直到正确为止。图中

(1)、(2)、(3)、(4)为模块中的实验插孔。)

3、旋动测微头,使示波器第二通道显示的波形峰-峰值V

p-p

为最小。这时可

以左右位移,假设其中一个方向为正位移,则另一个方向位移为负。从V

p-p

最小

开始旋动测微头,每隔0.5mm从示波器上读出输出电压V

p-p

值填入表3-1。再从

V

p-p

最小处反向位移做实验,在实验过程中,注意左、右位移时,初、次级波形的相位关系。

表3-1 差动变压器位移ΔX值与输出电压V

p-p

数据表

4、实验过程中注意差动变压器输出的最小值即为差动变压器的零点残余电

压大小。根据表3-1画出V

op-p

-X曲线,作出量程为±4mm、±6mm灵敏度和非线性误差。

V

-X曲线

op-p

-X 左半轴拟合直线

V

op-p

-X 右半轴拟合直线

V

op-p

在-4mm,-6mm处,灵敏度为;非线性误差为δf1=y

? F ?=%;

m/

在+4mm,+6mm处,灵敏度为;非线性误差为δf1=y

? F ?S= %;

m/

五、实验总结:

通过对实验数据的作图及分析,可以看出差动变压器位移ΔX值与输出电压

V

近似成线性关系;经过这一次的实验,初步认识了差动变压器。了解了差动p-p

变压器的构成与原理,增加了我对传感器课程学习的渴望,进一步训练了我们的

动手能力。

(一) 差动变压器的性能实验

实验三电磁式传感器 (一)差动变压器的性能实验 一、实验目的:了解差动变压器的工作原理和特性。 二、基本原理:差动变压器同一只初级线圈和二只次级线圈及一个铁芯组成,根据内外层排列不同,有二段式 和三段式,本实验采用三段式结构。当传感器随着被测体移动时,由于初级线圈和次级线圈之间的互感发生变化促使次级线圈感应电势产生变化,一只次级感应电势增加,另一只感应电势则减少,将两只次级反向串接(同名端连接),就引出差动输出。其输出电势反映出被测体的移动量。 三、需用器件与单元:差动变压器实验模板、测微头、双线示波器、差动变压器、电感式传感器、音频信号源 (音频振荡器)、直流电源、万用表。 四、实验步骤: 1、根据图3-1,将差动变压器装在差动变压器实验模板上。 图3-1 差动变压器电容传感器安装示意图 2、在模块上近图3-2接线,音频振荡器信号必须从主控箱中的L v端子输出,调节音频振荡器的频率,输出频率 为4~5KHz(可用主控箱的数显表的频率档Fin输入来监测)。调节幅度使输出幅度为峰一峰值 V p-p=2V(可用示波器监测:X轴为0.25ms/div、Y轴CH1为1V/div、CH2为20mv/div)。判别初次级线圈及次级线圈同名端方法如下:设任一线圈为初级线圈,并设另外两个线圈的任一端为同名端,按图3-2接线。当铁芯左、右移动时,观察示波器中显示的初级线圈波形,次级线圈波形,当次级波形输出幅值变化很大,基本上能过零点,而且相位与初级圈波形(L v音频信号V p-p=2V波形)比较能同相和反相变化,说明已连接的初、次级线圈及同名端是正确的,否则继续改变连接再判别直到正确为止。图中(1)、(2)、(3)、(4)为模块中的实验插孔。 图3-2 双线示波与差动变压器连结示意图

差动保护的工作原理

1、变压器差动保护的工作原理 与线路纵差保护的原理相同,都是比较被保护设备各侧电流的相位和数值的大小。 2、变压器差动保护与线路差动保护的区别: 由于变压器高压侧和低压侧的额定电流不相等再加上变压器各侧电流的相位往往不相同。因此,为了保证纵差动保护的正确工作,须适当选择各侧电流互感器的变比,及各侧电流相位的补偿使得正常运行和区外短路故障时,两侧二次电流相等。例如图8-5所示的双绕组变压器,应使 8.3.2变压器纵差动保护的特点 1 、励磁涌流的特点及克服励磁涌流的方法 (1)励磁涌流:

在空载投入变压器或外部故障切除后恢复供电等情况下在空载投入变压器或外部故障切除后恢复供电等情况下,变压器励磁电流的数值可达变压器额定6~8倍变压器励磁电流通常称为励磁涌流。 (2)产生励磁涌流的原因 因为在稳态的情况下铁心中的磁通应滞后于外加电压90°,在电压瞬时值u=0瞬间合闸,铁芯中的磁通应为-Φm。但由于铁心中的磁通不能突变,因此将出现一个非周期分量的磁通+Φm,如果考虑剩磁Φr,这样经过半过周期后铁心中的磁通将达到2Φm+Φr,其幅值为如图8-6所示。此时变压器铁芯将严重饱和,通过图8-7可知此时变压器的励磁电流的数值将变得很大,达到额定电流的6~8倍,形成励磁涌流。

(3)励磁涌流的特点: ①励磁电流数值很大,并含有明显的非周期分量,使励磁电流波形明显偏于时间轴的一侧。

②励磁涌流中含有明显的高次谐波,其中励磁涌流以2次谐波为主。 ③励磁涌流的波形出现间断角。 表8-1 励磁涌流实验数据举例 (4)克服励磁涌流对变压器纵差保护影响的措施: 采用带有速饱和变流器的差动继电器构成差动保护; ②利用二次谐波制动原理构成的差动保护; ③利用间断角原理构成的变压器差动保护; ④采用模糊识别闭锁原理构成的变压器差动保护。 2、不平衡电流产生的原因 (1)稳态情况下的不平衡电流

差动变压器的性能实验

差动变压器的性能实验 一、实验目的:了解差动变压器的工作原理和特性。 二、基本原理:差动变压器的工作原理电磁互感原理。差动变压器的结构如图所示,由一个一次绕组1和二个二次绕组2、3及一个衔铁4组成。差动变压器一、二次绕组间的耦合能随衔铁的移动而变化,即绕组间的互感随被测位移改变而变化。由于把二个二次绕组反向串接(*同名端相接),以差动电势输出,所以把这种传感器称为差动变压器式电感传感器,通常简称差动变压器。 当差动变压器工作在理想情况下(忽略涡流损耗、磁滞损耗和分布电容等影响),它的等效电路如图所示。图中U1为一次绕组激励电压;M1、M2分别为一次绕组与两个二次绕组间的互感:L1、R1分别为一次绕组的电感和有效电阻;L21、L22分别为两个二次绕组的电感;R21、R22分别为两个二次绕组的有效电阻。对于差动变压器,当衔铁处于中间位置时,两个二次绕组互感相同,因而由一次侧激励引起的感应电动势相同。由于两个二次绕组反向串接,所以差动输出电动势为零。当衔铁移向二次绕组L21,这时互感M1大,M2小, 差动变压器的结构示意图差动变压器的等效电路图 因而二次绕组L21内感应电动势大于二次绕组L22内感应电动势,这时差动输出电动势不为零。在传感器的量程内,衔铁位移越大,差动输出电动势就越大。同样道理,当衔铁向二次绕组L22一边移动差动输出电动势仍不为零,但由于移动方向改变,所以输出电动势反相。因此通过差动变压器输出电动势的大小和相位可以知道衔铁位移量的大小和方向。由图可以看出一次绕组的电流为: 二次绕组的感应动势为: 由于二次绕组反向串接,所以输出总电动势为:

其有效值为: 差动变压器的输出特性曲线如图所示.图中E21、E22分别为两个二次绕组的输出感应电动势,E2为差动输出电动势,x表示衔铁偏离中心位置的距离。其中E2的实线表示理想的输出特性,而虚线部分表示实际的输出特性。E0为零点残余电动势,这是由于差动变压器制作上的不对称以及铁心位置等因素所造成的。零点残余电动势的存在,使得传感器的输出特性在零点附近不灵敏,给测量带来误差,此值的大小是衡量差动变压器性能好坏的重要指标。为了减小零点残余电动势可采取以下方法: 差动变压器输出特性 1、尽可能保证传感器几何尺寸、线圈电气参数及磁路的对称。磁性材料要经过处理,消除内部的残余应力,使其性能均匀稳定。 2、选用合适的测量电路,如采用相敏整流电路。既可判别衔铁移动方向又可改善输出特性,减小零点残余电动势。 3、采用补偿线路减小零点残余电动势。下图是其中典型的几种减小零点残余电动势的补偿电路。在差动变压器的线圈中串、并适当数值的电阻电容元件,当调整W1、W2时,可使零点残余电动势减小。 (a) (b) (c) 减小零点残余电动势电路

差动变压器的性能(自检实验二)

实 验 报 告 实验项目名称:差动变压器的性能 同组人 试验时间 年 月 日,星期 , 节 实验室 K2,508传感器实验室 指导教师 一、 实验目的 了解差动变压器原理、位移特性、零点残余电压补偿方法、振动测量的方法。 二、 实验原理 差动变压器是把被测的非电量变化转换成线圈互感量得变化。这种传感器是根据变压器的基本原理制成的,并且次级绕组用差动的形式连接,故称之为差动变压器。 图2.1 螺线管式差动变压器 如图2.1所示,1-活动衔铁;2-导磁外壳;3-骨架;4-匝数为W 1初级绕组;5-匝数为W 2a 次级绕组;6-匝数W 2b 次级绕组。 设1U ? 为一次一次绕组激励电压;1M 、2M 分别为一次绕组与两个二次绕组间的互感;1L 为一次绕组的电感;1r 为一次绕组的有效电阻。 当次级开路时,初级线圈激励电流为: 1 111 U I r j L ω? ? = + 根据电磁感应定律,两个次级绕组的感应电动势分别为: 211a E j M I ω? ? =-、221b E j M I ω? ? =- 次级绕组反相串联后的电势差为: 121 22211 ()a b j M M U U E E r j L ωω? ? ? ? -=-=- +

由上面公式可得差动变压器输出电压特性,如图2.2 图2.2 差动变压器输出电压特性曲线 差动变压器往往会产生零点残余电压,主要原因是: 1、由于两个二次测量线圈的等效参数不对称,使其输出的基波感应电动势的 幅值和相位不同,调整磁芯位置时,也不能达到幅值和相位同时相同。 2、由于铁芯的B-H特性的非线性,产生高次谐波不同,不能相互抵消。 为减小零点残余电压,我们一般会做如下措施: 1、在设计和工艺上,力求做到磁路对称,线圈对称,铁芯材料均匀。 2、在电路上进行补偿,一般会加串联电阻、并联电容、反馈电阻或反馈电容 等。 三、所需单元及部件: 1、STIM-01模块、STIM-08模块、STIM-02模块、STIM-03模块、差动变压器。 2、1-10KHZ音频信号、1-30HZ低频信号、示波器。 3、电子连线若干。 四、实验步骤: 1、(1)将信号发生器LF/AF按钮置于AF位置,并用示波器观察输出波形,将输出波形频率调节到4KHZ,幅值调节调节至Vp-p=5V。 (2)按图30.3连接好各实验模块,接上各模块电源。

变压器差动保护

变压器差动保护 一:这里讲的是差动保护的一种,即变压器比例制动式完全纵差保护(以下简称差动); 二:差动保护的定义 由于在各种参考书中没有找到差动保护的具体定义,这里只根据自己所掌握的知识给差动保护下一个定义:当区内发生某些短路性故障的时候,在变压器各侧电流互感器CT的二次回路中将产生大小相同,相位不同的短路电流,当这些短路电流的向量和即差流达到一定值时,跳开变压器各侧断路器的保护,就是变压器差动保护 三:下面我以两圈变变压器为例,针对以上所述变压器差动保护的定义,对差动保护进行阐述: 1、图一所示:为一两圈变变压器,具体参数如下:主变高压侧电压U高 =220KV,主变低压侧电压U低=110KV,变压器容量Sn=240000KV A, I1’:流过变压器高压侧的一次电流; I”:流过变压器低压侧的一次电流; I2’:流过变压器高压侧所装设电流互感器即CT1的二次电流; I2”:流过变压器低压侧所装设电流互感器即CT1的二次电流; nh:高压侧电流互感器CT1变比; nl:低压侧电流互感器CT2变比; nB:变压器的变比; 各参数之间的关系:I1’/ I2’= nh I”/ I2”= nl I2’= I2”I1’/ I”= nh/ nl=1/ nB 2、区内:CT1到CT2的范围之内; 3、反映故障类型:高压侧内部相间短路故障,高压侧(中性点直接接地) 单相接地故障以及匝间、层间短路故障;

四:差动的特性 1、比率制动:如图二所示,为差动保护比率特性的曲线图: 下面我们就以上图讲一下差动保护的比率特性: o:图二的坐标原点; f:差动保护的最小制动电流; d:差动保护的最小动作电流; p:比率制动斜线上的任一点; e:p点的纵坐标; b:p点的横坐标; 动作区:在of范围内,由于电流小于最小制动电流,因此在此范围内,只要电流大于最小动作电流Iopo,差动保护动作;当电流大于f点时, 由于电流大于最小制动电流,此时保护开始进行比率制动运算,曲 线抬高,此时只有当电流在比率制动曲线以上时保护动作;因此, 图中阴影部分,即差动保护的动作区; 制动区:当电流在落在曲线以下而大于最小动作电流的时候,由于受比率制动系数的制约,保护部动作,这个区域就是差动保护的制动区; 比率制动系数K:实际上比率制动系数,就是图二中斜线的斜率,因此我们只要计算出此斜线的斜率,就等于算出了比率制动系数。以p点为 例:计算出斜线pc的斜率K=pa/ac=(pb-ab)/(ob-of);举例说明一下: 差动保护有关定值整定如下:最小动作电流Iopo=2,最小制动电流 Iopo=5,比率制动系数k=0.5;按照做差动保护比率制动系数的方法, 施加高压侧电流I1=6A,180度,低压侧电流I2=6A,0度,固定I1升 I2,当I2升到9.4A的时候保护动作,计算一下此时的比率制动系数。 由于两圈变差动的制动电流为(I1+I2)/2,因此,Izd=(9.4+6)/2=7.7, 所以K=(9.4-6-2)/(7.7-5)=1.4/2.7=0.52; 2、谐波制动:当差动电流中的谐波含量达到一定值的时候,我们的装置就 判此电流为非故障电流,进行谐波闭锁。500kv一下等级的变压器之

差动变压器及应用

差动变压器及其应用 一、差动变压器简介(摘自日刊《传感器技术》1986年5月专号) 差动变压器是一种将机械位移变换成电信号的电磁感应式位移传感器。它主要是靠圆筒线圈内的可动铁芯的位移,在圆筒线圈的输入线圈和输出线圈之间建立起相互感应关系,可动铁芯的位移可以通过测定与其成正比的输出线圈的感应电压来获得。 1、差动变压器的特点 (1)线性范围的种类很多,容易根据用途进行选择,通常在±2mm~±200mm级之间有10个左右类型的品种。 (2)结构简单,所以耐振性和耐冲击性都很强。 (3)不磨损,不变质,耐久性优良。 (4)输出电压对铁心的位移有精确的比例,即直线性好。一般这种传感器中全行程偏差小于1%,在高档品可以保证在±0.2%~±0.3%。 (5)因为灵敏度高,可以获得大的输出电压,不要求外围电路高级化也能检测到微小的位移。 (6)因为输出变化平滑,故能进行高分辨率的检测。 (7)零点稳定,以其作为测定的基准点对维持精度有好处。 (8)能够得到从500Hz到100Hz的高的响应速度。 2、差动变压器原理 差动变压器的构造原理如图1-1所示,由圆筒形线圈和与其完全分离的铁芯构成。典型的差动变压器的圆筒线圈有三只,各是总长度的三分之一,中间是一次线圈,两侧是二次线圈。加入圆筒线圈中的铁芯用来在线圈中链接磁力线而构成磁路。 当在中间的一次线圈加上交流电压时(即激磁),由于与两端线圈的互感就产生了电动势(这一点与普通变压器相同)。 因为二次线圈彼此极性相反地串联,两个二次线圈中的感应电动势相位相反,将其相加的结果,在输出端产生二者的电位差。相对于线圈长度方向的中心处,两个二次线圈的感应电压大小相等方向相反,因而输出为零。这个位置被称为差动变压器的机械零点(或简称为零点)。当铁芯从零点相某一方向改变位置时,位移方向的二次线圈的电压就增大,另一个二次线圈的电压则减小。 产品设计保证产生的电位差与铁芯的位移成正比。当铁芯从零点向与刚才相反的方向移动

差动变压器的性能实验

传感器技术 实验报告 实验序号:实验十二 系别:电子通信工程系 班级: ********班 组别:第一组 成员:7 ****** 实验操作 5 ****** 实验阅读 8 ******* 实验记录 2015年3月23日

实验十二 差动变压器的性能实验 一、实验目的: 了解差动变压器的工作原理和特性。 二、基本原理: 差动变压器由一只初级线圈和两只次级线圈及一个铁芯组成(铁芯在可移动杆的一端),根据内外层排列不同,有二段式和三段式,本实验采用三段式结构。当传感器随着被测体移动时,由于初级线圈和次级线圈之间的互感发生变化,促使次级线圈感应电势产生变化,一只次级感应电势增加,另一只感应电势则减少,将两只次级线圈反向串接(同名端连接),就引出差动输出。其输出电势反映出被测体的移动量。 三、需用器件与单元: 差动变压器实验模块、测微头、双线示波器、差动变压器、音频信号源(音频振荡器)、直流电源、万用表。 四、实验步骤: 1、根据图3-1,将差动变压器装在差动变压器实验模块上。 接第一通道示波器接第二通道示 波器 插座管脚编号 图3-2 双线示波器与差动变压器连接示意图 图3-1 差动变压器电容传感器安装示意

2、在模块上按照图3-2接线,音频振荡器信号必须从主控箱中的L V 端子输 出,调节音频振荡器的频率,输出频率为5~10KHz(可用主控箱的数显表的频率 档f i 输入来监测,实验中可调节频率使波形不失真)。调节幅度使输出幅度为峰 -峰值V p-p =2V(可用示波器监测:X轴为div、Y轴CH 1 为1V/div、CH 2 为div)。 判别初次级线圈及次级线圈同名端方法如下:设任一线圈为初级线圈(1和2实验插孔作为初级线圈),并设另外两个线圈的任一端为同名端,按图3-2接线。当铁芯左、右移动时,观察示波器中显示的初级线圈波形,次级线圈波形,当次级波形输出幅值变化很大,基本上能过零点(即3和4实验插孔),而且相位与初 级线圈波形(L V 音频信号V p-p =2V波形)比较能同相和反相变化,说明已连接的 初、次级线圈及同名端是正确的,否则继续改变连接再判断直到正确为止。图中 (1)、(2)、(3)、(4)为模块中的实验插孔。) 3、旋动测微头,使示波器第二通道显示的波形峰-峰值V p-p 为最小。这时可 以左右位移,假设其中一个方向为正位移,则另一个方向位移为负。从V p-p 最小 开始旋动测微头,每隔0.5mm从示波器上读出输出电压V p-p 值填入表3-1。再从 V p-p 最小处反向位移做实验,在实验过程中,注意左、右位移时,初、次级波形的相位关系。 表3-1 差动变压器位移ΔX值与输出电压V p-p 数据表 4、实验过程中注意差动变压器输出的最小值即为差动变压器的零点残余电 压大小。根据表3-1画出V op-p -X曲线,作出量程为±4mm、±6mm灵敏度和非线性误差。

变压器差动保护

第二节变压器差动保护 1.概述 电气主设备内部故障的主保护方案之一是差动保护,差动保护在发电机上的应用是比较简单的,但是作为变压器内部故障的主保护,差动保护将有许多特点和困难。 变压器有两个和更多个电压等级,构成差动保护所用电流互感器的额定参数各不相同,由此产生的差动保护不平衡电流将比发电机大得多。 变压器每相原副边电流之差(正常运行时的励磁涌流)将作为变压器差动保护不平衡电流的一种来源,特别是当变压器过励磁运行时,励磁电流可达变压器额定电流的水平,势必引起差动保护误动作。更有甚者,在空载变压器突然合闸时,或者变压器外部短路被切除而变压器端电压突然恢复时,暂态励磁电流(即励磁涌流)的大小可与短路电流相比拟,在这样大的不平衡电流下,要求差动保护不误动,是一个相当复杂困难的技术问题。 正常运行中的变压器,根据电力系统的要求,需要调节分接头,这又将增大变压器差动保护的不平衡电流。 变压器差动保护能反应高、低压绕组的匝间短路,而匝间短路时虽然短路环中的电流很大,但流入差动保护的电流可能不大。 变压器差动保护还应能反应高压侧(中性点直接接地系统)经高阻接地的单相短路,此时故障电流也较小。 综上所述,差动保护用于变压器,一方面由于各种因素产生较大和很大的不平衡电流,另一方面又要求能反应具有流出电流的轻微匝间短路,可见变压器差动保护要比发电机差动保护复杂得多。 2.配置原则 对变压器引出线、套管及内部的短路故障,应装设相应的保护装置,并应符合下列规定: (1) 10MVA及以上的单独运行变压器和6.3MVA及以上的并列运行变压器,应装设纵联差动 保护。6.3MVA及以下单独运行的重要变压器,亦可装设纵联差动保护。 (2) 10MVA以下的变压器可装设电流速断保护和过电流保护。2MVA及以上的变压器,当电 流速断灵敏系数不符合要求时,宜装设纵联差动保护。 (3) 0.4MVA及以上,一次电压为10kV及以下,线圈为三角-星形连接的变压器,可采用两 相三继电器式的过流保护。 (4) 以上所述各相保护装置,应动作于断开变压器的各侧断路器。 3.要求达到的性能指标 (1) 具有防止区外故障误动的制动特性; (2) 具有防止励磁涌流引起误动的功能; (3) 宜具有TA断线判别功能,并能选择闭锁差动或报警,当电流超过额定电流的 1.5~2倍 时可自动解除闭锁; (4) 动作时间(2倍整定值时)不大于50ms; (5) 整定值允差±5%。 4.原理及其微机实现 4.1四方 4.1.1 保护原理 变压器差动包括主变差动、发变组差动、厂用变差动、起/备变差动、励磁变差动等,对于高压侧为500kV的一个半开关接线方式,发变组差动及主变差动保护应反应四侧的电流量。

实验2 差动变压器位移性能实验

差动变压器位移性能实验 一、实验目的: 了解差动变压器的工作原理和特性。 二、基本原理: 差动变压器如图(3-1),由一只初级线圈和二只次级线圈及一个铁芯组成,根据内外层排列不同,有二段式和三段式,本实验采用三段式结构。在传感器的初级线圈上接入高频交流信号,当初、次中间的铁芯随着被测体移动时,由于初级线圈和次级线圈之间的互感磁通量发生变化促使两个次级线圈感应电势产生变化,一只次级感应电势增加,另一只感应电势则减少,将两只次级线圈反向串接(同名端连接),在另两端就能引出差动电势输出,其输出电势的大小反映出被测体的移动量。 图(3-1) 三、需用器件与单元: 差动变压器、差动变压器实验模块、测微头、双踪示波器、音频振荡器、直流稳压电源、数字电压表。 四、实验步骤: 1、根据图(3-2),将差动变压器装在差动变压器实验模块上。 2、在模块上如图(3-3)接线,音频振荡器信号必须从主控箱中的Lv端子输出,调节音频振荡器的频率旋钮,输出频率为4~5KHz(可用主控箱的数显频率表来监测),调节幅度旋钮使输出幅度为Vp-p=2V—5V 之间(可用示波器监测),模块上L1表示初级线圈,L2、L3表示两个次级线圈且同名端相连。

图(3-2)差动变压器/电容传感器安装示意图 图(3-3) 3、将测微头旋至10mm处,,调整测微头的左右位置,使之与差动变压器活动杆吸合并且使示波器第二通道显示的波形值Vp-p为最小,然后将测量支架顶部的镙钉拧紧固定住测微头;这时就可以进行位移性能实验了,假设其中一个方向为正位移,则另一方向为负位移。 4、从Vp-p最小处开始旋动测微头,每隔0.2或0.5mm从示波器上读出电压Vp-p值并填入表(3-1),直到测微头旋至20mm处。 4、测微头旋回到Vp-p最小处并反向旋转测微头,隔0.2或0.5mm从示波器上读出电压Vp-p值并填入表(3-1),在实验过程中注意观察两个不同方向位移时初、次级波形的相位关系。 表(3-1):差动变压器位移ΔX值与输出电压Vp-p数据表

变压器差动保护的基本原理及逻辑图

变压器差动保护的基本原理及逻辑图 1、变压器差动保护的工作原理 与线路纵差保护的原理相同,都是比较被保护设备各侧电流的相位和数值的大小。 2、变压器差动保护与线路差动保护的区别: 由于变压器高压侧和低压侧的额定电流不相等再加上变压器各侧电流的相位往往不相同。因此,为了保证纵差动保护的正确工作,须适当选择各侧电流互感器的变比,及各侧电流相位的补偿使得正常运行和区外短路故障时,两侧二次电流相等。例如图8-5所示的双绕组变压器 8.3.2变压器纵差动保护的特点 1 、励磁涌流的特点及克服励磁涌流的方法 (1)励磁涌流: 在空载投入变压器或外部故障切除后恢复供电等情况下在空载投入变压器或外部故障切除后恢复供电等情况下,变压器励磁电流的数值可达变压器额定6~8倍变压器励磁电流通常称为励磁涌流。 (2)产生励磁涌流的原因 因为在稳态的情况下铁心中的磁通应滞后于外加电压90°,在电压瞬时值u=0瞬间合闸,铁芯中的磁通应为-Φm。但由于铁心中的磁通不能突变,因此将出现一个非周期分量的磁通+Φm,如果考虑剩磁Φr,这样经过半过周期后铁心中的磁通将达到2Φm+Φr,其幅值为如图8-6所示。此时变压器铁芯将严重饱和,通过图8-7可知此时变压器的励磁电流的数值将变得很大,达到额定电流的6~8倍,形成励磁涌流。

(3)励磁涌流的特点: ①励磁电流数值很大,并含有明显的非周期分量,使励磁电流波形明显偏于时间轴的一侧。

②励磁涌流中含有明显的高次谐波,其中励磁涌流以2次谐波为主。 ③励磁涌流的波形出现间断角。 表8-1 励磁涌流实验数据举例 (4)克服励磁涌流对变压器纵差保护影响的措施: ①采用带有速饱和变流器的差动继电器构成差动保护; ②利用二次谐波制动原理构成的差动保护; ③利用间断角原理构成的变压器差动保护; ④采用模糊识别闭锁原理构成的变压器差动保护。 2、不平衡电流产生的原因 (1)稳态情况下的不平衡电流 ①变压器两侧电流相位不同 电力系统中变压器常采用Y,d11接线方式,因此,变压器两侧电流的相位差为30°,如下图所示,Y侧电流滞后△侧电流30°,若两侧的电流互感器采用相同的接线方式,则两侧对应相的二次电流也相差30°左右,从而产生很大的不平衡电流。 ②电流互感器计算变比与实际变比不同 由于变比的标准化使得其实际变比与计算变比不一致,从而产生不平衡电流。

实验十____差动变压器性能

实验十差动变压器性能 实验目的:了解差动变压器原理及工作情况。 所需单元及部件: 音频振荡器、测微头、示波器、主副电源、差动变压器、振动平台。 有关旋钮初始位置: 音频振荡器4KHZ~8KHZ之间,双线示波器第一通道灵敏度500mv/div ,第二通道灵敏度10mv/div,触发选择打到第一通道,主、副电源关闭。 实验步骤: 1.根据图2-6接线,将差动变压器、音频振荡器(必须L V输出)、双线示波器连接起来,组成一个测量线路。开启主、副电源,将示波器探头分别接至差动变压器的输入端和输出端,观察差动变压器源边线圈音频振荡器激励信号峰峰值为2V。 图2-6 2.转动测微头使测微头与振动平台吸合。再向上转动测微头5mm,使振动平台往上位移。 往下旋动测微头,使振动平台产生位移。每位移0.2mm,用示波器读出差动变压器输出端的峰峰值填入下表,根据所得数据计算灵敏度S。S=ΔV/ΔX(式中ΔV为电压变化,ΔX为相应振动平台的位移变化),作出V-X关系曲线。

灵敏度S=ΔV/ΔX=(481-285)/(5+2)=28 思考: 1.根据实验结果,指出线性范围。 2.当差动变压器中磁棒的位置由上到下变化时,双线示波器观察到的波形相位会发生怎样的变化? 答:零点残余电压的波形十分复杂,主要是基波和高次谐波组成。基波的产生主要是传感器的两次级绕组的电器参数,几何尺寸不对称,导致它们产生的感应电势幅值不等、相位不同,因此不论怎样调整衔铁位置,两线圈中感应电势都不能完全抵消。高次谐波中起主要作用的是三次谐波,产生的原因是由于磁性材料磁化曲线的非线性(磁饱和、磁带)。 3.用测微头调节振动平台位置,使示波器上观察到的差动变压器的输出端信号为最小,这个最小电压称作什么?由于什么原因造成? 答:最小电压被称为零点残余电压。当活动衔铁向上移动时,同于磁阻的影响,ω2a 中磁通将大于ω2b,使M1>M2,因而E2增加,而E2b减小。反之,E2b 增加,E2a减小,因为U2=E2a-E2b,所以当E2a、E2b 随着衔铁位移x 变化时,U2 也必将随x 变化。下图给出了变压器输出电压U2 与活动衔铁位移x 的关系曲线。实际上,当衔铁位于中心位置时,差动变压器输出电压并不等于零,我们把差动变压器在零位移时的输出电压称为零点残余电压,记作Ux,它的存在使传感器的输出特性曲线不过零点,造成实际特性与理论特性不完全一致。零点残余电压的产生的原因主要是传感器的两次级绕组的电气参数与几何尺寸不对称,以及磁性材料的非线性等问题引起的。

变压器差动保护的平衡系数

变压器微机差动保护平衡系数说明 1、影响变压器差动保护差流计算的因素 1)、变压器高低压侧电流幅值不同造成的不平衡。由于变压器高低压侧电压等级不同,所以变压器高低压侧的电流幅值不同。 2)、变压器高低压侧电流相位不同造成的不平衡。由于变压器接线方式导致高低压侧电压的相位不同,所以变压器高低压侧的电流相位也不同。 3)、变压器高低压侧电流互感器的不匹配造成的不平衡。由于电流互感器的变比是一个标准的数值,而变压器虽然容量是一个标准值,但其额定电流是一个不规则的数,所以,电流互感器的选择并不考虑其对差流的影响。 2、消除电流不平衡的方法 1)、通过引入平衡系数消除高低压侧电流幅值不同及高低压侧电流互感器不匹配造成的不平衡。 2)、根据变压器高低压侧电流的相位关系,通过数学公式的计算,消除变压器高低压侧电流相位不同造成的不平衡。 3、平衡系数概念和计算方法 1)、概念:两个不同单位或相同单位而基准不同的物量归算到同一单位或同一基准时所用到的比例系数就是平衡系数。举例如下: a、一斤大米3元,一斤白面2元,归算到大米侧,白面的平衡系数为2/3。 b、一斤大米3元,一斤白面2元,归算到白面侧,大米的平衡系数为3/2。 c、一斤大米3元,一斤白面2元,一斤鸡蛋4元,归算到鸡蛋侧,大米的平衡系数为3/4,白面的平衡系数为1/2。 2)、计算方法

主变的型号为100000kVA-110kV/35kV,高压侧一次额定电流:Ieg1=524.9A,低压侧一次额定电流:Ie d1=1649.6A,高压侧电流互感器变比:800/5,低压侧电流互感器变比:2000/1。 a、以高压侧电流互感器为基准,把高压侧电流互感器折算到低压侧。 I12=800*110/35=2514.3A,K ph2=2000/ I12=2000/2514.3=0.80。 b、以低压侧电流互感器为基准,把低压侧电流互感器折算到高压侧。 I21=2000*35/110=636.4A,K ph1=800/ I21=800/636.4=1.26。 c、以变压器额定电流为基准,把高低压侧电流互感器折算到额定电流侧。 K ph1=800/Ieg1=800/524.9=1.52, K ph2=2000/Ie d1=2000/1649.6=1.21。 举例验证: 高压侧一次电流Ig1=450A,低压侧一次电流Id2=1414.3A。 高压侧二次电流实际采样为:Ig2=Ig1/800=450/800=0.5625; 低压侧二次电流实际采样为:I d2=I d1/2000=1414.3/2000=0.7072; a、以高压侧电流互感器为基准,把高压侧电流互感器折算到低压侧,K ph2=0.80。 I12=800*110/35=2514.3A,K ph1=2000/ I12=2000/2514.3=0.80 差流I d= Ig2*1-I d1* K ph2=0.5625*1-0.7072*0.80=0.00326≈0。 b、以低压侧电流互感器为基准,把低压侧电流互感器折算到高压侧,K ph1=1.26。 I21=2000*35/110=636.4A,K ph1=800/ I21=800/636.4=1.26 差流I d= Ig2* K ph1-I d1*1 =0.5625*1.26-0.7072*1=0.00326≈0。 c、以变压器额定电流为基准,把高低压侧电流互感器折算到额定电流侧。 差流I d= Ig2*K ph1-I d2*K ph2=0.5625*1.52-0.7072*1.21=0.000712≈0。 4、数学公式的计算方法

35kv变压器差动保护分析

摘要变压器的差动保护是反应变压器各端电流互感器二次电流流入差动继电器的电流差而动作的。在保护范围内无故障时,差动继电器内不平衡电流应接近于零。但在某些情况下,保护范围内无故障时差动继电器内仍有较大的不平衡电流。本文对变压器差动保护的这个特点进行介绍,并简单分析了变压器差动保护两种误动作的原因。 关键词变压器差动保护不平衡电流误动原因分析 引言差动保护是用某种通信通道将电气设备两端的保护装置纵向联接起来,并将两端的电气量进行比较,从而判断保护是否动作。根据基尔霍夫定律,保护范围内流入与流出的电流应该相等(变压器应该归算到同侧)。当保护范围内发生故障时,其流入与流出的电流就不相等了。差动保护就是根据这个不平衡电流动作的。因此,这种保护方法有很高的动作选择性和灵敏度,适用于保护大容量、强电流、高电压及对灵敏度要求高的电气设备。所以,这种方法广泛用于保护大容量、高电压的变压器,并以其优越的保护性能成为大容量、高电压变压器的主要保护方法。然而值得注意的是,由于变压器在结构和运行上具有一些特点,因此在实际运行中保护范围内无故障时,差动保护装置也具有较大的不平衡电流,这种不平衡电流可能引起差动保护装置的误动作。另外,即使考虑了变压器差动保护的这些特点并加以修正,由于这种保护装置的复杂性在有些情况下也常出现一些误动作现象。本文将就变压器差动保护两种误动作的原因加以简单的分析。 一、变压器差动保护的特点 1、变压器励磁涌流的存在 变压器励磁电流(激磁电流)仅流经变压器的某一侧,因此通过电流互感器反应到差动回路中将形成不平衡电流。稳态运行时,变压器的励磁电流不大,只有额定电流的2-5%。在差动范围外发生故障时,由于电压降低,励磁电流减小。所以这两种情况下所形成的不平衡电流都很小,对变压器的差动保护影响不大。 但是,当变压器空载投入和外部故障切除后电压恢复的情况下,则可能出现很大的励磁电流即励磁涌流。这个现象的存在是由于变压器铁心饱和及剩磁的存在引起的,具体分析如下:当二次侧开路而一次侧接入电网时,一次电路的方程为 u1=umcos(wt+α)=i1R1+N1dφ/dt (1) u1:一次电压, um:一次电压的峰值, α:合闸瞬间的电压初相角, R1:变压器一次绕组的电阻, N1:变压器一次绕组的匝数, φ:变压器一次侧磁通。 由于i1R1相对比较小 诜治鏊蔡 坛跏冀锥慰梢院雎圆患?lt;BR>所以 u mcos(wt+α)= N1dφ/dt dφ= ( um/ N1) cos(wt+α) dt 积分,得 φ=( um/ N1) sin(wt+α)+c φ=φm sin(wt+α)+c φm为主磁通峰值,c为积分常数。 设铁芯无剩磁当t=0时,φ=0 所以c=-φmsinα 所以空载合闸磁通为 φ=φm sin(wt+α) -φmsinα(2) 由(2)式可得空载合闸磁通的大小与电压的初相角α有关考虑最不利情况 当α=900时,电压过零

差动变压器的性能及零点残余误差消除实验

实验三差动变压器的性能实验 一、实验目的:了解差动变压器的工作原理和特性。 二、基本原理:差动变压器由一只初级线圈和二只次线圈及一个铁芯组成,根据内外层排 列不同,有二段式和三段式,本实验采用三段式结构。当传感器随着被测体移动时,由于初级线圈和次级线圈之间的互感发生变化促使次级线圈感应电势产生变化,一只次级感应电势增加,另一只感应电势则减少,将两只次级反向串接(同名端连接),就引出差动输出。其输出电势反映出被测体的移动量。 三、需用器件与单元:差动变压器实验模板、测微头、双踪示波器、差动变压器、音频 信号源、直流电源(音频振荡器)、万用表。 四、实验步骤: 1、根据图3-1,将差动变压器装在差动变压器实验模板上。 图3-1差动变压器电容传感器安装示意图 2、在模块上按图3-2接线,音频振荡器信号必须从主控箱中的Lv端子输出,调节音频 振荡器的频率,输出频率为4-5KHz(可用主控箱的频率表输入Fin来监测)。调节输出幅度为峰-峰值Vp-p=2V(可用示波器监测:X轴为0.2ms/div)。图中1、2、3、4、

5、6为连接线插座的编号。接线时,航空插头上的号码与之对应。当然不看插孔号码, 也可以判别初次级线圈及次级同名端。判别初次线图及次级线圈同中端方法如下:设任一线圈为初级线圈,并设另外两个线圈的任一端为同名端,按图3-2接线。当铁芯左、右移动时,观察示波器中显示的初级线圈波形,次级线圈波形,当次级波形输出幅度值变化很大,基本上能过零点,而且相应与初级线圈波形(Lv音频信号Vp-p=2v波形)比较能同相或反相变化,说明已连接的初、次级线圈及同名端是正确的,否则继续改变连接再判别直到正确为止。图中(1)、(2)、(3)、(4)为实验模块中的插孔编号。 3、旋动测微头,使示波器第二通道显示的波形峰-峰值Vp-p为最小,这时可以左右位 移,假设其中一个方向为正位移,另一个方向位称为负,从Vp-p最小开始旋动测微头,每隔0.5mm从示波器上读出输出电压Vp-p值,填入下表3-1,再人Vp-p最小处反向位移做实验,在实验过程中,注意左、右位移时,初、次级波形的相位关系。 图3-2双踪示波器与差动变压器连结示意图 4、实验过程中注意差动变压器输出的最小值即为差动变压器的零点残余电压大小。根据 表3-1画出V op-p-X曲线,作出量程为±1mm、±3mm灵敏度和非线性误差。 表(3-1)差动变压器位移X值与输出电压数据表

关于变压器差动保护研究报告——最终版

关于变压器差动保护装置接线的研究 杨利民炼钢作业部公辅区 摘要:文章就天车滑触线接地短路引起变压器差动保护动作故障,展开对差动保护的原理、变压器接线组别与差动保护CT接线关系以及如何测量变压器接线组别做了简要说明,同时着重从CT、二次线路、保护定值、谐波等方面介绍了防止差动保护误动的措施,最终归纳了差动保护动作后,排除故障的思路。 关键词:差动保护,变压器,CT,接线组别 THE INVESTIGATION ON WIRING OF TRANSFORMER DIFFERENTIAL PROTECTION DEVICE ABSTRACT:This paper makes a simple explain about the principle of differential protection,the relationsbetweenconnection mode of transformer and connection of CT,and how to measure connection mode of transformer on short circuittroubleof cranepower supplyline which works by touching leads to differential protecting of transformer, at the same time it introducesmethod of preventingprotection on CT, control line,protection fixed value, harmonic etc, at last concluding the way of getting rid oftrouble after differential protection. KEYWORDS:DIFFERENTIAL PROTECTION,TRANSFORMER, CT, CONNECTION MODE 0 前言 继电保护是随着电力系统的发展而发展起来的。20世纪初随着电力系统的发展,继电器开始广泛应用于电力系统的保护。从2O世纪5O年代到90年代末,在40余年的时间里,继电保护完成发展的4个阶段,从电磁式保护装置到晶体管式继电保护装置、到集成电路继电保护装置、再到微机继电保护装置。 近年来随着电子技术、计算机技术、通信技术的飞速发展,基于微机的差动保护应用越来越广泛,成为电力工程界越来越关注的课题。文章就施工中存在的真实案例谈一谈差动保护如何接线问题,并对差动保护的灵敏性、可靠性、选择性以及防止勿动的措施作简要的介绍。 1 差动保护误动的现象 炼钢作业部给480T天车供电2#变压器2008年正式投入运行,变压器容量10000kV A,20 08年12月12日、20日,2009年3月7日连续3次天车滑线接地放炮导致差动保护动作跳闸。期间对变压器、高压柜进行多次实验检查,均未发现异常。 2 差动保护误动原因分析 差动保护是继电保护的一种,是根据“电路中流入节点电流的总和等于零”原理制成的。它

一) 差动变压器的性能实验

实验三 电磁式传感器 (一) 差动变压器的性能实验 一、实验目的:了解差动变压器的工作原理和特性。 二、基本原理:差动变压器同一只初级线圈和二只次级线圈及一个铁芯组成,根据内外层排列不同,有二段式 和三段式,本实验采用三段式结构。当传感器随着被测体移动时,由于初级线圈和次级线圈之间的互感发生变化促使次级线圈感应电势产生变化,一只次级感应电势增加,另一只感应电势则减少,将两只次级反向串接(同名端连接),就引出差动输出。其输出电势反映出被测体的移动量。 三、需用器件与单元:差动变压器实验模板、测微头、双线示波器、差动变压器、电感式传感器、音频信号源 (音频振荡器)、直流电源、万用表。 四、实验步骤: 1、根据图3-1,将差动变压器装在差动变压器实验模板上。 图3-1 差动变压器电容传感器安装示意图 2、在模块上近图3-2接线,音频振荡器信号必须从主控箱中的L v 端子输出,调节音频振荡器的频率,输出频率 为4~5KHz(可用主控箱的数显表的频率档Fin 输入来监测)。调节幅度使输出幅度为峰一峰值 V p-p =2V(可用示波器监测:X 轴为0.25ms/div 、Y 轴CH 1为1V/div 、CH 2为20mv/div)。判别初次级线圈及次级线圈同名端方法如下:设任一线圈为初级线圈,并设另外两个线圈的任一端为同名端,按图3-2接线。当铁芯左、右移动时,观察示波器中显示的初级线圈波形,次级线圈波形,当次级波形输出幅值变化很大,基本上能过零点,而且相位与初级圈波形(L v 音频信号V p-p =2V 波形)比较能同相和反相变化,说明已连接的初、次级线圈及同名端是正确的,否则继续改变连接再判别直到正确为止。图中(1)、(2)、(3)、(4)为模块中的实验插孔。 4、实验过程中注意差动变压输出的最小值即为差动变压器的零点残余电压大小。 根据表4-1画出V op-p -X 曲线,作出量程为±1mm 、±3mm 灵敏度和非线性误差。 >> axis([0 7.5 233 336 ]); coords=[0,1.5,3.0,4.5,6.0,7.5;233,248,264,288,312,366]; grid; hold;

变压器差动保护

变压器差动保护 一、差动保护原理 变压器差动保护的动作原理与线路纵差动保护相同,通过比较变压器两侧电流的大小和相位决定保护是否动作,单相原理接线图如图4-4所示。三绕组变压器的差动保护,其原理与图4-4相类似,只是将三侧的“和电流”接人差动继电器KD ,这里不再赘述。 电力系统中,变压器通常采用Y ,dll 接线方式,两侧线电流的相位相差300。如果将变压器两侧同名相的线电流经过电流互感器变换后,直接接入保护的差动 回路,即使两个电流互感器的变比选择合适,使其二次电流数值相等,即21 I I '=',流入差动继电器的电流也不等于零,因此在电流互感器二次采用相位补偿接线和幅值调整。具体为变压器星形侧的三个电流互感器二次绕组采用三角形接线(自然消除了零序电流的影响),变压器三角侧的三个电流互感器二次绕组采用星形接线,将引入差动继电器的电流校正为同相位;同时,二次绕组采用三角形接线的电流互感器变比调整为原来的3倍。微型机变压器差动保护,可以通过软件计算实现相位校正。 1.变压器正常运行或外部故障 根据图4-4(a)所示电流分布,此时流入差动继电器KD 的电流是变压器两侧电流的二次值相量之差,适当选择电流互感器1TA 和2TA 的变比,再经过相位补偿接线和幅值调整,实际流人差动继电器的电流为不平衡电流,继电器不会动作,差动保护不动作。此时流人差动继电器的电流为 unb TA TA KD I n I n I I I I =-=-=? ???''221121 (4—1) 式中 TA n 1——电流互感器1TA 、2TA 的变比; unb I ——流人差动继电器的不平衡电流。 2.变压器内部故障

自动化传感器实验报告五 差动变压器的性能测定

广东技术师范学院实验报告 学院: 自动化学院 专业: 自动化 班级: 08自 动化 成绩: 姓名: 学号: 组别: 组员: 实验地点: 实验日期: 指导教师签名: 实验 五 项目名称: 差动变压器的性能测定 一、实验目的 1.了解差动变压器的工作原理和特性。 2.了解三段式差动变压器的结构。 二、基本原理 差动变压器由一只初级线圈和二只次级线圈及铁芯组成,根据内外层排列不同,有二段式和三段式,本实验采用三段式结构。当传感器随着被测物体移动时,由于初级线圈和次级线圈之间的互感发生变化促使次级线圈感应电势产生变化,一只次级感应电势增加,另一只感应电势则减少,将两只次级反向串接,即同名端接在一起,就引出差动输出,其输出电势则反映出被测体的位移量。 三、需用器件与单元 传感器实验箱(一)、传感器调理电路挂件、测微头、差动变压器、信号源。 四、实验内容与步骤 1.将差动变压器及测微头安装在传感器实验箱(一)的传感器支架上,将“差动式”传感器引线插头插入实验模板的插座中。 2.调节功率信号发生器,使之输出频率为4-5KHz 、幅度为Vp-p=2V 的正弦信号,并用示波器的CH1监视输出。 3.将功率信号发生器的功率输出端接“差动变压器实验”单元激励电压输入端,把“差动变压器实验”单元的输出端3、4接入示波器的CH2,同时接入交流毫伏表。 3.旋动测微头,使示波器第二通道显示的波形Vp-p 为最小,这时可以左右移动旋动测微头,假设其中一个方向为正位移,另一个方向为负位移,从Vp-p 最小开始旋动测微头,每0.2mm 从交流毫伏表上读出输出电压Vp-p 值,填入下表6-1,再从Vp-p 最小处反向位移做实验,在实验过程中,注意左、右位移时,初、次级波形的相位关系。

相关文档
最新文档