干熄焦工艺技术

干熄焦方案设计

目录 1 干熄焦工艺222222222222222222 1 1.1概述222222222222222222222 1 1.2干熄焦装置主要工艺参数(以下为一套干熄焦装置) 1 1.3干熄焦工艺流程2222222222222222 2 1.4干熄焦装置的布置222222222222222 2 1.5主要工艺设备的功能及规格22222222222 2 1.6干熄焦的环保措施22222222222222217 1.7干熄焦工艺温度和压力指标2222222222218 2干熄焦热力系统2222222222222222219 2.1概述22222222222222222222219 2.2干熄焦热力系统的布置222222222222219 3焦处理装置222222222222222222231 3.1概述22222222222222222222311 3.2设施及主要设备222222222222222311 3.3其他22222222222222222222322

1干熄焦工艺 1.1概述 甘肃兴华松迪化工有限公司新建焦炉及配套工程为2355孔JNDK55-07型捣固焦炉,年产焦炭130万吨,小时焦炭产量127.1吨。 为回收红焦的显热﹑降低能耗,减少污染,提高焦炭质量,本工程采用干法熄焦,干熄焦装置的处理能力为23140t/h。先上一套140t/h干熄焦装置,分二期完成。 当干熄焦装置年修或出现故障时,湿熄焦系统作为备用。 1.2干熄焦装置主要工艺参数(以下为一套干熄焦装置) a)焦炉基本工艺参数 焦炉配置2355孔JNDK55-07型焦炉 焦炉周转时间26h 焦炉紧张操作系数 1.07 每孔炭化室干全焦产量 30.044t 小时焦炭产量127.1t b)干熄焦装置基本工艺参数 干熄站配置13140t/h 允许焦炉的检修制度 3次/d,1h/次 每孔炭化室操作时间约12.4min 入干熄炉焦炭温度 950~1050℃ 干熄后焦炭平均温度≤200℃ 干熄时间约2h 焦炭烧损率(设计值)≤0.95% 入干熄炉的吨焦气料比约1280m3/t焦 系统最大循环风量 205000m3/h 循环风机全压 11.5kPa 进干熄炉循环气体温度130℃ 出干熄炉循环气体温度880~960℃ 干熄炉操作制度 24h连续,340d/a

国内外干熄焦技术现状及发展趋势

国内外干熄焦技术现状及发展趋势 点击次数: 142 文章作者:发布时间:2006-06-20 字体: [大中小] 一、国外干熄焦最新技术及发展趋势 (一)干熄焦工艺发展概况 干法熄焦简称干熄焦(CDQ),是相对于湿熄焦而言的采用惰性气体熄灭赤热焦炭的一种熄焦方法。干熄焦能回收利用红焦的显热,改善焦炭质量,减轻熄焦操作对环境的污染。 干熄焦起源于瑞士,最早的干熄焦装置是1917年瑞士舒尔查公司在丘里赫市炼焦制气采用的。20世纪30年代起,前苏联、德国、日本、法国、比利时等许多国家也相继采用了构造各异的干熄焦装置。干熄焦装置经历了罐室式、多室式、地下槽式、地上槽式的发展过程,由于处理能力都比较小,发生蒸汽不稳定、投资大等因素,这一技术长期未得到发展。到了20世纪60年代,前苏联在干熄焦技术工业化方面取得了突破性进展,在切列波维茨钢铁厂建造了带预存室的地上槽式干熄焦装置,处理能力达到5 2-56t/h。这种带预存室地上槽式干熄焦工业装置解决了过去干熄焦装置发生蒸汽不稳定等问题,实现了连续稳定的热交换操作。20世纪70年代,全球范围内的能源危机进一步推动了干熄焦技术的发展。日本首当其冲,在能源短缺、节能呼声高涨的背景下,从前苏联引进干熄技术和专利实施许可,经过消化移植,在大型化、自动化和环境保护措施等方面有所发展。到了20世纪90年代,日本建成投产了单槽处理能力为56-200t/h的多种规模的干熄焦装置39套,干熄焦率约占日本高炉焦用量的80%,是干熄焦装置应用最多的国家之一。 目前,日本新日铁、NKK、德国蒂森·斯梯尔·奥托公司在干熄焦技术上处于领先水平。这些公司在扩大干熄焦装置能力、改善冷却室特性、热平衡、物料平衡、自动化、环保等方面实现了最佳化设计,其处理能力和装置的先进性远远超过前苏联,并形成了各自的特点,见表1。 表1 乌克兰、日本、德国干熄焦技术对比表

干熄焦工艺介绍

一、干法熄焦的发展 干熄焦起源于20世纪40年代的瑞士,在20世纪70年代,由于全球能源危机促使干熄焦得到长足发展,我国自20世纪80年代初,宝钢首先引进了日本的干熄焦技术,随之济钢、首钢、武钢等企业先后引进这项技术,均在节能减排方面取得一定的成果。目前,山西仅有太原钢铁集团采用了干法熄焦技术。 二、干法熄焦概述(1) 装满红焦的焦罐由电机车牵引至提升井架下,通过自动对位装置对准提升位置。提升机将装满红焦的焦罐提升并横移至干熄炉炉顶,通过带料钟的装入装置将焦炭装入干熄炉内。在干熄炉中焦炭与惰性气体直接进行热交换,焦炭被冷却后经排焦装置卸至胶带输送机上,经胶带输送机送往原筛焦工段。 冷却焦炭的惰性气体由循环风机通过干熄炉底部的供气装置鼓入干熄炉与红焦炭进行换热。由干熄槽出来的热惰性气体温度随着入炉焦炭温度的不同而变化。如果入炉焦炭温度稳定在1050℃,该温度约为980℃。热的惰性气体经一次除尘器除尘后进入余热锅炉换热,温度降至170℃。惰性气体由锅炉出来后,再经二次除尘和循环风机加压经水预热器冷却至约130℃进入干熄槽循环使用。 除尘器分离出的焦粉,由专门的输送设备将其收集在贮槽内,以备外运。 干熄焦的装入、排焦、预存室放散等处产生的烟尘均进入干熄焦环境除尘系统进行除尘后达标排放。 干熄焦工艺流程见图1:

1--焦炉2--导焦车3--焦罐4--横移台车5--运载车6--横移牵引装置7--吊车8--装炉装置9--预存室 10--冷却室11--排焦装置12--皮带机13--一次除尘器14--锅炉15--水除氧器16--二次除尘器17--循环风机 图1 干熄焦工艺流程图 三、干法熄焦所采用的环保措施: 干法熄焦在减排方面取得显着的效果,具体采取的措施如下:(1)红焦运输途中,从提升塔到装焦口焦罐加盖; (2)干熄炉炉顶装焦口设置环形水封座,装焦时接焦漏斗的升降式密封罩插入水封座中形成水封,防止粉尘外溢,同时,接焦漏斗接通活动式抽尘管,斗内被抽成负压,将装焦时瞬间产生的大量烟尘抽入除尘管中,以减少粉尘的扩散污染; (3)排焦装置采用电磁振动给料机加旋转密封阀的方式,胶带机设密封罩,并在 焦炭排出口及胶带机受料点均设吸气罩,将烟气导入脉冲袋式除尘器,经除尘净化后排放;

干熄焦开工方案

150t/h干熄焦工程 开工方案 (炼焦工艺专业) 审核:严卫华 编制:朱启才 武汉焦耐工程技术有限公司 2010年8月 目录

1.干熄焦装置检漏试验 (3) 2.装冷焦、排冷焦试验 (10) 3.干熄焦装置烘炉与开工 (15)

1.干熄焦装置检漏试验 1.1 简介 干熄焦装置的检漏试验是对干熄焦气体循环系统中的设备、阀门、补偿器、管道、焊缝、法兰连接面的严密性进行检验。检漏试验一般在干熄焦装置开工前,各单体设备调式完毕,空负荷试车结束后进行。 1.2 气体循环系统主要设备 气体循环系统除连接管道、阀门、补偿器外,还包括供气装置、干熄炉、一次除尘器、锅炉、二次除尘器、循环风机、热管换热器、排出装置等设备。 1.3 试验目的 干熄焦是一种利用惰性气体在密闭的系统内与炽热的焦炭直接换热的新型熄焦工艺。气体循环系统中的设备、阀门、补偿器、管道、人孔、法兰连接面和壳体焊缝等不得有泄漏。干熄焦装置各单体设备调式完毕,空负荷试车结束后需对气体循环系统进行整体检漏试验,以保证干熄焦装置安全稳定地运行。检漏试验是干熄焦装置的一种严密性试验,其目的是在冷态下检查设备管道制造质量和系统的严密性,消除查出的缺陷,检漏试验是保证干熄焦装置日后安全运行的重要措施之一。 检漏试验是对整个气体循环系统进行的,重点是检查人孔、法兰连接面和壳体焊缝的严密性,而那些在正常生产条件下必须进行连续抽吸,排出或允许少量泄漏的部位不在检查处理之列。 1.4 试验方法及判定标准 1.4.1试验方法 试验方法采用检漏试验即漏风检查法。由于整个气体循环系统内部空间巨大,有些部位是开放的,在结构上就很难成为密闭系统,如干熄炉口水封槽、一次除尘器放散装置、预存室放散装置、装置的排料(灰)口、耐火砖砌体之间空隙(填塞

干熄焦工艺流程中不可不知的系统设计及设备选择

干熄焦工艺流程中不可不知的系统设计及设备选择 干熄焦是采用惰性气体将红焦冷却的一种方法。在干熄焦过程中,红焦从干熄炉顶部装入,低温惰性气体由循环风机鼓入干熄炉冷却室红焦层内,吸收红焦热量,冷却后的焦炭从干熄炉底部排出,从干熄炉环形烟道出来的高温惰性气体经干熄焦锅炉进行热交换,锅炉产生蒸汽,冷却后的惰性气体由循环风机重新鼓入干熄炉,循环使用。 干熄焦工艺流程主要由红焦装入系统、冷焦排出系统、干熄炉及供气装置、气体循环系统、锅炉系统、水处理系统等组成,主要设施有干熄炉、装入装置、排焦车、提升机、电机车及焦罐台车、焦罐、一次除尘器、二次除尘器、干熄焦锅炉单元、循环风机、除尘地面站、水处理单元等。根据实际的工程设计不同,干熄焦系统包含的主要设备也不尽相同。 图2、干熄焦工艺流程图 一、红焦装入系统 电机车牵引焦罐台车与拦焦车对位后,旋转焦罐开始旋转,旋转平稳后向推焦车发出推焦指令,接焦完毕后,旋转焦罐经减速位置停止在最初的停止位置上,完全停稳后,电机车牵引焦罐台车走行至干熄炉提升井架底部,经APS定位夹紧后,接空罐。随即满罐对位与提升,将装满红焦的焦罐提升至提升井架上极限,到达上极限后,提升机开始走行,到干熄炉上方时,装入装置也打开到位,提升机开始卷下,焦罐到位后,提升机继续卷下,焦罐底门在重力作用下与吊杆继续下降,自动完成开门放焦动作。红焦落入装入装置料斗后,经分料板与料钟布料均匀地装入干熄炉。 干熄焦红焦装入系统由电机车、焦罐台车、旋转焦罐、APS定位装置、提升机、装入装置以及各极限感应器等设备

组成,起着接焦、送焦及装焦等作用。 1、电机车 运行在焦侧的熄焦轨道上,用于牵引、制动焦罐台车,控制圆形旋转焦罐的旋转动作和接焦。 2、旋转焦罐 用来装运从炭化室中推出的红焦,并与其他设备配合,将红焦装入干熄炉内。焦罐在接焦过程中绕中心线旋转,均匀布料。 3、焦罐台车 由电机车牵引沿熄焦轨道运行,往返于焦炉与提升井架间运输焦罐。 4、APS对位装置 确保焦罐车在提升井架下的准确对位及操作安全,主要由液压站及液压缸组成。 5、提升机 运行于提升井架和干熄炉顶轨道上,将装满红焦的焦罐提升并横移至干熄炉炉顶,与装入装置配合,将红焦装入干熄炉内。装焦完毕后又将空罐经提升、走行和下降落座在焦罐台车上。 6、装入装置 位于干熄炉顶部,与提升机配合将焦罐中的红焦装入干熄炉。它主要有两个功能,按指令开闭炉盖和把红焦经装入料斗装入干熄炉内。 二、冷焦排出系统 冷却后的焦炭由电磁振动给料器定量排出,送入旋转密封阀,通过旋转密封阀的旋转在封住干熄炉内循环气体不向炉外泄漏的情况下,把焦炭连续地排出,连续定量排出的焦炭通过排焦溜槽送到带式输送机上输出。 干熄焦冷焦排出设备由排焦装置及运焦皮带两部分组成。排焦装置包括检修用平板闸门、电磁振动给料器、旋转密封阀、吹扫风机、自动润滑装置、排焦溜槽等设备。 1、平板闸门 安装在干熄炉底部出口。正常生产时平板闸门完全打开,在年修或排焦装置需要检修时,关闭平板闸门防止干熄炉底部的焦炭落下。 2、磁振动给料器 是焦炭定量排焦装置,通过改变励磁电流大小,来改变电磁振动给料器的振幅,从而改变焦炭的排出量。电磁振动给料器内设有振幅和温度检测器。 3、旋转密封阀 把振动给料器定量排出的焦炭在密闭状态下连续地排出。设有正反转,正常生产时正转,事故时反转。 4、排焦溜槽 排焦溜槽是将旋转密封阀排出的焦炭送至皮带机的设备,以保证干熄焦装置的连续正常运转。排焦溜槽位于旋转密封阀下部,旋转密封阀连续排出的焦炭通过排焦溜槽中挡板的切换,排到指定的皮带机上。 5、吹扫风机 吹扫风机向电磁振动给料器、旋转密封阀不间断地吹入空气,以保证设备壳体内部正压,防止灰尘进入,延长设备使用寿命,同时降低电磁振动给料器线圈的温度,电磁振动给料器线圈的温度要求不高于设定值。当吹扫风机出现故障时,三通电磁切换阀自动切换到管道压缩空气或氮气给电磁振动给料器和旋转密封阀送风。 6、自动给脂泵 自动润滑泵定时、定量地向旋转密封阀的轴承和密封环提供润滑脂。自动润滑的时间间隔由人工设定,该装置设有油位低下检测及换向检测等。自动给脂泵设现场单独操作、中央控制室单独操作和中控室PLC连动操作三种操作方式。 7、运焦皮带 由干熄炉冷却段冷却后的焦炭经平板闸门、电磁振动给料器、旋转密封阀及排焦溜槽排至运焦皮带上,由运焦皮带将冷焦运走。运焦皮带机上设有电子皮带秤、高温辐射计及超温洒水装置。电子皮带秤对焦炭进行连续称量,称量值与设定值的偏差值反馈给电磁振动给料器,将排焦量控制在稳定的设定值范围。当高温辐射计检测到排出的焦炭温度超过设定的排焦温度上限时,喷水装置启动,喷水降温,以防烧坏皮带机。皮带机机头机尾落料点设灰尘点,为安全正常运行还设有皮带纠偏装置及拉绳开关。 三、干熄炉与供气装置

干熄焦工艺操作规程培训资料(doc 76页)

干熄焦工艺操作规程培训资料(doc 76页)

干熄焦工艺技术操作规程 济钢国际工程技术有限公司 二O一三年

目录 一、生产工艺简介及流程图 (1) 二、生产岗位 (2) 1. 干熄焦主控岗位 (2) 1.1 工艺流程 (2) 1.2 原料及产品的技术要求 (3) 1.3 工艺设备 (5) 1.4 工艺操作 (7) 1.5 特殊操作 (35) 1.6 工艺事故的分类和责任划分 (42) 2.筛运焦岗位 (42) 2.1 工艺流程 ....................... 错误!未定义书签。 2.2 原料、产品技术条件及质量标准 (42) 2.3 工艺设备 (43) 2.4 工艺操作 ....................... 错误!未定义书签。 2.5 特殊操作 ....................... 错误!未定义书签。 2.6 工艺事故的分类和责任划分错误!未定义书签。 3.电站岗位 (44) 3.1 工艺流程 (44) 3.2 汽轮机操作 (45) 3.3 发电机操作 (83)

4.除尘岗位 (118) 4.1 工艺流程 (118) 4.2 工艺技术指标 (119) 4.3 工艺设备 (119) 4.4 工艺操作 (122) 4.5 特殊操作 (139) 4.6 工艺事故的分类及责任划分 (140)

一、生产工艺简介及流程图 干熄焦工艺是利用冷的惰性气体(氮气),在干熄炉内与炽热红焦进行换热,从而冷却焦炭,吸收了红焦热量的惰性气体,将热量传递给干熄焦锅炉产生高温高压蒸汽,蒸汽送至汽轮机进行发电(蒸汽冷凝成水后,打入除盐水箱循环使用)。冷却后的循环气体再由风机加压,鼓入干熄炉内循环使用。干熄焦系统主要由焦炭物流系统(干熄炉、装入装置、 排焦装置、提升机、电机车及焦罐台车、焦罐)、气 体循环系统(循环风机、干熄炉、一次除尘器、二 次除尘器、锅炉)、干熄炉系统、除尘地面站、自动 控制系统、发电系统等部分组成。干熄焦工艺流程如图1.1所示: 红除盐水 除氧器 给水预热器 除盐水箱 给水预热器 一次除尘 锅炉 二次除尘 循环风机 链式刮板机 斗式提升机 焦粉仓 布袋除尘器 除尘风机 拦焦车 旋转焦罐 提升机 装入装置 皮带 加湿搅拌机 振筛 干熄炉 粉焦仓 装车 中焦仓 皮带 炼铁 装车 净化气体外排 汽轮机 凝汽器 凝结水泵 发电机 本体Ⅰ、Ⅱ段 二降压 排焦装置 焦 炭 循环气体 烟气和粉尘 水 蒸 汽 电 中 粉

焦化行业工艺流程图

关键词:焦化行业烧结行业矿冶行业解决方案 焦化行业工艺流程1. 焦从焦炉底孔吹入燃烧室燃烧(焦炉煤气(贫煤气或高炉煤气)焦化行业工艺流程如图1。,对相邻炭化室进行加热,并采用交换机进行分时段炉煤气下喷,高炉煤气混合煤气侧喷)℃左右炭化室进行隔绝空气加热,1000<3mm送气切换;将粒度为的配合煤料经加煤车送入推焦机将成熟的焦炭从炭化室经高温干馏结焦形成焦炭,入炉煤在相邻燃烧室高温加热下,拉到熄)1000℃左右(中推出,经过拦焦车,落到熄焦车的车箱中,熄焦车将炽热的焦炭约%的5±2℃左右,同时控制焦炭水分在焦塔下,用水喷洒熄焦,使红焦熄灭,温度降到300再经皮带运走,干熄焦则由电机车范围内,熄完焦后,熄焦车将焦炭拉走并放至晾焦台上,冷却后的焦炭由将灼热焦炭运往干熄焦炉,用氮气置换热能,经锅炉换热,带汽轮机发电,℃左右的荒煤气,进入上升管,经桥700旋转密封阀排除,由皮带运出;高温干馏出来的约并与其他℃,~,使荒煤气迅速冷却至80100)(75管氨水喷嘴连续不断地喷洒热氨水℃左右经产品回炭化室的荒煤气汇集一起经集气管排吸气管、气液分离器、初冷器、鼓风机加压、收工段净化后送给用户,另外还有煤焦油及苯等副产品。焦化行业控制方案2. a. 顺序控制方案

主要为设备顺序控制,用于实现整个机组中各主要设备的监视操作、顺序启停和联锁保护等功能。焦炉加热系统换向工艺:焦炉煤气加热换向都要经历3个基本过程即:关煤气—空气与废气进行交换—开煤气;两次换向时间间隔根据加热制度、煤气种类、格子砖的清洁程度等具体情况而定;焦炉公用一个煤气总管时,为防止煤气压力变化幅度太大,影响焦炉正常加热,故几座焦炉不能同时加热,一般需相隔5min以上。 b. 联锁控制方案 在焦化行业中主要的设备联锁有鼓风机联锁,油泵联锁,电捕箱联锁等,具体的联锁方案如图2所示。 c. 模拟量控制方案 主要是完成整个机组的参数控制,将所有需要调整的模拟量参数稳定在运行所需要的范围内,减轻操作员的劳动强度,从而实现系统的自动控制。 (1)入初冷器煤气总管压力控制:通过调节鼓风机转速或煤气系统大循环翻板阀调节。压力设定值通过集气管压力修正。 (2)集气管压力控制:常规的PID调节方法,调节作用较强易引起超调,并容易破坏其他炉和吸力系统的平衡,相互影响相互干扰,导致整个系统控制不能达到要求;调节作用较弱则在装煤结束和用气量发生变化后达到平衡时间较长;同时采用变PID的控制方法效果也不佳,超调和振荡依然不能很好克服。 为了解决上述问题,我们采用了变PID和模糊控制器相结合的方案,使用结果证明,该方案能较好地克服装煤结束后气压突变的状况。方案的主要原理是根据状态和趋势在偏差较大和变化趋势较快的情况下采用模糊控制器快速输出,根据集气管压力变化自动调节荒煤气管道上的翻板开度,从而稳定集器管压力。根据状态和趋势在偏差较小和变化趋势较慢的情况下根据控制器判断选择控制器的PID参数来微调。 (3)初冷器吸入压力自动控制:目的是保证煤气吸力稳定,从而保证集气管压力稳定,进一步保证鼓风机后续工段的压力稳定。针对不同形式的鼓风机,该控制可通过调节鼓风机转速,或控制风机旁路(大循环)等方法来实现。压力信号可取自初冷器入口,引入DCS,由DCS输出4~20mA信号完成自动控制。 当多炉共用一总管时,鼓风机吸入压力的设定值,通过集气管压力测量,去自动修正,把压力控制在适合集气管调节的范围内。作为修正的多个集气管压力,可由人工手动选择。 当采用鼓风机调速时,通过设定的鼓风机吸入压力值,调节鼓风机转速。如采用离心风机,须考虑喘振和共振控制范围较小。 (4)分烟道压力控制:目的是保证烟道的吸力稳定,达到合理的空气过剩系数,从而减少热损失,提高热效率。根据分烟道压力变化自动调节烟道翻板的开度,稳定分烟道压力。燃烧控制系统采用以加热煤气量作为前馈参数调节烟道吸力的方案,需考虑到废气含氧量受诸多方面因素影响。 (5)气液分离器液位控制:目的是防止冷凝液溢槽。冷凝液含有轻质焦油和氨水,一旦该控制通过调节至初冷器前荒煤气管道上的调很难用常规方法清除。溢出会造成环境污染, 节阀来实现。 (6)主煤气流量控制:目的是将焦炉温度控制在1250~1350℃。根据主煤气流量变化自动调节主煤气管道上的翻板开度,稳定主煤气流量,保证焦炉温度。在炼焦煤性质稳定的情况下,加热温度的变化会对炼焦化学产品的质量和产率产生影响。在煤气性质稳定的前提下,通过控制燃烧室煤气流量来保证焦炉加热。加热系统控制采用前馈控制结合炉温修正的方案,即将影响焦炉加热的主要因素如加热煤气特性、配合煤的特性和焦炉操作等纳入流量控制模块。 二烧结行业自控解决方案 随着我国冶金工业技术的迅速发展,要求冶金企业在技术装备水平方面有较大的突破,目前

煤化工干熄焦

1.干熄焦简介 所谓干熄焦,是相对湿熄焦而言的,是指采用惰性气体将红焦降温冷却的一种熄焦方法。在干熄焦过程中,红焦从干熄炉顶部装入,低温惰性气体由循环风机鼓人干熄炉冷却段红焦层内,吸收红焦显热,冷却后的焦炭从干熄炉底部排出,从干熄炉环形烟道出来的高温惰性气体流经干熄焦锅炉进行热交换,锅炉产生蒸汽,冷却后的惰性气体由循环风机重新鼓入干熄炉,惰性气体在封闭的系统内循环使用。干熄焦在节能、环保和改善焦炭质量等方面优于湿熄焦。 2.干熄焦历史 干熄焦起源于瑞士,20世纪40年代许多发达国家开始研究开发干熄焦技术,采取的方式各异,而且一般规模较小,生产不稳定。进人60年代,前苏联在干熄焦技术方面取得了突破进展,实现了连续稳定生产,获得专利发明权,并陆续在其国内多数大型焦化厂建成干熄焦装置。到目前为止,前苏联有40%的焦化厂采用了干熄焦技术,单套处理量在50~70t/h。但前苏联干熄焦装置在自动控制和环保措施方面起点并不高。 20世纪70年代的全球能源危机促使干熄焦技术得到了长足发展。资源相对贫乏的日本,率先从苏联引进了干熄焦技术,并在装置的大型化、自动控制和环境保护方面进行改进。到90年代中期,日本已建成干熄焦装置31套,其中单套处理能力在100 t/h以上的装置有17套,日本新日铁和NKK等公司建成的干熄焦单套处理量可达到200 t/h以上;装焦方式采用了料钟布料,排焦采用了旋转密封阀连续排焦,接焦采用了旋转焦罐接焦等技术,使气料比大大降低,极大地降低了干熄焦装置的建设投资和装置的运行费用;在控制方面实现了计算机控制,做到了全自动无人操作;在除尘方面,采用了除尘地面站方式,避免了干熄焦装置可能带来的二次污染。日本的干熄焦技术不仅在其国内被普遍采用,同时它将干熄焦技术输出到德国、中国、韩国等国家,其干熄焦技术已达到国际领先水平。 20世纪80年代,德国又发明了水冷壁式干熄焦装置,使气体循环系统更加优化,并降低了运行成本。德国蒂森斯蒂尔奥托(TSOA)公司成功地将水冷栅和水冷壁置入干熄炉,并将干熄炉断面由圆形改成方形,同时在排焦和干熄炉供气方式上进行了较大改进,干熄炉内焦炭下降及气流上升,实现了均匀分布,大大提高了换热效率,使气料比降到了1000 m3/t焦以下,进一步降低了干熄焦装置

干熄焦工艺概况

第一章干熄焦工艺 第一节干熄焦的发展 一、干熄焦的发展过程 干熄焦起源于瑞士,20世纪40年代许多发达国家开始研究开发干熄焦技术,采取的方式各异,而且一般规模较小,生产不稳定。进入60年代,前苏联在干熄焦技术方面取得了突破性进展,实现了连续稳定生产,获得专利发明权,并陆续在其国内多数大型焦化厂建成。到目前为止,前苏联有40%的焦化厂采用干熄焦,单套处理量在50~70t/h。但前苏联干熄焦装置在自动控制和环保措施方面起点并不高。 20世纪70年代的全球能源危机促使干熄焦技术得到了长足发展。资源相对贫乏的日本,率先从前苏联引进了干熄焦技术,并在装置的大型化、自动控制和环境保护方面进行了有效的改进。到90年代中期,日本已建成干熄焦装置31套,其中单套处理能力在100t/h以上的装置有17套,日本新日铁和NKK等公司建成的干熄焦单套处理量可达到200t/h以上;装焦方式采用了料钟布料,排焦采用了旋转密封阀连续排焦,接焦采用了旋转焦罐接焦等技术,使气料比大大降低,极大地降低了干熄焦装置的建设投资和装置的运行费用;在控制方面实现了计算机控制,做到了全自动无人操作;在除尘方面,采用了除尘地面站方式,避免了干熄焦装置可能带来的二次污染。日本的干熄焦技术不仅在日本国内被普遍采用,同时它将干熄焦技术输出到德国、中国、南韩等国,其干熄焦技术水平已达到国际领先地位。 20世纪80年代,德国又发明了水冷壁式干熄焦装置,使气体循环系统更加优化,并降低了运行成本。德国蒂森斯蒂尔奥托(TSOA)公司成功地将水冷栅和水冷壁置入干熄炉,并将干熄炉断面由圆形改成方形,同时在排焦和干熄炉供气方式上进行了根本改进,干熄炉内焦炭下降及气流上升,实现了均匀分布,大大提高了换热效率,使气料比降到了1000m3/t 焦以下,进一步降低了干熄焦装置的运行费用。TSOA干熄焦技术在德国得到推广,同时该技术还输出到南韩和中国的台北。 干熄焦工艺发展至今,虽然出现了不同的形式,但基本工艺流程大同小异,只是在装焦、排焦、循环气体除尘等方面有所区别。具有代表性的有德国TSOA公司设计的干熄焦工艺和日本新日铁设计的干熄焦工艺,这两种典型的干熄焦工艺在消化吸收前苏联干熄焦成熟技术的基础上都有所创新,形成各自的特点,并使干熄焦技术及其应用达到了较先进的水平。中国的鞍山焦耐院和首钢设计院,以及武钢、宝钢、首钢在吸收消化日本干熄焦技术方面作了一些有益的工作,并积累了较为丰富的经验。目前,全世界正在生产的干熄焦装置约130套,各国和地区干熄焦装置的建设情况见表1—1。 二、国内干熄焦技术的现状 我国自20世纪80年代初,宝钢一期从日本引进干熄焦至今,现有六个厂投产了干熄焦,各厂的使用状况也存在着一定差异。国内干熄焦装置建设情况见表1—2。 (一)各厂的干熄焦状况 1.宝钢干熄焦 宝钢为配合12×50孔(6m)焦炉,共建了12套75t/h规模的干熄焦装置,年处理焦炭510万吨,共分三期建设。一期4×75t/h干熄焦装置于1985年5月建成设产,二期、三期分别于1991年6月和1997年12月建成设产。一期干熄焦装置是从日本全套引进的;二期干熄焦装置是在消化吸收一期的基础上,主要由我国自己设计建成的,设备国产化率占设备总重的80%,部分关键部件从日本引进;三期除极少数关键部件从日本引进外,绝大

170t干熄焦车间操作规程22

目录 一、生产工艺简介及流程图 (1) 二、生产岗位 (2) 1. 干熄焦主控岗位 (2) 1.1 工艺流程 (2) 1.2 原料及产品的技术要求 (2) 1.3 工艺设备 (3) 1.4 工艺操作 (4) 1.5 特殊操作 (15) 1.5.7 异常天气的处理 (17) 2.筛运焦岗位 (17) 2.1 工艺流程 (17) 2.2 原料、产品技术条件及质量标准 (18) 2.4 工艺操作 (18) 2.5 皮带特殊操作 (19) 2.6 工艺事故的分类和责任划分 (19) 4.除尘岗位 (19) 4.1 工艺流程 (19) 4.2 工艺技术指标 (19) 4.3 工艺设备 (20) 4.4 工艺操作 (20) 4.5 特殊操作 (22)

一、生产工艺简介及流程图 干熄焦工艺是利用冷的惰性气体(氮气),在干熄炉内与炽热红焦进行换热,从而冷却焦炭,吸收了红焦热量的惰性气体,将热量传递给干熄焦锅炉产生高温高压蒸汽,蒸汽送至汽轮机进行发电(蒸汽冷凝成水后,打入除盐水箱循环使用)。冷却后的循环气体再由风机加压,鼓入干熄炉内循环使用。干熄焦系统主要由焦炭物流系统(干熄炉、装入装置、排焦装置、提升机、电机车及焦罐台车、焦罐)、气体循环系统(循环风机、干熄炉、一次除尘器、二次除尘器、锅炉)、干熄炉系统、除尘地面站、自动控制系统、发电系统等部分组成。干熄焦工艺流程如图1.1所示: 图1.1 170t/h干熄焦系统工艺流程图

二、生产岗位 1. 干熄焦主控岗位 1.1 工艺流程 1—干熄炉;2—1DC;3—锅炉;4—2DC;5—循环风机;6—给水预热器;7—旋转密封阀 图2.1 干熄焦锅炉系统工艺流程图 1.2 原料及产品的技术要求 1.2.1 原料产品、技术条件及质量标准: 每孔炭化室产干全焦量:31.26t 红焦温度:950~1050℃ 1.2.2 质量标准: 排焦温度:≤200℃ 干熄炉出口循环气体温度:900~980℃ 1.2.3 岗位工艺技术指标: 干熄炉熄焦风料比:≤1350Nm3/t红焦,干熄炉最大风量:2230000Nm3/h. 锅炉出口循环气体温度:160~180℃ 循环气体成分:CO:4-6 % H2:0-3 % O2:0-1 % CO2:<8-15 % N2>66 % 焦炭烧损率:≤2% 干熄炉预存段压力:0~±50Pa 干熄炉入口循环气体温度:115℃~130℃ 除盐水箱水位: 有发电回水时:5.5~6.5m;仅有动力供水时: 6.5~7.0m 除氧器水位:0±100 mm 汽包水位:0±50 mm 副省煤器入口水温≥60℃,副省煤器出口水温≤120℃

焦化主要工艺流程介绍

焦化系统主要车间工艺流程介绍 主要车间组成: 一、备煤车间:预粉碎机室、粉碎机室、配煤室、煤塔顶层、转运站及通廊等组成。 二、炼焦车间:2×65 孔5.5m 复热式捣固焦炉、熄焦塔、粉焦沉淀池、焦台、装煤出焦地面站、筛贮焦楼、转运站、输送机通廊等组成。 三、煤气净化车间:冷凝鼓风工段、脱硫工段、硫铵工段(含蒸氨系统)、终冷洗涤及粗苯蒸馏工段、油库工段。 四、干熄焦车间:包括提升机、干熄焦塔、余热锅炉、循环风机、环境除尘风机。 五、余热发电车间:包括除盐水泵房、汽轮机、发电机、循环水泵房等。 《焦化工艺简图》

1 备煤车间 1.1. 概述 备煤车间是为2×65 孔 5.5m 复热式捣固焦炉制备装炉煤,日处理炼焦煤料约5397.8t,含水分~10%,年处理煤量~195.2 万t(湿)。本项目所需炼焦用煤,采用带式输送机运输。 1.2. 工艺流程 备煤系统采用先配煤后粉碎的工艺流程。整个系统主要由配煤 室、预粉碎机室、粉碎机室、煤塔顶层以及相应的带式输送机通廊 和转运站组成,并设有煤制样室等生产辅助设施。 1.3. 工艺设施及主要设备 1.3.1. 配煤工段 配煤工段是把各种牌号的炼焦用煤,根据配煤试验确定的配比 进行配合,使配合后的煤料能够炼制出符合质量要求的焦炭,同时 达到合理利用煤炭资源,降低生产成本的目的。 由带式输送机运来的各单种煤由可逆配仓带式输送机分别布入配煤槽中。 配煤槽直径为8m 共10 个,双排布置,分别为4 个和6 个槽,4 个槽的一排用于贮存需预粉碎的煤种;6 个槽的一排用于贮存不需预粉碎的煤种。 煤的总储量达到6500t,能够满足 2 座焦炉28 小时的生产用湿煤量。

干熄焦工艺

关于独立焦化企业大气污染物减排示范项目的说明 河北省年产焦炭约1亿吨,大部分是独立焦化企业生产的。独立焦化企业的主要大气污染源有三个部分: 1)湿法熄焦; 2)燃烧烟气; 3)炭化室逸出的有机挥发物。 德国能源署的专家在进行了调查和研究后,提出了下列的改造方法: 1.炼焦的熄焦工艺的污染物减排: 过去普遍采用湿法熄焦工艺,在采用了一定的除尘工艺后,颗粒物的排放仍然高达90克/吨焦左右。干法熄焦工艺适用于钢铁企业,因为炼焦废水可以用于冷却高炉炉渣等工艺。但是独立焦化企业需要通过湿法熄焦工艺消耗炼焦废水,因此,不得不采用湿法熄焦技术。 治理方法:采用低排放湿法熄焦技术。 治理的预期效果:颗粒物排放:从约90克/吨焦炭,减少为10~25克/吨焦炭,减少排放量72%~88%。 投入:湿法熄焦的投入时干法熄焦的1/3左右。估计总计投入确切的投入在计算中。 产出:焦化企业的颗粒物排放主要来自于熄焦工艺。采用低排放湿法熄焦工艺,可减少大部分颗粒物的排放。全省独立焦化企业生产的焦炭为数千万吨,总计每年可减排颗粒物排放数千吨。

2.燃烧烟气的余热利用和污染物的减排: 炼焦炉排出的燃烧烟气目前普遍没有得到处理,烟气中的污染物:颗粒物:约40mg/ m3;二氧化硫约200mg/ m3;氮氧化物500mg/ m3。按河北省每年炼焦1亿吨计,每年排放的烟气量相当于燃烧2000多万煤炭的排放量,年排放颗粒物总量为5,000吨左右,二氧化硫总量为25,000吨左右,氮氧化物60,000万吨左右。排放烟气温度较高,为250~300℃左右,烟气需要进行脱硫和脱硝。SDR脱硝工艺需要较高的温度,如果回收了烟气中的余热,就达不到脱硝所需的温度了。所以,要么脱硝,要么回收余热,两者要兼得成本很高。 治理方法:ORC有机工质发电+半干法烟气综合处理。 治理的预期效果: -余热利用:每炼1吨焦炭,燃烧烟气余热发电16~20千瓦时。 -颗粒物排放上限:<5~10毫克/立方米,减少排放量75%~85%。 -二氧化硫排放上限:~50毫克/立方米,减少排放量75%左右。 -氮氧化物排放上限:100毫克/立方米,减少排放量80%左右。 投入产出:一台年产50万吨焦炭的炼焦炉的余热回收发电和烟气处理投资 预计为3600万元左右;每年可发电约800万千瓦时,发电收益400万元左右。

炼焦车间工艺流程

1.炼焦车间 1.1概述 本工程炼焦车间采用4×55孔JNDK55-05型5.5m单热式捣固焦炉。单U形集气管( 设在焦侧) ,双吸气管。两个2×55孔炉组布置在一条中心线上。在每个炉组机侧设一个双曲线斗槽的煤塔。装煤除尘采用双U形导烟管的装煤导烟车( CGT车) , 将装煤烟尘导到n+2和n-1炭化室。出焦除尘设地面站, 采用皮带小车式除尘拦焦机。每2×55孔焦炉配一套新型湿法熄焦系统和预留一套干熄焦装置位置。 1.2炼焦基本工艺参数 炭化室孔数4×55 孔 每孔炭化室装煤量(干) 40.6 t 焦炉周转时间25.5 h 焦炉年工作日数365 d 焦炉紧张操作系数 1.07 装炉煤水分10% 煤气产率330 m3/t干煤 全焦率75% 焦炉加热用煤气低发热值: 焦炉煤气17900kJ/m3 装炉煤水份为7%时炼焦干煤相当耗热量 焦炉煤气加热时2250kJ/kg

1.3炼焦工艺流程 由备煤车间送来的能满足炼焦要求的配合煤装入煤塔。经过摇动给料器将煤装入装煤推焦机的煤箱内(下煤不畅时, 采用风力震煤措施), 并将煤捣固成煤饼, 装煤推焦机按作业计划从机侧炉门送入炭化室内。煤饼在炭化室内经过一个结焦周期的高温干馏炼制成焦炭和荒煤气。 炭化室内的焦炭成熟后, 用装煤推焦机推出, 经拦焦机导入熄焦车内, 由电机车牵引熄焦车至熄焦塔内进行喷水熄焦。熄焦后的焦炭卸至凉焦台上, 冷却一定时间后送往筛贮焦工段进行筛分。 煤在炭化室干馏过程中产生的荒煤气汇集到炭化室顶部空间, 经过上升管, 桥管进入集气管, 约800℃左右的荒煤气在桥管内被氨水喷洒冷却至85℃左右。荒煤气中的焦油等同时被冷凝下来。煤气和冷凝下来的焦油同氨水一起经吸煤气管道送入煤气净化车间。 焦炉加热用的焦炉煤气, 由外部管道架空引入。分别进入每座焦炉的焦炉煤气经预热器预热至45℃左右送入地下室, 经过下喷管把煤气送入燃烧室立火道与从废气开闭器进入的空气汇合燃烧。燃烧后的废气经过立火道顶部跨越孔进入下降气流的立火道, 再经过蓄热室, 由格子砖把废气的部分显热回收后经过小烟道、废气交换开闭器、分烟道、总烟道、烟囱, 排入大气。 上升气流的煤气和空气与下降气流的废气由交换传动装置定时进行换向。

最新干熄焦工艺概况

第一章最新干熄焦工艺概况 第一节干熄焦的发展 一、干熄焦的发展过程 干熄焦起源于瑞士,20世纪40年代许多发达国家开始研究开发干熄焦技术,采取的方式各异,而且一般规模较小,生产不稳定。进入60年代,前苏联在干熄焦技术方面取得了突破性进展,实现了连续稳定生产,获得专利发明权,并陆续在其国内多数大型焦化厂建成。到目前为止,前苏联有40%的焦化厂采用干熄焦,单套处理量在50~70t/h。但前苏联干熄焦装置在自动控制和环保措施方面起点并不高。 20世纪70年代的全球能源危机促使干熄焦技术得到了长足发展。资源相对贫乏的日本,率先从前苏联引进了干熄焦技术,并在装置的大型化、自动控制和环境保护方面进行了有效的改进。到90年代中期,日本已建成干熄焦装置31套,其中单套处理能力在100t/h以上的装置有17套,日本新日铁和NKK等公司建成的干熄焦单套处理量可达到200t/h以上;装焦方式采用了料钟布料,排焦采用了旋转密封阀连续排焦,接焦采用了旋转焦罐接焦等技术,使气料比大大降低,极大地降低了干熄焦装置的建设投资和装置的运行费用;在控制方面实现了计算机控制,做到了全自动无人操作;在除尘方面,采用了除尘地面站方式,避免了干熄焦装置可能带来的二次污染。日本的干熄焦技术不仅在日本国内被普遍采用,同时它将干熄焦技术输出到德国、中国、南韩等国,其干熄焦技术水平已达到国际领先地位。 20世纪80年代,德国又发明了水冷壁式干熄焦装置,使气体循环系统更加优化,并降低了运行成本。德国蒂森斯蒂尔奥托(TSOA)公司成功地将水冷栅和水冷壁置入干熄炉,并将干熄炉断面由圆形改成方形,同时在排焦和干熄炉供气方式上进行了根本改进,干熄炉内焦炭下降及气流上升,实现了均匀分布,大大提高了换热效率,使气料比降到了1000m3/t 焦以下,进一步降低了干熄焦装置的运行费用。TSOA干熄焦技术在德国得到推广,同时该技术还输出到南韩和中国的台北。 干熄焦工艺发展至今,虽然出现了不同的形式,但基本工艺流程大同小异,只是在装焦、排焦、循环气体除尘等方面有所区别。具有代表性的有德国TSOA公司设计的干熄焦工艺和日本新日铁设计的干熄焦工艺,这两种典型的干熄焦工艺在消化吸收前苏联干熄焦成熟技术的基础上都有所创新,形成各自的特点,并使干熄焦技术及其应用达到了较先进的水平。中国的鞍山焦耐院和首钢设计院,以及武钢、宝钢、首钢在吸收消化日本干熄焦技术方面作了一些有益的工作,并积累了较为丰富的经验。目前,全世界正在生产的干熄焦装置约130套,各国和地区干熄焦装置的建设情况见表1—1。 二、国内干熄焦技术的现状 我国自20世纪80年代初,宝钢一期从日本引进干熄焦至今,现有六个厂投产了干熄焦,各厂的使用状况也存在着一定差异。国内干熄焦装置建设情况见表1—2。 (一)各厂的干熄焦状况 1.宝钢干熄焦 宝钢为配合12×50孔(6m)焦炉,共建了12套75t/h规模的干熄焦装置,年处理焦炭510万吨,共分三期建设。一期4×75t/h干熄焦装置于1985年5月建成设产,二期、三期分别于1991年6月和1997年12月建成设产。一期干熄焦装置是从日本全套引进的;二期干熄焦装置是在消化吸收一期的基础上,主要由我国自己设计建成的,设备国产化率占设备总重的80%,部分关键部件从日本引进;三期除极少数关键部件从日本引进外,绝大部分设备已国产化,国产化率达到了90%以上。宝钢只有干法熄焦,不用湿法熄焦作备用,

干熄焦工艺流程

一、干法熄焦的发展 干熄焦起源于20世纪40年代的瑞士,在20世纪70年代,由于全球能源危机促使干熄焦得到长足发展,我国自20世纪80年代初,宝钢首先引进了日本的干熄焦技术,随之济钢、首钢、武钢等企业先后引进这项技术,均在节能减排方面取得一定的成果。目前,山西仅有太原钢铁集团采用了干法熄焦技术。 二、干法熄焦概述(1) 装满红焦的焦罐由电机车牵引至提升井架下,通过自动对位装置对准提升位置。提升机将装满红焦的焦罐提升并横移至干熄炉炉顶,通过带料钟的装入装置将焦炭装入干熄炉内。在干熄炉中焦炭与惰性气体直接进行热交换,焦炭被冷却后经排焦装置卸至胶带输送机上,经胶带输送机送往原筛焦工段。 冷却焦炭的惰性气体由循环风机通过干熄炉底部的供气装置鼓入干熄炉与红焦炭进行换热。由干熄槽出来的热惰性气体温度随着入炉焦炭温度的不同而变化。如果入炉焦炭温度稳定在1050℃,该温度约为980℃。热的惰性气体经一次除尘器除尘后进入余热锅炉换热,温度降至170℃。惰性气体由锅炉出来后,再经二次除尘和循环风机加压经水预热器冷却至约130℃进入干熄槽循环使用。 除尘器分离出的焦粉,由专门的输送设备将其收集在贮槽内,以备外运。 干熄焦的装入、排焦、预存室放散等处产生的烟尘均进入干熄焦环境除尘系统进行除尘后达标排放。 干熄焦工艺流程见图1:

1--焦炉2--导焦车3--焦罐4--横移台车5--运载车6--横移牵引装置7--吊车8--装炉装置9--预存室 10--冷却室11--排焦装置12--皮带机13--一次除尘器14--锅炉15--水除氧器16--二次除尘器17--循环风机 图1 干熄焦工艺流程图 三、干法熄焦所采用的环保措施: 干法熄焦在减排方面取得显着的效果,具体采取的措施如下: (1)红焦运输途中,从提升塔到装焦口焦罐加盖; (2)干熄炉炉顶装焦口设置环形水封座,装焦时接焦漏斗的升降式密封罩插入水封座中形成水封,防止粉尘外溢,同时,接焦漏斗接通活动式抽尘管,斗内被抽成负压,将装焦时瞬间产生的大量烟尘抽入除尘管中,以减少粉尘的扩散污染; (3)排焦装置采用电磁振动给料机加旋转密封阀的方式,胶带机设密封罩,并在 焦炭排出口及胶带机受料点均设吸气罩,将烟气导入脉冲袋式除尘器,经除尘净化后排放;

焦化工艺流程图

焦化厂 焦化厂主要生产工艺流程图 焦化厂主要1#、2#焦炉、备煤、运焦、化产、干熄焦组成,每座焦炉为65孔5.5米捣固焦。年产130万吨焦炭(主要工艺流程如图) 一、焦化厂主要设备参数如下: 1、(预)粉碎机PFCK—1825*3台 2、捣固机(固定式24锤、轨道中心距:2000mm、 轨型:50kg/m、捣固锤重量:460kg/锤、捣固行程:400mm)3、装煤车(轨距:QU120、轨道中心距:12000mm、运行机构速度:7.5-75米/min、煤饼高度:5322mm、煤饼重量:40.2吨)4、推焦车(轨距:QU120、轨道中心距:12000mm、推焦速度:2.7-27米/min、推焦量:30吨/孔)5、拦焦车(轨距:QU100、导焦栅工作行程:3400mm) 6、熄焦车(轨距:QU100、轨道中心距:2800mm、运行机构速度:10-200米/min、 牵引重量:240吨)7、横管冷却器FN4000m2*4台8、电捕焦油器(DN5200 H=14544)*2台9、循环氨水泵(Q=1957m3/h H=50m 附电机N=355KW 10KV)*2台10、饱和器(DN5000/3800 H=11260)*2台11、洗苯塔(DN5600 H=34300)*1台12、脱硫塔(DN7000 H=32300)*2台13、圆筒管式加热炉(5.815MW-2.45Mpa-Φ140/Φ114)*1台14、预冷塔(DN5600 H=22500)*1台15、脱硫塔(DN7000 H=32300)*2台16、脱硫液循环泵(Q=2020m3/h H=65M附电机N=560KW 10KV)*3台17、干熄焦(处理能力170吨/每小时) 二、焦化厂能源介质: 1、蒸汽参数(P=0.7Mpa,t=饱和170℃,Q=40t/h,管径D325×8和D219×6共两路, 或者一路D377×7):2、氮气参数(0.7Mpa,D108×4,Q=11 m3/min,最大Q=29 m3/min): 3、生活水参数(D108×4,P=0.35Mpa,最大小时量13 m3/h,昼夜用量38 m3/d): 4、

干熄焦的原理及应用[]doc

干熄焦的原理及应用 1、国内干熄焦使用概况 干法熄焦简称干熄焦(CDQ),是相对于湿熄焦而言的采用惰性气体熄灭赤热焦炭的一种熄焦方法。干熄焦能回收利用红焦的显热,改善焦炭质量,减轻熄焦操作对环境的污染。 1.1 干熄焦的发展过程 干熄焦起源于瑞士,20世纪40年代许多发达国家开始研究开发干熄焦技术,采取的方式各异,而且一般规模较小,生产不稳定。进入60年代,前苏联在干熄焦技术方面取得了突破性进展,实现了连续稳定生产,获得专利发明权,并陆续在国内多数大型焦化厂建成干熄焦装置。到目前为止,前苏联有40%的焦化厂采用了干熄焦技术,单套处理量在50~70t/h。但前苏联干熄焦装置在自动控制和环境措施方面起点并不高。 20世纪70年代的全球能源危机促使干熄焦技术得到了长足发展,资源相对贫乏的日本,率先从苏联引进了干熄焦技术,并在装置的大型化、自动控制和环境保护方面进行了有效地改进。到90年代中期,日本已建成干熄焦装置31套,其中单套处理能力100t/h以上的装置有17套,日本新日铁和NKK等公司建成的干熄焦单套处理量可达到200t/h以上;装置方式采用了料钟布料,排焦采用了旋转密封阀连续排焦,接焦采用了旋转焦罐接焦等技术,使气料比大大降低极大地降低了干熄焦装置的建成投资和装置的运行费用;在控制方面实现了计算机控制,做到了全自动无人操作;在除尘方面,采用了除尘地面站方式,避免了干熄焦装置可能带来的二次污染。日本的干熄焦技术不仅在其国内被普遍采用,同时它将干熄焦技术输出到德国、中国、韩国等国家,其干熄焦技术已达到国际领先。 20世纪80年代,德国又发明了水冷壁式干熄焦装置,使气体循环系统更加优化,并降低了运行成本。德国帝森尔奥托(TSOA)公司成功地将水冷栅和水冷壁置入干熄炉,并将干熄炉断面由圆形改成方形,同时在排焦和干熄炉供气方式上进行了较大改进,干熄炉内焦炭下降及气流上升,实现了均匀分布,大大提高了换热效率,使气料比降到1000m3/t焦下,进一步降低了干熄焦装置的运行费用。TSOA干熄焦技术在德国得到推广,同时该技术还输出到韩国和中国的台北。 干熄焦技术发展至今,虽然出现了不同形式,但基本工艺流程大同小异,只是在装焦、排焦、循环气体除尘等方面有所区别。具有代表性的有德国TSOA公司设计的干熄焦工艺和日本新日铁设计的干熄焦工艺,这两种典型的干熄焦工艺在消化吸收前苏联干熄焦成熟技术的基础上都有所创新,形成各自的特点,并使干熄焦技术及其应用达到了较先进的水平。中国的鞍山焦耐院和首钢设计院,以及武钢、宝钢、首钢在吸收消化日本干熄焦技术方面做了一些有益的工作,并积累了一些

相关文档
最新文档