二氧化硅的工业化生产

二氧化硅的工业化生产
二氧化硅的工业化生产

二氧化硅的工业化生产

1.1 二氧化硅的种类

二氧化硅也称硅质原料,不仅包括天然矿物,也包括各种合成产品,其产品可分为结晶态和无定形状两类。

二氧化硅天然矿物通常包括结晶态二氧化硅矿物石英砂、脉石英、粉石英和无定形硅矿物硅藻土。

合成产品要紧是白炭黑(无定形二氧化硅),包括气相白炭黑(气相二氧化硅)、沉淀白炭黑(沉淀二氧化硅)。

石英是二氧化硅天然矿物的要紧矿物组分,化学成分为SiO2,玻璃光泽,断口呈油脂光泽。贝壳状断口,莫氏硬度7,密度2.65~2.66 。颜色不一,无色透亮的叫水晶,乳白色的叫乳石英。按其结晶习性分,三方晶系的为低温石英,又叫-石英;六方晶系的为高温石英,又称-石英。

石英砂是一个矿产品的专门名词,它泛指石英成分占绝对优势的各种砂,诸如海砂、河砂、湖砂等。地质学按成因将它们划分为冲积砂、洪积砂、残积砂等。石英砂的矿物含量变化专门大,以石英为主,其次包含各类长石、岩屑、重矿石(石榴子石、电气石、辉石、角闪石、榍石、黄玉、绿帘石、钛铁矿等)以及云母、绿泥石、黏土矿物等。

石英砂岩,是一种固结的砂质岩石,常简称为砂岩,是自然界最常见、最一般的硅质矿物原料之一,其石英和硅质碎屑含量一样在95%以上,副矿物多为长石、云母和黏土矿物,重矿物含量专门少。常见的重矿物有电气石、金红石、磁铁矿等。

石英岩是由石英砂岩或其他硅质岩石通过变质作用而形成的变质岩。脉石英是与花岗岩有关的岩浆热液矿脉,其矿物组成几乎全部为石英。

粉石英是一种颗粒极细、二氧化硅含量专门高的天然石英矿。粉石英这一词过去叫法专门多,它既包括天然的粉石英,同时也包括了由硅质矿物原料(石英岩、脉石英)加工而成的石英细粉。

硅砂是以石英为要紧成分的砂矿飞总称。以天然颗粒状态从地表或地层中产出的硅砂,以及石英岩、石英砂岩风化后呈粒状产出的砂矿称

为“天然硅砂”(或简称“硅砂”)。与此对应,将块状石英岩、石英砂岩粉碎成粒状则称“人造硅砂”。

1.2 二氧化硅的性质

1.2.1 性质

二氧化硅在自然界分布专门广,如石英、石英砂等。白色或无色,含铁量较高的是淡黄色。密度2.65~2.66 。熔点1670℃(鳞石英);1710℃(方石英)。沸点2230℃。不溶于水微溶于酸,微粒时能与熔融和碱类起作用。

二氧化硅的化学式SiO2,式量60.08,也叫硅石,是一种坚硬难溶的固体。它常以石英、鳞石英、方石英三种变体显现。从地面往下16千米几乎65%为二氧化硅的矿石。天然的二氧化硅分为晶态和无定形两大类,晶态二氧化硅要紧存在于石英矿中。纯石英为无色晶体,大而透亮的棱柱状石英为水晶。二氧化硅是硅原子跟四个氧原子形成的四面体结构的原子晶体,整个晶体又能够看作是一个庞大分子,SiO2是最简式,并不表示单个分子。无定形二氧化硅为白色固体或粉末。

二氧化硅的化学性质专门稳固,不溶于水也不跟水反应,是酸性氧化物,不跟一样酸反应。二氧化硅的性质不爽朗,它不与除氟、氟化氢和氢氟酸以外的卤素、卤化氢和氢卤素以及硫酸、硝酸、高氯酸作用。

氟化氢(氢氟酸)是唯独可使二氧化硅溶解的酸,生成易溶于水的氟硅酸。反应式如下所示:

SiO2 +4HF = SiF4↑+2H2O

二氧化硅与碱性氧化物

SiO2 +CaO =(高温)CaSiO3

二氧化硅能溶于浓热的强碱溶液:

SiO2 +2NaOH = Na2SiO3 +H2O

(盛碱的试剂瓶不能用玻璃塞而用橡胶塞)

在高温下,二氧化硅能被碳、镁、铝还原:

SiO2+2C=Si+2CO↑

1.2.2 二氧化硅结构

在大多数微电子工艺感爱好的温度范畴内,二氧化硅的结晶率低到能够被忽略。尽管熔融石英不是长范畴有序,但她却表现出短的有序结构,它的结构可认为是4个氧原子位于三角形多面的脚上。多面体中心是一个硅原子。如此,每4个氧原子近似共价键合到硅原子,满足了硅的化合价外壳。如果每个氧原子是两个多面体的一部分,则氧的化合价也被满足,结果就成了称为石英的规则的晶体结构。在熔融石英中,某些氧原子,成为氧桥位,与两个硅原子键合。某些氧原子没有氧桥,只和一个硅原子键合。能够认为热生长二氧化硅要紧是由人以方向的多面体网络组成的。与无氧桥位相比,有氧桥的部分越大,氧化层的粘合力就越大,而且受损害的倾向也越小。干氧氧化层的有氧桥与无氧桥的比率远大于湿氧氧化层。因此,能够认为,SiO2与其讲是原子晶体,却更近似于离子晶体。氧原子与硅原子之间的价键向离子键过渡。

二氧化硅是制造玻璃、石英玻璃、水玻璃、光导纤维和耐火材料的原料。

当二氧化硅结晶完美时确实是水晶;二氧化硅胶化脱水后确实是玛瑙;二氧化硅含水的胶体凝固后就成为蛋白石;二氧化硅晶粒小于几微米时,就组成玉髓、燧石、次生石英岩。

物理性质和化学性质均十分稳固的矿产资源,晶体属三方晶系的氧化物矿物,即低温石英(α-石英),是石英族矿物中分布最广的一个矿物种。广义的石英还包括高温石英(β-石英)。石英块又名硅石,要紧是生产石英砂(又称硅砂)的原料,也是石英耐火材料和烧制硅铁的原料。

1.3 应用领域和用途

(1)玻璃

平板玻璃、浮法玻璃、玻璃制品(玻璃罐、玻璃瓶、玻璃管等)、光学玻璃、玻璃纤维、玻璃仪器、导电玻璃、玻璃布及防射线特种玻璃等的要紧原料

(2)陶瓷及耐火材料

瓷器的胚料和釉料,窑炉用高硅砖、一般硅砖以及碳化硅等的原料(3)冶金

硅金属、硅铁合金和硅铝合金等的原料或添加剂、熔剂

(4)建筑

混凝土、胶凝材料、筑路材料、人造大理石、水泥物理性能检验材料(即水泥标准砂)等

(5)化工

硅化合物和水玻璃等的原料,硫酸塔的填充物,无定形二氧化硅微粉

(6)机械

铸造型砂的要紧原料,研磨材料(喷砂、硬研磨纸、砂纸、砂布等)

(7)电子

高纯度金属硅、通讯用光纤等

(8)橡胶、塑料填料(可提升耐磨性)

在PVC地板中,粉石英要紧作为填料,细度在320目,填充量为16%~18%;在PVC耐酸板管中,粉石英填料细度为400目,填充量为10%~15%,在塑料薄膜中,粉石英填料细度在600目以上,填充量为10%~12%。

(9)油漆、涂料(可提升涂料的耐候性)

硅藻土由于具有不同的粒子形状和结构特点,再加上极高的吸油量,涂料中用它作为消光剂,要紧用于平光乳胶漆和清漆、底漆及某些混凝土涂料中,它还在涂料中用作增加遮盖性颜料遮盖力的填料。

2.1 白炭黑

白炭黑是一种人工合成的无定形二氧化硅超微粒子填料,白炭黑是多孔性物质,化学名称水合二氧化硅,分子式SiO2?nH2O(其中nH2O 是以表面羟基的形式存在),是微细粉末状或超细粒子状的二氧化硅,粒径小于100nm,通常为20~60nm,化学纯度高(高纯者SiO2达99.8%)。分散性好,比表面积大,密度2.319~2.653g/cm3,熔点1750℃。能溶于苛性

碱和氢氟酸,不溶于水、溶剂和酸(氢氟酸除外)。耐高温、不燃、无味、无嗅、具有专门好的电绝缘性。

白炭黑按制造工艺大体分为:气相法(气相法白炭黑、气相二氧化硅);沉淀法(沉淀法白炭黑、沉淀法二氧化硅)。

气相法白炭黑是利用氯硅烷经氢氧焰高温水解制得的一种精细、专门的无定形粉体材料,制备工艺复杂,价格昂贵。气相法白炭黑常态下为白色无定形絮状半透亮固体胶状纳米粒子(粒径小于100nm),无毒,平均原生粒径为7~40nm,有庞大的比表面积,可达400m2/g。产品纯度高,SiO2含量不小于99.8%,是一种多功能的添加剂,广泛用于涂料,可起到增稠、触变、消光等作用。

沉淀法白炭黑又分为传统沉淀法白炭黑和专门沉淀法白炭黑,前者是指以硫酸、盐酸、CO2与水玻璃为差不多原料生产的二氧化硅,后者是指采纳超重力技术、溶胶-凝胶法、化学晶体法、二次结晶法或反相胶束微乳液法等专门方法生产的二氧化硅。沉淀白炭黑属于含水二氧化硅,Si O2含量90%左右,市场需求量大。沉淀白炭黑要紧用作天然橡胶和合成橡胶的补强剂、牙膏摩擦剂等。气相白炭黑要紧用作硅橡胶的补强剂、涂料和不饱和树脂增稠剂,超细二氧化硅凝胶和气凝胶要紧用作涂料消光剂、增稠剂、塑料薄膜开口剂等。

白炭黑比表面积研究是专门重要的,白炭黑的比表面积检测数据只有采纳BET方法检测出来的结果才是真实可靠的,目前国内外比表面积测试统一采纳多点BET法,国内外制定出来的比表面积测定标准差不多上以BET测试方法为基础的,请参看我国国家标准(GB/T 19587-2004)-气体吸附BET原理测定固态物质比表面积的方法。

2.2 白炭黑的制备工艺

2.2.1 气相白炭黑(气相二氧化硅)的制备工艺

要紧为化学气相沉积(CA V)法,又称热解法、干法或燃烧法。气相白炭黑的制备原理是硅卤化合物在氢气、氧气燃烧生产的水中进行高温(大于1000摄氏度)水解反应;然后聚冷,通过集合、脱酸等后处理工艺而获得产品。

空气和氢气分不通过加压、分离、冷却脱水、硅胶干燥、除尘过滤后送入合成水解炉。将四氯化硅原料送至精馏塔精馏后,在蒸发器中加热蒸发,并以干燥、过滤后的空气为载体,送至合成水解炉。四氯化硅在高温下气化(火焰温度1000~1800℃)后,与一定量的氢和氧(或空气)在1800℃左右的高温下进行气相水解;现在生成的气相二氧化硅颗粒极细,与气体形成气溶胶,不易捕集,故使其先在集合器中集合成较大颗粒,然后经旋风分离器收集,再送入脱酸炉,用含氮空气吹洗气相二氧化硅至PH 值为4~6即为成品。

其化学反应式如下:

SiCl4(g)+2H2(g)+O2(g)—> SiO2(g)+4HCl(g)

2CH3SiCl3(g)+2H2(g)+5O2(g)—> 2SiO2(g)+6HCl(g)+ 2CO2(g) + 2H2O(g)

其中,CH3SiCl3是直截了当法合成甲基氯硅烷生产过程中不可幸免的副产物,其比例约占单体总产量的10%~15%。由于Si原子上多出一个甲基,用其合成白炭黑的机理要比用SiCl4复杂得多。

在20世纪60~70年代,气相白炭黑要紧以四氯化硅为原料,生产工艺较易操纵,但成本较高。目前气相白炭黑制造公司与有机硅单体生产公司紧密合作,利用廉价的有机硅副产物为要紧原料,生产气相法白炭黑;而气相法白炭黑生产过程中副产的盐酸,则返回有机硅单体厂用于有机硅单体的合成,同时用于有机硅产品的后加工,形成一个资源循环利用,相互促进进展的良性循环,具有极好的社会经济效益。德国迪高沙(Degussa)公司和美国卡伯特(Cabot)公司的气相法生产技术全球领先。他们的生产装置规模大,自动化程度高,产品成本低,牌号(专门是应用于专门领域的功能性专用产品牌号)多,品质好,如表面积分布平均、含水量低。我国沈阳化工股份有限公司及上海氯碱化工股份有限公司也采纳气相法生产,但在生产规模、生产技术、自动化程度及产品牌号等方面远不及国外大公司。广州吉必盛科技实业有限公司是目前国内产量最大,牌号最全,技术最先进的气相二氧化硅供应商,是气相二氧化硅国家标准GB20020-20 05负责起草单位。

2.2.2 沉淀白炭黑(沉淀二氧化硅)的制备工艺

沉淀二氧化硅由水玻璃(硅酸钠)与硫酸或盐酸反应制得。其中反应式如下:

SiO2+ Na2CO3—>SiO2?Na2O + CO2

(SiO2?Na2O)ag+ H2SO4—> SiO2+ Na2SO4+ H2O

沉淀白炭黑所用的原料水玻璃,又名泡花碱,无色、青绿色或棕色的固体或黏稠液体,是由硅石(石英砂)、纯碱(土碱)在熔化窖中共熔、冷却、粉碎制得,其燃料为煤、天然气、煤气均可。水玻璃生产工艺可分为干法和湿法两种,通常所用的是干法生产固体水玻璃,再溶解转换成所需要规格的液体水玻璃。

沉淀法的生产技术、设备简单,产品活性不高,颗粒不易操纵,亲和力差,补强性能低,颗粒表面水性羟基键合严峻,消弱了产品的结合力。二次结晶生产超细白炭黑便是在沉淀法生产技术前提下进行了品种处理的改良技术。采纳二次结晶新工艺,能够全自动工艺化生产。其SiO2含量在94%以上,比表面积达269~320m2/g,粒径最粗为1000目,最细可达纳米级。

白炭黑用量最大的领域是在橡胶行业中作为最佳白色补强填料。近年来,由于国内胶鞋及轮胎工业的进展,刺激了作为橡胶补强剂的白炭黑生产的快速增长。目前国内外填料用白炭黑,要紧以石英砂为原料制成水玻璃后,再以沉淀法生产白炭黑。该生产工艺耗费大量纯碱和酸,生产成本较高。许多研究者正在探讨用硅藻土、蛇纹石、硅灰石、高岭土、膨润土等非金属矿物和其他原料生产白炭黑的工艺。第三军医大学研究成功用硅藻土生产白炭黑和聚合氯化铝。浙江广科化工有限公司、吉林省临江市业住化工有限公司用硅藻土生产白炭黑。宜宾五粮液集团精细化工有限公司是国内唯独一家用植物(如稻壳、谷壳灰为原料)生产白炭黑(二氧化硅)的厂家,年产白炭黑4000t。

2.3 白炭黑的应用

白炭黑由于其耐酸、耐碱、耐高温及良好的电绝缘性能和分散性,因而被广泛地用于橡胶、塑料、涂料、造纸、日用化工等行业中作为最佳的白色补强填料。气相法白炭黑制备复杂,成本高,要紧用于专门用途。

2.3.1 气相法白炭黑的应用

气相白炭黑广泛地用于硅橡胶、油漆涂料、油墨和复印机墨粉、胶黏剂、电缆料与不饱和聚酯树脂、植物爱护、食品和化妆品,可起到补强、增稠、抗结块、操纵体系流变和触变等作用。

气相白炭黑大量的应用于室温硫化硅橡胶和高温化硅橡胶,它们往往是以附聚体的形式分散在基体中形成三维的网状结构,与硅橡胶基料的接触面大,在硫化过程中形成的交联点多,从而对硅橡胶起到增稠和补强作用。

在液态涂料和油漆中,气相白炭黑兼有流变助剂、防沉剂、助分散剂、消光剂的功能。在配方中加入气相白炭黑,能够操纵体系的流变性和触变性,既防止涂料和油漆在施工过程中的流挂现象,又可保证涂层厚薄平均,获得高品质的涂刷成效。气相白炭黑在液态涂料和油漆中,能够提升颜料和填料的悬浮性,改善颜料的分散性,从而有效防止颜料和填料在体质中沉降,使其具有良好的储存性。气相白炭黑作为消光剂,其作用是调整漆膜的表面光泽,并给予漆膜表面良好的油腻感。另外,气相白炭黑在油漆和涂料体系中,能够提升涂层的抗刮擦和耐磨性能,加大了防腐蚀的作用。

粉末涂料中也常常用到气相白炭黑。在粉末涂料中,气相白炭黑能够改善粉末涂料的自由流淌、防结块和流淌特性。

气相白炭黑也常常应用于塑料和弹性体以及不饱和聚酯树脂中。在塑料的混料中加入传统的填料外,再加入少量的气相白炭黑就会产生明显的补强作用,大大提升材料的强度和力学性能,从而改善加工工艺和制品的性能。而在不饱和聚酯树脂中加入少量的气相白炭黑能够给予树脂极佳的透亮度和优异的物理性能,这些特性都有助于提升下游制品的质量。

气相白炭黑是一种重要的无机化工原料,在工业进展中有着不可替代的作用,除了传统的应用行业外,还必将应用于新的领域,但由于其价格较高,往往限制了其更广泛的应用,如在橡胶行业中目前依旧大量使用沉淀白炭黑。

2.3.2 沉淀白炭黑的应用

沉淀白炭黑又称沉淀水合二氧化硅。它是一种具有高比表面积、高结构、高活性的补强填充改性材料,因其具有专门的表面结构和颗粒形状结构以及专门的物理、化学特性,应用领域广泛,是一种重要的补强填充剂。在浅色和彩色产品中更具有炭黑所无法比拟的优点,表面活性和补强性能比其他无机浅色填料(如碳酸钙、陶土、高岭土、云母等)更优异。

通过操纵沉淀白炭黑制备反应过程中物料的比例、流量以及反应的压力、温度、时刻,通过滤、洗涤和干燥等后处理,可得到不同比表面积、粒径、纯度、结构度、孔隙度的制品。白炭黑生产工艺不同,其物理、化学特性也各不相同,如表3-7所示。

表3-7 不同规格的白炭黑的物理、化学特性

项目Zeosil175 Zeosil15 Zeosil175Gr Zeosil125Gr Tixosil383

二氧化硅质量分数0.93 0.92 0.93 0.93 0.93

PH值6.8 6.9 6.8 6.7 6.9

水分质量分数(105℃,2h)0.055 0.060 0.060 0.060 0.070

灼烧减量(1000℃/% 4.0 4.5 4.0 4.0 4.5

CTAB比表面积/(m2/g)162 160 165 120 160

BET比表面积/(m2/g)165 240 168 125 260

DOP吸油值/(ml/100g) 280 250 250 230 250

压紧密度/(mg/m3)0.28 0.30 0.30 0.30 0.17

干基筛余物质量分数(10目)——0.80 0.85 —

325目湿筛余物质量分数————0.005

不同比表面积、不同粒径大小的白炭黑可满足不同用途和性能要求。沉淀白炭黑广泛用于橡胶、塑料的填充补强剂、油漆增稠剂、油漆涂料添加剂、合成润滑脂和硅脂稠化剂、制革业平光剂、农药分散剂、造纸填充剂、合成树脂(聚酯树脂、弹性聚氨酯)的添加剂、电子电气业绝缘绝热填料及日用化工原料等行业。同时用于聚丙烯、无毒聚氯乙烯塑料薄膜的开口剂和食品、农药医药的防结块剂和载体。

沉淀白炭黑用量最大的领域是在橡胶工业中作为最佳的白色补强填料,在白色和浅色填料中补强性能和表面活性优异,广泛用于橡胶鞋底、轮胎、胶管、胶带、胶辊、橡胶密封件等产品。

生产橡胶制品过程中通常需要在胶料中加入炭黑来提升强度、耐磨性和抗老化性,但由于炭黑的加入使得制品均为黑色且档次不高。将白炭黑作为补强剂,在一般橡胶中添加少量白炭黑后,产品的强度、耐磨性和抗老化性等性能均达到或超过传统高档橡胶制品,而且能生产出新颖、性能优异的新一代橡胶制品,如白炭黑改性的橡胶材料,同时能够保持颜色长久不变。彩色轮胎侧面胶的抗折性能由原先的10万次提升到50万次以上且有望在不久的今后,实现国产汽车、摩托车轮胎的彩色化。

将白炭黑加入到聚氯乙烯、环氧树脂、乙烯基树脂等可加工树脂材料中,能明显提升产品质量,方便加工成型,提升生产效率,增加品种,扩大应用范畴。在聚氯乙烯塑料薄膜中添加白炭黑后,不但提升其透亮度、强度、韧性,而且抗老化性能也明显提升。在一般塑料聚氯乙烯中添加少量白炭黑后生产出的塑料门窗硬度、粗糙度和抗老化性能均大幅度提升。利用白炭黑对塑料聚丙烯进行改性,要紧技术指标(吸水率、绝缘电阻、压缩残余变形、绕曲强度等)均达到或超过工程塑料尼龙6的性能指标,可实现聚丙烯工程塑料制件替代尼龙6使用,产品成本大幅度下降,其经济效益十分明显。

我国是涂料生产消费大国,但目前国产涂料普遍存在着性能方面的不足,诸如悬浮稳固性、触变性、耐磨性、耐洗刷性能较低等咨询题,致使每年需进口大量高档涂料。在涂料中,白炭黑可发挥防止结块和悬浮、

增稠、触变性等功能。白炭黑在涂料中成功应用,一改过去产品的不足,其要紧性能指标大幅度提升,如外墙涂料的耐洗刷性由原先的1000多次提升到1万多次;人工加速气候老化和人工辐射暴露老化时刻由原先的250h (粉化1级、变色2级)提升到600h(无粉化、漆膜无变色,色差值4.8)。此外,涂膜与墙体结合强度大幅度提升,涂膜硬度明显增加,表面自洁能力也获得改善。

纳米二氧化硅和气相二氧化硅

一、纳米二氧化硅 纳米二氧化硅是极其重要的高科技超微细无机新材料之一,因其粒径很小,比表面积大,表面吸附 力强,表面能大,化学纯度高、分散性能好、热阻、电阻等方面具有特异的性能,以其优越的稳定性、补强性、增稠性和触变性,在众多学科及领域内独具特性,有着不可取代的作用。纳米二氧化 硅俗称“超微细白炭黑”,广泛用于各行业作为添加剂、催化剂载体,石油化工,脱色剂,消光剂, 橡胶补强剂,塑料充填剂,油墨增稠剂,金属软性磨光剂,绝缘绝热填充剂,高级日用化妆品填料 及喷涂材料、医药、环保等各种领域。 纳米二氧化硅XZ-G01:为相关工业领域的发展提供了新材料基础和技术保证。由于它在 磁性、催化性、光吸收、热阻和熔点等方面与常规材料相比显示出特异功能,因而得到人们的极大 重视。一、XZ-G01二氧化硅产品的主要技术指标,含量:99.99 % 水分≤0.01 二、XZ-G01二氧化硅用途1、涂料及饱和树脂的增稠剂和触变剂;2、平光剂:家具漆有向亚光方向发展的趋势,列 沦清漆或色漆均可使用超细二氧化硅凝胶产品作为平光剂,另外卷材涂层、PVC、塑料壁纸、雨衣 帐篷等平光剂亦可使用此类产品。3、聚乙烯、聚苯烯、无毒聚氯乙稀薄膜抗阻塞剂/开口剂。三.XZ-G01二氧化硅在高分子工业中的应用它广泛地应用于橡胶、塑料、电子、涂料、陶(搪)瓷、石膏、蓄电池、颜料、胶粘剂、化妆品、玻璃钢、化纤、有机玻璃、环保等诸多领域。 二、气相二氧化硅 气相二氧化硅,分子式:SiO2.白色蓬松粉沫,多孔性,无毒无味无污染,耐高温。同时它具备的化 学惰性以及特殊的触变性能明显改善橡胶制品的抗拉强度,抗撕裂性和耐磨性,橡胶改良后强度提 高数十倍。液体系统、粘合剂、聚合物等的流变性与触变性控制、用作防沉、增稠、防流挂的助剂、HCR与RTV-2K硅酮橡胶的补强、可用来调节自由流动和作为抗结块剂来改善粉末性质等等。 英文名:Silicon Dioxide 国外同类商品名:Airosilk 气相二氧化硅(气相白碳黑)是 极其重要的高科技超微细无机新材料之一,由于其粒径很小,因此比表面积大,表面吸附力强,表 面能大,化学纯度高、分散性能好、热阻、电阻等方面具有特异的性能,以其优越的稳定性、补强性、增稠性和触变性,在众多学科及领域内独具特性,有着不可取代的作用。纳米二氧化硅俗称“超微细白炭黑”,广泛用于各行业作为添加剂、催化剂载体,石油化工,脱色剂,消光剂,橡胶补 强剂,塑料充填剂,油墨增稠剂,金属软性磨光剂,绝缘绝热填充剂,高级日用化妆品填料及喷涂 材料、医药、环保等各种领域。并为相关工业领域的发展提供了新材料基础和技术保证。

纳米二氧化硅

纳米二氧化硅SiO2的研究现状及其运用(邓奕鹏、夏常梁、宁波、赵英孜、王娜) 摘要通过国内外的影响力较大数据库,查找期刊、杂志、论文中的相关文献来了解二氧化硅(SiO2)、在国内外科技前沿的研究现状及运用情况。探究其是否能够作为“荷叶自洁效应及其表膜纳米功能材料的研究及运用“的纳米材料载体。 0 前言“荷叶自洁效应及其表膜纳米功能材料的研究及运用”需要一种纳米材料来构成像荷叶表面的“乳突”的型式结构。以使这种涂层能够具有自清洁效果的。二氧化硅(SiO2)具有来源广泛,耐腐蚀、高硬度、高强度、高韧性、生物友好性等特征。把二氧化硅(SiO2)作为这种乳突的型式结构是一种不错的选择。而且具有可操作性!因此,我们有必要对这些材料有更深的认识,以了解他们的制备方法、表面特征的相关属性。来达到更好的利用二氧化硅(SiO2)的目的。增加自己对二氧化硅(SiO2)的了解。 1、纳米二氧化硅的性质: 1.1 物理性质纳米Si02为无定型白色粉末,是一种无毒、无味、无污染的无机非金属材料。经透射电子显微镜测试分析.这种材料明显显现出絮状或网状的准颗粒结构,颗粒尺寸小,比表面积大。工业用Si02称作自炭黑,是一种超微细粉体,质轻,原始粒径O.3 微米以下,相对密度2.319~2.653熔点1750℃,吸潮后形成聚合细颗粒。

1.2 化学性质纳米Si02的体积效应和量子隧道效应使其产生渗透作用,可深入到高分子化合物的“键附近,与其电子云发生重叠,形成空间网状结构,从而大幅度提高了高分子材料的力学强度、韧性、耐磨性和耐老化性等。因而,人们常利用纳米Si02的这些特殊结构和性能对塑料及涂料进行改性或制各有机Si02复合材料,提高有机高分子材料的综合性能。 1.3 光学性质纳米Si02微粒由于只有几个纳米到几十个纳米,因而,它所表现出来的小尺寸效应和表面界面效应使其具有与常规的块体及粗颗粒材料不同的特殊光学特性。采用美国Varian公司Cary一5E分光光谱仪对纳米Si02抽样测试表明,对波长200~280 nm 紫外光短波段,反射率为70%~80%;对波长280~300 nm的紫外中波段,反射率为80%以上:在波长300~800 nm之间,纳米Si02材料的光反射率达85%;对波长在800~1300 nm的近红外光反射率也达70~80%。

气相二氧化硅应用

CAB-O-SIL?气相二氧化硅M-5 一、产品概述 M-5非处理型气相二氧化硅是CAB-O-SIL?气相二氧化硅系列的通用品种,可应用在涂料油墨中发挥下述重要功能: 液体中:粉体中: 流变控制 防沉淀 自由流动 防止结块 流体化 二、物化指标 比表面积(平方米/克):200+/-25 堆积密度(克/升):40 成份分析(%SiO2):>99.8 X-射线结构分析:非晶体 折射率(折光指数): 1.46 325目筛筛余(最高%):0.02 加热损失(%@105℃):<1.5 燃烧损失(%@1000℃):<2 中值粒径平均长度粒子:0.2-0.3微米

三、应用及添加量 应用领域M-5功能用量标准(%) 粉末涂料自由流动、防止流垂0.25-1.0 溶剂型涂料防止沉淀0.25-0.5 防止流垂0.25-3.0 把持力0.25-0.75 相框或肿边0.25-0.5 锤印花式涂层花式控制0.3-0.6 多色表面涂层金属薄的定向15-20(相对薄片重量) 富锌打底涂料防止沉淀2.0-2.5 凹印墨触变、增稠0.5-1.0 筛网墨触变、增稠1.0-3.0 产地及包装规格美国,10公斤纸袋装 气相二氧化硅在涂料中的功能和作用 1、流变助剂 流变性是涂料的重要性能,它直接影响到涂料的外观,施工性能及储存稳定性等性能,而不同涂料体系对流变助剂的要求也有差异.对于油性体系而言,大部分流变助剂都是形成氢键而起作用的.表面未处理的气相二氧化硅聚集体含有多个,其中,一是孤立的,未受干扰的自由二是连生的,彼此形成氢键的键合氢键键合在油性体系中,极易形成三维的网状结构,这种结构受机械力影响时会破坏,使粘度下降,涂料恢复良好的流动性;当剪切力消除后,三维结构会自行恢复,粘度上升.在完全非极性液体中,粘度恢复时间只需几分之一秒;在极性液体中,回复

二氧化硅的工业化生产

二氧化硅的工业化生产 1.1 二氧化硅的种类 二氧化硅也称硅质原料,不仅包括天然矿物,也包括各种合成产品,其产品可分为结晶态和无定形状两类。 二氧化硅天然矿物通常包括结晶态二氧化硅矿物石英砂、脉石英、粉石英和无定形硅矿物硅藻土。 合成产品要紧是白炭黑(无定形二氧化硅),包括气相白炭黑(气相二氧化硅)、沉淀白炭黑(沉淀二氧化硅)。 石英是二氧化硅天然矿物的要紧矿物组分,化学成分为SiO2,玻璃光泽,断口呈油脂光泽。贝壳状断口,莫氏硬度7,密度2.65~2.66 。颜色不一,无色透亮的叫水晶,乳白色的叫乳石英。按其结晶习性分,三方晶系的为低温石英,又叫-石英;六方晶系的为高温石英,又称-石英。 石英砂是一个矿产品的专门名词,它泛指石英成分占绝对优势的各种砂,诸如海砂、河砂、湖砂等。地质学按成因将它们划分为冲积砂、洪积砂、残积砂等。石英砂的矿物含量变化专门大,以石英为主,其次包含各类长石、岩屑、重矿石(石榴子石、电气石、辉石、角闪石、榍石、黄玉、绿帘石、钛铁矿等)以及云母、绿泥石、黏土矿物等。 石英砂岩,是一种固结的砂质岩石,常简称为砂岩,是自然界最常见、最一般的硅质矿物原料之一,其石英和硅质碎屑含量一样在95%以上,副矿物多为长石、云母和黏土矿物,重矿物含量专门少。常见的重矿物有电气石、金红石、磁铁矿等。 石英岩是由石英砂岩或其他硅质岩石通过变质作用而形成的变质岩。脉石英是与花岗岩有关的岩浆热液矿脉,其矿物组成几乎全部为石英。 粉石英是一种颗粒极细、二氧化硅含量专门高的天然石英矿。粉石英这一词过去叫法专门多,它既包括天然的粉石英,同时也包括了由硅质矿物原料(石英岩、脉石英)加工而成的石英细粉。 硅砂是以石英为要紧成分的砂矿飞总称。以天然颗粒状态从地表或地层中产出的硅砂,以及石英岩、石英砂岩风化后呈粒状产出的砂矿称

气相二氧化硅的用途

气相二氧化硅的用途 气相二氧化硅是极其重要的高科技超微细无机新材料之一,由于其粒径很小,因此比表面积大,表面吸附力强,表面能大,化学纯度高、分散性能好、热阻、电阻等方面具有特异的性能,以其优越的稳定性、补强性、增稠性和触变性,在众多学科及领域内独具特性,有着不可取代的作用。纳米二氧化硅俗称“超微细白炭黑”,广泛用于各行业作为添加剂、催化剂载体,石油化工,脱色剂,消光剂,橡胶补强剂,塑料充填剂,油墨增稠剂,金属软性磨光剂,绝缘绝热填充剂,高级日用化妆品填料及喷涂材料、医药、环保等各种领域。并为相关工业领域的发展提供了新材料基础和技术保证。由于它在磁性、催化性、光吸收、热阻和熔点等方面与常规材料相比显示出特异功能,因而得到人们的极大重视。 (一)电子封装材料有机物电致发光器材(OELD)是目前新开发研制的一种新型平面显示器件,具有开启和驱动电压低,且可直流电压驱动,可与规模集成电路相匹配,易实现全彩色化,发光亮度高(>105cd/m2)等优点,但OELD器件使用寿命还不能满足应用要求,其中需要解决的技术难点之一就是器件的封装材料和封装技术。目前,国外(日、美、欧洲等)广泛采用有机硅改性环氧树脂,即通过两者之间的共混、共聚或接枝反应而达到既能降低环氧树脂内应力又能形成分子内增韧,提高耐高温性能,同时也提高有机硅的防水、防油、抗氧性能,但其需要的固化时间较长(几个小时到几天),要加快固化反应,需要在较高温度(60℃至100℃以上)或增大固化剂的使用量,这不但增加成本,而且还难于满足大规模器件生产线对封装材料的要求(时间短、室温封装)。将经表面活性处理后的纳米二氧化硅充分分散在有机硅改性环氧树脂封装胶基质中,可以大幅度地缩短封装材料固化时间(为2.0-2.5h),且固化温度可降低到室温,使OELD器件密封性能得到显著提高,增加OELD器件的使用寿命。 (二)树脂复合材料树脂基复合材料具有轻质、高强、耐腐蚀等特点,但近年来材料界和国民经济支柱产业对树脂基材料使用性能的要求越来越高,如何合成高性能的树脂基复合材料,已成为当前材料界和企业界的重要课题。纳米二氧化硅的问世,为树脂基复合材料的合成提供了新的机遇,为传统树脂基材料的改性提供了一条新的途径,只要能将纳米二氧化硅颗粒充分、均匀地分

气相二氧化硅标准信息

气相二氧化硅新标准正式发布实施 历经一年多的努力,由广州吉必盛科技实业有限公司领衔起草修订的GB/T 20020-2013《气相二氧化硅》新国标于2013年9月发布,2014年1月起正式实施,标志着我国气相二氧化硅从标准的角度引导整个行业步入新起点、新规范。 气相二氧化硅作为一种超细高纯的无机粉体纳米材料,是新材料领域一种常用的高性能添加剂。但在2001年广州吉必盛成功建成500吨/年气相二氧化硅生产线之前,该项技术一直被国外化工巨头垄断,产品全部依赖进口。为了缩短与国外产品的差距,2004年由吉必盛牵头首次制定了GB/T 20020-2005《气相二氧化硅》国家标准,填补了国内空白。随着生产技术水平和分析技术的进步,GB/T 20020-2005《气相二氧化硅》由于技术指标较宽、技术要求较低,已不适应行业生产水平,难以满足客户要求,对原标准进行修订已变得迫在眉睫。 2010年,国家标准化管理委员会作出部署,由中橡集团炭黑工业研究设计院和广州吉必盛科技实业有限公司负责对GB/T 20020-2005《气相二氧化硅》进行修订。吉必盛公司作为国内气相二氧化硅最大的供应商,在技术、生产、质量控制、市场方面均具行业领先优势,在气相二氧化硅领域拥有多项知识产权和核心技术,能准确把握行业科技前沿,为国标修订提供强大的技术支持。因此,全国橡标委炭黑分技术委员会炭黑分技术委员会批准将起草GB/T 20020-2013《气相二氧化硅》的工作组设在广州吉必盛,组长由我公司常务副总经理吴春蕾博士担任,全面主持、统筹修订工作。

工作组邀请气相二氧化硅行业巨头如德国瓦克、日本德山公司和国内有代表性的生产厂家及下游应用企业参与修订工作,标准起草人员先后进行了标准查新和标准行业调研,了解国际国内现行的气相二氧化硅相关标准和历史版本,并与最新版本进行翻译、比对。2011 年3月完成修订初稿,并在全国橡标委炭黑分技术委员会上进行了第一轮讨论,国际和国内行业专家、应用关联企业代表详细讨论了技术指标对生产和应用的影响,征集了国际、国内气相二氧化硅行业生产厂家和应用客户的修订意见,为国标修订进一步明确了方向。 历经四个月的努力,项目组人员对数十家相关联生产单位进行了调研,充分了解了行业的生产和分析技术水平,最后选取了最具代表性的几家厂家产品试验、检测和验证,验证结果充分支持和保障了修订的合理性和适当性。 经过多次修改并充分征集各方意见后,送审稿于2011年12在全国橡标委炭黑分技术委员会审核通过,2012年1月上交国标委审批。该修订采用ISO 3262-20:2000标准并对相关测试方法进行重新起草,相对旧版国家标准,修订后的气相二氧化硅国家标准在技术要求上进行了范围缩减,更加符合当前行业技术水平的要求;对检验、包装、采样等进行了修改和细化,使标准更符合实际生产和应用的要求。 气相二氧化硅新标准的实施将产生了巨大的经济效益和社会效益。本次修订召集了具有国际先进制造水平的代表性跨国企业参与到国家标准修订中来,修订参与的单位代表了国际、国内最广泛的行业水平,修订后的气相二氧化硅国家标准相对于国际标准和现行国家标

气相二氧化硅产品说明书

气相二氧化硅产品说明书 气相二氧化硅(俗称气相白碳黑)产品为人工合成物X射线列定形白色流动性粉末,具有各种比表面积和容积严格的粒度分布。本产品是一种白色、松散、无定形、无毒、无味、无嗅,无污染的非金属氧化物。其原生粒径介于7~40rim之间,比表面积一般大于100m2/g。由于其纳米效应,在材料中表现出卓越的补强、增稠、触变、绝缘、消光、防流挂等性质,因而广泛的应用于橡胶、塑料、涂料、胶粘剂、密封胶等高分子工业领域。 一、Tamis产品的主要技术指标 二、用途 涂料及饱和树脂的增稠剂和触变剂 在大型桥梁和船舶底漆使用的原浆涂料中,超细二氧化硅依靠表面羟茎作用形成氢键,在涂刷和喷涂时具有较好的流动性,而候静止依靠表面羟茎的氢键作用,很快失去流动性,防止了原浆涂料的流褂现象,在不饱和树脂的作用,与之相似。 建议使用Tamis-10,Tamis-10PS 平光剂 家具漆有向亚光方向发展的趋势,列沦清漆或色漆均可使用超细二氧化硅凝胶产品作为平光剂,另外卷材涂层、PVC、塑料壁纸、雨衣帐篷等平光剂亦可使用此类产品。 建议使用Tamis-20,Tamis-30

聚乙烯、聚苯烯、无毒聚氯乙稀薄膜抗阻塞剂/开口剂 在拉制薄膜之前的料中加入超细二氧化硅凝胶粒子在薄膜表面形成微小的凹凸层、薄膜之间存在微小的几何空间、防止低分子物质渗透,从而使薄膜极易打开,制备聚乙烯薄膜抗粘母粒,聚苯烯薄膜和无毒聚氯乙稀膜分别使用 建议使用Tamins-10,Tamins-10PS 重氮盐晒图纸予涂料的重要组成成份 国外高质量的重氮盐晒图纸都经过一道予涂,予涂料的组成是聚醋酸乙烯和超细二氧化硅经过予涂的晒图纸图像清晰、明快、具有立体感。 建议使用Tamis-10 四.气相二氧化硅在高分子工业中的应用 1 在橡胶中的应用 未经补强的硅橡胶,其强度一般只有03MPa,几乎不能使用。要达到实际应用的水平,必须对其进行填充改性。在常见的无机粉体填料(碳酸钙、沉淀法二氧化硅等)中,效果最好的是气相二氧化硅。当添加气相二氧化硅之后其强度最高可提高40倍,屈服点模量可提高1O 倍左右,伸长率、蠕变性能也能得到十分显著的改善 l。经气相二氧化硅填充后,材料的内部微观相互作用发生了很大的变化,除存在分子链间弱的范德华力所致大分子链间的 缠结以及因机械力所致的机械缠结外,还存在气相二氧化硅聚集体间氢键的强的相互作用、二氧化硅与聚合物间强的吸附或键联作用、吸附在二氧化硅聚集体表面的聚合物大分于链间的强的相互缠结作用,使得界面粘结得到显著的改善,在硅橡胶内部形成了聚合物大分子链贯穿板碳黑网络的结构,从而赋予了材料优越的综合性能。 气相二氧化硅能大幅度提高胶料的物理机械性能、减少胶料滞后、降低轮胎的滚动阻力而又不损失抗湿滑性能而受到广泛关注,因此在硅橡胶外的其它有机橡胶中的应用也越来越广,其补强效果完全达到了炭黑的水平,且又克服了炭黑的黑色污染,可广泛用于彩色高档橡胶制品。 2 在密封胶和胶粘剂中的应用 在硅酮密封胶和胶粘剂领域,气相二氧化硅可用作增稠剂和触变剂,可以增加粘结强度,保证自由流动,具有防止结块及在固化期间的流挂、塌散、凹陷,保持透明度,补强,抗剪切等作用。气相二氧化硅的增稠以及触变作用机理是当其在密封胶和胶粘剂中分散后,不同颗粒间通过其表面的硅醇基产生氢键作用,形成一个二氧化硅聚集体网络,使体系的流动性受到限制,粘度增加.起到增稠的作用;在受到剪切力的作用下二氧化硅网络受到破坏,导致体系粘度下降.发生触变效应,便于施工。一旦剪切力消除,这种网络结构可重新形成,有效防止了胶料在固化过程中的流挂。 3 在塑料中的应用 利用气相二氧化硅高强度、高流动性和小尺寸效应,可提高塑料制品的致密性、光洁度和耐磨性能。若通过适当的表面改性,则可以达到对塑料同时增强增韧的目的。将气相法白炭黑

我国气相法二氧化硅的生产状况及其应用

1气相法白炭黑的用途 1.1赋予材料的特性 气相法二氧化硅又称气相法白炭黑,是千种极其重要的高科技无机化工产品,也是目前唯一能够实现大规模工业化生产的纳米材料。它是一种无定形、半透明、流动性很强的絮状胶态物质,是由硅或硅的氯化物在氢氧焰的高温条件下水解而成,是表面带有羟基官能团的超微细粒子。其原生粒径为1-40nm,平均原生粒径为7~18 nm(接近于分子直径),聚集体粒径为1μm左右,具有较大的比表面积(通常为50-400m2/g)。它的分子间由Si-O共价键结合在一起,形成结构稳定的晶格场。当物质颗粒的粒径达到纳米级时,也就是接近分子状态时,粒子的量子效应使物质的物理化学性质发生显著的变化,粒子表面不再是传统意义上的物体表面,更多的表征是表面原子、化学键、内能、焓、熵及分子间的作用力等。 气相法二氧化硅的高比表面积和孔结构对许多物质的物理化学性能产生 显著的影响。它具有高触变性、高分散性、抗温变性、高耐磨性、高折光性,在材料中具有“分子桥”作用,可改善材料的性能,赋予材料与众不同的性能,因此在新型材料中占有特殊的地位,尤其是在国防与航天工业中占有极其重要的地位。 (1)高张力性。在纺织材料表面涂含气相法二氧化硅的涂料,可以极大地提高材料表面的张力,如现代防弹衣。 (2)热屏蔽性。橡胶在实际应用中,局部受热后会产生热聚积效应,使该部位的力学强度下降。气相法二氧化硅在橡胶中可以起到热屏蔽作用和热传导作用。在能量转换元件中,损失的能量会产生大量的热,而气相法二氧化硅可以起到良好的热屏蔽作用和表面热传导作用,使损失的能量减少,提高材料的安全性。

(3)憎水性。普通陶瓷绝缘子的表面能较高,容易形成水膜,降低绝缘性能,给电力安全生产带来隐患。由硅橡胶制成的复合绝缘子主要是由混有憎水性气相法二氧化硅的甲基乙烯基硅橡胶制成,每片耐10kV电。当硅橡胶材料表面有微小雾珠和雨滴时,绝大部分雾珠和雨滴都呈球状,不连续地散落在表面。当雾珠和雨滴不断积聚并增大到一定程度时,在重力作用下滚落下来。绝缘材料的良好憎水性可有效提高绝缘子的绝缘性能。 (4)增强性。橡胶由长分子链组成,力学强度较差。加入气相法二氧化硅后,其量子尺寸特性显示出特有的“分子桥效应”,大大强化了大分子链间的作用力。通过这种“分子桥”的连接,彼此之间五分子键或分子链连接作用比较微弱的大分子链的强度得到了极大的加强,外部剪切应力、挤压应力、拉伸应力、扭曲应力等可以均衡的分散,有效地解决了外部张力引起的化学键断裂的问题。例如,在橡胶中加入气相法二氧化硅,将提高轮胎的性能并延长其使用寿命。 (5)高触变性。涂料等流体物质在高压气流带动下喷出喷口的过程中,由连续态变为不连续的微小液滴,然后重新集聚成液体薄膜。例如,油漆雾化后在材料表面成膜,使材料表面光滑,减小与其他介质的摩擦力。高触变性是高性能材料的质量特性,普通流体物质达到高触变性是非常困难的,但使用气相法二氧化硅的涂料等流体物质可具有高触变性。 (6)增稠性。普通流体或半流体材料在成膜到一定厚度后,都要发生一定程度的层流现象。气相法二氧化硅可以显著地提高流体的成膜性,改善膜的不流淌性、均匀性和表面性,例如,提高油漆的成膜厚度及不流淌性,减轻材料腐蚀,延长使用寿命。这对重防腐材料是十分重要的技术指标。 (7)分散性。气相法二氧化硅使容易结块的物质减少黏合性,具有良好的流动性和分散性,使物质颗粒之间保持一定的距离,一种物质在另一种物质中保持良好的均匀分布性,例如,可用作易燃、易爆物质的分散剂,易结块化肥的松散剂等。

仿生超疏水二氧化硅_聚氨酯复合涂层的制备及性能_喻华兵

第30卷第1期高分子材料科学与工程 Vol .30,No .1 2014年1月 POLYMER MA TERIALS SCIENCE AND ENGINEERING Jan .2014 仿生超疏水二氧化硅/聚氨酯复合涂层的制备及性能 喻华兵 1,2 ,汪存东2,李瑞丰 1 (1.太原理工大学精细化工研究所,山西太原030024;2.中北大学化工与环境学院,山西太原030051) 摘要:以纳米二氧化硅(SiO 2)和不同有机硅含量改性的聚氨酯(P U )为原料,以乙酸乙酯为分散剂,采用简单的喷涂工艺,通过仿生的方法制备出与荷叶表面结构相似的SiO 2/P U 微-纳米复合涂层。用扫描电镜(SEM )对涂层表面进行了表征,研究了SiO 2与P U 的质量比以及有机硅含量对涂层表面结构及接触角的影响,并考察了涂层结构的稳定性,分析了涂层的形成机理和结构特点。结果表明,涂层表面具有与荷叶表面相似的微-纳米结构,SiO 2与P U 的质量比在4∶5至3∶5之间,有机硅质量分数大于15%时,涂层的水接触角为158°,滚动角为3°,具有超疏水特性,并且结构稳定,测试胶带剥离6次后,涂层仍具有超疏水特性。 关键词:仿生;超疏水;复合涂层;微-纳米结构;聚氨酯 中图分类号:T Q 323.8 文献标识码:A 文章编号:1000-7555(2014)01-0136-05 收稿日期:2013-08-22 基金项目:山西省青年科技研究基金项目(2013021012-4)通讯联系人:喻华兵,主要从事功能材料的合成及应用研究,E -mail :yuhuabing80@https://www.360docs.net/doc/1b7278617.html, 超疏水性是指物体表面与水接触时所形成的接触角大于150°,滚动角小于10°的疏水性能。超疏水表面 在现实生产、生活中具有广阔的应用前景,可用于防水、防污、自清洁、流体减阻、抑菌等领域[1,2]。寻求、开发和研制具有高性能的新型疏水材料一直是科学家们所关注的课题,也是多年来仿生学领域研究的热点之一。 目前制备超疏水性材料的方法主要有:刻蚀法[3] 、静电纺丝法[4] 、等离子技术[5] 、相分离法[6] 、模板法[7]和溶胶-凝胶法[8]等。这些方法大多工艺复杂、设备昂贵,大面积制备困难,并且表面粗糙结构脆弱,使得涂层的力学性能以及对基体的防护性能均较差,达不到持久超疏水的作用。因而制约了超疏水涂层在工业上的广泛应用。 本研究根据荷叶表面超疏水微-纳米结构的特点[9],采用纳米二氧化硅(SiO 2)、有机硅改性聚氨酯(PU )为原料,复配成混合分散液,采用喷涂工艺,结合组分间的相分离、自组装技术,构建出类似荷叶表面微-纳米粗糙结构的SiO 2/PU 超疏水涂层。这种涂层结合了聚氨酯和二氧化硅材料的优点,具有易得,附着力好、可大面积制备、结构稳定、超疏水持久等特点,应用前景可佳。 1 实验部分 1.1 实验药品与仪器 市售纳米二氧化硅(SiO 2):粒径约为15nm ,太仓欣鸿化工有限公司;乙酸乙酯:分析纯,北京化工厂;甲苯二异氰酸酯(TDI ):分析纯,上海试剂厂;聚丙二醇(PPG -1000):工业品,海安国力化工有限公司;羟基硅油:羟基含量9%,化学纯,济南豪耀商贸有限公司。 上壶喷漆枪:日本岩田W -71型,喷嘴口径1.0mm ;超声波清洗器:昆山市超声仪器有限公司,KQ -50DA 型;接触角测试仪:上海中晨数字技术设备有限公司,JC2000C 型;场发射扫描电镜(SEM ):日本日立S4700型;测试胶带:美国3M610型,规格19m m ×66m 。1.2 有机硅改性聚氨酯的制备 在装有冷凝管、搅拌器和温度计的四口瓶中加入聚丙二醇(PPG ),110℃真空脱水2h ,然后冷却到60℃,加入计量好的甲苯二异氰酸酯(TDI ),滴加3滴二月桂酸二丁基锡(DBTL )催化剂,控制反应温度为75℃~80℃,反应2h 。再加入羟基硅油进行扩链,反应2h 。分别制得分子链中有机硅质量分数为3%、5%、8%、10%、15%、18%的湿固化型有机硅改性聚氨酯。反应机理如Fig .1所示。

气相二氧化硅在环氧树脂包封料的应用

气相二氧化硅在环氧树脂包封料的应用 气相二氧化硅在环氧树脂包封料的应用及金属化薄膜电容器外表质量的分析 电容器的主要技术指标是电性能。然而其外表质量同样是不可忽视的,因为,金属化薄膜电容器其内浸渍绝缘和外包封绝缘都是采用环氧树脂结构,但内浸渍绝缘采用的配方是环氧树脂-酸酐体系,而外包封绝缘用的是触变性环氧树脂-改性芳香胺配方体系。因此,尽管电容器的电性能是好的,但环氧树脂外包封的工艺是否完整其外表质量不合要求也会造成废品。而且电容器的外表质量往往是生产厂造成废品损失的主要原因。就金属化薄膜电容器而言,造成电容器外表质量不合格的主要原因是:环氧树脂外包封层产生垂头、气泡、气孔、变色、不平、颜料分离、印迹不清等现象。对此,我们来分析原因。 一、环氧树脂外包封料下垂(垂头)造成体积超差 环氧树脂包封料垂头不但外观不好,而且易造成产品体积超差。其原因,环氧树脂触变包封涂料槽下降速度太快外,主要是包封料粘度太大造成的。因此,要保证包封粘度适中,一方面要用活性稀释剂来调节,另一方面气相二氧化硅(白炭黑)的添加量也要合适。而包封料下垂,主要是气相二氧化硅添加量不足引起的。然而,当气相二氧化硅过量,则包封料粘度过大。用这种粘度大的料包封的电容器料层厚,易造成体积超差。另外也使产品外表不光亮,因为,气相二氧化硅有消光的功能,同时也带来了材料的浪费。然而当气相二氧化硅添加量不足,则起不到包封料的触变性能,也就无法防止包封料下垂的作用。 气相白炭黑,也称气相二氧化硅,其原始粒子极微细、质轻,在空气中吸收水份后成为聚集的细粒子。其颗粒表面的硅原子并不是全部具有四个硅氧键,其中一部分硅原子是由三个硅氧键和一个羟基所组成,形成了硅醇基。由于白炭黑颗粒表面的硅醇基在液体树脂中彼此以氢键相缔合(由简单的分子结合成比较复杂的分子,而不引起物质的化学性质改变的现象,叫做分子的缔合。所谓氢键即和非金属性强的元素,特别是氟、氧、氮等,以共价键相结合的氢原子.还可以再和此类元素的另一原子相结合。这时所形成的第2个键,叫做氢键)。就是说,这些气相二氧化硅颗粒之间互相结合成“链”。并进而形成主体网状结构,它们均匀的分散在树脂分子之间,并形成一层包复层,紧贴在树脂长分子链上,从而也使树脂连接起来,形成网状链形结构。因此,环氧树脂包封料就产生了触变性,它可以有效的防止环氧树脂包封料的下垂问题。这种以氢键相缔合的气相二氧化硅颗粒之间作用力较弱,易受搅拌或振动而遭到破坏。但当外力移除后,则再形成氢键。同时其形成的主体网状结构对热不敏感,以致在90℃烘箱中固化时仍能保持原有的外形,不会使环氧树脂包封料的粘度下降。然而,气相二氧化硅的填加量有一定的限度,加的过量则粘度大,操作困难,包封层过厚。同时,产品表面粗糙。气相二氧化硅的填加量要根据气温、环氧树脂配方、填料和颜料的量具体工艺等由试验确定。但是,我们的经验是气相二氧化硅的添加量是环氧树脂外包封料的

气相法二氧化硅生产过程及其应用特性

气相法二氧化硅生产过程及其应用特性 高士忠,李建强,赵耀,赵莉 (沈阳化工股份有限公司,辽宁,沈阳110026) 摘要:介绍了气相法二氧化硅的生产过程、作用机理及应用特性。 关键词:气相法二氧化硅;生产过程;应用特性 气相法二氧化硅学名二氧化硅,为工业上独特的超微细纳米级材料。具有粒度小,超高比表面积(100~400 m2/g),纯度高等特性,表现出优越的分散性、补强性、增稠性、触变性、消光性、电绝缘性及表面处理后的疏水性等。广泛应用于航空航天、橡胶、涂料、电子电力、汽车、建筑、农业、医药等领域中,发达国家称其为“工业味精”。 1气相法二氧化硅生产过程 二氧化硅有2种主要生产路线,一个是高温气相水解法,即气相法或称干法,一个是湿法,即沉淀法。由于二者的原料路线,生产过程不同,在应用过程中,气相法二氧化硅使用性能要明显优于沉淀法二氧化硅。 气相法二氧化硅是利用硅的氯化物在氢氧焰中燃烧进行高温气相水解,其火焰温度>1 000℃,经过凝聚、分离、脱酸、筛选等精制过程生产而成。 总反应式:SiCl4+2H2+O2→SiO2+4HCl 其生产工艺过程示意图如图1。 沉淀法二氧化硅是采用硅酸钠为原料与浓硫酸在液相中发生反应,经过液相分离、中和、脱水、干燥、机械研磨等过程生产而成。由于原料价格低廉,生产成本远远低于气相法二氧化硅。气相法二氧化硅比沉淀法二氧化硅具有无与伦比的优越性能,如分散性、触变性、增稠性及在橡胶行业的补强性和在电子工业方面的绝缘性等。 2气相法二氧化硅的作用机理

2.1在液态体系中的作用机理 由于气相法二氧化硅的表面带有大量的羟基,这些羟基会在气相法二氧化硅的聚集体之间形成氢键,当其充分分散于液态体系中时,便形成二氧化硅的网状结构。其排列如图2所示。 这种网格能增加液体的黏度,并产生触变现象。触变是液体的物理现象,当对液相体系施加剪切力后,使二氧化硅聚集体之间形成的氢键断裂,液相体系的黏度下降,当停止施加剪切力后,聚集体又依靠氢键重新建立起网络结构,当剪切力完全消失后,液相体系的黏度可恢复到初始值。 触变现象在很多应用领域中发挥优良作用,如涂料、胶粘剂、密封胶等。 由二氧化硅粒子的网状结构所造成的黏度升高可以提高液相体系的流变性能并防止其沉降。提高液相体系的流动速度,可以使黏度降低,而静止后,随着网状结构的恢复,流动性又明显下降。此种特性可以广泛应用于机械喷涂液相物料中,得到更好的喷涂效果。 为得到良好的流变效果,二氧化硅粒子在液相体系中的适度分散是一个决定性的因素,但过度分散会造成二氧化硅粒子之间的网状结构遭到彻底破坏,即使长时间停止施加剪切力,其网状结构也很难恢复。 2.2在干燥体系中的作用机理 气相法二氧化硅在干燥体系中可以通过不同机理起到不同的作用。例如,将其加入颗粒体系中能促进自由流动,将其加入涂膜中能增加磨擦和抗粘连。 2.2.1自由流动 在粉末状、颗粒状等物质中加入少量的气相法二氧化硅,就能起到促进自由流动、防结块和防阻塞等作用。二氧化硅聚集体的微观结构使它很容易在干燥体系的大颗粒之间移动,并且在多数情况下,它可在粉末状物质的颗粒表面形成一层包膜,使得颗粒像可滑移的滚球轴承一样,使大颗粒很容易滑动。这种特性有助于物料通过像阀门、喷头等带有小孔的设备。 非处理型二氧化硅能够吸附存在于产品颗粒表面上少量水分,防止粉末产品由于相互接触而结块。同时由于有特异的分散性,可以增强粉末产品的流动性。 2.2.2增加摩擦

气相二氧化硅分析检测

气相二氧化硅分析检测 ——脱酸工艺的比较 气相二氧化硅 气相法原理 主要为化学气相沉积法,又称热解法、干法或燃烧法。其原料一般为四氯化硅、氧气(或空气)和氢气,高温下反应而成。反应式为: SiC14+ 2H2+ 02一Si02+ 4HC1 空气和氢气分别经过加压、分离、冷却脱水、硅胶干燥、除尘过滤后送入合成水解炉。将四氯化硅原料送至精馏塔精馏后,在蒸发器中加热蒸发,并以干燥、过滤后的空气为载体,送至合成水解炉。四氯化硅在高温下气化(火焰温度范围1000~1800℃)后,与一定量的氢和氧(或空气)在1800℃左右的高温下进行气相水解;此时生成的气相二氧化硅颗粒极细,与气体形成气溶胶,不易捕集,故使其先在聚集器中聚集成较大颗粒,然后经旋风分离器收集,再送入脱酸炉,用含氮空气吹洗气相二氧化硅,至PH值为4~6即为成品。 技术要求

脱酸的目的 气相法白炭黑是在1000~1800℃的氢氧火焰中高温水解SiCl4所得的轻而松软的白色粉末。与传统沉淀法制备的白炭黑相比,气相法白炭黑具有极大的比表面积、高化学纯度、高分散、粒径小等特点。并且气相法生产白炭黑的利润很大,价格是沉淀法白炭黑的10~30倍。但是,生产过程中氢氧燃烧产生的水蒸气及卤化物水解产生的HCl气体极易被比表面积大的白炭黑吸附,使产品呈酸性,在作填料时会降低其交联、增强效应,促进氧化物分解,所以必须经脱酸处理。目前中国在这方面的研究工作主要集中在脱酸工艺上,且国外相关文献报道很少。气相法白炭黑脱酸是整个气相法白炭黑生产过程中十分重要的环节之一,直接关系到产品最后的品质及表面性能。在脱酸的过程中,由于气相法白炭黑初级粒子粒径小,比表面积大,表面能大,处于能量不稳定状态,所以粒子很容易变大、凝并、二次团聚,影响纳米粒子的特性。 脱酸的方法 目前,气相法白炭黑脱酸方法有:热空气加醇法;热空气加氨法;干热空气脱酸法;湿热空气脱酸法;减压振动流化脱酸法等。这几种方法都能达到脱酸效果,但前两种方法会引入其他的杂质;热空气脱酸法的脱酸效果不稳定;湿热空

气相二氧化硅在涂料中的作用

气相二氧化硅在涂料中的作用 1,流变助剂 流变性是涂料的重要性能,它直接影响到涂料的外观,施工性能及储存稳定性等性能,而不同涂料体系对流变助剂的要求也有差异.对于油性体系而言,大部分流变助剂都是形成氢键而起作用的.表面未处理的气相二氧化硅聚集体含有多个 ,其中,一是孤立的,未受干扰的自由二是连生的,彼此形成氢键的键合氢键键合在油性体系中,极易形成三维的网状结构,这种结构受机械力影响时会破坏,使粘度下降,涂料恢复良好的流动性;当剪切力消除后,三维结构会自行恢复,粘度上升.在完全非极性液体中,粘度恢复时间只需几分之一秒;在极性液体中,回复时间较长,这取决于气相二氧化硅的浓度及其分散程度,这一特性赋予油性涂料非常好的储存和施工性能,特别是厚浆形涂料,既能保证涂料在一定的施工剪切力下有良好的流动性,又能保证涂膜的一次施工厚度,通常,在施工过程中,由于涂层边缘的溶剂挥发较快,导致表面张力不均匀,容易使涂料向边缘移动,而二氧化硅网络能够有效的阻止涂料的移动而形成厚边,同时还防止涂料在固化过程中的流挂现象,使涂层均匀.同时,气相二氧化硅由于能形成氢键而提高体系中的中低剪切粘度,从而起到增稠作用.因此,气相二氧化硅在油性体系中的应用非常广泛. 2,防沉剂 气相二氧化硅是一种理想的防沉剂,对于防止涂料体系中颜料的沉淀非常有效,特别是对于色浆的体系,适当的添加量将大大提高色浆的

稳定性,而且能够减少润湿分散剂的量,以提高色浆的适用性,并减少色浆对涂料体系的影响,气相二氧化硅的防沉作用对涂料存放非常有利,特别是某些颜料,如金属粉和薄片,都极易沉淀且不能完全悬浮,使用气相二氧化硅可保证其分散不沉淀.以配方总量计,二氧化硅用量在0.4%-0.8%的范围内,但特殊情况下,比如富锌漆,需增加到2%. 3,助剂分散 在粉末涂料体系中,由于气相二氧化硅的小粒径和高表面能,它们可以吸附在涂料粉体的表面,并在粉体表面形成一个表层,提高粉料得分散性,故可作为分散剂使用.在同一涂料系统中,加入气相二氧化硅可明显缩短分散时间,提高生产效率.单值得注意的是,先将气相二氧化硅分散完全效果更好,其添加量不宜太多,一般不超过1%.因为添加量过多会导致体系触变性能较强,导致分散时边缘分散剪切力不够,而呈冻状,影响分散效率,特殊情况如富锌漆需要添加2%时可以同时搭配其他流变主机助剂一起使用,并利用醇类溶剂调整气相二氧化硅的流变性能. 4,消光剂 气相二氧化硅折光指数1.46,与成膜树脂的折光指数接近,对漆膜颜色没有影响.成膜过程中其迁移到漆膜表面,能使表面产生预期粗糙度,明显的降低表面光泽,是一种良好的消光剂,使用气相二氧化硅是要注意与漆膜厚度的匹配.在厚膜漆里,采用颗粒非常细的气相二氧化硅,涂膜表面不能产生适当的粗糙度;反之,如在薄膜漆里采用颗粒粗大的气相二氧化硅,虽然其消光效果非常好,但是漆膜表面的粗糙

气相二氧化硅的性质及其在化妆品中的应用

气相法二氧化硅的性质及其在化妆品中的应用 气相二氧化硅的性质 气相法二氧化硅是由卤硅烷在氢氧焰中高温水解而得到的一种极其微细的纳米级无定形气相法二氧化硅,粒径小、粒度分布均匀、比表面积大.因此具有很高的表面活性。气相法二氧化硅可分为亲水性和疏水性两类。亲水性气相法二氧化硅表面的硅烷醇基团(SiOH)密度约为2OH/nm2,可以被水润湿并在水中均匀分散。疏水性气相二氧化硅表面的部分SiOH被SiO(CH3)3取代,因此硅烷醇基团(SiOH)密度有所降低,约为10H/nm2,不能在水中分散。无论是亲水性还是疏水性的气相法二氧化硅,其表面均有硅烷醇基团存在,因此可形成一个个活性中心。当把气相法二氧化硅加到液体体系中,邻近颗粒上的硅羟基之间形成氢键,并进一步发展成为三维网络结构,限制液体粒子的活动性,从而提高液体的粘度及稳定性。与此相反,当给上述稳定体系施加一定的剪切力,已经形成网络结构的氢键又被破坏,液体粒子的活动性增大,体系粘度降低。因此,在配方中加入气相法二氧化硅不但能够有效增稠、提高产品稳定性,而且可以改善产品的触变性能和使用时的肤感。 作为世界上最早的硅类化妆品原料气相二氧化硅,人类1942年就开始生产气相法二氧化硅,气相法二氧化硅产品性能优越,应用极其广泛。 在彩妆品中的应用 指甲油:增加粘度、提高悬浮稳定性和整体稳定性、保证色素分布均匀。(建议添加量0.25%-4.0%之间)唇膏:增加粘度、提高整体稳定性、色素分布均匀、提高耐温性、防脱色。(建议添加量0.25%-4.0%之间、如粉底或润唇膏中可使用高达10%)彩妆和眼部护理:包括密粉、粉底、胭脂、眼影、眉线和眼线等。气相二氧化硅是高效的抗结块剂和自由流动剂、能提高贮存稳定性和粉状产品分散性。 在护肤品中的应用 在油膏、凝胶、乳霜类产品中加入亲水性气相法二氧化硅可以显著增稠、增加产品的稳定性和触变性,涂抹时非常顺畅,没有涩感。在W/O乳液型产品中.可以用疏水性气相法二氧化硅来增加产品粘度、降低油腻感、提高产品的清爽性。 在防晒品中的应用 目前防晒产品主要使用物理防晒剂和化学防晒剂达到防晒目的,如纳米级二氧化钛P25、氧化锌等物理防晒剂和甲氧基肉桂酸异辛酯等化学防晒剂。化学防晒剂的优点是可以溶解在油相中,制成的产品质地细腻、肤感轻透;缺点是在紫外线的作用下会慢慢分解,防晒效果变差。因此为了保证产品使用时具有足够高的SPF值,势必在配方中增加化学防晒剂的用量。化学防晒剂本身极容易渗入皮肤,降解后的小分子更容易被皮肤吸收,因此大剂量的化学防晒剂会增加产品的刺激性,容易引起皮肤过敏。而物理防晒剂最大的优点是本身惰性、不会光降解,也不存在皮肤吸收的问题,这也是大家认为物理防晒剂比化学防晒剂安全的理由。但是其缺点也非常明显:防晒颗粒容易团聚、沉积,使用时肤感和手感不好,特别是高SPF的产品,在皮肤上均匀铺展是个大问题。 如果在配方中加入少量的气相法二氧化硅。产品即可轻松解决这一问题。加入的气相二氧化硅可以在纳米级二氧化和氧化锌的颗粒表面形成保护层,填补其不均匀的表面,减弱颗粒之间的吸引力,降低团聚的可能性,使体系更均匀、更稳定;同时额外获得的触变性能可以帮助产品在皮肤表面均匀铺展,改善涂抹时的肤感和手感,全面提高产品性能。 一直以来,气相法二氧化硅始终是个人护理品领域不为人们所熟知的一种原料。由

二氧化硅的工业化生产

二氧化硅的工业化生产 1.1二氧化硅的种类 二氧化硅也称硅质原料,不仅包括天然矿物,也包括各种合成产品,其产品可分为结晶态和无定形态两类。 二氧化硅天然矿物通常包括结晶态二氧化硅矿物石英砂、脉石英、粉石英和无定形硅矿物硅藻土。 合成产品主要是白炭黑(无定形二氧化硅),包括气相白炭黑(气相二氧化硅)、沉淀白炭黑(沉淀二氧化硅)。 石英是二氧化硅天然矿物的主要矿物组分,化学成分为SiO2,玻璃光泽,断口呈油脂光泽。贝壳状断口,莫氏硬度7,密度2.65~2.66。颜色不一,无色透明的叫水晶,乳白色的叫乳石英。按其结晶习性分,三方晶系的为低温石英,又叫-石英;六方晶系的为高温石英,又称-石英。 石英砂是一个矿产品的专门名词,它泛指石英成分占绝对优势的各种砂,诸如海砂、河砂、湖砂等。地质学按成因将它们划分为冲积砂、洪积砂、残积砂等。石英砂的矿物含量变化很大,以石英为主,其次包含各类长石、岩屑、重矿石(石榴子石、电气石、辉石、角闪石、榍石、黄玉、绿帘石、钛铁矿等)以及云母、绿泥石、黏土矿物等。

石英砂岩,是一种固结的砂质岩石,常简称为砂岩,是自然界最常见、最普通的硅质矿物原料之一,其石英和硅质碎屑含量一般在95%以上,副矿物多为长石、云母和黏土矿物,重矿物含量很少。常见的重矿物有电气石、金红石、磁铁矿等。 石英岩是由石英砂岩或其他硅质岩石经过变质作用而形成的变质岩。脉石英是与花岗岩有关的岩浆热液矿脉,其矿物组成几乎全部为石英。 粉石英是一种颗粒极细、二氧化硅含量很高的天然石英矿。粉石英这一词过去叫法很多,它既包括天然的粉石英,同时也包括了由硅质矿物原料(石英岩、脉石英)加工而成的石英细粉。 硅砂是以石英为主要成分的砂矿飞总称。以天然颗粒状态从地表或地层中产出的硅砂,以及石英岩、石英砂岩风化后呈粒状产出的砂矿称为“天然硅砂”(或简称“硅砂”)。与此对应,将块状石英岩、石英砂岩粉碎成粒状则称“人造硅砂”。 1.2二氧化硅的性质 1.2.1性质 二氧化硅在自然界分布很广,如石英、石英砂等。白色或无色,含铁量较高的是淡黄色。密度2.65~2.66。熔点1670℃(鳞石英);1710℃

超疏水材料的研究现状及应用

超疏水材料的研究现状及应用 摘要:超疏水表面材料具有防水、防污、可减少流体的粘滞等优良特性,是目前功能材料研究的热点之一。由于超疏水表面在自清洁表面、微流体系统和生物相容性等方面的潜在应用,有关超疏水表面的研究引起了极大的关注,本文简述了超疏水表面的制备方法,归纳了超疏水表面的应用,对超疏水表面研究的发展进行了展望。 关键词:超疏水表面材料;微流体系统;表面制备方法;表面应用Superhydrophobic materials Research and Application Li Yongliang (Jiangnan University, College of Chemistry and Materials Engineering Jiangsu Wuxi 214122,China) Abstract:Superhydrophobic surface material with a waterproof, anti-fouling, can reduce the viscosity of the fluid and other excellent features, is currently one of the hot functional materials. As super-hydrophobic surface in the self-cleaning surfaces, microfluidic systems, biocompatibility and other potential applications, research on super-hydrophobic surface caused a great deal of attention, this paper outlines the super-hydrophobic surface preparation methods, summarized the super-hydrophobic surface application of research for the development of super-hydrophobic surfaces were discussed. Keywords:Superhydrophobic surface material; Microfluidic systems; Surface preparation methods; Surface application 近年来,植物叶表面的超疏水现象引起了人们的关注。所谓植物超疏水能力,就是植物叶面具有显著的疏水,脱附,防粘,自清洁功能等。随着科学的发展 , 各种疏水表面的设计和应用成为研究的热点问题之一。一般认为水滴接触角大于 150°的表面称为超疏水表面。自然界里有很多动植物表面都具有高疏水性和自洁功能,例如荷叶和水稻叶表面,其表面水的接触角都高达160°以上,滚动角小于3°。超疏水表面的制备通常包括粗糙表面的制备和使用低表面能物质

相关文档
最新文档