(2020年整理)渗流稳定计算.doc

(2020年整理)渗流稳定计算.doc
(2020年整理)渗流稳定计算.doc

赤峰市红山区城郊乡防洪工程

5.6稳定计算

5.6.1渗流及渗透稳定计算

1)渗流分析的目的

(1)确定堤身浸润线及下游逸出点位置,以便核算堤坡稳定。

(2)估算堤身、堤基的渗透量。

(3)求出局部渗流坡降,验算发生渗透变形的可能。

概括以上分析,对初步拟定的土堤剖面进行修改,最后确定土堤剖面及主渗,排水设备的型式及尺寸。

2)渗流分析计算的原则

(1)土堤渗流分析计算断面应具有代表性。

(2)土堤渗流计算应严格按照《堤防工程设计规范》(GB50286-981)第8.1.2条及本规范附录E的有关规定执行。

3)渗流分析计算的内容

(1)核算在设计洪水持续时间内浸润线的位置,当在背水侧堤坡逸出时,应计算出逸点位置,逸出段与背水侧堤基表面的出逸比降。

(2)当堤身、堤基土渗透系数K≥10-3cm/s时,应计算渗流量。

(3)设计洪水位降落时临水侧堤身内自由水位。

4)堤防渗流分析计算的水位组合

(1)临水侧为设计洪水位,背水侧为相应水位。

(2)临水侧为设计洪水位,背水侧无水。

(3)洪水降落时对临水侧堤坡稳定最不利情况。

5)渗透计算方法

堤防渗流分析计算方法按照《堤防工程设计规范》(GB50286-98)附录E3的透水堤基均质土堤渗流计算即——渗流问题的水力学解法。

6)土堤渗流分析计算

计算锡泊河左岸(0-468)横断面,堤高 5.05米(P=2%),半支箭左岸(0+302.25)横断面,堤高6.46米(P=2%),该两段堤防均属于 2级堤防,堤防渗流计算断面采用1个断面计算即可。采用《堤防工程设计规范》中透水堤基均质土堤下游坡无排水设备或有贴坡式排水稳定渗流计算公式:

T

H L T

H H D 88.0m k q q 11210

++-+=)( (E.3.1)

H m m b 121+-+=)(H H L (E2.1-3)

111

1

2m m H L +=

? (E2.1-4) 当K≤k 0时

h 0=a+H 2=q÷?

????

?+++??????++++?T H a m T K H a m H m m K 44.0)(5.0)5.0()5.0(1220222

22

+H 2 ……………(E.3.2-2) 对于各种情况下坝体浸润线均可按下式确定

X=k·T '0q h y -+k '

22

2q h y - ……………(E.3.2-6)

式中:q'= )(021112

0211

m 2m 2k h m H L h H -++-+02110

10m k h m H L h H T -+-(E.3.2-7)

k ——堤身渗透系数; k 0——堤基渗透系数;

H 1——水位到坝脚的距离(m ); H 2——下游水位(m ); H ——堤防高度(m );

q ——单位宽度渗流量(m 3/s·m ); m 1——上游坡坡率,m 1=3.0;

m2——下游坡坡率,m2=3.0;

b——坝体顶部宽度6.0m;

h0——下游出逸点高度(m);

锡伯河采用数据列表如下:

正常工况锡伯河渗流计算结果表

渗流稳定计算

赤峰市红山区城郊乡防洪工程 5.6稳定计算 5.6.1渗流及渗透稳定计算 1)渗流分析的目的 (1)确定堤身浸润线及下游逸出点位置,以便核算堤坡稳定。 (2)估算堤身、堤基的渗透量。 (3)求出局部渗流坡降,验算发生渗透变形的可能。 概括以上分析,对初步拟定的土堤剖面进行修改,最后确定土堤剖面及主渗,排水设备的型式及尺寸。 2)渗流分析计算的原则 (1)土堤渗流分析计算断面应具有代表性。 (2)土堤渗流计算应严格按照《堤防工程设计规范》(GB50286-981)第8.1.2条及本规范附录E的有关规定执行。 3)渗流分析计算的内容 (1)核算在设计洪水持续时间内浸润线的位置,当在背水侧堤坡逸出时,应计算出逸点位置,逸出段与背水侧堤基表面的出逸比降。 (2)当堤身、堤基土渗透系数K≥10-3cm/s时,应计算渗流量。 (3)设计洪水位降落时临水侧堤身内自由水位。 4)堤防渗流分析计算的水位组合 (1)临水侧为设计洪水位,背水侧为相应水位。 (2)临水侧为设计洪水位,背水侧无水。 (3)洪水降落时对临水侧堤坡稳定最不利情况。 5)渗透计算方法 堤防渗流分析计算方法按照《堤防工程设计规范》(GB50286-98)附录E3的透水堤基均质土堤渗流计算即——渗流问题的水力学解法。

6)土堤渗流分析计算 计算锡泊河左岸(0-468)横断面,堤高 5.05米(P=2%),半支箭左岸(0+302.25)横断面,堤高6.46米(P=2%),该两段堤防均属于 2级堤防,堤防渗流计算断面采用1个断面计算即可。采用《堤防工程设计规范》中透水堤基均质土堤下游坡无排水设备或有贴坡式排水稳定渗流计算公式: T H L T H H D 88.0m k q q 11210 ++-+=)( (E.3.1) H m m b 121+-+=)(H H L (E2.1-3) 111 1 2m m H L += ? (E2.1-4) 当K≤k 0时 h 0=a+H 2=q÷? ???? ?+++??????++++?T H a m T K H a m H m m K 44.0)(5.0)5.0()5.0(1220222 22 +H 2 ……………(E.3.2-2) 对于各种情况下坝体浸润线均可按下式确定 X=k·T '0q h y -+k ' 22 2q h y - ……………(E.3.2-6) 式中:q'= )(021112 211 m 2m 2k h m H L h H -++-+0211010m k h m H L h H T -+-(E.3.2-7) k ——堤身渗透系数; k 0——堤基渗透系数; H 1——水位到坝脚的距离(m ); H 2——下游水位(m ); H ——堤防高度(m ); q ——单位宽度渗流量(m 3/s·m ); m 1——上游坡坡率,m 1=3.0;

围堰边坡稳定计算

围堰稳定性计算(示意) 本计算书采用瑞典条分法进行分析计算,因为围堰顶标高****m , 故假定迎水面水位标高达到**m的最不利情况,还假定滑动面为圆柱面及滑动土体为不变形刚体,还假定不考虑土条两侧上的作用力。 一、参数信息: 条分方法:瑞典条分法;基坑外侧水位标高:10.50m基坑内侧水位标高:5.50m 荷载参数:由于围堰上无恒载,故不考虑外部荷载 土层参数: 二、计算原理 根据土坡极限平衡稳定进行计算。自然界匀质土坡失去稳定,滑动面呈曲面,通常滑动面接近圆弧,可将滑裂面近似成圆弧计算。将土坡的土体沿竖直方向分成若干个土条,从土条中任意取出第i条, 不考虑其侧面上的作用力时,该土条上存在着: 1、土条自重 2、作用于土条弧面上的法向反力 3、作用于土条圆弧面上的切向阻力。 将抗剪强度引起的极限抗滑力矩和滑动力矩的比值作为安全系 数,考虑安全储备的大小,按照《规范》要求,安全系数要满足》1.3 的要求。

二、计算公式: Fs= E{c i l i +[( Yh1 i + y'h2 i )b i +qb i ]cos 0i tan 由}/ H ( yh1 i + 丫 'h2i )b i +qb i ]sin 0i 式子中: Fs-- 土坡稳定安全系数; C i -- 土层的粘聚力; l i --第i 条土条的圆弧长度; Y - 土层的计算重度; B i --第i 条土中线处法线与铅直线的夹角; 咖--土层的内摩擦角; b i --第i 条土的宽度; h i --第i 条土的平均高度; hl i --第i 条土水位以上的高度; h2 i --第i 条土水位以下的高度; Y --第i 条土的平均重度的浮重度; q--第i 条土条土上的均布荷载 ;

稳定渗流计算

5.5.6渗透和稳定性复核 5.5. 6.1石坑水陂防渗复核计算 石坑水陂基础为粘土,根据《水闸设计规范》SL265-2001“表6.0.4”知, 水平段允许渗流坡降值[J x ]=0.40,出口段允许渗流坡降值[J ]=0.70。陂前 水深: H 设 =2.66m;地基为粘土c=3;地下轮廓线最小长度[L]=c×H=3×2.66=7.98m; 附图5-4 石坑水陂防渗计算简图 a.渗透变形复核 由附图5-4地下轮廓线实际长度L=13.88m,L>[L]=7.98m,不会发生渗透变形,满足安全要求。 b.渗透稳定性复核计算 由附图5-4计算渗透压力: H 1=2.05m H 2 =1.96m H 3 =1.92m H 4 =1.85m H5=1.20m H 6 =1.06m H 7 =0.98m H 8=0.88m H 9 =0.29m H 10 =0.19m H 11 =0.11m H 12 =0.04m H 13 =0m 计算得渗透坡降: 出口 J = H 12 /L 12-13 =0.04 /0.25=0.16<[J0]=0.40 水平 Jw=(H 5 -H 12 )/(L 5 -L 12 )=0.50/8.00=0.06<[Jx]=0.70

石坑水陂陂基满足抗渗要求,不会发生渗透破坏。 5.5. 6.1塘村水陂防渗复核计算 塘村水陂基础为粘土,根据《水闸设计规范》SL265-2001“表6.0.4”知, 水平段允许渗流坡降值[J x ]=0.40,出口段允许渗流坡降值[J ]=0.70。陂前 水深: H 设 =2.16m;地基为粘土c=3;地下轮廓线最小长度[L]=c×H=3×2.16=6.48m; 附图5-4 塘村水陂防渗计算简图 a.渗透变形复核 由附图5-4地下轮廓线实际长度L=7.67m,L>[L]=6.48m,不会发生渗透变形,满足安全要求。 b.渗透稳定性复核计算 由附图5-4计算渗透压力: H 1=1.16m H 2 =1.07m H 3 =1.02m H 4 =0.96m H5=0.75m H 6 =0.66m H 7 =0.61m H 8=0.55m H 9 =0.19m H 10 =0.12m H 11 =0.08m H 12 =0.03m H 13 =0m 计算得渗透坡降: 出口 J = H 12 /L 12-13 =0.03/0.20=0.15<[J0]=0.40

Seep(渗流计算)-V3.0使用手册

二 四年一月 1渗流基本理论 1.1水工渗流的危害及渗流分析计算的任务 流体在多孔介质中的运动称为渗流。水是最为常见的流体,水利水电工程中由于广泛建造堤、坝、围堰、水闸等挡水建筑物形成了水头差,这些建筑物或其地基通常是透水的多孔介质,因此水工渗流现象十分普遍。 水工渗流造成多方面的危害。渗流造成水库、渠道水量损失;渗流使堤坝、围堰土体饱和,降低坝体的有效容重和抗剪强度,可能导致坝坡失稳;建筑物地基渗流对建筑物底部产生扬压力,也不利于建筑物的稳定;渗流流速过大时,还可能造成坝体或建筑物地基的土体颗粒流失,发生渗透变形,从而使堤坝崩塌或建筑物滑移、倾覆;水库渗流还可能引起下游地下水位升高,导致农田冷浸渍害、盐碱化,使作物减产;拦污坝渗流造成地下水环境污染。 水工渗流分析计算的任务就是要研究水在渗流区域的渗流流速、流量、水头分布及浸润线等,从而为采取合理的渗流控制措施提供依据,以避免或减缓渗流危害。 1.2达西定律 19世纪50年代,法国工程师亨利·达西(H.Darcy )通过对装在圆筒中的均质砂土进行渗透试验发现,通过两个渗流断面间的平均渗流流速,正比于两断面间的水头差△h ,反比于渗径长度L ,且与土粒结构及流体性质有关。这就是著名的达西定律,可用公式表达为: kJ ds dh k L h k v =-=?-= (1.2.1) 式中h —测压管水头,g v p z h 22 αγ++=,z 为位置高度,p 为压强,γ为水的容重。因为

渗流的流速一般很小,流速水头g v 22 α可忽略,故γp z h +=。 k —反映土粒结构及流体性质的系数,即渗透系数,对于某一具体的流体(比如水)而言,k 值仅与土粒结构有关。 J —渗透坡降,ds dh J = 。 式中的负号“-”表示水总是流向水头减小的方向。 应当注意,达西定律中的流速是全断面上的平均流速v ,而不是土体孔隙中的流速, v ,这两种流速存在以下关系: ,nv v = (1.2.2) 式中n 为体积孔隙率,可见达西流速小于土体孔隙中的流速。 还应注意,达西定律只能适用于层流状态的渗流运动。在水利工程中,除了堆石坝、堆石排水体等大孔隙介质中的渗流为 流之外,绝大多数渗流都属于层流,达西定律都可适用。对于非层流渗流,其流动规律可用以下公式形式表达: m kJ v 1 = (1.2.3) 上式中当m=1时,为层流渗流;当m=2时,为完全紊流渗流;当1<m <2时,为层流到紊流的过渡区。 将式(1.2.1)等号两边向x 、y 、z 轴投影,便得到空间直角坐标系中的达西公式: x x x x J k x h k v =??-= y y y y J k y h k v =??-= (1.2.4) z z z z J k z h k v =??-= 1.2.3渗流运动连续性方程

孔隙压力有效应力和排水

第六章 孔隙压力、有效应力和排水 引言 通常所说的土是由固体颗粒和水两部分组成的,基础或挡墙上的荷载包含土颗粒和孔隙水上面的应力两部分。在没有土颗粒的船体外表面,法向应力就等于水压力;而在没有水的装有糖的盆底,应力就等于所装的糖的重量。问题就是土颗粒应力和孔隙水压力的哪种组合决定着土的性质。要研究这个问题,我们首先研究地基中的应力和水压力。 地基中的应力 在地基中,某一深度的竖向应力是由上面的一切东西的重量产生的——土颗粒、水和基础,所以应力随着深度的增加而增大。图(a)中的竖向应力为: z z γσ= 其中γ为土的容重(见节)。如果地基在水平面以下或者在湖底、海底的话(如图(b)所示),竖向应力计算公式就变为: w w z z z γγσ+= 如果在基础或路堤表面有荷载q 作用的话(如图(c)所示),那么竖向应力计算公式就变为: q z z +=γσ 这里面的γ是单位体积的土颗粒和水重量之和。因为z σ是由土体的总重量产生的,所以成为总应力。注意,图(b)中所示的湖中的水把总应力作用在底部同玻璃杯中的水把总应力作用在杯底的方式相同。土颗粒的重度变化不大,一般来讲,饱和土的3 /20m kN ≈γ,干土的3/16m kN ≈γ,水的3/10m kN ≈γ。 同时也有水平向的总应力h σ,但是在z σ和h σ之间没有简单的关系。在以后的章节我们会对水平向的应力进行研究。 地下水和孔隙水压力 饱和土的孔隙水中存在的压力叫做孔隙水压力u 。在竖管中经常用w h 来简单地代替,

如图所示。当系统处于平衡状态时,竖管内部和外部的水压力相等,因此得到: w w h u γ= 当竖管中的水位低于地表面时(如图(a)所示),就称为地下水位。如果土中水是静止的,那么地下水位面就像湖面一样是水平的。然而,就像我们后面将要见到的那样,如果地下水位面不是水平的,那么土孔隙中就存在水的渗流。图(a)中地下水位面处孔隙水压力为零(这就是叫做地下水位),水位以下为正值,问题就出来了:地下水位面以上孔隙水压力是什么样的呢? 图说明了地表面和地下水位面之间的土中孔隙水压力的变化情况。在地表面处有一层孔压为零的干土,这种情况很少见到,但是在高潮水面以上的海滩可以发现这种现象。在地下水面以上的一小部分,由于土中孔隙的毛细作用,土体是饱和的。在这一区域,孔隙水压力是负值,计算公式如下: w w h u γ-=

围堰计算书

工程设计证书号:A132019934 金庭环岛路B取土区 施工围堰 计算报告 江苏宏鑫路桥建设有限公司 2012年02月

目录 1 工程概况 (1) 2 计算依据 (1) 3 设计条件 (1) 4 钢桩嵌固深度计算 (3) 5 排桩结构内力计算 (5) 6 围堰挡水的整体抗滑稳定计算 (5) 7 土堤坝边坡抗滑稳定计算 (6)

1 工程概况 本工程围堰是以钢排桩为骨架、结合土堤坝的复合挡水结构型式。依据相关资料,分别复核验算了钢管(板)桩嵌固深度,钢排桩结构内力,围堰挡水的整体稳定性,土堤坝边坡稳定和渗透稳定性。 2 计算依据 (1)围堰设计图 (2)岩土工程勘察报告 (3)建筑基坑支护技术规程JGJ 120-99 (4)水电水利工程围堰设计导则DL/T 5087-1999 (5)堤防工程设计规范GB50286-98 3 设计条件 工程等别及标准 按照中华人民共和国能源部水利部《水利水电工程施工组织设计规范SDJ338-89(试行)》的有关规定,本取土工程的围堰工程级别,根据工程保护对象、失事后果、使用年限和工程规模确定。考虑到本工程的保护面积较大;使用年限一般在1年左右,跨越1个主汛期;围堰一旦失事,将直接影响取土工程和周边沿湖工程的工期,围堰修复及产生的排水费用也较大等情况,本工程围堰建筑物级别选为Ⅳ级。 根据规范,对应本围堰建筑物的类型和级别,设计洪水位标准可取10年一遇洪水即2.37m。。 本工程区地震基本烈度Ⅵ度。 围堰断面 围堰顶高程、顶宽确定

⑴顶高程 堰顶高程按设计水位加风壅水高加设计波浪爬高和安全超高确定。 设计水位:2.37m。 设计风速取8级风(17.9m/s) 安全超高:按照《施工组织设计规范》的规定,Ⅳ级建筑物,安全超高值为0.5m。 A区围堰: 风壅水高及波浪爬高:工程区主风向为东南风,风区长度约5km;堰坡为土坡,坡比为2.5,水域平均水深取1.50m。经核算风壅水高0.20m,波浪爬高为0.97m, 围堰顶高程=2.37+0.20+0.97+0.5=4.04m,设计围堰顶高程为4.10m。 B区围堰: 风壅水高及波浪爬高:工程区主风向为西风及西北,风区长度约35km;堰坡为土坡,坡比为2.5,水域平均水深取1.50m。经核算风壅水高0.71m,波浪爬高为1.03m, 围堰顶高程=2.37+0.69+1.03+0.5=4.59m,设计围堰顶高程为 4.60m。 ⑵顶宽 围堰堰顶宽度按满足施工、维护和防汛等要求,并根据类似工程围堰的施工经验,钢板桩围堰顶宽取5m。 根据江苏苏州地质工程勘察院提供的《吴中区金庭环岛路A B取土区围堰独工程地质勘察报告》和工程经验,各土层的物理力学指标及结构参数见表1。

围堰稳定性计算

围堰稳定性计算 本计算书采用瑞典条分法进行分析计算,因为围堰顶标高37.5m,故假定水位标高达到37.5m的最不利情况,还假定滑动面为圆柱面及滑动土体为不变形刚体,还假定不考虑土条两侧上的作用力。 一、参数信息: 条分方法:瑞典条分法; 坝高高程36m,坝顶宽7m,坝坡为1:3; 填筑土料为中粉质壤土,土料指标为:φ=20.1,c=15kpa,湿重度γm=19.5kn/m3,浮重度γ' =10.5kn/m3,饱和重度γsat=20.5kn/m3。 由于围堰上无恒载,故不考虑外部荷载 二、计算原理: 根据土坡极限平衡稳定进行计算。自然界匀质土坡失去稳定,滑动面呈曲面,通常滑动面接近圆弧,可将滑裂面近似成圆弧计算。将土坡的土体沿竖直方向分成若干个土条,从土条中任意取出第i条,不考虑其侧面上的作用力时,该土条上存在着: 1、土条自重, 2、作用于土条弧面上的法向反力, 3、作用于土条圆弧面上的切向阻力。 将抗剪强度引起的极限抗滑力矩和滑动力矩的比值作为安全系数,考虑安全储备的大小,按照《规范》要求,安全系数要满足≥1.3的要求。 示意图 水位

三、计算公式: K=(∑W i2cosa i tgФi+∑C i l i/b)/∑W i1sina i 式子中: K --土坡稳定安全系数; c i --土层的粘聚力; l i--第i条土条的圆弧长度; γ --土层的计算重度; θi --第i条土中线处法线与铅直线的夹角; φi --土层的内摩擦角; b i --第i条土的宽度; h i --第i条土的平均高度; h1i --第i条土水位以上的高度; h2i --第i条土水位以下的高度; γ' --第i条土的平均重度的浮重度; q --第i条土条土上的均布荷载; 四、稳定计算 根据上述原理按一定比例画出坝体横剖面图,采用列表的方法进行计算 1、按一定比例绘出坝体横剖面图。 2、确定危险滑弧圆心的范围,详图附后。 3、心o1的铅垂线作为0号土条的中线,向左右两侧量取土条,以左的编号为1,2, 3,4,5;以右的编号为-1,-2,各土条的sina i和cosa i值填入计算表中。 4、量出个土条中心线的各种土体高度h1,h2,等公式所需条件。 5、计算各土条的重量。 计算:tanφ=tan20.1°=0.3819;弧长∑l i=πR/180×θ=3.14×36.5÷180×54=34.383m。 6、将有关数据代入公式计算,求坝坡的稳定安全系数为。

围堰边坡稳定渗流计算书

目录 1.计算总说明............................... ..................... .. (2) 2.设计基本资料...................... ..................... . (3) 3.计算过程 (4) 4.计算结果分析与结论...................... ..................... . (5)

1、计算总说明 1.1 计算目的与要求 施工单位对充(吹)填砂取样实验,充(吹)填砂的内摩擦角与原设计计算采用的数值有差异,需用施工单位现场的实验数值对围堰边坡稳定计算进行复核。 根据充(吹)填砂施工单位实验数值,充(吹)填砂采用水下摩擦角16°,水上摩擦角20°进行边坡稳定复核。 由于东、西岸围堰设计断面一致,基础均为中、粗砂,可以采用东、西岸围堰最大断面进行复核,即东岸围堰6-6断面。 1.2 主要计算原则和方法 从受力性能上说,袋装砂实质上是一种加筋土坝。 计算采用瑞典圆弧法。计算采用北京理正边坡稳定分析软件6.0版,边坡稳定分析采用凝聚力C p 模型计算。 p C 式中,C p ——拟凝聚力,R f ——单位厚度土工合成材料试样(纵向)中筋材

的极限抗拉强度;S y——土工合成材料层间距;K p——被动土压力系数。 单位厚度土工合成材料试样(纵向)中筋材的极限抗拉强度为30kn。施工时,根据实际水位,水上土工合成材料层间距为0.7m,水下土工合成材料层间距0.5m,为简化计算,水上、水下土工合成材料层间距均按0.7m计。砂的内摩擦角水上水下统一按16度计。 C p=30*1.33/2*0.7=28.5kpa。 1.3 主要计算内容 根据GB50286-2013《堤防工程设计规范》,抗滑稳定计算分为正常运用条件和非常运用条件。 正常运用条件计算工况如下: 1)临水侧为设计洪水位和防洪高水位,稳定渗流期的背水侧堤坡的稳定; 2)设计洪水位和防洪高水位骤降期,临水侧堤坡的稳定。 非常运用条件计算工况包括: 1)施工期的堤坡稳定; 2)多年平均水位时遭遇地震的堤坡稳定。 由于堰基基本没有淤泥质类软土以及施工期堰身内外水位基本平衡,故不进行施工期的边坡稳定验算。本工程区地震基本烈度小于Ⅵ度,不进行地震时的堰坡稳定分析。因此,仅计算正常运用条件下的边坡稳定。 根据地形、地质条件、堰身断面情况选取典型断面进行围堰抗滑稳定分析计算。依据SL/T225-98《水利水电工程土工合成材料应用技术规范》规定,土工织物与土之间的摩擦角φsg可取土料内摩擦角φ的2/3。 2 设计计算基本资料

孔隙水压力监测

孔隙水压力监测 一、监测内容 用于量测基坑工程坑外不同深度土的孔隙水压力。由于饱和土受荷载后首先产生的是孔隙水压力的变化,随后才是颗粒的固结变形,孔隙水压力的变化是土体运动的前兆。静态孔隙水压力监测相当于水位监测。潜水层的静态孔隙水压力测出的是孔隙水压力计上方的水头压力,可以通过换算计算出水位高度。在微承压水和承压水层,孔隙水压力计可以直接测出水的压力。结合土压力监测,可以进行土体有效应力分析,作为土体稳定计算的依据。不同深度孔隙水压力监测可以为围护墙后水、土压力分算提供设计依据。孔隙水压力监测为重力式围护体系一、二级监测等级、板式围护体系一级监测等级选测项目。 二、仪器、设备简介 1 孔隙水压力计目前孔隙水压力计有钢弦式、气压式等几种形式,基坑工程中常用的是钢弦式孔隙水压力计,属钢弦式传感器中的一种。孔隙水压力计由两部分组成,第一部分为滤头,由透水石、开孔钢管组成,主要起隔断土压的作用;第二部分为传感部分,其基本要素同钢筋计。 2 测试仪器、设备 数显频率仪。 三、孔隙水压力计安装 1 安装前的准备将孔隙水压力计前端的透水石和开孔钢管卸下,放入盛水容器中热泡,以快速排除透水石中的气泡,然后浸泡透水石至饱和,安装前透水石应始终浸泡在水中,严禁与空气接触。 2 钻孔埋设孔隙水压力计钻孔埋设有二种方法,一种方法为一孔埋设多个孔隙水压力计,孔隙水压力计间距大于 1.0m,以免水压力贯通。此种方法的优点是钻孔数量少,比较适合于提供监测场地不大的工程,缺点是孔隙水压力计之间封孔难度很大,封孔质量直接影响孔隙水压力计埋设质量,成为孔隙水压力计埋设好坏的关键工序,封孔材料一般采用膨润土泥球。埋设顺序为①钻孔到设计深度;②放入第一个孔隙水压力计,可采用压入法至要求深度;③回填膨润土泥球至第二个孔隙水压力计位置以上0.5m;④放入第二个孔隙水压力计,并压入至要求深度;⑤回填膨润土泥球…,以此反复,直到最后一个。第

渗流孔隙水压力的计算

顺流减压,逆流增压—扫地僧 最近大家问了很多渗流的问题,自己也好好总结了一下。岩土考试涉及到渗流情况的孔隙水压力计算时,基本都可归结为8个字:顺流减压,逆流增压。渗流可以理解为水流,流速很慢的水流,沿渗流方向移动,相当于顺流而下,受到的水压力减小,即为顺流减压。逆渗流方向移动,相当于逆流而上,压力增大,即为逆流增压。 任意点D 的孔隙水压力万能公式: 1、按顺流减压:(从总水头高处往低处计算是即为顺流向) 2D u H x i =-? , /i h L =? 2、按逆流增压: (从总水头低处往高处 计算是即为逆流向)112()()/D u H L x i H L x h L H x i =+-?=+-??=-?(注:式中H1、H2分别为逆流向和顺流向D 点的静水压力水头) 力学原理解释:x i ?为计算段总水头损 失1h ,总水头损失=压力水头损失+位置水 头损失,发生渗流的情况与无渗流时(静水)相比较,位置水头差不变,故总水头损失1h 等于相对于静水时的压力水头损失(水头损失全部由压力水头承担),此段话比较绕,理解不了也没关系,下面以顺流减压进行推导。 以黏土层底面为基准面,A 点总水头:2H H x =+ 计算段总水头损失:1h x i =? D 点总水头: 12H H h H x x i '=-=+-? D 点位置水头:x D 点压力水头:1D u H x H x i '=-=-? 实战中的运用: 此方法实际就是上述的顺流减压公式。

此方法实际就是上述的顺流减压公式。 若按逆流曾压则为:30+45/2=52.5 此题若按顺流减压则为: ()22sin 28 6sin 28666sin 286cos 28w i h i ==-??=-?=?

渗流分析 稳定计算 理正

理正软土地基堤坝设计软件 计算项目:简单软土地基堤坝设计 1 计算时间: 2014-08-17 10:01:01 星期日 ============================================================================ 原始条件: 计算目标: 只计算稳定 堤坝设计高度: 10.000(m) 堤坝设计顶宽: 4.000(m) 竣工后左侧工作水位高: 9.000(m) 竣工后右侧工作水位高: 0.000(m) 竣工后经过 2.000 个月注水到工作水位 堤坝左侧坡面线段数: 1 坡面线号水平投影(m) 竖直投影(m) 1 20.000 10.000 堤坝右侧坡面线段数: 1 坡面线号水平投影(m) 竖直投影(m) 1 20.000 10.000 工后沉降基准期结束时间: 2(月) 荷载施加级数: 1 序号起始时间 (月) 终止时间(月) 填土高度(m) 是否作稳定计算 1 0.000 6.000 10.000 否 堤坝土层数: 1 超载个数: 1 层号层厚度(m) 重度(kN/m3) 饱和重度(kN/m3) 内聚力(kPa) 内摩擦角(度) 水下内聚力(kPa) 水下内摩擦角(度) 1 10.000 14.000 18.500 25.000 20.000 20.000 15.000 超载号定位距离(m) 分布宽度(m) 超载值(kPa) 沉降计算是否考虑稳定计算是否考虑 1 4.000 12.000 80.000 否是 地基土层数: 1 地下水埋深: 1.000(m) 层号土层厚度重度饱和重度地基承载力快剪C 快剪Φ 固结快剪竖向固结系水平固结系排水层 (m) (kN/m3) (kN/m3) (kPa) (kPa) (度) Φ(度) 数(cm2/s) 数(cm2/s)

渗流计算

4.2.3.2 闸基渗流计算 1、渗流计算的目的和计算方法 计算闸底板各点渗透压力,验算地基土在初步拟定的底下轮廓线下的渗透稳定性。计算方法有直线的比例法、流网法和改进阻力系数法,由于改进阻力系数法计算结果精确,因此采用此法进行渗流计算。 1)用改进阻力系数法计算闸基渗流 (1)地基有效深度的计算 根据 S L 与5比较得出,0L 为地下轮廓线水平投影的长度,为33m ;0S 为地下轮廓线垂直投影的长度,为7m 。则 571.47 3300<==S L ,所以地基有效深度m S L L T e 29.1726.150 =+= 。 (2)分段阻力系数的计算 为了计算的简便,特将地下轮廓线进行简化处理,通过底下轮廓线的各角点和尖端将渗流区域分成8个典型段,如图4.2.3.2-1所示。其中Ⅰ、Ⅷ段为进口段 和出口段,用公式441.0)(5.123 0+=T S ζ计算阻力系数,Ⅱ、Ⅳ、Ⅴ、Ⅶ段为内部 垂直段,用公式)1(4 ln 2 T S ctg y - =π π ζ计算阻力系数,Ⅲ、Ⅵ段为水平段,用公式T S S L x ) (7.021+-= ζ计算阻力系数。其中21,,S S S 为板桩的入土深度,各典型 段的水头损失按公式∑=?=n i i i i H h 1 ξ ξ计算,对于进出口段的阻力系数修正,按公式 0'' 0h h β=,式中)059.0(2)(12121.1' 2''+?? ????+- =T S T T β,0' )1(h h β-=?计算,其中' 0h 为进出口段修正后的水头损失值,0h 为进出口段损失值,'β为阻力修正系数, 当0.1'≥β时,取0.1'=β,'S 为底板埋深与板桩入图深度之和,' T 为板桩另一侧

大坝渗流稳定计算过程

------------------------------------------------------------------------ 计算项目:草荡 ------------------------------------------------------------------------ [计算简图] 分析类型: 不稳定流 [坡面信息] 左侧水位高: 4.330(m) 右侧水位高: -0.420(m) 左侧水位高2: 2.330(m) 右侧水位高2: -10000.000(m) 坡面线段数 6 坡面线号水平投影(m) 竖直投影(m) 1 10.625 4.750 2 4.219 0.000 3 8.281 -4.250 4 0.719 -0.250 5 1.500 0.000 6 2.219 -1.500 [土层信息] 坡面节点数 = 10 编号 X(m) Y(m) 0 0.000 0.000 -1 10.625 4.750 -2 14.844 4.750 -3 23.125 0.500 -4 23.844 0.250 -5 25.344 0.250 -6 27.563 -1.250 -7 9.686 4.330

-8 26.335 -0.420 -9 5.212 2.330 附加节点数 = 17 编号 X(m) Y(m) 1 9.250 -1.250 2 20.31 3 -1.250 3 -3.000 0.000 4 -3.000 -6.000 5 9.250 -6.500 6 13.125 -7.500 7 15.531 -8.750 8 28.781 -9.500 9 28.781 -1.250 10 26.875 -2.000 11 21.031 -2.000 12 -3.000 -10.500 13 9.219 -10.500 14 22.813 -13.500 15 28.781 -13.500 16 -3.000 -17.000 17 28.781 -17.000 不同土性区域数 = 5 区号土类型 Kx Ky Alfa 孔隙率饱和度单位储存节点编号 (m/d) (m/d) (度) 量1/m*0.001 1 细砂 0.00606 0.02240 0.100 0.445 0.900 2.000 (-1,-7,0,1,2,-3,-2,) 2 细砂 0.00264 0.00861 0.100 0.564 0.900 2.000 (0,3,4,5,6,7,8,9,-6,10,11,2,1,) 3 细砂 0.05500 0.05260 0.100 0.43 4 0.850 2.000 (4,12,13,14,15,8,7,6,5,) 4 细砂 0.79500 0.26800 0.100 0.407 0.900 2.000 (12,16,17,15,14,13,) 5 细砂 86.40000 86.40000 0.100 0.350 0.250 2.000 (-3,2,11,10,-6,-8,-5,-4,) [面边界数据] 面边界数 = 8 编号1, 边界类型: 已知水头 节点号: 3 --- 0 时间节点水位升降值(m) 初始节点水头高度 4.330 --- 4.330 (m) 0.000 0.000 1.000 -0.680 2.000 -1.350 3.000 -2.030 4.500 -2.030 编号2, 边界类型: 已知水头 节点号: 0 --- -7

嶂山闸工程特大围堰施工设计及龙口防护施工方案_secret

第七章施工围堰和降排水工程 第一节施工围堰 一、工程概况及等级标准 施工围堰的工作范围包括上下游施工围堰设计、填筑、检验与试验、维护和拆除。本工程为Ⅰ级建筑物,按照标书规定,临时建筑物按设计等级标准3级进行围堰设计,骆马湖侧水位按23.50m考虑,新沂河侧按照15.0考虑。 引用标准和规程规范: 1、《防洪标准》GB50201—94; 2、《水利水电建设工程验收规程》SL223—1999; 3、《水利水电工程施工组织设计规范》SDJ338—89; 4、《碾压式土石坝设计规范》SL274—2001。 二、围堰设计 我方仔细研究了招标文件中的《嶂山闸工程地质勘察综合成果建议值表》、相关图纸及报告,对施工现场进行了踏勘,认为设计单位推荐的围堰坝址和断面科学合理,决定选用设计单位推荐的围堰坝址和断面,对其进行验算。 1、本工程围堰选用土石围堰,平面布置见总平面布置图。 2、上下游坝址河床底高程15.5m,地质土层为粉质粘土,含少量砂礓和铁锰质结核,渗透系数为 6.9E-8cm/s,为弱透水层。通过现场探测淤泥层很少,对堰体稳定有利。 围堰安全超高取0.7m,风浪爬高取1.3m,上游水位取23.5m,下游水位取15.0m。 3、围堰断面设计 上游围堰选型横截面为双等腰梯形,围堰下游坝脚距闸底板上游侧300m,长度为460m,顶宽10m,围堰顶高程为25.50m。围堰高程23.5m以下坡比为1:5.0,高程23.5m以上坡比为1:3.0。围堰在迎水面铺设400g/m2腹膜土工布防渗,并向上游河底铺进10.0m,土工膜幅间搭接1m。四边及搭接部位用编制袋装黄砂密排压实腹膜土工布,中间部位间隔3m压实。堰顶采用草袋装土填筑0.4m×0.5m防浪墙。背水侧坝脚设两层砂石反滤,反滤层高度待浸润线背水坡浸出点计算后确定。围堰水面以上填筑压实度不低于93%。堰顶做8m宽50cm

孔隙压力、有效应力和排水

孔隙压力、有效应力和排水

第六章 孔隙压力、有效应力和排水 6.1 引言 通常所说的土是由固体颗粒和水两部分组成的,基础或挡墙上的荷载包含土颗粒和孔隙水上面的应力两部分。在没有土颗粒的船体外表面,法向应力就等于水压力;而在没有水的装有糖的盆底,应力就等于所装的糖的重量。问题就是土颗粒应力和孔隙水压力的哪种组合决定着土的性质。要研究这个问题,我们首先研究地基中的应力和水压力。 6.2 地基中的应力 在地基中,某一深度的竖向应力是由上面的一切东西的重量产生的——土颗粒、水和基础,所以应力随着深度的增加而增大。图6.1(a)中的竖向应力为: z z γσ= (6.1)

其中γ为土的容重(见5.5节)。如果地基在水平面以下或者在湖底、海底的话(如图6.1(b)所示),竖向应力计算公式就变为: w w z z z γγσ+= (6.2) 如果在基础或路堤表面有荷载q 作用的话(如图6.1(c)所示),那么竖向应力计算公式就变为: q z z +=γσ (6.3) 这里面的γ是单位体积的土颗粒和水重量之和。因为z σ是由土体的总重量产生的,所以成为总应力。注意,图6.1(b)中所示的湖中的水把总应力作用在底部同玻璃杯中的水把总应力作用在杯底的方式相同。土颗粒的重度变化不大,一般来讲,饱和土的3/20m kN ≈γ,干土的3/16m kN ≈γ,水的3 /10m kN ≈γ。 同时也有水平向的总应力h σ,但是在z σ和h σ之间没有简单的关系。在以后的章节我们会对水平向的应力进行研究。 6.3 地下水和孔隙水压力 饱和土的孔隙水中存在的压力叫做孔隙水压力u 。在竖管中经常用w h 来简单地代替,如图6.2所示。当系统处于平衡状态时,竖管内部和

渗流稳定计算运行期,有效应力法,简化毕肖普法_右.

工程名称; C:\Documents and Settings\Administrator\My Documents\渗流稳定计算.dwg 工况: 运行期分条数量: 30 滑面形式: 圆弧,滑动方向:右坡外水位: 无地震加速度: 0.000g 计算方法: 有效应力法,简化毕肖普法安全系数: 0.648 抗滑力 =83067.7734KN,滑动力=128231.3203KN 计算日期: 12-04-27,18:14:36 =======================土层基本数据 ================================== 坝体容重=21.000 浮容重=12.000 非线性类型=0 有效强度指标(水下/水上: c=35.00/35.00 Fi=34.00/34.00 总应力强度指标(水下/水上: C=0.00/0.00 Fi=0.00/0.00 固结排水强度指标(水下/水上: C=0.00/0.00 Fi=0.00/0.00 单位深度c值增量(水下/水上: DC=0.00/0.00 孔隙压力系数(水下: B=0.00 棱体容重=23.000 浮容重=14.000 非线性类型=0 有效强度指标(水下/水上: c=10.00/10.00 Fi=40.00/40.00 总应力强度指标(水下/水上: C=0.00/0.00 Fi=0.00/0.00 固结排水强度指标(水下/水上: C=0.00/0.00 Fi=0.00/0.00 单位深度c值增量(水下/水上: DC=0.00/0.00 孔隙压力系数(水下: B=0.00 =======================分条基本数据================================== 土条宽度: 7.5620 h1 = 浸润线 以上、同时坡外水位以上部分的高度,自然容重 h2 = 浸润线以下、坡外水位以上部分的高度,饱和容重 h3 = 浸润线以上、坡外水位以下部分的高度,自然容重-水容重h4 = 坡外水位以下、同时浸润线以下部分的高度,浮容重 z = 土条底部淹没在坡外水位以下的高度z1 + 土条顶部淹没在水位以下的高度z2 土条号地面高程总高度 z h1 h2 h3 h4 y方向超载 C Fy 1 6.32E+02 7.95E+00 0.00E+00 7.95E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 3.50E+01 34.000 2 6.32E+02 2.34E+01 0.00E+00 2.34E+01 0.00E+00 0.00E+00 0.00E+00 0.00E+00 3.50E+01 3 4.000 3 6.30E+02 3.61E+01 0.00E+00 3.61E+01 0.00E+00 0.00E+00 0.00E+00 0.00E+00 3.50E+01 34.000 4 6.19E+02 3.97E+01 0.00E+00 3.97E+01 0.00E+00 0.00E+00 0.00E+00 0.00E+00 3.50E+01 34.000 5 6.09E+02 4.26E+01 0.00E+00 4.26E+01 0.00E+00 0.00E+00 0.00E+00 0.00E+00 3.50E+01 34.000 6 5.98E+02 4.50E+01 0.00E+00 4.50E+01 0.00E+00 0.00E+00 0.00E+00 0.00E+00 3.50E+01 34.000 7 5.88E+02 4.68E+01 0.00E+00 4.68E+01 0.00E+00 0.00E+00 0.00E+00 0.00E+00 3.50E+01 34.000 8 5.78E+02 4.82E+01 0.00E+00 4.82E+01 0.00E+00 0.00E+00 0.00E+00

孔隙压力,有效应力和排水

第六章 孔隙压力、有效应力和排水 6.1 引言 通常所说的土是由固体颗粒和水两部分组成的,基础或挡墙上的荷载包含土颗粒和孔隙水上面的应力两部分。在没有土颗粒的船体外表面,法向应力就等于水压力;而在没有水的装有糖的盆底,应力就等于所装的糖的重量。问题就是土颗粒应力和孔隙水压力的哪种组合决定着土的性质。要研究这个问题,我们首先研究地基中的应力和水压力。 6.2 地基中的应力 在地基中,某一深度的竖向应力是由上面的一切东西的重量产生的——土颗粒、水和基础,所以应力随着深度的增加而增大。图6.1(a)中的竖向应力为: z z γσ= (6.1) 其中γ为土的容重(见5.5节)。如果地基在水平面以下或者在湖底、海底的话(如图 6.1(b)所示),竖向应力计算公式就变为: w w z z z γγσ+= (6.2) 如果在基础或路堤表面有荷载q 作用的话(如图6.1(c)所示),那么竖向应力计算公式就变为: q z z +=γσ (6.3)

这里面的γ是单位体积的土颗粒和水重量之和。因为z σ是由土体的总重量产生的,所以成为总应力。注意,图6.1(b)中所示的湖中的水把总应力作用在底部同玻璃杯中的水把总应力作用在杯底的方式相同。土颗粒的重度变化不大,一般来讲,饱和土的3 /20m kN ≈γ,干土的3/16m kN ≈γ,水的3/10m kN ≈γ。 同时也有水平向的总应力h σ,但是在z σ和h σ之间没有简单的关系。在以后的章节我们会对水平向的应力进行研究。 6.3 地下水和孔隙水压力 饱和土的孔隙水中存在的压力叫做孔隙水压力u 。在竖管中经常用w h 来简单地代替,如图6.2所示。当系统处于平衡状态时,竖管内部和外部的水压力相等,因此得到: w w h u γ= (6.4) 当竖管中的水位低于地表面时(如图6.2(a)所示),就称为地下水位。如果土中水是静止的,那么地下水位面就像湖面一样是水平的。然而,就像我们后面将要见到的那样,如果地下水位面不是水平的,那么土孔隙中就存在水的渗流。图6.2(a)中地下水位面处孔隙水压力为零(这就是叫做地下水位),水位以下为正值,问题就出来了:地下水位面以上孔隙水压力是什么样的呢? 图6.3说明了地表面和地下水位面之间的土中孔隙水压力的变化情况。在地表面处有一

堤防渗流计算

根据堤《防工程设计规范GB50286-98 》 附录不透水堤基均质土堤下游无排水设备或有贴坡式排水 项目计算式数值单位备注 上游坡度m1 = 3 = 3 / 1:m1 下游坡度m2 = 3 = 3 / 1:m2 堤顶宽度B = 6 = 6 m 堤顶高程▽顶 = 27 = 27 m 堤底高程▽底 = 17 = 17 m 上游水位▽1 = = m 下游水位▽2 = 18 = 18 m k = = m/s 堤身高度H = 27-17 = 10 m 上游水深H1 = = m 下游水深H2 = 18-17 = 1 m L = ×3+6+10×3 = m 上有水面至下游堤脚 ΔL = 3×(2×3+1) = m m1H1/(2m1+1) L1 = + = m L+ΔL 试算法计算逸出高度h0,假设h0的试算范围h01~h02,计算的步长以及精度h01 = 1 = 1 m h02 = 10 = 10 m 步长 = = m 精度 = = m 试算得到h0 = = m 手动输入 q/k = ^^2)/(2××) = m q/k = = m 平均q/k = +/2 = m 平均渗流量q = × = m3/s/m 方程 y=SQRT+ 下游坝坡最大渗出坡降J = 1/3 = / 1/m2 附录不透水堤基均质土堤下游设褥垫式排水 项目计算式数值单位备注 上游坡度m1 = 3 = 3 / 1:m1 下游坡度m2 = 5 = 5 / 1:m2

堤顶宽度B = 6 = 6 m 堤顶高程▽顶= 27 = 27 m 堤底高程▽底= 17 = 17 m 上游水位▽1= = m 下游水位▽2= 18 = 18 m 褥垫长度Lr = 5 = 5 m 到下游堤脚 k = = m/s 堤身高度H = 27-17 = 10 m 上游水深H1 = = m 下游水深H2 = 18-17 = 1 m L = ×3+6+10×5-5 = m 上游水面至褥垫ΔL= 3×(2×3+1)= m m1H1/(2m1+1) L1 = + = m L+ΔL 逸出高度h0 = SQRT^2+^2) = m 排水体工作长度a0 = 2 = m h0/2 q/k = = m h0 渗流量q = ×= m3/s/m

相关文档
最新文档