杂环化合物以及具体合成方法

杂环化合物以及具体合成方法
杂环化合物以及具体合成方法

多芳基脒类化合物的合成

多芳基脒类化合物骨架的合成 郭小玲,王继涛,孟凡超,蒋继军 (西北农林科技大学植物保护学院,陕西杨凌712100 ) [摘要]【目的】合成多芳基脒类化合物无骨架;【方法】三头脒骨架:由均苯三酚在氮气保护下以及碳酸钾存在的条件下与对氰基苄溴进行偶联得到;四头脒骨架:由季戊四醇四对甲苯磺酸酯与对氰基苯酚偶联得到;【结果】合成了以苯环为核的三头芳基脒骨架以及以季戊四基为核的四头芳基脒骨架,并且利用重结晶方法纯化了产物,数据表明,所采用的合成方法产率高、纯度好,为下一步的成脒反应以及活性测定奠定了基础。 [关键词] 季戊四醇四对甲苯磺酸酯,1,3,5-三(4-氰基苯甲氧基)苯,季戊四醇四对氰基苯基醚,合成 近年来,人们在活性寡糖的研究中发现,将母体活性寡糖小分子(α-Gal monomer)制成寡聚物(α-Gal polymers)后,其活性有时可大大增加[10,11],但活性提高程度会有所不同。聚合结构中母体寡糖小分子数目的比例越高,其活性提高程度越大。生命科学基础研究结果表明:蛋白质(受体)与配体(ligand,内源性活性物质或者外源性小分子药物)[12]由于几何互补性而靠近,并主要在几何互补作用下,蛋白质构象受到诱导,以匹配性更好的亚稳态构象进行初步结合。继而在调整结合期,氢键、疏水作用等短程精细作用开始表现并最终使二者微扰调整到合适的构象结合,这就是所谓的“诱导契合”[13]。根据多效价效应原理,多效价能够引起一些蛋白受体的聚合,受体聚合后与配体也将产生诱导契合的效果,从而使它们之间结合力增强,表现出多效价效应。多效价配体可和受体上的主要结合点作用,也可和结合亚点作用结合靶标酶的结构信息,利用多效价效应来发现高效、安全的新型农药分子,可看作是一种基于结构的合理设计。 在生物体系中,多位点结合比单位点结合更具优势。首先,多位点结合更牢固,高亲和性的多效价化合物作为一些防治对象靶标部位的抑制剂具有很大的潜在价值。其次,多效价作用能提高受体的选择性。 农药活性的提高很大程度上取决于其对靶标结合程度的增强。有的防治对象可能存在多个作用位点,如一些杀虫剂既有第一作用位点乙酰胆碱酯酶,也有第二作用位点腺苷酸三磷酸酶(A TPase)。在设计聚合物时也可充分考虑这些靶标的特点,从而进行合理的设计,开发出能与多靶标结合的化合物,以提高目标化合物的生物活性[14]。近几年,日本Kagabu Shinzo等报道了以不同链长的亚甲基、烯基、炔基等连接体合成对称的烟碱类化合物的二聚体,并表现出一定的生物活性[15]。 Pang等针对乙酰胆碱酯酶的结构设计了一系列不同链长的二效价他克林聚合物,旨在目标化合物能同时结合乙酰胆碱酯酶的催化位点和外周位点。结果发现当聚合物的链长为7个亚甲基时活性最好,是其母体的1475倍。 芳基二脒类化合物能够实现与DNA小沟的紧密结合而芳基单脒化合物则不能,这也可以利用多效价效应来解释。这容易使我们想到,更多头的芳基脒类是不是同样具有多效价作用而有可能具有更高的生物活性?于是本文在此假设的基础上,决定设计并合成以不同化学结构为核的具有多个芳基脒头的化合物,并研究其生物活性,目标化合物的合成路线见图1。

化合物分类

1.初中的分类:酸碱盐氧化物 2.分为有机和无机化合物 3.分为离子化合物和共价化合物 共价化合物 共价化合物之一 像氯化氢那样,以共用电子对形成分子的化合物,叫做共价化合物。如水H2O、二氧化碳CO2、氨NH3等都是常见的共价化合物。 共价化合物之二 共价化合物是原子间以共用电子对所组成的化合物分子。两种非金属元素原子(或不活泼金属元素和非金属元素)化合时,原子间各出一个或多个电子形成电子对,这个电子对受两个原子核的共同吸引,为两个原子所共有,使两个原子形成化合物分子。例如,氯化氢是氢原子和氯原子各以最外层一个电子形成一个共用电子对而组成的化合物分子。非金属氢化物(如HCl、H2O、NH3等)、非金属氧化物(如CO2、SO3等)、无水酸(如H2SO4、HNO3等)、大多数有机化合物(如甲烷、酒精、蔗糖等)都是共价化合物。多数共价化合物在固态时,熔点、沸点较低,硬度较小。 当两种非金属元素的原子形成分子时,由于两个原子都有通过得电子形成8电子稳定结构的趋势,它们得电子的能力差不多,谁也不能把对方的电子夺过来,这样两个原子只能各提供一个电子形成共用电子对,在两个原子的核外空间运动,电子带负电,原子核带正电。两个原子的原子核同时吸引共用电子对,产生作用力,从而形成了一个分子。 由于两个原子对电子的吸引能力不一样,共用电子对总是偏向得电子能力强的一方,这一方的原子略显负电性,另一方的原子略显正电性,作为整体,分子仍显电中性。 比较典型的共价化合物是水、氯化氢以及二氧化碳。共用电子对总是偏向氧原子的一方,偏离氢原子的一方。 共价化合物一般硬度小,熔沸点低。 某些单质的分子也是依靠共用电子对形成的。例如氯气的分子就是由两个氯原子各提供一个电子形成共用电子对,电子对同时受两个原子核的作用形成氯分子。由于同种原子吸引电子能力相仿,电子对不偏向任何一方。 ------------------------------------------------------------- 离子化合物 离子化合物由阳离子和阴离子组成的化合物。活泼金属(如钠、钾、钙、镁等)与活泼非金属(如氟、氯、氧、硫等)相互化合时,活泼金属失去电子形成带正电荷的阳离子(如Na+、K+、Ca2+、Mg2+等),活泼非金属得到电子形成带负电荷的阴离子(如F-、Cl-、O2-、S2-等),阳离子和阴离子靠静电作用形成了离子化合物。例如,氯化钠即是由带正电的钠离子(Na+)和带负电的氯离子(Cl-)构成的离子化合物。许多碱(如NaOH、KOH、Ba(OH)2等)和盐(如CaCl2、KNO3、CuSO4 等)都是离子化合物。在离子化合物里阳离子所带的正电荷总数等于阴离子所带的负电荷总数,整个化合物呈电中性。多数离子化合物在固态(或晶态)时不能导电,而它的水溶液或熔化状态则能导电。离子化合物一般说来,熔点和沸点较高,硬度较大,质脆,难于压缩,难挥发。 某些碱性氧化物,如Na2O、K2O,常见的盐类如NaCl、KF,常见的碱,如NaOH等都属于离子化合物。 离子化合物是存在于1、活泼金属(指第一和第二主族的金属元素)与活泼的非金属元素(指第六和第七主族的元素)之间形成的化合物。2、金属元素与酸根离子之间形成的化合物。

手性药物的合成与拆分的研究进展

手性药物的合成与拆分的研究进展 手性是自然界的一种普遍现象,构成生物体的基本物质如氨基酸、糖类等都是手性分子。手性化合物具有两个异构体,它们如同实物和镜像的关系,通常叫做对映异构体。对映异构体很像人的左右手,它们看起来非常相似,但是不完全相同。 目前市场上销售的化学药物中,具有光学活性的手性药物约占全部化学药40% } 50%,药物的手性不同会表现出截然不同的生物、药理、毒理作用,服用对映体纯的手性药物不仅可以排除由于无效(不良)对映体所引起的毒副作用,还能减少药剂量和人体对无效对映体的代谢负担,对药物动力学及剂量有更好的控制,提高药物的专一性,因而具有十分广阔的市场前景和巨大的经济价值[Dl 1由天然产物中提取 天然产物的提取及半合成就是从天然存在的光活性化合物中获得,或以价廉易得的天然手性化合物氨基酸、菇烯、糖类、生物碱等为原料,经构型保留、构型转化或手性转换等反应,方便地合成新的手性化合物。如用乳酸可合成(R)一苯氧基丙酸类除草剂[}z}。天然存在的手性化合物通常只含一种对映体用它们作起始原料,经化学改造制备其它手性化合物,无需经过繁复的对映体拆分,利用其原有的手性中心,在分子的适当部位引进新的活性功能团,可以制成许多有用的手性化合物。 2手性合成 手性合成也叫不对称合成。一般是指在反应中生成的对映体或非对映体的量是不相等的。手J险合成是在催化剂和酶的作用下合成得到过量的单一对映体的方法。如利用氧化还原酶、合成酶、裂解酶等直接从前体化合物不对称合成各种结构复杂的手性醇、酮、醛、胺、酸、酉旨、酞胺等衍生物,以及各种含硫、磷、氮及金属的手性化合物和药物,其优点在于反应条件温和、选择性强、不良反应少、产率高、产品光学纯度高、无污染。 手性合成是获得手性药物最直接的方法。手J险合成包括从手性分子出发来合成目标手性产物或在手性底物的作用下将潜在手性化合物转变为含一个或多个手性中心的化合物,手性底物可以作为试剂、催化剂及助剂在不对称合成中使用。如Yamad等和Snamprogetti 等在微生物中发现了能催化产生N-氨甲酞基一D-氨基酸的海因酶( Hy-dantoinase)。海因酶用于工业生产D一苯甘氨酸和D一对轻基苯甘氨酸。D一苯甘氨酸和D一对轻基苯甘氨酸是生产重要的临床用药半合成内酞胺抗生素(氨节青霉素、轻氨节青霉素、氨节头炮霉素、轻氨节头炮霉素)的重要侧链,目前国际上每年的总产量接近SOOOto 3外消旋化合物的拆分 外消旋拆分法是在手性助剂的作用下,将外消旋体拆分为纯对映体。外消旋体拆分法是一种经典的分离方法,在工业生产中己有100多年的历史,目前仍是获得手性物质的有效方法之一。拆分是用物理化学或生物方法等将外消旋体分离成单一异构体,外消旋体拆分法又可分为结晶拆分法;化学拆分法;生物拆分法;色谱拆分法;膜拆分和泳技术。 3. 1结晶拆分法 3.1.1直接结晶法 结晶法是利用化合物的旋光异构体在一定的温度下,较外消旋体的溶解度小,易拆分的性质,在外消旋体的溶液中加入异构体中的一种(或两种)旋光异构体作为晶种,诱导与晶种相同的异构体优先(分别)析出,从而达到分离的目的。在。一甲基一L一多巴的工业生产中就是使两种对映体同时在溶液中结晶,而母液仍是外消旋的,把外消旋混合物的过饱和溶液通过含有各个对应晶种的两个结晶槽而达到拆分的目的[3]。结晶法的拆分效果一般都不太理想,但优点是不需要外加手性拆分试剂。若严格控制反应条件也能获得较纯的单一对应体。 3. 1. 2非对映体结晶法

1_2_4-三唑的制备

化工与生物技术学院 综合与设计性化学实验实验类型:设计 实验题目:1,2,4-三唑的制备 班级:轻化1101班学号:11140131 姓名:徐得欢实验日期:

1,2,4,-三唑的制备 目的与要求 了解无取代三唑环的合成和应用 了解无取代三唑环的合成和应用; 了解文献资料的收集和整理; 学会对实验数据的处理和分析。 一,前言 1.2.4一三唑类化合物具有广泛的生物活性,如抗菌lll、消炎l 2l、抗癌_3j等。Catheyl4j指出,含有C—C—N—N骨架的有机分子对植物有促进生长的作用。Pathok等指出1.2.4一三唑硫醚类的抗菌性比硫醇类高[5I。考虑到羟基等基团能增加分子水溶性及负电性、有可能提高药物活性。 二、实验原理 1,2,4-三唑环中有两个相邻的氮原子,在合成上可以由NH2NH2来提供,通过和其他带有活性基团的化合物如甲酰胺缩合而成。甲酰胺法是目前工业上生产1,2,4-三唑常有的方法。另一类方法是通过1mol的甲酰胺和1mol甲酰胺环和而成。但用这种方法,甲酰肼尚有需要由甲酸甲酯肼来制备,路线较长,成本较前类方法为高。用肼的衍生物(如酰肼)代替肼,可用类似的方法合成取代的三唑化合物,。3HCONH2 + NH2NH2 .H2O + 2H2O + HCOOH + 2NH3 N N HN 180℃(甲酰胺沸点:210℃水合肼的沸点118.5℃)。 三、仪器和试剂 1.仪器 带机械搅拌回流装置(尾气吸收),蒸馏装置等。 2.试剂 水合肼(C.P.80%或工业品),甲酰胺(C.P.99.5%或工业品),无水乙醇。 四、实验步骤 1、1,2,4_三唑制备 将86g(1.9mol)甲酰胺和5.22g(0.1mol)甲酸加入四颈瓶,加热至180℃,保持温度170-185℃边搅拌边滴入63g(1.0mol)85%的水合肼(当温度低于170℃

手性化合物合成方法

在有机合成中产生手性化合物的方法有4种: 1.使用手性的底物 2.使用手性助剂 3.采用手性试剂 4.使用不对称催化剂 常常需要使用天然产物,如:氨基酸、生物碱、羟基酸、萜、碳水化合物、蛋白质等。 1.使用手性的底物 这种方法局限于比较有限的天然底物 如图,该化合物的硼氢化反应中,由于羟基的作用产生另外新的立体中心(反应从分子的背后发生) 以下两个反应,第一个是由于羧基的控制得到相应的手性产物..另一个则是由于反应中间体烯醇阴离子的构象决定了构型 2.使用手性助剂 如图,在第一步使用LDA去质子化时,为了使得上边的醇锂和下边的烯醇锂相距最远,Z-异构体占优势,在下一步与EtI的反应中得以产生了立体中心。 类似地,用烯醇锆替代烯醇锂(使用LDA,ZrCp2Cl2)确保烯醇的构型,再和醛反应产生不对称中心。 这些反应多数通过手性助剂的金属原子和底物中已有手性的O、N等原子络合,之后再加入其他试剂实现不对称中心的形成。这其中手性唑啉环是一个非常不错的手性助剂,它水解后可以生成一个羧基(潜在官能团) 另外一个试剂是手性的3-烷基哌嗪-2,5-二酮(一个环状二肽,可由两个氨基酸环合生成),如图 在羰基的α位进行不对称烷基化使用的是以下两种试剂A和B(B称为SAMP),如图,对环己酮的反应中采用A得到S异构体而采用B得到R异构体.

在氨基的α位进行不对称烷基化使用的试剂如下二图,用胺和它们作用后再用LDA、MeI甲基化,最后用N2H4脱去助剂得到产物. 还有一些有趣的反应如脯氨酸的α烷基化,涉及到一个立体化学的"存储"问题,经历了一个消失和再产生的过程:: 手性亚砜的作用:分离得到手性亚砜试剂和卤代烷作用后在下一步反应中诱导手性基团的产生,Al/Hg可以方便地除去亚砜基团。 3.采用手性试剂 通过铝锂氢化物与手性二胺或氨基醇作用可以得到一个用于不对称还原的试剂。如图。 利用α-蒎烯和9-BBN作用得到的试剂是一个很好的不对称还原试剂.如图 不对称硼氢化反应也是一个很好的构造立体化学中心的反应。这里需要利用α-蒎烯(图中的反应是针对三取代烯烃的,对于双取代烯烃应采用条件温和的双取代硼烷)

恶唑类化合物的合成方法综述

2005届本科毕业(学位)论文河西学院化学系 第一章:噁唑类化合物的合成方法综述 1.引言:根据杂原子在环数目很多。的五元环体系叫唑含有两个杂原子且其中 一个杂原子为N,的化合物是噁唑类化合O3-唑。五元环中杂原子为N、中位置不同,有可分为1,2-唑和1,4)等。(物,其种类较多,有噁唑(1)、噁唑啉(2)、噁唑烷(3)、噁唑酮、苯并噁唑111OOOONNNNH4312ONnNO5 [1]。噁唑类化合物是一类重要的杂环化合物,一些具有噁唑环的化合物具有生物活性[2]。同时它们在中间体、药物合成中也具氨基噁唑具有杀真菌、抗菌、抗病毒作用例如2-[345][6],,。5)是耐高温的高聚物有广泛的用途。分子结构中含有噁唑环的聚苯并噁唑(噁唑(1)是1,3位含有O、N原子的五元环,为有像吡啶一样气味且易溶于水的液体,是非常稳定的化合物,它在热的强酸中很稳定,不发生自身氧化反应,不参与任何的正常的生物化学过程。其二氢和四氢杂环化合物叫做噁唑啉或4,5-二氢唑啉(2)和噁唑烷或四氢噁唑啉(3)。 [1]年确定的,但一向没有人作过大量深入的在1887虽然噁唑环这个名称还是Hantzsch研究,因为这个环系不常见于天然产物中,而且制备也相当困难。直到青霉素的出现,才推动了噁唑的研究。青霉素本身虽没有噁唑环,但它最初是疑为是属于这个环系的。青霉素实际含有一个噻唑环,而噁唑是噻唑的氧的类似物。因为青霉素是一个很重要的药品,研究的范围也由噻唑推广到了噁唑。下面我们就将噁唑类化合物的合成方法进行综述。 2.合成方法 噁唑类化合物可由提供N,O原子的化合物来合成。 页37共页1第 2005届本科毕业(学位)论文河西学院化学系 法合成噁唑环2.1.Cornforth[7] 1947年由。其过程如下:Cornforth等人首次合成第一个含有噁唑环的化合物NHCCHEtO222)HN=CHOCH(CHCHOH + HClHCN + (CH) 23223ClNCCEtO 2HC(OEt)3AcOH)EtOCCH-N=CHOCH(CH2232)CHOCH(CHHCKOEt23加热KO HOOCCEtO2NNN水解喹啉加热CuO, OO O[7]羧酸乙酯的路线如下据此设计合成噁唑-4-。 EtCO 2ClNH2NHEtOCCH N222PrOi Et EtOKHCO2OiPr H57%EtCOEtCO22NN AcOH OiPr OKO34%82% 2.2. 碱催化酰氨基磺酰烯关环合成法[8]-1-苯磺酰烯在碱催化下关环可得到噁 唑化合物。用3-酰氨基-2-碘HNPhSOMeNNH2Na IPhSONaOH22PhOSHCMeMe 22aq ,EtAc hv 80℃℃THF 0HOOOI94%38%

三唑类化合物的研究进展

三唑类化合物的研究进展 摘要:在现有的众多杂环化合物中,三唑类衍生物对过渡金属离子具有良好的配位性能,因而具有很高的生物活性。三唑类衍生物由于其广谱的生物活性及广阔的应用前景一直颇受人们青睐。本文综述了三唑类化合物在农业、医药、材料等领域的应用,展望了三唑类化合物的发展方向。 关键词:三唑化合物农业医药材料 前言:含氮杂环化合物有着独特的生物活性,毒性低,内吸性高,常被用作医药和农药的结构组成单元,在医药和农药合成方面起着重要的作用。其中三唑类化合物作为含氮杂环的重要组成部分,因其独特的结构特征而得到广泛的应用。本文综述了三唑类化合物在农业、医药、材料三方面的应用,对新型三唑化合物的研制和发展具有一定的现实意义。 在农药方面的应用 在农用化学品中,三唑类化合物己经被开发成为一类引人注目的超高效农药,其中已有几十个商业化的品种。目前对该类化合物的研究和开发仍很活跃,其研究的内容和主要目标是通过保留三唑环的分子结构而对其他部分进行适当的改造和修饰,以求达到进一步扩大杀菌谱和应用范围,进一步提高其生物活性和减少用药量。

1.杀菌活性 危害动植物而使动植物致病的有害生物主要是真菌、细菌和病毒。对植物而言,植物的主要病害是真菌病害。近30年来,三唑类杀菌剂以其高效、低毒、广谱而备受青睐。 三唑类化合物的高效杀菌活性引起国际农药界的高度重视,各大公司先后开发出一系列商品化的杀菌剂,如羟菌唑主要用于谷类作物防治矮形诱病、叶诱病、以及壳针孢、镰刀菌等病害;丙环唑主要对担子纲和子囊纲和半知纲中许多真菌有活;粉唑醇主要对担子菌纲和子囊菌纲的真菌有活性,如白粉病、诱病,对谷物白粉病有特效;酰胺唑具有保护、治疗作用,防治担子菌纲、子囊菌纲、半知菌纲引起的谷、水果、蔬菜和观赏植物的真菌病害;糠菌唑能防治谷类作物、葡萄、水稻、果树和蔬菜上的由担子菌纲、子囊菌纲、半知菌类病原菌引起的病害。 近几年来新研制的三唑类杀菌剂的结构出现以下几个特点:以多取代的三唑为母核,并对其它结构进行修饰,如以多个卤原子取代甲基上的氢原子;分子中含两个或两个以上手性碳原子;形成稠杂环等多个方法来达到提高活性或专一性的目的。 三唑苄胺类化合物具有高效、广谱抗真菌活性, 构效关系研究表明, 三唑类化合物的 R1为 2, 4-二氯或 2, 4-二氟取代基时抗真菌活性较好。冯志祥、张万年、周有骏[1]等人改进了 1-[2-(N -甲基)氨基-2-(2, 4-二氯苯基) 乙基] -1H-1, 2, 4-三唑的合成方法, 降

恶唑类化合物的合成方法综述

恶唑类化合物的合成方法 综述 Prepared on 22 November 2020

第一章:恶唑类化合物的合成方法综述 1.引言: 含有两个杂原子且其中一个杂原子为N的五元环体系叫唑,数目很多。根据杂原子在环中位置不同,有可分为1,2-唑和1,3-唑。五元环中杂原子为N、O的化合物是恶唑类化合物,其种类较多,有恶唑(1)、恶唑啉(2)、恶唑烷(3)、恶唑酮、苯并恶唑(4)等。 恶唑类化合物是一类重要的杂环化合物,一些具有恶唑环的化合物具有生物活性[1]。例如2-氨基恶唑具有杀真菌、抗菌、抗病毒作用[2]。同时它们在中间体、药物合成中也具有广泛的用途[3,4,5]。分子结构中含有恶唑环的聚苯并恶唑(5)是耐高温的高聚物[6]。 恶唑(1)是1,3位含有O、N原子的五元环,为有像吡啶一样气味且易溶于水的液体,是非常稳定的化合物,它在热的强酸中很稳定,不发生自身氧化反应,不参与任何的正常的生物化学过程。其二氢和四氢杂环化合物叫做恶唑啉或4,5-二氢唑啉(2)和恶唑烷或四氢恶唑啉(3)。 虽然恶唑环这个名称还是Hantzsch在1887[1]年确定的,但一向没有人作过大量深入的研究,因为这个环系不常见于天然产物中,而且制备也相当困难。直到青霉素的出现,才推动了恶唑的研究。青霉素本身虽没有恶唑环,但它最初是疑为是属于这个环系的。青霉素实际含有一个噻唑环,而恶唑是噻唑的氧的类似物。因为青霉素是一个很重要的药品,研究的范围也由噻唑推广到了恶唑。下面我们就将恶唑类化合物的合成方法进行综述。 2.合成方法 恶唑类化合物可由提供N,O原子的化合物来合成。 法合成恶唑环 1947年由Cornforth等人首次合成第一个含有恶唑环的化合物[7]。其过程如下:

浅谈手性化合物与现代医学

浅谈手性化合物与现代医学 一、手性化合物简介 手性化合物(chiral compounds)是指分子量、分子结构相同,但左右排列相反,如实物与其镜中的映体。人的左右手、结构相同,大姆至小指的次序也相同,但顺序不同,左手是由左向右,右手则是由右向左,所以叫做“手性”。也就是指一对分子。由于它们像人的两只手一样彼此不能重合,又称为手性化合物。判断分子有无手性的可靠方法是看有没有对称面和对称中心。 手性问题与我们的日常生活密切相关。天然存在的手性化合物品种很多,并且通常只含有一种对映体,手性问题还牵涉到农业化学、食品添加剂、饮料、药物、材料、催化剂等诸多领域。它的研究已经成为科学研究和很多高科技新产品开发的热点。在过去20年里,手性研究具有戏剧性的发展,已从过去的少数几个专家的学术研究发展到大面积科学研究的需要,在一些领域并已带来了巨大的经济效益。物质的手性已经变成越来越需要考虑的问题,其对我们的日常生活正在起到越来越重要的作用。 手性化合物主要从天然来源、不对称合成和外消旋体拆分3个方面得到。由天然来源获得手性化合物,原料丰富,价廉易得,生产过程简单,产品的纯度一般都较高,因此很多量大的产品都是从天然物中获得。在药物工业中由于对手性药物的要求不断增加,其大大激发了不对称有机合成的发展,使一些生物技术、生物催化剂也迅速扩展到该领域产生纯的的手性中间体和手性产品。 二、手性药物 由于自然界的生命体存在有手性,因而也就产生了手性药物。手性药物指分子结构中存在手性因素的药物。通常是指由具有药理活性的手性化合物组成的药物,或者是只含有效对映体或是以有效对映体为主的药物。按药效方面的简单划分,手性药物可能存在以下几种不同的情况:①只有一种对映体具有所要求的药理活性,而另一种对映体没有药理作用或活性很小。②一对对映体中的两个化合物具有等同或近乎等同的同一药理活性。③一对对映体具有完全不同的药理活性。 ④一对对映体之间一个有药理活性,另一个不但没有活性,甚至表现出一定的毒副作用。⑤一对对映体之间药理活性相近,但存在个体差异。⑥一对对映体中,一个有活性,另一个却发生拮抗作用。 三、手性药物未来展望 手性制药是医药行业的前沿领域,2001年诺贝尔化学奖就授予在分子不对称催化反应中做出杰出贡献的三位科学家。目前,世界单一对映体手性药物的销售额持续增长。1998年销售额已达到964亿美元。2000年的销售额为1330亿美元,并估计2008年达到2000亿美元。手性药物以其疗效高、毒副作用小、用药量少的优点满足了市场的需求,因而成为未来新药研发的方向。

【CN109776436A】一种三唑类化合物的制备方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910195020.1 (22)申请日 2019.03.14 (71)申请人 帕潘纳(北京)科技有限公司 地址 102206 北京市昌平区科技园区生命 园路4号院9号楼4层401 (72)发明人 焦体 李星强  (74)专利代理机构 北京路浩知识产权代理有限 公司 11002 代理人 王文君 陈征 (51)Int.Cl. C07D 249/08(2006.01) (54)发明名称 一种三唑类化合物的制备方法 (57)摘要 本发明公开了一种三唑类化合物的制备方 法,合成路线如下;其采用式III所示化合物为主 要原料与式IV所示化合物在碱性条件下进行取 代反应,合成式V所示的三唑类化合物。本方法具 有以下优点:操作简单,成本低,无污染,收率高, 绿色安全环保, 适合现代工业化生产。权利要求书2页 说明书5页CN 109776436 A 2019.05.21 C N 109776436 A

1.下式V所示三唑类化合物的制备方法,其特征在于, 反应路线如下, 其中: R 1选自F,Cl,Br,I,R a -S(=O)-O -,R b SO 3-,-N +≡N,-NR c R d R e 或-OR f ;R a 、R b 各自独立地选自-CH 3,-CF 3,-CF 2H或苯基;R a 、R b 相同或不同;R c 、R d 、R e 各自独立地选自氢、C 1-C 6烷基、酰基、酯基、二烷基或酰胺基,R f 选自C 1-C 6烷基; R 2选自-OH,-OR g ,-NR h R i ,或-SR j ;R g 选自C 1-C 6烷基;R h 、R i 各自独立地选自氢、C 1-C 6烷基、酰基、酯基、二烷基或酰胺基,R j 选自氢、烷基、酯基或苯基; R 3选自H,-COR k ,-CN,-SO 2R l ,-SOR m ,-POR n R °R p ,-NO,或-NO 2;R k 、R l 、R m 各自独立地选自氢、C 1-C 6烷基、苯基或杂基;R n 、R °、R p 各自独立地选自氢、C 1-C 6烷基、酰基、酯基或二烷基; R 4、R 5各自独立地选自H,-COOH,-COOR q ,-CN,-OH,-SH,-SR s ,-NH 2,-N +≡N,-S -S -R t ,或-COR u ;R q 、R s 、R t 各自独立地选自C 1-C 6烷基;R 4、R 5相同或不同; R 6、R 7、R 8、R 9、R 10各自独立地选自H,Cl,Br,F,I,-NO 2,-OR v ,-NH 2,-N +≡N,杂环取代基或-NH -NH 2;R v 选自C 1-C 6烷基、C 2-C 6烯基、C 2-C 6炔基或不饱和单环烃基、芳香烃基或者芳香烃取代基; X选自H,Cl,Br,I,F,-OR w ,-NR x ,-SR y ,-OCOR z ,咪唑基,含N杂环,或含硫杂环。 2.根据权利要求1所述的制备方法,其特征在于,所述C 1-C 6烷基为直链烷基、直链烷基或环烷基;优选地,所述C 1-C 6烷基选自甲基、乙基、丙基、丁基、戊基或己基。 3.根据权利要求1所述的制备方法,其特征在于,R 1、R 2各自独立地选自H、F、Cl、Br、I、-CN、-OCH 3或-OCH 2CH 3;R 3选自-OH、-OCH 3或-OCH 2CH 3; 或者,式I所示化合物选自卤代乙酸甲酯、卤代乙酸乙酯、2-卤代乙酰乙酸甲酯、2-卤代乙酰乙酸乙酯、卤代丙二酸二甲酯、卤代丙二酸乙酯、氰基乙酸甲酯或氰基乙酸乙酯、甲氧基乙酸甲酯、甲氧基乙酸乙酯、乙氧基乙酸甲酯、乙氧基乙酸乙酯。 4.根据权利要求1或3所述的制备方法,其特征在于,R 4、R 5各自独立地选自H,-COOH,-CN,-OH,-SH,-NH 2,或-N +≡N。 5.根据权利要求1或3所述的制备方法,其特征在于,R 6、R 7、R 8、R 9、R 10各自独立地选自H,Cl,Br,F,I,-NO 2,-NH 2,-N +≡N,或-NH -NH 2;X选自H、Cl,Br,I或F。 6.根据权利要求1所述的制备方法,其特征在于,R 1、X、R 8、R 10各自独立地为Cl或F;R 2为-OR g ,R g 选自C 1-C 6烷基;R 3、R 4、R 5、R 6、R 7、R 9各自独立地为H;优选地,R g 为甲基、乙基、丙基、丁基、戊基或己基。 7.根据权利要求1-6任一项所述的制备方法,其特征在于,式III所示化合物与式IV所示化合物在碱性条件下进行取代反应,制得式V所示的三唑类化合物;所述碱优选为钠氢、三乙胺、N ,N -二甲基苯胺、DBU、二异丙基乙胺、甲醇钠、乙醇钠、甲醇钾、叔丁醇钠、叔丁醇钾中的任何一种或几种的组合。 8.根据权利要求1-7任一项所述的制备方法,其特征在于,包括如下步骤: 权 利 要 求 书1/2页2CN 109776436 A

恶唑类化合物的合成方法综述

第一章:噁唑类化合物的合成方法综述 1.引言: 含有两个杂原子且其中一个杂原子为N 的五元环体系叫唑,数目很多。根据杂原子在环中位置不同,有可分为1,2-唑和1,3-唑。五元环中杂原子为N 、O 的化合物是噁唑类化合物,其种类较多,有噁唑(1)、噁唑啉(2)、噁唑烷(3)、噁唑酮、苯并噁唑(4)等。 N O N O NH O 1 111 2 34 N O N O N O n 5 噁唑类化合物是一类重要的杂环化合物,一些具有噁唑环的化合物具有生物活性[1]。例如2-氨基噁唑具有杀真菌、抗菌、抗病毒作用[2]。同时它们在中间体、药物合成中也具有广泛的用途[3,4,5]。分子结构中含有噁唑环的聚苯并噁唑(5)是耐高温的高聚物[6]。 噁唑(1)是1,3位含有O 、N 原子的五元环,为有像吡啶一样气味且易溶于水的液体,是非常稳定的化合物,它在热的强酸中很稳定,不发生自身氧化反应,不参与任何的正常的生物化学过程。其二氢和四氢杂环化合物叫做噁唑啉或4,5-二氢唑啉(2)和噁唑烷或四氢噁唑啉(3)。 虽然噁唑环这个名称还是Hantzsch 在1887[1]年确定的,但一向没有人作过大量深入的研究,因为这个环系不常见于天然产物中,而且制备也相当困难。直到青霉素的出现,才推动了噁唑的研究。青霉素本身虽没有噁唑环,但它最初是疑为是属于这个环系的。青霉素实际含有一个噻唑环,而噁唑是噻唑的氧的类似物。因为青霉素是一个很重要的药品,研究的范围也由噻唑推广到了噁唑。下面我们就将噁唑类化合物的合成方法进行综述。 2.合成方法 噁唑类化合物可由提供N ,O 原子的化合物来合成。

2.1.Cornforth 法合成噁唑环 1947年由Cornforth 等人首次合成第一个含有噁唑环的化合物[7]。其过程如下: HCN + (CH 3)2CHOH + HCl H 2N=CHOCH(CH 3)2 222 EtO 2CCH 2-N=CHOCH(CH 3)2 3KOEt AcOH 水解 Cl C N HC CHOCH(CH 3)2K EtO 2C N O EtO 2C N O HOOC N O 据此设计合成噁唑-4-羧酸乙酯的路线如下[7]。 H 2 Oi Pr OiPr N CO 2Et N CO 2Et OiPr N O CO 2Et 222 AcOH 57% 82% 34% HCO 2Et EtOK 2.2. 碱催化酰氨基磺酰烯关环合成法 用3-酰氨基-2-碘-1-苯磺酰烯在碱催化下关环可得到噁唑化合物[8]。 H N O Me O NH I Me PhSO 2 H NaOH N O PhO 2SH 2C Me aq ,EtAc hv 80℃ THF 0℃ 38% 94%PhSO 2Na I 2 2.3.由西佛碱氧化法合成 在温和的反应条件下,用二醋酸碘苯作氧化剂可以以良好产率将西佛碱氧化生成2-芳基-5-甲氧基噁唑化合物[9]。 2methanol , 1h O CH 3 O N Ar N O Ar OCH 3

有机化合物的分类

有机化合物的分类 1. 1 有机化合物的分类 【内容与解析】 内容:有机化合物的分类 解析:本节课要学的内容有机化合物的分类指的是用树状分类法,交叉分类法以及官能团分类法将有机物质进行分类,其核心是官能团分类法,理解它关键就是要认识高中阶段出现的十二种官能团。学生已经学过物质分类的方法,本节课的内容树状分类法就是在此基础上的发展。由于它还与必修二中有机物质的基础以及有机物中的性质有直接的联系,所以在本学科有重要的地位,并有连接的作用,是本学科的核心内容。教学的重点是能够熟练运用官能团分类以及碳骨架分类法指出有机物的所属类别。解决重点的关键是对官能团的认识以及这些官能团能体现的一些性质。 【教学目标与解析】 1.教学目标 (1)了解有机化合物的分类方法 (2)认识一些重要的官能团。 2.目标解析 (1)了解有机化合物的分类方法就是指从我们一开始接触化学的时候开始物质的分类方法中引入,再从现有的有机物的学习中去总结有机物的分类方法。 (2)认识一些重要的官能团。就是指从课本表格中去得出有机物的十二种不同的官能团。要分析它们的区别与联系。 【问题诊断分析】

在本节课的教学中,学生可能遇到的问题是醇与酚的官能团都是-OH但它们属于不同的物质体系,产生这一问题的原因是官能团一样就会导致性质一样,性质除了官能团外还有一些外部因素的影响。要解决这一问题,就要从-OH连接不同的部分开始分析醇连接的是饱和的碳而酚则是直接边在苯环上,其中关键是这样导致连在不同的地方会导致他们性质的不同,在苯环上的它们相互影响使其性质发生很大的变化,使-OH中的氢有酸性,苯环上的氢更容易被其它原子所取代。 【教学支持条件分析】 【教学过程】 [复习]烃与烃的衍生物的概念? 1. 烷烃结构的特点:、、 2. 烃和烃的衍生物 (1)烃:组成的有机化合物总称为烃(也叫碳氢化合物)。 (2)烃的衍生物:烃分子中的氢原子被所取代而生成的一系列化合物。 3. 官能团:有机化合物中,化合物特殊性质的原子或原子团。常见的官能团有:碳碳双键,碳碳叁键,卤素原子,羟基,醛基,羰基,羧基等。 问题二、按碳的骨架分类 1.烃的分类: 链状烃():烃分子中碳和碳之间的连接呈链状。 脂肪烃 烃:分子中含有碳环的烃。

手性分子的合成方法及研究进展

手性分子的合成方法及研究进展 学号: 班级: 姓名:

摘要:本文主要将手性药物的合成方法分为了两大类,并分别列举了一些方法,其中详细介绍了手性源合成以及酶法获得手性化合物两种方法,并通过对方法的介绍简述了手性化合物的研究进展。 关键词:手性化合物、合成、研究进展 手性是自然界最重要的属性之一,分子手性识别在生命活动中起着极为重要的作用。同一化合物的两个对映体之间不仅具有不同的光学性质和物理化学性质,而且它们具有不同的生物活性,比如在药理上,药物作用包括酶的抑制、膜的传递、受体结合等,均和药物的立体化学有关;手性药物的对映体的生物学活性、毒性、代谢和药物素质完全不同。获得手性化合物的方法,不外乎非生物法和生物法两种。 一、非生物法 非生物催化主要是指采用化学控制等手段来获得手性化合物,它主要包括不对称合成法、手性源合成、选择吸附拆分法、结晶法拆分、化学拆分法、动力学拆分、色谱分离等。下面主要介绍手性源合成: 手性源合成或者手性底物的诱导,该方法被称为第一代手性合成方法,亦称为底物控制法。它是通过底物中原有手性的诱导,在产物中形成新的手性中心。可简略表述为:原料为手性化合物A*,经不对称反应,得到另一手性化合物B*,即手性原料转化为反映产物。 美国Scripps 研究所Wong等曾报道了利用阿拉伯糖来合成L-N-乙酰神经氨酸的方法,该方法便是极其巧妙的利用了手性源合成。 阿拉伯糖是一个醛糖,它开环后的醛基与氨基化合物得到Schiff 碱中间体,硼酸衍生物上的乙烯基以富电子碳原子于Schiff碱上的碳原子发生亲核进攻,得到烯烃衍生物中间体,氨基用酸酐保护,总产率55%, de%为99%。烯烃衍生物中间体与硝酮衍生物进行1,3偶极环加成,得到氮氧五元环化合物,加成过程立体选择性较好,90%的产物是立体控制的。氮氧物五元环化合物经过脱质子化得到西佛碱中间体,水解后即得到L-N-乙酰神经氨酸(如图)。

手性化合物

手性化合物的合成和分离方法研究进展 摘要:手性问题与我们的生活密切相关,它涉及到生命、动植物、药物、食品、香料、农药等诸多领域,本文介绍了手性化合物的一些用途,合成和分离方法及发展方向。手性化合物的制备已成为当前国内外较热门的研究课题之一。本文从非生物法和生物法两个方面较全面地综述了手性化合物的制备方法, 希望为相关研究者提供参考。 关键词:手性化合物;手性药物;制备;生物合成 1.1用途 手性化合物(chiral compounds)是指分子量、分子结构相同,但左右排列相反,如实物与其镜中的映体。人的左右手、结构相同,大姆至小指的次序也相同,但顺序不同,左手是由左向右,右手则是由右向左,所以叫做“手性”。也就是指一对分子。由于它们像人的两只手一样彼此不能重合,又称为手性化合物。判断分子有无手性的可靠方法是看有没有对称面和对称中心[1]。 手性问题与我们的日常生活密切相关。天然存在的手性化合物品种很多,并且通常只含有一种对映体,手性问题还牵涉到农业化学、食品添加剂、饮料、药物、材料、催化剂等诸多领域。它的研究已经成为科学研究和很多高科技新产品开发的热点。在过去20年里,手性研究具有戏剧性的发展,已从过去的少数几个专家的学术研究发展到大面积科学研究的需要,在一些领域并已带来了巨大的经济效益。物质的手性已经变成越来越需要考虑的问题,其对我们的日常生活正在起到越来越重要的作用。 手性化合物主要从天然来源、不对称合成和外消旋体拆分3个方面得到。由天然来源获得手性化合物,原料丰富,价廉易得,生产过程简单,产品的纯度一般都较高,因此很多量大的产品都是从天然物中获得。在药物工业中由于对手性药物的要求不断增加,其大大激发了不对称有机合成的发展,使一些生物技术、生物催化剂也迅速扩展到该领域产生纯的的手性中间体和手性产品[2]。 1.生物制药 在合成中引入生物转化在制药工业中已成为关键技术。如Merck公司开发的酰胺酶抑制剂西司他丁的生产就是一个实例。西司他丁是一种N-取代的(S)-2,2-二甲环丙烷羰酰胺衍生物,它可以从易得原料合成消旋2,2-二甲基环丙羰腈开始,通过不同途径合成。 2.生物农药 拟除虫菊酯类杀虫剂是70年代中期开始大量使用的新型农药,是天然除虫菊酯的模拟物,生物降解性好,对环境影响小。拟除虫菊酯具高效安全杀虫谱广等优点。在世界农药市场占有一定的地位。手性化合物在生物农药方面也有广扩的前景,此杀虫剂占全球杀虫剂市场的20%。 3.香料、添加剂和酶技术 香精香料和其他行业占手性市场总值的4.7%;如人工合成一些甜味剂癸内酯具有强烈的果香香气。 酶技术的一个新方向是美国Altus Biologics的交联酶结晶(cross - linked enzyme

Pinner脒合成的反应机理及应用进展

Pinner脒合成的反应机理及应用进展 王阳阳 (西北农林科技大学理学院陕西杨凌712100) 摘要:脒类化合物在农药、医药以及其他领域上都具有很广泛的用途。合成脒类化合物的方法主要为:Pinner脒合成法。本文重点介绍了Pinner脒合成方法的机理和副反应机理,并对其在有机合成中的应用进行了探讨。 关键词:Pinner脒合成;机理;改进;应用 The reaction mechanism and application of Pinner amidine synthesis Wang Yangyang (College of science, Northwest A&F University, Yangling, 712100, China) Abstract:The amidine compounds have a very wide range of functions in the pesticide, medicine and other fields. The primary method of synthesis of amidine compounds is Pinner amidine synthesis. This article focuses on the reaction mechanism of Pinner amidine synthesis and the side reactions mechanism Its application in organic synthesis is also discussed. Key words: Pinner amidine synthesis; mechanism; improvement; application 1.前言 脒类化合物在农药和医药上具有很广泛的用途。早年发现某些脒盐可以治疗血吸虫病,但毒性较大,一些长链烷氧基取代的苯甲脒盐具有表面活性剂的作用,被称为杀虫脒[1]。现在,脒类化合物的主要用途是合成含氮的杂环化合物,如:咪唑、噻唑、嘧啶环等,在含氮杂环的合成中起着重要作用。研究发现,脒盐还可以作为水溶性偶氮类引发剂,在水溶液聚合与乳液聚合中得到广泛应用[2]。 脒类化合物的合成方法一般采用酸催化法即Pinner 脒合成法。反应式如scheme 1: Pinner脒合成: cheme 1

有机化合物的分类知识点

有机化合物的分类 1. 有机物的定义:含碳化合物。CO 、CO 2、H 2CO 3及其盐、氢氰酸(HCN )及其盐、硫氰酸(HSCN ) 、氰酸(HCNO )及其盐、金属碳化物等除外。 2.有机物的特性:容易燃烧;容易碳化; 受热易分解;化学反应慢、复杂;一般难溶于水。 3.烃:只含碳氢两种元素的有机化合物 4. 烃的衍生物:是指烃分子里的氢原子被其他原子或原子团取代所生成的一系列新的有机化合物。 5. 官能团:是指决定化合物化学特性的原子或原子团. 6.分类 (一)、按碳的骨架分类: 有机化合物 链状化合物 脂肪 环状化合物 脂环化合物 化合物 1.链状化合物 这类化合物分子中的碳原子相互连接成链状。(因其最初是在脂肪中发现的,所以又叫脂肪族化合物。)如: 正丁烷 正丁醇 2.环状化合物 这类化合物分子中含有由碳原子组成的环状结构。它又可分为两类: (1)脂环化合物:是一类性质和脂肪族化合物相似的碳环化合物。如: 环戊烷 环己醇 (2)芳香化合物:是分子中含有苯环的化合物。如: 苯 萘 (二)、按官能团分类: 有机物的主要类别、官能团和典型代表物 类别 官能团 典型代表物的名称和结构简式 烷烃 ———— 甲烷 CH 4 烯烃 双键 乙烯 CH 2=CH 2 炔烃 —C ≡C — 三键 乙炔 CH ≡CH 芳香烃 ———— 苯 卤代烃 —X (X 表示卤素原子) 溴乙烷 CH 3CH 2Br 醇 —OH 羟基 乙醇 CH 3CH 2OH CH 3 CH 2 CH 2 CH 3 CH 3CH 2CH 2CH 2OH OH

酚 —OH 羟基 苯酚 醚 醚键 乙醚 CH 3CH 2OCH 2CH 3 醛 醛基 乙醛 酮 羰基 丙酮 羧酸 羧基 乙酸 酯 酯基 乙酸乙酯 练习: 1.下列有机物中属于芳香化合物的是( ) 2.〖归纳〗芳香族化合物、芳香烃、苯的同系物三者之间的关系 〖变形练习〗下列有机物中(1)属于芳香化合物的是_______________,(2)属于芳香烃的是________, (3)属于苯的同系物的是______________。 3.按官能团的不同对下列有机物进行分类: NO 2 CH 3 CH 2 —CH 3 OH CH = CH 2 CH 3 CH 3 COOH CH 3 CH 3 OH COOH C —CH 3 CH 3 CH 3 OH H —C —H O OH HO C 2H 5 COOH H —C — O O C 2H 5 H 2C = CH —COOH

相关文档
最新文档