微电子机械系统(MEMS)技术在军工和民生的应用及发展前景

微电子机械系统(MEMS)技术在军工和民生的应用及发展前景
微电子机械系统(MEMS)技术在军工和民生的应用及发展前景

微电子机械系统(MEMS)技术在军工和民生的应用及发展趋势

引言

微电子机械系统(Micro-Electro-Mechanical Systems,简称MEMS)是20世纪80年代末在成熟的微电子设计和加工技术的基础上发展起来的一种新兴技术,它是以微电子、微机械及材料科学为基础,研究设计制造具有特定功能的微型装置。它结合了机械可动结构和大规模、低成本、微电子加工的优点,在微小尺度上实现与外界电、热、光、声、磁等信号的相互作用。微电子机械系统通常指特征尺度大于1nm小于1μm,结合电子和机械部件并集成了IC工艺的装置。MEMS在航空、航天、军事、汽车、生物医学、环境监控等人们所接触到的几乎所有领域都有十分广阔的应用前景,它是未来国防领域及国民生活领域的关键技术和支撑技术。

MEMS的突出特点有:

1.微型化:MEMS硬件不仅体积小而且重量轻,耗能低,惯性小,谐振频率高。

2.以硅为主要材料,机械电器性能较好;硅的强度、硬度和弹性模量与铁相当,密度类似铝,热传导接近钨。

3.多样化:MEMS含有数字和总线接口,具有在网络中应用的条件,便于与PC系统集成。

4.集成化:可以把不同功能,不同敏感方向或致动方向的多个传感器或执行器集成在一起,或形成微传感器阵列,甚至把多种功能的器件集成在一起,形成复杂的微系

统。微传感器、微执行器和微电子器件的集成可制造出可靠性、稳定性很高的MEMS。

5.多学科交叉:MEMS技术集成了电子信息,机械制造,材料与自动控制,物理,化学等诸多学科,并应用了当今许多高科技成果。

MEMS技术的发展开辟了一个全新的技术领域和产业,MEMS工艺已经应用于军民生活中。本文就它在国防和民用领域的应用作一介绍,并分析它未来的发展前景。

一、MEMS技术在军事设备中的应用状况

众所周知,最尖端的科技总是先应用于国防,MEMS也一样,军事领域是它应用最早的领域之一。这很大程度上推动了MEMS技术的飞速发展。当前,MEMS

技术在军事上的应用被世界各个国家所重视。美国国防部高级研究计划局(DARPA)把MEMS技术确认为美国急需发展的新兴技术,并资助了大量MEMS项目,大力

发展小型惯性测量装置、微全分析系统、RF传感器、网格传感器、无人值守传感

器等项目,应用于单兵携带、战场实时监测、毒气以及细菌检测、武器安全、保险

和引信、弹道修正、子母弹开仓控制、超低功率无线通信信号处理、高密度低功耗

的数据存储器件、敌我识别系统等方面。MEMS在军用设备中的应用日渐广泛和深

入。

1.1MEMS技术对武器平台的优化

在海上武器应用方面,MEMS引信保险和引爆装置已成功用于潜艇鱼雷对抗武器上。引信保险和引爆装置的工作包括三个独立步骤:发射鱼雷后解除

炸药保险,引爆(引信)和防止在不正确的时间爆炸(保险)。使用镀有金属

层的硅结合巧妙的封装技术,MEMS引爆装置要比传统装置小一个数量级,

可安装在6.25英寸的鱼雷上,这是其他技术很难办到的。

在陆地应用方面,包括灵活而且坚固的爆破装置、发射装置和其他使用MEMS

惯性制导系统的武器平台。MEMS加速度计能承受火炮发射时产生接近10.5g

的冲击力,可以为制导导弹提供一种经济的制导系统,同时使导弹的可靠性

及服务时间提高5倍~10倍,哑弹的数量减少一个数量级。MEMS惯性传感器

用于灵巧弹头和钻地弹头中,其抗震能力足以使其能够做到弹头钻入地下后,

仍能对其进行制导、控制并引爆。MEMS轮胎压力传感器已经用在美国军队

装甲送兵车的轮胎中。

在空气应用方面,采用MEMS传感器和致动器可实现对流体的精确控制,例如对喷气引擎的紊流控制。长期以来,紊流对航天一直是个技术问题。发

动机中紊流降低了轴流速度,从而使推力减小,机翼上的紊流造成飞行拖滞。

有了MEMS技术以后,使得在微观尺度上对流体进行控制成为可能。其原理

就是在特征面上布置微传感器阵列,探测流体压力和温度的微小变化,然后

通过控制器让微致动器阵列准确地抵消这些微小变化。当然同样的方法也可

以完全应用在飞机或导弹蒙皮上,形成“智能蒙皮”。从而提高飞行速度和稳

定性。MEMS技术还使智能可重构外形的机翼和空间柔性结构成为可能。

1.2射频元器件的应用

射频介于100kHz至100MHz,但通常指的是100kHz到300GHz的射频、微波和毫米波的频率范围。在射频应用中,MEMS的研究目标为实现集成在

单芯片上的射频系统。现基于MEMS开关、滤波器、可变电容、电感器等射

频元件已取得实质性进展,将应用在相控阵雷达中。

射频MEMS开关的隔离度好,插入损耗低,控制电路功耗低,工作频带宽,研制集中在提高开关速度与降低开关的驱动电压以及材料、结构、封装

上。已研制出悬臂梁、桥式、记忆合金等MEMS开关,大多数采用静电驱动

原理,其优势为功耗低,与芯片兼容性好。其广泛应用于相控阵雷达和变波

束天线中,开发可变频率、多波束特性的的天线,一个天线实现多个天线的

功能。

1.3 基于MEMS技术的军用微型飞行器

微型飞行器(Micro Aerial Vehicle,MAV)的概念是由美国于20世纪90年代最先提出,由于其具有特殊的用途而备受关注。微型飞行器的姿态控制

系统中的微型地平仪、微型高度计,导航系统中的微型磁场传感器和微加速

度计、微陀螺仪等,飞行控制系统的微型空速计、微型舵机等,在微型飞行

器上应用的微型摄像机、微型通讯系统等,都需要MEMS技术支持,以减少

体积和重量,改善飞行器的性能。微型飞行器具有导航和通信能力,可用手

掷、炮射或飞机部署,具有侦查呈像、电磁干扰等作战效能,被认为是未来

战场上的重要侦查和攻击武器,具有价格低廉,便于携带\操作简单\安全

性好等优点。

1..4 基于MEMS技术的军用微纳卫星

微纳卫星通常指质量小于100kg,具有实际使用功能的卫星。它是基于微电子技术、MEMS技术、微光电技术等发展起来的,体现了航天器微小化的

发展趋势。根据卫星质量,10kg~100kg的卫星称为微型卫星(microsat),

1kg~10kg的卫星称为纳米卫星(nanasat),0.1kg~1kg的称为皮卫星(picosat),

0.1kg以下的称为飞卫星(femtosat),微纳型卫星具有功能密度与技术性能高、

投资与运营成本低、灵活性强、系统建设周期短、风险小等优点,受到航天、

军事、工业以及研究机构的广泛关注,成为各国军方都非常重视的航天技术

发展方向之一。

国防是国家稳定发展的基石,而国防更需要高科技力量的保证。我国在MEMS方面的研究起步并不晚,在“八五”、“九五”期间得到科技部中科院和国防科工委的支持,经过十

年的努力,我国在MEMS技术上有了一定基础和技术储备,并且应用于军事上已数见不鲜。

二、MEMS在民用方面的应用情况

2.1 用RF-MEMS实现可调谐天线

现如今的移动终端日新月异,对于天线的设计越来越标新立异而且更加复杂,这无疑需要灵活的MEMS技术来满足集成新特性和新应用的要求。

电视接收等新应用新特性被不断集成到无线期间中。此外,无线技术,包括局域网、宽带无线接入、数字电视、全球定位系统、超宽带和多重输入多重

输出等,都有望改善性能、扩展频段范围和增强吞吐量,但同时也对所需天线

的成本、尺寸和性能提出更高要求。

针对这些挑战的一种有吸引力的解决方案是使天线变得动态可调谐。这时射频微机电系统(RF-MEMS)应运而生。它能够为设计者提供制造可调天线

所需的主要组件,并能发展MEMS的大多数优点。

其实MEMS早在1970年就在汽车产业作为压力传感器。后来汽车产业将MEMS用作碰撞安全气囊的加速度传感器。而今天,基于MEMS的器件已经

在宽屏电视、移动电话麦克风和GPS工具中找到用武之地。

对于RF应用而言,MEMS器件非常有希望用作现有方案的小尺寸、高性能替代选择,并降低材料成本,而且还是实现更密集功能集成的一种途径。不

断成长的移动电话市场与不断演化的多频带多模态电话问题一起,已经使多功

能无线器件设计者对用MEMS来解决他们所面临的严重问题产生浓厚的兴趣。

RF-MEMS天线技术通常将离散的固定天线调谐用于移动终端中,从而使给定天线适合每个移动电话平台,但是对于所有直接耦合到天线上元件而言滤

波器来清理发送信号或防止接受信号被发送信号调制。

通常使用数字选择方式的MEMS电容器件,MEMS数字可调IC提供了一种替代变容二极管的高性能选择。这些可调节电容器的制造开始于两个金属

板,其中一个在硅芯片表面,通过改变两个金属板间距可以调节它们之间的电

容,而利用外加静电场的吸引力以使悬浮的金属板上下移动,则可以很精确地

改变电容大小,这些电容元件的阵列组成调谐矩阵,可以用来很精确控制电容

系统。实际上,对变容二极管进行精确的数字近似已经成为可能,而且还具有

近乎完美的线性度和比传统模拟解决方案更宽的解决范围。天线调谐器件的一

种应用方法是采用一个谐振或阻抗可调(RLC)电路,以使可变电容能够调节

功率放大器和天线之间的复杂阻抗。RF-MEMS的开发人员正在积极证明基于

MEMS的可调IC将变成移动电话的主要组件。可调天线器件正是它的关键应

用。RF-MEMS产品有望为移动电话设计方式带来巨大变化。利用RF-MEMS技

术能够生产出小尺寸、低成本、高性能的可调RFIC,它可以实现多种功能,包

括高功率的可调放大器、可调滤波器和智能天线等。

2.2 MEMS技术用于制作平板电视

CRT监视器的时代早已经过去,LED、LCD、PDP的时代已经到来。后者都有一个普遍特点:超薄。这就是平板显示器和平板电视的共同特点。由于笔记

本电脑的大量普及以及公共场所大型屏幕的日渐增多,平板技术发展得如火如

荼。同时,MEMS技术在平板技术中同样也有一席之地。

据悉,Hitachi Displays公司最近在日本CEATEC展会上公布了新的显示屏技术MEMS,展示了一款2.5英寸320×240分辨率的原型产品,它集合了TFT

技术和MEMS数字微快门技术,提供更高的显示效率和较小的能源消耗,功

耗约为传统液晶显示器的一半并拥有更宽的色域,不仅如此,新科技还淘汰了

一些成本较高的液晶显示器所需材料和部件,包括彩色滤光片,偏光片等。预

计新产品显示器可能在2012年年初上市。

MEMS技术应用在民用上远不止这些,由于笔者认识有限,不能一一列举。科学技术是第一生产力。MEMS技术具有很高的发展潜力,民用中的广泛推广将极大带动国民经济的发展。在社会主义市场经济的今天,MEMS技术是刺激我国经济发展的关键技术之一。

三、MEMS技术在未来的发展趋势

MEMS技术涉及技术很广,在未来发展中会和其他学科门类结合得更紧密。

3.1生物芯片是近年来在生命科学领域中迅速发展起来的一项高新技术,它主

要指通过微加工技术和微电子技术在固格体芯片表面构建的微型生物化学分析系

统,以实现对细胞、蛋白质、DNA以及其他生物组分的准确、快速、大信息量的

检测。

3.2 MEMS技术可使开发就地配置的光配件成为可能。用于光网络的MEMS动

态元件包括可调的激光器和滤波器、动态增益均衡器以及光交叉连接器。才外

MEMS技术已经在光交换应用中进入现场试验阶段,基于MEMS的光交换机已经

能够传递实际的业务数据流,全光MEMS光交换机也正在步入商用阶段。

3.3在无线通信终端领域,对微型化、高性能和低成本的追求使大家普遍期待

能将各种功能单元集成在一个单一芯片上,即实现SOC(System On a Chip),而通

信工程中大量射频技术的采用使诸如谐振器、滤波器和耦合器等片外分立元件大量

存在。MEMS技术不仅可以克服这些障碍,而且表现出比传统的通信元件具有更优

越的内在性能。

结束语

MEMS技术发展史并不悠久,但它集百家之所长于一身,不仅能完成许多传统器件能完成的工作,而且在效能上远远优于传统器件。军事工业的应用数见不鲜,民用方面也日渐增多。它是国防事业及国民经济快速发展所依赖的关键技术。在今后的十五年之内,它会引起一场元器件的更新换代。今后,此项技术会遍布我们身边的每一个角落,它会更好地为人类服务。

参考文献[1]朱健,RF MEMS国内外的发展趋势及我国的发展对策《中国机械工程》

[2]方震华黄慧锋,MEMS技术在军用设备中的应用现状《电子机械工程》

[3]郭清微电子系统综述

纳米加工技术和微电子机械系统

第十六章纳米加工技术和微电子机械系统 按照人们的意愿在纳米尺寸的世界中自由地剪裁、安排材料的技术被称为纳米加工技术。包括扫描探针技术和精密加工技术(能量束加工等)。 纳米加工技术是纳米科学的重要基础,也包含许多尚未认识清楚的纳米科学问题。 一、纳米机械学 1. 历史由来 2. 纳米加工技术 3. 微型机械的发展 二、微电子机械系统 1. 组成和特性 2. 发展趋势 一、纳米机械学 1. 历史由来 纳米技术的灵感来自于美国的理查得·费曼。 1959年12月29日,美国著名物理学家、诺贝尔物理学奖获得者理查得·费曼(Richard Phillips Feynman,1918-1988)在美国物理学会召开的年会上,作了一个题为《在底层还有很大空间》“There’s Plenty of Room at the Bottom”的著名演讲。在演讲中,费曼满怀激情的说:“当我们深入并游荡在原子的周围,我们是按不同的定律活动,我们会遇到许许多多新奇的事情,能以全新的方式生产,完成异乎寻常的工作。如果有一天可以安排一个个原子,将会产生什么样的奇迹?!” 费曼给我们描述了这样一幅激动人心的画面:通过人为地操纵单个原子,来构造人们需要的特定功能的物质,这如同用原子来搭积木! 费曼在演讲中还说:“至少依我看来,物理学的规律不排除一个原子一个原子地制造物品的可能性。”在演讲中他提到也许有一天人们会造出仅由几千个原子组成的微型机器。但在当时,这句话因为过于超前而没有引起人们的广泛注意。 直到1986年,一个专门以展望未来为职业的预言家,美国预见研究所的工程师—埃里克·得雷克斯勒(K.Eric.Drexler)运用了更为通俗和形象的描述才将27年前这个天才的思想表书清楚。他说:我们为什么不制造出成群、肉眼看不到的微型机器人,让它们在地毯上爬行,把灰尘分解成原子,再将这些原子组装成餐巾、肥皂和电视机呢?这些微型机器人不仅是一些只懂得搬原子的建筑“工人”,而且还具有绝妙的自我复制和自我维修能力,由于它们同时工作,因此速度很快而且廉价得让人难以置信。 多数主流派科学家对得雷克斯勒的想法不屑一顾,认为是一派胡言。但得雷克斯勒仍然著书立说,阐述自己的观点。有的科学家随后开始进行实验性研究。对于纳米技术,得雷克斯勒认为: “它不是小尺寸技术的延伸,它甚至根本不该被看作是技术,而是一场认知的革命。” 从石器时代开始,人类从磨尖箭头到光刻芯片的所有技术,都与一次性地削去或者融合数以亿计的原子以便把物质作成有用的形态有关。费曼质问到,为什么我们不可以从另一个角度出发,从单个的分子甚至原子开始进行组装,以达到我们的要求呢?实际上这一灵感来自于大自然从单个分子、甚至单个原子创造物质的启示。纳米技术就是向大自然学习,力图在纳米尺度精确地操纵原子或分子来制造产品的技术,统称为“由底向上”或“由小到大“的加工技术。 2. 纳米加工技术 科学技术进步使器件和装置的尺寸越来越小,进入了纳米的范围。与之相适应的加工和制造技术,已成为国际上的研究热点,发展很快。 ①定义 按照人们的意愿在纳米尺寸的世界中自由地剪裁、安排材料的技术被称为纳米加工技术。 纳米加工技术可分为刻蚀和组装两类,包括扫描探针技术和精密加工技术(能量束加工等)。纳米加工技术将为我们设计和制造出尺寸极小而功能极强的设备。 ②纳米组装技术 由于在纳米尺度刻蚀技术已达到极限,组装技术将成为纳米科技的重要手段,日益受到人们的高度重视。 组装技术就是通过机械、物理、化学或生物的方法,把原子、分子或者分子的聚集体进行组装,形成有功能的结构单元。 纳米组装技术包括分子有序组装技术、扫描探针原子/分子搬迁技术以及生物组装技术。 i) 分子有序组装技术 科技部2006年公布的“十一五”期间首批启动的国家重大科学研究计划中,纳米研究计划项目“具有重要应用背景的纳米超分子组装体的构筑与功能研究” 名列其中,项目首席科学家是南开大学化学学院院长、“长江学者奖励计划”特聘教授刘育。刘育课题组以环糊精的分子识别和组装为突破口,在超分子组装/ 纳米超分子的研究工作中已取得重大突破。

基于MEMS加速度传感器的双轴倾角计及其应用

基于MEMS加速度传感器的双轴倾角计及其应用 引言 MAV由于体积和负载能力极为有限,因此,减小和减轻飞控导航系统的体积及重量,就显得尤为重要。本文基于MEMS加速度传感器,设计一种双轴倾角计,该装置精度高、重量轻,可满足MAV的姿态角测量要求,也可用于其他需要体积小、重量轻的倾角测量设备上。 MEMS加速度传感器 ADXL202 是最新的、低重力加速度双轴表面微机械加工的加速度计,以模拟量和脉宽调制数字量2种方式输出,并具有极低的功耗和噪音。表面微机械加工使加速度传感器、信号处理电路高度集成于一个硅片上。和所有加速度计一样,传感器单元是差动电容器,其输出与加速度成比例。加速度计的性能依赖于传感器的结构设计。差动电容是由悬臂梁构成,而悬臂梁是由很多相间分布的指状电容电极副构成,一副指状电容电极可简化为图1所示的结构。每个指状电极的电容正比例于固定电极和移动电极之间的重叠面积以及移动电极的位移。显然,这些都是很小的电容器,并且,为了降低噪声和提高分辨力,实际上需要尽可能大的差动电容。 悬臂梁的运动是由支撑它的多晶硅弹簧控制。这些弹簧和悬臂梁的质量遵守牛顿第二定律:质量为m 的物体,因受力F而产生加速度a,则F =m a。而弹簧的形变与所受力的大小成比例,即F = kx,所以 x = (m / k)a , 式中x为位移, m; m 为质量, kg; a为加速度, m / s2 ; k为弹簧刚度系数, N /m。 因此,仅有支撑弹簧的刚度和悬臂梁的质量2个参数是可控的。减小弹簧系数似乎是提高悬臂梁灵敏度的一种容易方法,但悬臂梁的共振频率正比例于弹簧系数,所以, 减小弹簧系数导致悬臂梁共振频率降低,而加速度计必须工作在共振频率之下。此外,增大弹簧系数使悬臂梁更坚固。所以,如果保持尽可能高的弹簧系数, 只有悬臂梁的质量参数是可变化的。通常,增大质量意味着增大传感器的面积,从而使悬臂梁增大。在ADXL202中,设计出一个新颖的悬臂梁结构。构成X轴和Y轴可变电容的指状电极沿着一个正方形四周的悬臂梁集成,从而使整个传感器的面积减小,而且,共用的大质量的悬臂梁提高了ADXL202的分辨力。位于悬臂梁四角的弹簧悬挂系统用以使X 轴和Y轴的灵敏度耦合减小到最小。 倾角测量原理 ADXL202 用于倾角测量是最典型的应用之一,它以重力作为输入矢量来决定物体在空间的方向。当重力与其敏感轴垂直时,它对倾斜最敏感,在该方位上其对倾角的灵敏度最高。当敏感轴与重力平行时,每倾斜1 °所引起输出加速度的变化被忽略。当加速度计敏感轴与重力垂直时,每倾斜1 °所引起输出加速度的变化约为17. 5mgn ,但在45°时,每倾斜1 °所引起输出加速度的变化仅为12. 5mgn ,而且,分辨力降低。表1为X, Y轴在铅垂面内倾斜±90 °时,X, Y 轴的输出。 当该加速度计的X, Y轴都与重力方向垂直时,可作为具有滚转角和俯仰角的双轴倾角传感器。一旦加速度计的输出信号被转化为一个加速度, 该加速度将位于- 1 gn 和+ 1 gn 之间。则倾斜角以度表示可按下式计算 θ= arcsin (AX / gn ) γ= arcsin (AY / gn ),

07级微电子机械系统技术大作业

简答: 1.什么是MEMS? 2.硅片加工包括哪几个工艺步骤? 3.基本光刻技术包括哪几个工艺步骤?4.光刻掩膜的阴版、阳版结构与光刻胶的正胶、负胶分别搭配使用时,能够刻蚀出什么样的结构? 5.二氧化硅层的作用是什么,及其制备方法有哪些? 6.CVD反应步骤包括哪些? 7.完成扩散工艺需要哪些步骤? 8.湿法腐蚀技术包括哪两种,用化学方程式解释说明硅湿法腐蚀机理 9.硅自停止腐蚀技术包括哪几种,简要说明其中一种自停止腐蚀技术? 10.如何通过自停止腐蚀技术制备“微喷嘴”,简要叙述其工艺步骤。 词汇: 1.Moore’s Law 2.pressure sensors 3.accelerometers 4.flow sensors 5.inkjet printers 6.deformable mirror devices 7.gas sensors 8.micromotors 9.microgears 10.lab-on-a-chip systems 11.Sacrificial layer process 12.Deep reactive ion etching 13.Wafer bonding 14.Piezoelectric films 15.Bulk-micromachining 16.Surface micromachining 17.Integrated Circuit Processes 18.Crystal growth 19.Oxidation 20.Lithography 21.Etching 22.Diffusion and ion implantation 23.Metallization 24.Chemical vapor deposition 25.Assembly and packaging 26.Crystal plane 27.Diamond structure 28.Doping 29.Crystal oriention 30.Isotropic etching of silicon 31.Anisotropic etching of silicon 32.Dopant dependent etch stop 33.Electrochemical etch stop 34.P-N Junction Etch Stop 35.Dry Etching 36.epitaxial 37.Silicon substrate 38.high-aspect-ratio MEMS领域英文文献翻译: Czochralski(CZ)pulled method Melt ultrapure polycrystalline silicon and small amount of dopant in a quartz crucible under an inert atmosphere. Clamp and dip a small single crystal see, with normal to its bottom face carefully aligned along a predetermined direction into the molten silicon. Once the temperature equilibrium is established, the temperature of the melt in the vicinity of the seed crystal is reduced, and silicon from melt begins to freeze out onto the seed crystal. The added materal is a structurally perfect extension of the seed crystal. The seed crystal is slowly rotated and withdrawn from the melt => more and more silicon to freeze out on the bottom of growing crystal. Typical pull rate for 100mm dia ~20cm/hr. Plasmas Apply 1.5 kVDC over 15 cm, field is 100 V/cm. Breakdown of argon when electrons transfer a kinetic energy of 15.7 eV to the argon gas (electrons migrate from the cathode to the anode). These energetic collisions generate a second electron and a positive ion for each successful strike (ions migrate from the anode to the cathode). If creating an avalanche of ions and electrons, we get a

年产300万套微机电系统(MEMS)项目可行性研究报告

XXX有限公司 年产300万套微机电系统(MEMS)项目 可行性研究报告 编制单位:北京中投信德国际信息咨询有限公司编制时间:https://www.360docs.net/doc/1b7826253.html, 高级工程师:高建

目录 第一章总论 (1) 1.1项目概要 (1) 1.1.1项目名称 (1) 1.1.2项目建设单位 (1) 1.1.3项目建设性质 (1) 1.1.4项目建设地点 (1) 1.1.5项目负责人 (1) 1.1.6项目投资规模 (1) 1.1.7项目建设规模 (2) 1.1.8项目资金来源 (2) 1.1.9项目建设期限 (3) 1.2项目承建单位介绍 (3) 1.3编制依据 (3) 1.4编制原则 (4) 1.5研究范围 (4) 1.6主要经济技术指标 (4) 1.7综合评价 (5) 第二章项目背景及必要性分析 (7) 2.1项目提出背景 (7) 2.2本次建设项目的提出 (8) 2.3项目建设必要性分析 (9) 2.3.1加快江西省工业结构调整的需要 (9) 2.3.2推进战略性新兴产业节能环保事业发展的需要 (9) 2.3.3顺应我国微机电系统(MEMS)行业快速发展的需要 (10) 2.3.4满足市场需求、促进企业长足发展的需要 (11) 2.3.5增加就业带动相关产业链发展的需要 (11) 2.3.6促进项目建设地经济发展进程的的需要 (12) 2.4项目可行性分析 (12) 2.4.1政策可行性 (12) 2.4.2市场可行性 (13) 2.4.3技术可行性 (13) 2.4.4管理可行性 (13)

第三章行业市场分析 (14) 3.1我国微电子产业发展状况分析 (14) 3.2我国微机电系统(MEMS)行业发展现状分析 (15) 3.3我国微机电系统(MEMS)产品特点分析 (16) 3.4微机电系统(MEMS)市场应用前景分析 (18) 3.5市场分析结论 (20) 第四章项目建设条件 (21) 4.1地理位置选择 (21) 4.2区域投资环境 (21) 4.2.1区域概况 (21) 4.2.2区域地形地貌条件 (22) 4.2.3区域气候水文条件 (22) 4.2.4区域交通条件 (23) 4.2.5区域经济发展条件 (23) 第五章总体建设方案 (25) 5.1土建方案 (25) 5.1.1方案指导原则 (25) 5.1.2土建方案的选择 (25) 5.2工程管线布置方案 (26) 5.2.1给排水 (26) 5.2.2供电 (26) 5.3主要建设内容 (27) 5.4道路设计 (27) 5.5总图运输方案 (27) 5.6土地利用情况 (28) 5.6.1项目用地规划选址 (28) 5.6.2用地规模及用地类型 (28) 第六章产品方案 (29) 6.1产品生产方案 (29) 6.2产品特点与优势 (29) 6.3产品标准 (30) 6.4产品生产规模确定 (30) 6.7技术工艺概述 (30) 第七章原料供应及设备选型 (32) 7.1主要原材料供应 (32) 7.2主要设备选型 (32)

机械系统方案设计

机械系统方案设计 微电子机械系统技术将机电系统的实用性、智能化和多样化发展到了一个全新的高度。当今微电子机械系统技术已经对农业、环境、医疗、军事等领域产生了重大的影响,也影响着人们的生产和生活方式,相信在不久的以后微电子机械系统技术将会成为我国社会经济发展不可或缺的重要部分,为我国经济发展起到巨大的推动作用。下面请看小编带来的机械系统方案设计! 机械系统方案设计微电子机械系统主要结构有微型传感器、制动器以及处理电路。其是一种微电子电路与微机械制动器结合的尺寸微型的装置,其在电路信息的指示下可以进行机械操作,并且还能够通过装置中的传感器来获取外部的数据信息,将其进行转化处理放大,进而通过制动器来实现各种机械操作。而微电子机械系统技术是以微电子机械系统的理论、材料、工艺为研究对象的技术。微电子系统并不只是单纯的将传统的机电产品微型化,其制作材料、工艺、原理、应用等各个方面都突破了传统的技术限制,达到了一个微电子、微机械技术结合的全新高度。微电子机械系统是一种全新的高新科学技术,其在航天、军事、生物、医疗等领域都有着重要的作用。 1. 2微电子机械系统技术的特点 尺寸微型化

传统机械加工技术的最小单位一般是cm,而微电子机械系统技术下的机械加工往往最小单位已经涉及到了微米甚至纳米。这以尺寸的巨大变化使得微电子机械系统技术下的原件具有微型化的特点,其携带方便,应用领域更加广阔。 集成化 微电子机械系统技术下的原件实现了微型化为器件集成化提供了有力的基础。微型化的器件在集成上具有无可比拟的优势,其能够随意组合排列,组成更加复杂的系统。 硅基材料 微电子机械系统技术下的器件都是使用硅为基加工原料。地面表面有接近30%的硅,经济优势十分明显。硅的使用成本低廉这就使得微电子机械系统技术的下的器件成本大大缩减。硅的密度、强度等于铁相近,密度与铝相近,热传导率与钨相近。 综合学科英语 微电子机械系统技术几乎涉及到所有学科,电子、物理、化学、医学、农业等多个学科的顶尖科技成果都是微电子机械系统技术的基础。众多学科的最新成果组合成了全新的系统和器件,创造了一个全新的技术领域。 体微机械加工技术 体微机械加工技术主要将单晶硅基片加工为微机械机构的工艺,其最大的优势就是可以制作出尺寸较大的器件,

微电子机械系统(MEMS)技术在军工和民生的应用及发展前景

微电子机械系统(MEMS)技术在军工和民生的应用及发展趋势 引言 微电子机械系统(Micro-Electro-Mechanical Systems,简称MEMS)是20世纪80年代末在成熟的微电子设计和加工技术的基础上发展起来的一种新兴技术,它是以微电子、微机械及材料科学为基础,研究设计制造具有特定功能的微型装置。它结合了机械可动结构和大规模、低成本、微电子加工的优点,在微小尺度上实现与外界电、热、光、声、磁等信号的相互作用。微电子机械系统通常指特征尺度大于1nm小于1μm,结合电子和机械部件并集成了IC工艺的装置。MEMS在航空、航天、军事、汽车、生物医学、环境监控等人们所接触到的几乎所有领域都有十分广阔的应用前景,它是未来国防领域及国民生活领域的关键技术和支撑技术。 MEMS的突出特点有: 1.微型化:MEMS硬件不仅体积小而且重量轻,耗能低,惯性小,谐振频率高。 2.以硅为主要材料,机械电器性能较好;硅的强度、硬度和弹性模量与铁相当,密度类似铝,热传导接近钨。 3.多样化:MEMS含有数字和总线接口,具有在网络中应用的条件,便于与PC系统集成。 4.集成化:可以把不同功能,不同敏感方向或致动方向的多个传感器或执行器集成在一起,或形成微传感器阵列,甚至把多种功能的器件集成在一起,形成复杂的微系 统。微传感器、微执行器和微电子器件的集成可制造出可靠性、稳定性很高的MEMS。 5.多学科交叉:MEMS技术集成了电子信息,机械制造,材料与自动控制,物理,化学等诸多学科,并应用了当今许多高科技成果。 MEMS技术的发展开辟了一个全新的技术领域和产业,MEMS工艺已经应用于军民生活中。本文就它在国防和民用领域的应用作一介绍,并分析它未来的发展前景。 一、MEMS技术在军事设备中的应用状况 众所周知,最尖端的科技总是先应用于国防,MEMS也一样,军事领域是它应用最早的领域之一。这很大程度上推动了MEMS技术的飞速发展。当前,MEMS 技术在军事上的应用被世界各个国家所重视。美国国防部高级研究计划局(DARPA)把MEMS技术确认为美国急需发展的新兴技术,并资助了大量MEMS项目,大力 发展小型惯性测量装置、微全分析系统、RF传感器、网格传感器、无人值守传感 器等项目,应用于单兵携带、战场实时监测、毒气以及细菌检测、武器安全、保险 和引信、弹道修正、子母弹开仓控制、超低功率无线通信信号处理、高密度低功耗 的数据存储器件、敌我识别系统等方面。MEMS在军用设备中的应用日渐广泛和深 入。 1.1MEMS技术对武器平台的优化 在海上武器应用方面,MEMS引信保险和引爆装置已成功用于潜艇鱼雷对抗武器上。引信保险和引爆装置的工作包括三个独立步骤:发射鱼雷后解除 炸药保险,引爆(引信)和防止在不正确的时间爆炸(保险)。使用镀有金属 层的硅结合巧妙的封装技术,MEMS引爆装置要比传统装置小一个数量级, 可安装在6.25英寸的鱼雷上,这是其他技术很难办到的。 在陆地应用方面,包括灵活而且坚固的爆破装置、发射装置和其他使用MEMS 惯性制导系统的武器平台。MEMS加速度计能承受火炮发射时产生接近10.5g 的冲击力,可以为制导导弹提供一种经济的制导系统,同时使导弹的可靠性

微机电系统题目整理

1、M E M S的概念?列举三种以上M E M S产品及应用? 微机电系统(MEMS:Micro Electro-Mechanical System)指微型化的器件或器件组合,把电子功能与机械的、光学的或其他的功能相结台的综合集成系统,采用微型结构(包括集成微电子、微传感器和微执行器;这里“微”是相对于宏观而言),使之能在极小的空间内达到智能化的功效。 微机电系统主要特点在于:(1)能在极小的空间里实现多种功能;(2)可靠性好、重量小且能耗低; (3)可以实现低成本大批量生产。 主要应用领域、产品:压力传感器、惯性传感器、流体控制、数据存储、显示芯片、生物芯片、微型冷却器、硅材油墨喷嘴、通信等。 2、何谓尺度效应?在MEMS设计中,如何利用尺度效应? 当构件缩小到—定尺寸范围时将会出现尺寸效应,即尺寸的减小将引起响应频率、加速度特性以及单位体积功率等—系列性能的变化。构件特征尺寸L与动力学特性关系如表所示。 不同性质的作用力与尺寸的依赖关系不同,从而在微观研究中所占比重有所不同。例如,电磁力与尺寸是L2,L3,L4的关系,幂次较高,从而相对影响铰小;而静电力与尺寸是L0,L-2的关系,幂次较低,影响程度较大。 3、湿法刻蚀和干法刻蚀的概念及其在MEMS中的应用? 刻蚀就其形式来说可分为有掩膜刻蚀和无掩膜刻蚀,无掩膜刻蚀较少使用。有掩膜刻蚀又可分为湿法刻蚀和干法刻蚀。湿法刻蚀一般用化学方法,这种方法刻蚀效率高,成本低,但是其刻蚀精度不高,公害产重(用大量的化学试剂)。干法刻蚀种类很多,有溅射刻蚀、离于铣、反应离子刻蚀和等离子刻蚀等。干法刻蚀中包括了化学反应和物理效应,因此其刻蚀精度较高,且适用于各种材料,包括半导体、导体和绝缘材料。 刻蚀分为湿法到蚀和干法刻蚀。它是独立于光刻的重要的一类微细加工技术,但刻蚀技术经常需要曝光技术形成特定的抗蚀剂膜,而光刻之后一般也要靠刻蚀得到基体上的微细图形或结构,所以刻蚀技术经常与光刻技术配对出现。经常采用的化学异向刻蚀方法又称为湿法刻蚀,它具有独持的横向欠刻蚀特性,可以使材料刻蚀速度依赖于晶体取向的特点得以充分发挥。干法刻蚀是指利用一些高能束进行刻蚀。以往的硅微细加工多采用湿法刻蚀。 4、键合的概念,有几种形式?有何用途? 一个微型机电系统集微传感器、驱动器及处理器于一体,是一个复杂的智能微系统。其制造工艺,有硅表面微加工工艺、硅的体微加工工艺、硅微电子工艺以及非硅材料的微加工工艺。因此,如果把一个微机电系统建筑于同一硅基片上,那它首先不能克服微系统需用硅及作硅材料多样性上的矛盾;其次它无法解决微传感器、微处理器以及微驱动器集成于同一基片结构复杂性的矛盾;最后,在同一基片上无法解决硅表面及体微加工、非硅材料微加工工艺相容性上的矛盾。 如果将整个微机电系统按结构、材料及微加工工艺的不同,分别在不同基片上执行微加工工艺,然后将两片或多片基片在超精密装配设备上对准,并通过键合手段,把它们连接成一完整的微系统,这是获得低成本、高合格率及质量可靠的微系统的唯一途径。因此,键合技术成为微机电系统制作过程中的重要微加工工艺之一,它是微系统组封装技术的重要组成部分。 键合技术主要可分为硅熔融键合(SFB)和静电键合两种。 按界面的材料性质,键合工艺总体上可分为两大范畴,即硅/硅基片的直接键合和硅/硅基片的间接键合,后者又可扩展到硅/非硅材料或非硅材料之间的键合。对于硅/硅间接键合,按键合界面沉积的材料不同,其键合机制也不同,如沉积的是玻璃膜,按不同的玻璃性质,可以进行阳极键合或低温熔融键合;如果沉积的是金膜(或锡膜),则进行共晶键合;用环氧或聚酰亚胺进行直接粘合。此外,还可借助于其他手段,如超声、热压及激光等技术进行键合。

MEMS压力传感器

MEMS压力传感器 姓名:唐军杰 学号:09511027 班级: _09511__

目录 引言 (1) 一、压力传感器的发展历程 (2) 二、MEMS微压力传感器原理 (3) 1.硅压阻式压力传感器 (3) 2.硅电容式压力传感器 (4) 三、MEMS微压力传感器的种类与应用范围 (5) 四、MEMS微压力传感器的发展前景 (7) 参考文献 (8)

内容提要 在整个传感器家族中,压力传感器是应用最广泛的产品之一, 每年世界性的压力传感器的专利就有上百项。微压力传感器作为微 型传感器中的一种,在近几年得到了快速广泛的应用。本文详细介 绍了MEMS压力传感器的原理与应用。 [关键词]:MEMS压力传感器微型传感器微电子机械系统 引言 MEMS(Micro Electromechanical System,即微电子机械系统) 是指集微型传感器、执行器以及信号处理和控制电路、接口电路、 通信和电源于一体的微型机电系统。它是在融合多种微细加工技术,并应用现代信息技术的最新成果的基础上发展起来的高科技前沿学科。MEMS技术的发展开辟了一个全新的技术领域和产业,采用MEMS技术制作的微传感器在航空、航天、汽车、生物医学、环境 监控、军事以及几乎人们所接触到的所有领域中都有着十分广阔的 应用前景。 MEMS微压力传感器可以用类似集成电路的设计技术和制造工艺,进行高精度、低成本的大批量生产,从而为消费电子和工业过 程控制产品用低廉的成本大量使用MEMS传感器打开方便之门,使 压力控制变得简单、易用和智能化。传统的机械量压力传感器是基 于金属弹性体受力变形,由机械量弹性变形到电量转换输出,因此 它不可能如MEMS微压力传感器那样,像集成电路那么微小,而且 成本也远远高于MEMS微压力传感器。相对于传统的机械量传感器,MEMS微压力传感器的尺寸更小,最大的不超过一个厘米,相对于 传统“机械”制造技术,其性价比大幅度提高。

MEMS技术发展综述

MEMS技术发展综述 施奕帆04209720 (东南大学信息科学与工程学院) 摘要:对于MEMS技术进行简要的介绍,了解其诞生与发展,所涉及的学科领域,目前的研究成果以及在生活、军事、医学等方面的应用。目前MEMS在我国的发展已取得一定成果,在21世纪可以有更大的突破,其未来在材料、工艺、微器件、微系统方面也具有巨大的发展空间。 关键词:MEMS、传感器、微制造技术 一、MEMS简介 微机电系统(micro electro mechanical system,MEMS)是在微电子技术基础上发展起来的多学科交叉的前沿研究领域,其起源可以追溯到20世纪50~60年代,最初贝尔实验室发现了硅和锗的压阻效应,从而导致了硅基MEMS传感器的诞生和发展。在随后的几十年里,MEMS得到了飞速发展,1987年美国加州大学伯克利分校研制出转子直径为60~120/μm的硅微型静电电机;1987~1988年,一系列关于微机械和微动力学的学术会议召开,所以20世纪80年代后期微机电系统一词就渐渐成为一个世界性的学术用语,MEMS技术的研究开发也成为一个热点,引起了世界各国科学界、产业界和政府部门的高度重视,经过几十年的发展,它已

成为世界瞩目的重大科技领域之一。 二、MEMS涉及领域及作用 MEMS技术涉及电子工程、机械工程、材料工程、物理学、化学以及生物医学等学科。MEMS开辟了一个新的技术领域,它的研究不仅涉及元件和系统的设计、材料、制造、测试、控制、集成、能源以及与外界的联接等许多方面,还涉及微电子学、微机构学、微动力学、微流体学、微热力学、微摩擦学、微光学、材料学、物理学、化学、生物学等基础理论 三、MEMS器件的分类及功能 目前,MEMS技术几乎可以应用于所有的行业领域,而它与不同的技术结合,往往会产生一种新型的MEMS器件。根据目前的研究情况,除了进行信号处理的集成电路部件以外,MEMS内部包含的单元主要有以下几大类: (1)微传感器: 主要包括机械类、磁学类、热学类、化学类、生物学类等。其主要功能是检测应变、加速度、速度、角速度(陀螺)、压力、流量、气体成分、湿度、pH值和离子浓度等数值,可应用于汽车、航天和石油勘探等行业。

MEMS微机电系统考试总结

1、微机电制造工艺有哪些,及其主要技术特征是哪些? 目前,常用的制作微机电系统器件的技术主要有三种。 第一种是以日本为代表的利用传统机械加工手段,即利用大机器制造小机器,再利用小机器制造微机器的方法。 第二种是以美国为代表的利用化学腐蚀或集成电路工艺技术对硅材料进行加工,形成硅基微机电系统器件。 第三种是以德国为代表的LIGA(即光刻、电铸和塑铸)技术,它是利用X射线光刻技术,通过电铸成型和塑铸形成深层微结构的方法。 上述第二种方法与传统IC工艺兼容,可以实现微机械和微电子的系统集成,而且适合于批量生产,已经成为目前微机电系统的主流技术。LIGA技术可用来加工各种金属、塑料和陶瓷等材料,并可用来制做深宽比大的精细结构(加工深度可以达到几百微米),因此也是一种比较重要的微机电系统加工技术。LIGA技术自八十年代中期由德国开发出来以后得到了迅速发展,人们已利用该技术开发和制造出了微齿轮、微马达、微加速度计、微射流计等。第一种加工方法可以用于加工一些在特殊场合应用的微机械装置,如微型机器人、微型手术台等。 2、在微机电系统制造过程中,常用的材料有哪几种,每一种材料的优缺点。陶瓷、金属、硅材料。常用的是硅。硅的优点?回答出主要特征。 答:压电材料、记忆合金、巨磁材料、 半导体材料:硅及其化合物等 电致伸缩材料:压电陶瓷、氧化锌、石英等 磁致伸缩材料:镍钛合金 压电材料的优点1、充当容性负载, 在静态操作时需要非常小的功率,简化电源需求。2、充当容性负载,需要非常小的功率在静态操作,简化电源需求。3、可达到大约1/1000的张力 记忆合金的优点1、产生很大的力2、比着其他材料有很大的变形3、没有污染和噪声 缺点 1 延迟效应2、根据专门的应用必须分类 硅是用来制造集成电路的主要原材料。由于在电子工业中已经有许多实用硅制造极小的结构的经验,硅也是微机电系统非常常用的原材料。硅的物质特性也有一定的优点。单晶体的硅遵守胡克定律,几乎没有弹性滞后的现象,因此几乎不耗能,其运动特性非常可靠。此外硅不易折断,因此非常可靠,其使用周期可以达到上兆次。一般微机电系统的生产方式是在基质上堆积物质层,然后使用平板印刷和蚀刻的方法来让它形成各种需要的结构。硬度非常强,相对较轻 3、在制造微机电系统时,其中最主要的环节是框架,主要由哪几种工艺,每一种工艺的条件制作薄膜有几种工艺,每一种工艺的优缺点。 硅表面微机械加工技术包括制膜工艺和薄膜腐蚀工艺。制膜工艺包括湿法制膜和干式制膜。湿法制膜包括电镀(LIGA工艺)、浇铸法和旋转涂层法、阳极氧化工艺。其中LIGA工艺是利用光制造工艺制作高宽比结构的方法,它利用同步辐射源发出的X射线照射到一种特殊的PMMA感光胶上获得高宽比的铸型,然后通过电镀或化学镀的方法得到所要的金属结构。干式制膜主要包括CVD(Chemical Vapor Deposition)和PVD(Physical Vapor Deposition)。薄膜腐蚀工艺主要是采用湿法腐蚀,所以要选择合适的腐蚀液。 3、在制造微机电系统时,其中最主要的环节是frame,主要由哪几种工艺,每一种工艺的条件制作薄膜有几种工艺,每一种工艺的优缺点。

MEMS传感器现状及应用_王淑华

MEMS传感器现状及应用 王淑华 (中国电子科技集团公司第十三研究所,石家庄 050051) 摘要:M EM S传感器种类繁多,发展迅猛,应用广泛。首先,简单介绍了M EMS传感器的分类和典型应用。其次,对M EMS压力传感器、加速度计和陀螺仪三种最典型的M EM S传感器进行了详细阐述,包括类别、技术现状和性能指标、最新研究进展、产品,及应用情况。介绍MEM S压力传感器时,给出了国内外采用新型材料制作用于极端环境下压力传感器的研究情况。最后,从新材料、加工和组装技术方面对MEM S传感器的发展趋势进行了展望。 关键词:微电子机械系统(M EMS);传感器;加速度计;陀螺仪;压力传感器 中图分类号:TH703 文献标识码:A 文章编号:1671-4776(2011)08-0516-07 Current Status and Applications of MEMS Sensors Wang Shuhua (The13th Research I nstitute,CET C,S hi jiazhuang050051,China) A bstract:MEMS senso rs feature g reat varieties,rapid development and w ide applications.Firstly, the catego ries and ty pical applicatio ns of M EMS senso rs are introduced briefly.Then three typi-cal M EMS sensors,i.e.the pressure sensor,acceleromete r and gy ro sco pe are illustrated in de-tail,including the subdivision,current technical capability and perfo rmance index,latest research pro gress,products and their applications.Besides that,the research status of the M EM S pres-sure senso r using new m aterials for the extreme enviro nment at ho me and abro ad is presented. Finally,developm ent trends of M EMS sensors are predicted in te rm s o f new materials,pro ces-sing and assembling technolog y. Key words:microelectromechanical sy stem(M EMS);sensor;accelerome ter;gy roscope;pres-sure senso r D OI:10.3969/j.issn.1671-4776.2011.08.008 EEACC:2575 0 引 言 MEM S传感器是采用微机械加工技术制造的新型传感器,是M EMS器件的一个重要分支。1962年,第一个硅微型压力传感器的问世开创了MEM S技术的先河,M EMS技术的进步和发展促进了传感器性能的提升。作为M EMS最重要的组成部分,M EMS传感器发展最快,一直受到各发达国家的广泛重视。美、日、英、俄等世界大国将M EMS传感器技术作为战略性的研究领域之一,纷纷制定发展计划并投入巨资进行专项研究。 随着微电子技术、集成电路技术和加工工艺的发展,MEM S传感器凭借体积小、重量轻、功耗低、可靠性高、灵敏度高、易于集成以及耐恶劣工 收稿日期:2011-04-06 E-mail:1117sh uhua@https://www.360docs.net/doc/1b7826253.html,

MEMS压力传感器及其应用_颜重光_图文.

MEMS(微机电系统是指集微型 传感器、执行器以及信号处理和控制电路、接口电路、通信和电源于一体的微型机电系统。 M E M S 压力传感器可以用类似集成电路(IC设计技术和制造工艺,进行高精度、低成本的大批量生产,从而为消费电子和工业过程控制产品用低廉的成本大量使用MEMS传感器打开方便之门,使压力控制变得简单易用和智能化。传统的机械量压力传感器是基于金属弹性体受力变形,由机械量弹性变形到电量转换输出,因此它不可能如MEMS压力传感器那样 做得像IC那么微小,成本也远远高于MEMS压力传感器。相对于传统的机械量传感器,MEMS压力传感器的尺寸更小,最大的不超过1cm,使性价比相对于传统“机械”制造技术大幅度提高。 MEMS压力传感器原理 目前的MEMS压力传感器有硅压阻式压力传感器和硅电容式压力传感器,两者都是在硅片上生成的微机电传感器。 硅压阻式压力传感器是采用高精密 半导体电阻应变片组 成惠斯顿电桥作为力电变换测量电路的,具有较高的测量精度、较低的功耗,极低的成本。惠斯顿电桥的压阻式传感器,如无压力变化,其输出为零,几乎不耗电。其电原理如图1所示。硅压阻式压力传感器其应变片电桥的光刻版本如图2。 M E M S 硅压阻式压力传感器采用周边固定的圆形的应力杯硅薄膜内壁,采用M E M S 技术直接将四个高精密半导体应变片刻制在其表面应力 最大处,组成惠斯顿测量电桥,作为力电变换测量电路,将压力这个物理量直接变换成电量,其测量精度能达0.01%~0.03%FS。硅压阻式压力传感器结构如图3

所示,上下二层是玻璃体,中间是硅片,硅片中部做成一应力杯,其应力硅薄膜上部有一真空腔,使之成为一个典型的绝压压力传感器。应力硅薄膜与真空腔接触这一面经光刻生成如图2的电阻应变片电 MEMS压力传感器及其应用 MEMS Pressure Sensor Principle and Application 颜重光华润矽威科技(上海有限公司(上海201103 本文于2009年3月22日收到。颜重光:高工,上海市传感技术学会理事,从事IC应用方案的设计策划和客户应用技术支持。 摘要:简述M E M S 压力传感器的结构与工作原理,并探讨了其应用、压力传感器Die的设计及生产成本分析,覆盖了从系统应用到销售链。 关键词:M E M S 压力传感器;惠斯顿电桥;硅薄膜应力杯;硅压阻式压力传感器;硅电容式压力传感器 D O I : 10. 3969/j. i s s n. 1005-5517.2009.06.015 图1 惠斯顿电桥电原理 图2 应变片电桥的光刻版本 图3 硅压阻式压力传感器结构 图4 硅压阻式压力传感器实物责任编辑:王莹 技术长廊|智能传感器 58 https://www.360docs.net/doc/1b7826253.html,

微电子机械系统简介

微电子机械系统 陈迪 微电子机械系统(Micro Electro Mechanical System)简称MEMS,是集微型机构、微型传感器、微型执行器以及信号处理控制电路、接口、电源等于一体的机械装置。它将自然界各种物理量,如声、光、压力、加速度、温度以及生物、化学物质的浓度信息转化为电信号,并将电信号送入微处理器得到指令,指令被随即发送到微执行器上,对自然界的变化做出相应反应。MEMS的特点是体积小、重量轻、能耗低、可靠性高和可批量制造。 微电子机械系统技术 微电子机械系统技术在欧洲也称为微系统技术(Microsystem Technology,MST),是近年来飞速发展的一门高新技术,它综合集成了微电子工艺和其他微加工工艺,加工制造各种微型传感器和微型执行器,并将其综合集成。微电子机械系统技术包含了材料、设计与模拟、加工制造、封装、测试五个方面。 MEMS的材料包括导体、半导体和绝缘材料几类。根据不同的使用环境,MEMS材料要求耐高温、耐低温、耐腐蚀和耐辐射。在微传感器和微执行器的制造中,MEMS需要使用具有各种功能的材料,如压电材料、压阻材料、磁性材料和形状记忆合金等。 MEMS设计与模拟技术包括了专用集成电路(application specific integrated circuit,ASIC)设计、机械微结构设计、加工工艺流程设计、掩模板设计,以及微传感器和微执行器结构参数优化与性能模拟等。 MEMS加工技术主要分为硅微加工技术和非硅微加工技术两类。MEMS硅微加工技术应用了微电子常规工艺,包括氧化、薄膜制备、光刻、刻蚀、电镀、离子注入等。MEMS技术与微电子技术的区别是,前者可以制造悬空或可活动的微结构,以及具有高深宽比的三维立体微结构,它主要采用硅表面工艺和体硅工艺技术(包括牺牲层工艺,湿法、干法各向同性和各向异性刻蚀工艺以及键合工艺等)来实现。 非硅MEMS微加工技术包括LIGA、激光、电火花等微加工技术。LIGA技术是Lithographie、Galvanoformung和Abformung三个德语单词的缩写,该技术包含了同步辐射X射线光刻、微电铸和微复制三个工艺步骤,能制备高深宽比聚合物和金属微结构,并能采用微复制工艺进行批量生产。由于同步辐射光源和X光掩模板成本较高,所以近年来不采用同步辐射光源的准LIGA技术发展迅速,如采用SU8紫外厚光刻胶的UV-LIGA技术,采用激光微加工的Laser-LIGA技术和采用硅深刻蚀工艺的DEM技术等。由日本开发的精密机械微加工技术由于不能批量生产而最终未能产业化。

电科专业--微电子机械系统 第一章 总论

Micro-Electro-Mechanical System
微电子机械系统
杨 红 官 电子科学与技术系

Micro-Electro-Mechanical System
微电子机械系统分章目录
第一章 总论 第二章 第 章 集成电路的基本制造技术 第三章 MEMS的制造技术 第四章 CMOS力学传感器 第五章 CMOS RF MEMS 第六章 CMOS声学与热学器件 第七章 CMOS生物化学传感器 第八章 MEMS微执行器 第九章 接口电路与系统集成

Micro-Electro-Mechanical System
第 章 总论 第一章
§1.1 什么是MEMS? §1.2 MEMS器件技术 §1.3 MEMS设计技术 §1.4 MEMS加工技术 §1.5 从MEMS到NEMS

Micro-Electro-Mechanical System
第 章 总论 第一章
§1.1 什么是MEMS? §1.2 MEMS器件技术 §1.3 MEMS设计技术 §1.4 MEMS加工技术 §1.5 从MEMS到NEMS

Micro-Electro-Mechanical System
? 随着微电子技术的不断发展,微电子机械系统(Micro-Electro-Mechanical
System,MEMS)越来越受到人们的关注。 )越来越受到人们的关注
? 所谓MEMS,是指在微米量级设计和制造,集成了多种元件,并适宜于低成本
大批量生产的系统 大批量生产的系统。
? MEMS技术是随着IC微细加工技术和超精密机械加工技术的发展而发展起来的,
是将微电子和微机械加工技术融为一体的系统。
? 从广义上讲,MEMS是集各种传感器、控制器、执行器、信号处理、控制电路
和接口单元于一体,具有信息采集、处理和执行等功能,是一种智能化的微型光 机电一体化系统。

相关文档
最新文档