热力学第一定律与能量守恒定律

热力学第一定律与能量守恒定律
热力学第一定律与能量守恒定律

热力学第一定律与能量守恒定律

1.热力学第一定律不仅反映了做功和热传递这两种改变内能的过程是等效的,而且给出了内能的变化量和做功与热传递之间的定量关系.此定律是标量式,应用时功、内能、热量的单位应统一为国际单位焦耳.

2.三种特殊情况

(1)若过程是绝热的,则Q=0,W=ΔU,外界对物体做的功等于物体内能的增加;

(2)若过程中不做功,即W=0,则Q=ΔU,物体吸收的热量等于物体内能的增加;

(3)若过程的初、末状态物体的内能不变,即ΔU=0,则W+Q=0或W=-Q,外界对物体做的功等于物体放出的热量.

例1关于气体的内能,下列说法正确的是()

A.质量和温度都相同的气体,内能一定相同

B.气体温度不变,整体运动速度越大,其内能越大

C.气体被压缩时,内能可能不变

D.一定量的某种理想气体的内能只与温度有关

E.一定量的某种理想气体在等压膨胀过程中,内能一定增加

答案CDE

解析质量和温度都相同的气体,虽然分子平均动能相同,但是不同的气体,其摩尔质量不同,即分子个数不同,所以分子总动能不一定相同,A错误;宏观运动和微观运动没有关系,

所以宏观运动速度大,内能不一定大,B错误;根据pV

T=C可知,如果等温压缩,则内能不

变;等压膨胀,温度增大,内能一定增大,C、E正确;理想气体的分子势能为零,所以一定量的某种理想气体的内能只与分子平均动能有关,而分子平均动能和温度有关,D正确.练习题

1.对于一定质量的理想气体,下列说法正确的是()

A.保持气体的压强不变,改变其体积,可以实现其内能不变

B.保持气体的压强不变,改变其温度,可以实现其内能不变

C.若气体的温度逐渐升高,则其压强可以保持不变

D.气体温度每升高1 K所吸收的热量与气体经历的过程有关

E.当气体体积逐渐增大时,气体的内能一定减小

答案CD

解析 一定质量的某种理想气体的内能只与温度有关系,温度变化则其内能一定变化,B 项错;保持气体的压强不变,改变其体积,则其温度一定改变,故内能变化,A 项错误;气体

温度升高的同时,若其体积也逐渐变大,由理想气体状态方程pV T

=C 可知,则其压强可以不变,C 项正确;由热力学第一定律ΔU =Q +W 知,气体温度每升高1 K 所吸收的热量Q 与做功W 有关,即与气体经历的过程有关,D 选项正确;当气体做等温膨胀时,其内能不变,E 项错.故C 、D 正确.

2.下列说法正确的是( )

A .物体放出热量,其内能一定减小

B .物体对外做功,其内能一定减小

C .物体吸收热量,同时对外做功,其内能可能增加

D .物体放出热量,同时对外做功,其内能可能不变

答案 C

解析 由热力学第一定律ΔU =W +Q 可知,改变物体内能的方式有两种:做功和热传递.若物体放热Q <0,但做功W 未知,所以内能不一定减小,A 选项错误;物体对外做功W <0,但Q 未知,所以内能不一定减小,B 选项错误;物体吸收热量Q >0,同时对外做功W <0,W +Q 可正、可负、还可为0,所以内能可能增加,故C 选项正确;物体放出热量Q <0,同时对外做功W <0,所以ΔU <0,即内能一定减小,D 选项错误.

第一章 热力学第一、二定律试题及解答

第一章 热力学第一定律 一、选择题 1.下述说法中,哪一种正确( ) (A)热容C 不是状态函数; (B)热容C 与途径无关; (C)恒压热容C p 不是状态函数;(D)恒容热容C V 不是状态函数。 2.对于内能是体系状态的单值函数概念,错误理解是( ) (A) 体系处于一定的状态,具有一定的内能; (B) 对应于某一状态,内能只能有一数值不能有两个以上的数值; (C) 状态发生变化,内能也一定跟着变化; (D) 对应于一个内能值,可以有多个状态。 3.某高压容器中盛有可能的气体是O 2 ,Ar, CO 2, NH 3中的一种,在298K 时由5dm3绝热可逆膨胀到6dm3,温度降低21K ,则容器中的气体( ) (A) O 2 (B) Ar (C) CO 2 (D) NH 3 4.戊烷的标准摩尔燃烧焓为-3520kJ·mol -1,CO 2(g)和H 2O(l)标准摩尔生成焓分别为-395 kJ·mol -1和-286 kJ·mol -1,则戊烷的标准摩尔生成焓为( ) (A) 2839 kJ·mol -1 (B) -2839 kJ·mol -1 (C) 171 kJ·mol -1 (D) -171 kJ·mol -1 5.已知反应)()(2 1)(222g O H g O g H =+的标准摩尔反应焓为)(T H m r θ ?,下列说法中不正确的是( )。 (A). )(T H m r θ?是H 2O(g)的标准摩尔生成焓 (B). )(T H m r θ ?是H 2O(g)的标准摩尔燃烧焓 (C). )(T H m r θ?是负值 (D). )(T H m r θ?与反应的θ m r U ?数值相等 6.在指定的条件下与物质数量无关的一组物理量是( ) (A) T , P, n (B) U m , C p, C V (C) ΔH, ΔU, Δξ (D) V m , ΔH f,m (B), ΔH c,m (B) 7.实际气体的节流膨胀过程中,下列那一组的描述是正确的( ) (A) Q=0 ΔH=0 ΔP< 0 ΔT≠0 (B) Q=0 ΔH<0 ΔP> 0 ΔT>0 (C) Q>0 ΔH=0 ΔP< 0 ΔT<0 (D) Q<0 ΔH=0 ΔP< 0 ΔT≠0 8.已知反应 H 2(g) + 1/2O 2(g) →H 2O(l)的热效应为ΔH ,下面说法中不正确的是( ) (A) ΔH 是H 2O(l)的生成热 (B) ΔH 是H 2(g)的燃烧热 (C) ΔH 与反应 的ΔU 的数量不等 (D) ΔH 与ΔH θ数值相等 9.为判断某气体能否液化,需考察在该条件下的( ) (A) μJ-T > 0 (B) μJ-T < 0 (C) μJ-T = 0 (D) 不必考虑μJ-T 的数值 10.某气体的状态方程为PV=RT+bP(b>0),1mol 该气体经等温等压压缩后其内能变化为( )

高中物理全套讲义选修3-3 第4讲 热力学第一定律(简单版) 教师版习题

随堂练习 一.选择题(共10小题) 1.(2016秋?浦东新区校级期中)下述改变物体内能的方法中,属于做功的是()A.冷的物体接触热的物体后变热 B.物体在火炉旁被烤热 C.电流通过灯丝使灯丝发热 D.热的物体放在通风地方凉下来 2.(2016秋?浦东新区校级期中)下列例子中通过热传递改变物体内能的是()A.用锤子锤击金属块后,锤子和金属块都变热 B.灼热的火炉使周围物体的温度升高 C.手感到冷时,搓搓手就会觉得暖和些 D.摩擦冰块使其熔解 3.(2016秋?浦东新区期中)两个相互接触的物体没有发生热传递,这是因为它们具有相同的()A.质量B.温度C.内能D.体积 4.(2015?船营区校级学业考试)在下述现象中没有做功而使物体内能改变的是()A.电流通过点炉丝使温度生高 B.流星进入大气层运动温度升高 C.铁锤打铁块使铁块温度升高 D.在炉火上的水被烧开 5.(2014春?新疆校级月考)一定质量的0℃的冰,全部变成0℃的水的过程中()A.分子的平均动能增大,吸收热量,内能不变 B.分子的平均动能减小,放出热量,内能增大 C.分子的平均动能不变,吸收热量,内能增大 D.分子的平均动能不变,放出热量,内能减小 6.(2014秋?南京校级月考)将一杯热水倒入盛有冷水的容器中,冷水的温度升高了10℃,再向容器内倒入一杯相同质量和温度的热水,容器中的水温又升高了6℃.如果继续向容器中倒入一杯同样的热水,则容器中的水温会升高() A.5℃B.4℃C.3℃D.2℃ 7.(2014?奉贤区二模)关于热现象的描述正确的是() A.满足能量守恒定律的宏观过程都可以自发进行 B.做功和热传递都通过能量转化的方式改变系统内能 C.一个系统与另一个系统达到热平衡时两系统温度相同 D.物体内单个分子的运动是无规则的,大量分子的运动也是无规律的

第3节热力学第一定律

第3节热力学第一定律 目标导航 1?知道热力学第一定律的内容及其表达式 2?理解能量守恒定律的内容 3?了解第一类永动机不可能制成的原因 诱思导学 1.热力学第一定律 (1).一个热力学系统的内能增量等于外界向它传递的热量与外界对它所做的功的和。这个关系叫做热力学第一定律。 其数学表达式为:A U=W+Q (2).与热力学第一定律相匹配的符号法则 (3)热力学第一定律说明了做功和热传递是系统内能改变的量度,没有做功和热传递就不可能实现能量的转化或转移,同时 也进一步揭示了能量守恒定律。 (4)应用热力学第一定律解题的一般步骤: ①根据符号法则写出各已知量( W、Q、A U)的正、负; ②根据方程A U=W+Q求出未知量; ③再根据未知量结果的正、负来确定吸热、放热情况或做功情况。 2.能量守恒定律 ⑴自然界存在着多种不同形式的运动,每种运动对应着一种形式的能量。如机械运动对应机械能 ;分子热运动对应内 能;电磁运动对应电磁能。 ⑵.不同形式的能量之间可以相互转化。摩擦可以将机械能转化为内能;炽热电灯发光可以将电能转化为光能。 ⑶.能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到别的物体,在转化或转移的过程中其总量不变。这就是能量守恒定律。 (4).热力学第一定律、机械能守恒定律都是能量守恒定律的具体体现。 (5).能量守恒定律适用于任何物理现象和物理过程。 (6).能量守恒定律的重要意义 第一,能量守恒定律是支配整个自然界运动、发展、变化的普遍规律,学习这个定律,不能满足一般理解其内容,更 重要的是,从能量形式的多样化及其相互联系,互相转化的事实岀发去认识物质世界的多样性及其普遍联系,并切实树立能 量既不会凭空产生,也不会凭空消失的观点,作为以后学习和生产实践中处理一切实际问题的基本指导思想之一。第二,宣 告了第一类永动机的失败。 3.第一类永动机不可能制成 任何机器运动时只能将能量从一种形式转化为另一种形式,而不可能无中生有地创造能量,即第一类永动机是不可能 制造出来的。 典例探究 例1一定量的气体在某一过程中,外界对气体做了8X104尚功,气体的内能减少了1.2杓勺,则下列

第一章热力学第一定律练习题

第一章 热力学第一定律练习题 一、判断题(说法对否): 1.道尔顿分压定律,对理想气体和实际混合气体来说关系式PB=Nb(RT/V)都成立。 2.在两个封闭的容器中,装有同一种理想气体,压力、体积相同,那么温度也相同。 3.物质的温度越高,则热量越多;天气预报:今天很热。其热的概念与热力学相同。 4.恒压过程也就是恒外压过程,恒外压过程也就是恒过程。 5.实际气体在恒温膨胀时所做的功等于所吸收的热。 6.凡是温度升高的过程体系一定吸热;而恒温过程体系不吸热也不放热。 7.当系统的状态一定时,所有的状态函数都有一定的数值。当系统的状态发生变化时, 所有的状态函数的数值也随之发生变化。 8.体积是广度性质的状态函数;在有过剩NaCl(s) 存在的饱和水溶液中,当温度、压力 一定时;系统的体积与系统中水和NaCl 的总量成正比。 9.在101.325kPa 、100℃下有lmol 的水和水蒸气共存的系统,该系统的状态完全确定。 10.一定量的理想气体,当热力学能与温度确定之后,则所有的状态函数也完全确定。 11.系统温度升高则一定从环境吸热,系统温度不变就不与环境换热。 12.从同一始态经不同的过程到达同一终态,则Q 和W 的值一般不同,Q + W 的值一般也 不相同。 13.因Q P = ΔH ,Q V = ΔU ,所以Q P 与Q V 都是状态函数。 14.封闭系统在压力恒定的过程中吸收的热等于该系统的焓。 15.对于一定量的理想气体,当温度一定时热力学能与焓的值一定,其差值也一定。 16.在101.325kPa 下,1mol l00℃的水恒温蒸发为100℃的水蒸气。若水蒸气可视为理想 气体,那么由于过程等温,所以该过程ΔU = 0。 17.1mol ,80.1℃、101.325kPa 的液态苯向真空蒸发为80.1℃、101.325kPa 的气态苯。已 知该过程的焓变为30.87kJ ,所以此过程的Q = 30.87kJ 。 18.1mol 水在l01.325kPa 下由25℃升温至120℃,其ΔH = ∑C P ,m d T 。 19.因焓是温度、压力的函数,即H = f (T ,p ),所以在恒温、恒压下发生相变时,由于 d T = 0,d p = 0,故可得ΔH = 0。 20.因Q p = ΔH ,Q V = ΔU ,所以Q p - Q V = ΔH - ΔU = Δ(p V) = -W 。 21.卡诺循环是可逆循环,当系统经一个卡诺循环后,不仅系统复原了,环境也会复原。 22.一个系统经历了一个无限小的过程,则此过程是可逆过程。 23.若一个过程中每一步都无限接近平衡态,则此过程一定是可逆过程。 24.若一个过程是可逆过程,则该过程中的每一步都是可逆的。 25.1mol 理想气体经绝热不可逆过程由p 1、V 1变到p 2、V 2, 则系统所做的功为 V p C C V p V p W =--=γγ,11122。 26.气体经绝热自由膨胀后,因Q = 0,W = 0,所以ΔU = 0,气体温度不变。 27.(?U /?V )T = 0 的气体一定是理想气体。 28.因理想气体的热力学能与体积压力无关,所以(?U /?p )V = 0,(?U /?V )p = 0。 29.若规定温度T 时,处于标准态的稳定态单质的标准摩尔生成焓为零,那么该温度下

工程热力学 教案 第四讲

{复习提问} 1、什么是热力学第一定律? 2、什么事准平衡过程和可逆过程?举例描述。 3、系统储存能包括及部分,各是什么,表示符号和表达式是什么? {导入新课} 第三节系统与外界传递的能量 上一节课我们学习了系统的总储存能,这一节我们来学你系统与外界传递的能量。 在热力过程中,热力系与外界交换的能量包括三部分,分别是功量、热量和工质通过边界时所携带的能量。下面我们分别来学习这三种能量: 一、热量 1、定义:系统和外界之间仅仅由于温度不同(温差)而通过边界传递的能量称 为热量。符号:Q , 单位为J或kJ 2、单位质量工质与外界交换的热量用q表示,单位为J/kg或kJ/kg 。 微元过程中热力系与外界交换的微小热量用δQ或δq表示。 3、热量为在热传递中物体能量改变的量度,是过程量。其数值大小与过程有关, 所以不是状态参数。 4、热量正负规定: 系统吸热,热量取正值,Q(q)>0 ;系统放热,热量取 负值,Q(q)<0 。 5、热量的记算式(推导): 引入新概念【熵】 熵:指热能除以温度所得的商,标志热量转化为功的程度。有温差便有热量的传递,可用熵的变化量作为热力系与外界间有无热量传递以及热量传递方向的标志。 1、符号: S , 单位为J/K 或kJ/K 。 2、单位质量工质所具有的熵称为比熵, 用s 表示, 单位为J/(kg?K) 或kJ/(kg?K)。 用熵计算热量

在微元可逆过程中,系统与外界传递的热量可表示为: δq =Tds δQ =TdS 在可逆过程1-2中,系统吸收的热量可写为: q =?21Tds Q=?2 1TdS 根据熵的变化判断一个可逆过程中系统与外界之 间热量交换的方向:ds >0,δq >0,系统吸热; ds <0,δq <0,系统放热; ds =0,δq =0,系统与外界没有热量交换,是绝热(定熵)过程。 3. 温熵图 (T -s 图) 在可逆过程中单位质量工质与外界交换的热量 q =?21 Tds , 大小等于T -s 图(温熵图)上过程曲线下的面积,因此温熵图也称示热图。对于分析热力过程和热力循环很有用处。 二、功量 我们知道热量是由于温差的作用使系统与外界发生能量交换,顾名思义,功量是在力差作用下,系统与外界发生的能量交换。 1、功量亦为过程量,不是状态参数。 2、有各种形式的功,如电功、磁功、膨胀功、轴功等。工程热力学主要研究 两种功量形式: ⑴体积变化功,⑵轴功。 ⑴体积变化功——由于热力系体积发生变化(增大或缩小)而通过边 界向外界传递的机械功称为体积变化功(膨胀功或压缩功)。 ①符号: W , 单位为J 或kJ 。 ②1kg 工质传递的体积变化功用符号w 表示,单位为J/kg 或kJ/kg 。 ③正负规定: d v > 0 , w > 0 , 热力系对外作膨胀功; d v < 0 , w < 0 , 热力系对外作压缩功。 ④体积变化功的计算式(推导) 课本图2-4 假设质量为1kg 的气体工质在汽缸中进行一个可逆膨胀过程,缸内气体压力p ,活塞截面积A ,活塞在某一瞬间移动微小位移dx 。则整个热力过程工质对活塞所作功量为 : 1→2为可逆过程 (pdv pAdx w ==δ)

对热力学第三定律的理解及应用

对热力学第三定律的理解及应用 在学习了物理书中的“热学”篇后,对于书中提到的热力学四大定律很感兴趣。其中热力学第一定律与热力学第二定律在书中都有了较为详尽的介绍,并且我们也认真地做了相关的习题,可以说对于这两个定律较为熟悉,而对于热力学第零定律与第三定律却了解不多。因此,在课下,我查阅了相关资料。对于这两个定律有了一定了解。 热力学第零定律表述为:“如果两个热力学系统中的每一个都与第三个热力学系统处于热平衡(温度相同),则它们彼此也必定处于热平衡。” 热力学第三定律表述为:“热力学系统的熵在温度趋近于绝对零度时趋于定值,特别地,对于完整晶体,这个定值为零。”可以用这一公式表达,0)(lim 0=?=s t 而另一种表述为:“不可能通过有限的步骤,将一个物体冷却到绝对温度的零度。” 对于第三定律中提到的,“不能通过有限步骤,达到绝对零度”我感到了困惑与好奇。 对于这一定律有这么一种解释:理论上,若粒子动能低到量子力学的最低点时,物质即达到绝对零度,不能再低。然而,绝对零度永远无法达到,只可无限逼近。因为任何空间必然存有能量和热量,也不断进行相互转换而不消失。所以绝对零度是不存在的,除非该空间自始即无任何能量热量。 另一种解释是:当原子达到绝对零度后,就会处于静止状态,而这违反了海森堡不确定原理指出的“不可能同时以较高的精确度得知一个粒子的位置和动量”。

尽管,绝对零度在实际生活中似乎无法达到,但科学家还是不遗余力的尝试着接近绝对零度。据报道,由德国、美国、奥地利等国科学家组成的一个国际科研小组在实验室内创造了仅仅比绝对零度高0.5纳开尔文的温度纪录,而此前的纪录是比绝对零度高3纳开。这是人类历史上首次达到绝对零度以上1纳开以内的极端低温。 而通过研究物体在接近绝对零度度过程中材料属性的变化,可以为工程应用提供材料,而在微观领域也可研究低温环境对于原子产生的影响,比如原子在接近绝对零度时是如何运动的,物体呈现一种什么样的状态,这对于原子物理的发展有巨大促进作用。 热力学第三定律在生活中也得到了应用。比如在研究过程中,发现了一些物体存在着超导现象,这一发现对于降低能耗,减少能源浪费都有着不可估量的意义。将一个金属样品放置在通有高频电流的线圈上时,高频电磁场会在金属材料表面产生一高频涡流,这一高频涡流与外磁场相互作用,使金属样品受到一个洛沦兹力的作用。在合适的空间配制下,可使洛沦兹力的方向与重力方向相反,通过改变高频源的功率使电磁力与重力相等,即可实现电磁悬浮。即磁悬浮。对于磁悬浮技术的应用,主要是磁悬浮列车,其优点在于耗能不仅低于普通火车,更大大低于汽车和飞机。在驱动功率相同时,其耗能仅为汽车的1/3,飞机的1/4,而降低能耗是环境保护的最主要问题。 通过科学家对于绝度零度都不断的追求,我们可以看出科学永无止境,作为科学工作者要有一种锲而不舍的精神。

第一章 热力学第一定律

第一章热力学第一定律 一、单选题 1) 如图,在绝热盛水容器中,浸入电阻丝,通电一段时间,通电后水及电阻丝的温度均略有升高,今以电阻丝为体系有:( ) A.W =0,Q <0,?U <0 B.W <0,Q<0,?U >0 C.W<0,Q<0,?U >0 D.W<0,Q=0,?U>0 2) 如图,用隔板将刚性绝热壁容器分成两半,两边充入压力不等的空气(视为理想气体),已 知p 右> p 左, 将隔板抽去后: ( ) A.Q=0, W=0, ?U=0 B.Q=0, W <0, ?U >0 C.Q >0, W <0, ?U >0 D.?U=0, Q=W≠0 3)对于理想气体,下列关系中哪个是不正确的:( ) A. (?U/?T)V=0 B. (?U/?V)T=0 C. (?H/?p)T=0 D. (?U/?p)T=0 4)凡是在孤立孤体系中进行的变化,其?U和?H的值一定是:( ) A.?U >0, ?H >0 B.?U=0, ?H=0 C.?U <0, ?H <0 D.?U=0,?H大于、小于或等于零不能确定。 5)在实际气体的节流膨胀过程中,哪一组描述是正确的: ( ) A.Q >0, ?H=0, ?p < 0 B.Q=0, ?H <0, ?p >0 C.Q=0, ?H=0, ?p <0 D.Q <0, ?H=0, ?p <0 6)如图,叙述不正确的是:( ) A.曲线上任一点均表示对应浓度时积分溶解热大小 B.?H1表示无限稀释积分溶解热 C.?H2表示两浓度n1和n2之间的积分稀释热 D.曲线上任一点的斜率均表示对应浓度时HCl的微分溶解热 7)?H=Q p此式适用于哪一个过程: ( ) A.理想气体从101325Pa反抗恒定的10132.5Pa膨胀到10132.5sPa B.在0℃、101325Pa下,冰融化成水 C.电解CuSO4的水溶液 D.气体从(298K,101325Pa)可逆变化到(373K,10132.5Pa ) 8) 一定量的理想气体,从同一初态分别经历等温可逆膨胀、绝热可逆膨胀到具有相同压力的终态,终态体积分别为V1、V2。( ) A.V1 < V2 B.V1 = V2 C.V1> V2 D.无法确定 9) 某化学反应在恒压、绝热和只作体积功的条件下进行,体系温度由T1升高到T2,则此过程的焓变?H:( )

热力学第一定律解读

2.3热容 2.3.1热容 在以下三种情况下体系与环境之间能量可能以热的形式进行传递: 1.体系中物质的化学性质和聚集状态不变而温度变化的过程或称单纯物理 变温过程。 2.相变过程; 3.化学反应过程。 本节着重讨论第一类情况。 任何一个物体(或系统),升高单位温度所吸收的热量称为该物体的热容。它属于热响应函数,自然是状态函数。 加热可以使体系温度升高,所需热量与温升程度成正比: Q∝ ΔT 或(2-16) 故(2-17) 称为“平均热容”,相当于在一定温度范围内体系温度升高1o 所需热量的平均值。当所取物质数量为一摩尔,则称为“摩尔平均热容”: (2-18) 或(2-19) 热容随温度变化,只有当所取温度间隔ΔT愈小时,所求得的值才愈接近于指定温度下热容的数值。定义“真实热容” C为: (2-20)

而摩尔热容 (2-21) 或 (2-22) 物质的摩尔热容C m与比热C s ()之间有如下关系 (2-23) 式中M为物质的摩尔质量。 以下谈及“热容”如无特别指明,均系指“摩尔热容”而言,“摩尔”二字从略。 2.3.2 等容热容与等压热容 热与途径有关,故热容也与只有在完成过程的途径指定之后,它们才有确定的数值。在物理化学中最常用到的热容有两种形式:“等容热容”C v(或C v.m)和“等压热容”C p(或C p.m)。它们也都称为热响应函数。 对于无非膨胀功发生的封闭体系,第一定律可以表示为: dU =δQ -pdV (2-24) 或δQ =dU +pdV (2-25) 等容条件下,dV =0 δQ v =dU (2-26) 而 (2-27) 故等容热容 (2-28) 若定义一新热力学函数H,称为“焓” H≡U +pV (2-29) 由于U、p、V均为状态函数,而U和pV均具有能量的量纲,故H必然为一具有能量量纲的状态函数。定义H之后,可以看到很有意义的结果: ∵δQ =dU +pdV (2-25) 在等压条件下:

第四讲化学反应进行的方向

第四讲化学反应进行的方向 子?新课标?高三化学〔人教版〕第一轮复习选修〔4〕单元讲座 第二章化学反应速率和化学平稳 第四讲化学反应进行的方向 复习目标:能用焓变和熵变讲明化学反应的方向。 复习重点、难点:熵判据 科学家依照体系的存在着使体系总能量趋向于,也确实是⊿H 0的趋势,也存在使体系由有序向无序转化〔⊿S 0〕的自然现象,提出了焓判据和熵判据。 一、焓变与自发反应的关系 焓变〔ΔH〕作为判定反应自发性的依据:假设ΔH<0,___能自发进行;假设ΔH >0,___不能自发进行,而___能自发进行。 能自发进行,但当温度升高时却能自发进行。 二、熵变与自发反应的关系 熵指的是,用表示。作为固液气三态的熵值比较大小顺序为。 摸索:为何物质的溶解是自发过程?〔请用熵变来讲明〕〔通过分子扩散自发形成平均混合物。物质溶于水自发地向水中扩散,形成平均的溶液,体系有由有序自发地变为无序的倾向〕。 行。 三、自发反应的判定依据 焓变〔焓判据〕只能判定,熵变〔熵判据〕只能判定。

结论:二者的复合判据才是自以反应的判定标准。二者对反应方向的阻碍存在着关系:⊿H正反应自发进行;⊿H—T⊿S>0 逆反应自发过行。 疑难点拨 焓的概念是依照热力学第一定律引入的,规定在等温等压且不做非体积功的条件下,反应的热效应就等于反应的焓变,关于一定压且不做非体积功条件下的化学反应的热效应也等于产物的是焓值〔末态〕减去反应物的总焓值〔始态〕。在研究各种体系的变化过程时,人们发觉自然界的自发过程一样都朝着能量降低的方向进行。明显,能量越低,体系的状态就越稳固。化学反应一样亦符合上述能量最低原理。的确,专门多放热反应,在298K、标准态下是自发的。例如: 3Fe(s) + 2O2(g)=Fe3O4(s);△H (298 K)= -1118.4 kJ·mol-1 C(s) + O2(g)=CO2(g);△H(298 K) =-393.509 kJ·mol-1 CH4(g) + 2O2(g)=CO2(g) + 2H2O(l);△H(298 K) = -890.36 kJ·mol-1 此有人曾试图以298K、标准态下反应的焓变作为反应自发性的判据。认为在等温等压条件下,当 △H < 0时:化学反应自发进行 △H > 0时:化学反应不能自发进行 然而,实践讲明:有些吸热过程(△H >0)亦能自发进行。例如,水的蒸发,NH4Cl溶于水以及Ag2O的分解等差不多上吸热过程,但在298K、标准态下均能自发进行:NH4Cl(s) = NH4+(aq) + Cl-(aq);△H (298 K)= 14.7 kJ·mol-1 Ag2O(s) = 2Ag(s) + 1/2O2(g);△H (298 K)= 31.05 kJ·mol-1 CaCO3(s) = CaO(s) + CO2(g);△H (298 K)= 178.32 kJ·mol-1 关于CaCO3的分解反应在298K、标准态下反应是非自发的。但当温度升高到约1123K 时,CaCO3的分解反应就变成自发过程,而现在反应的焓变仍近似等于178.32kJ·mol-1,(温度对焓变阻碍甚小)。由此可见,把焓变作为反应自发性的普遍判据是不准确、不全面的。因为除了反应焓变以外,体系纷乱度的增加和温度的改变,也是许多化学和物理过程自发进行的阻碍因素。 二、如何利用〝△H-T△S〞判定化学反应的自发性 通过教材学习,我们明白反应的自发性不仅与焓变和熵变有关,而且还与温度条件有关。化学反应的方向是焓变和熵变共同阻碍的结果,判定依据为△H-T△S,即依据△H-T△S的值的大小判定。△H-T△S又称自由能,符号△G,△G=△H-T△S,在等温等压下,自由能变化(△G)的正负决定着化学反应进行的方向和程度。而△G又与△H、△S及T紧密相关。关系如下: 现在我们利用△H-T△S对中学化学中的两个咨询题探讨。 关于C还原CuO所发生的反应有以下两种可能情形: 1、假如反应为:2CuO+C=2Cu+CO2↑,直截了当依照各物质的△G运算,那么: 那么△G°1=(-394.4+2×0)-[2×(-127.2)+0]=- △H-T△S= -140.0(kJ)<0 2、假如反应为:CuO+C=Cu+CO↑,依照各物质的△G运算,那么: △G°2=(-137.3+0)-(127.2+0)= △H-T△S =-10.1(kJ)<0

第一章热力学第一定律答案

第一章 热力学练习题参考答案 一、判断题解答: 1.错。对实际气体不适应。 2.错。数量不同,温度可能不同。 3.错。没有与环境交换能量,无热可言;天气预报的“热”不是热力学概念,它是指温度,天气很热,指气温很高。 4.错。恒压(等压)过程是体系压力不变并与外压相等,恒外压过程是指外压不变化,体系压力并不一定与外压相等。 5.错。一般吸收的热大于功的绝对值,多出部分增加分子势能(内能)。 6.错。例如理想气体绝热压缩,升温但不吸热;理想气体恒温膨胀,温度不变但吸热。 7.第一句话对,第二句话错,如理想气体的等温过程ΔU = 0,ΔH = 0,U 、H 不变。 8.错,两个独立变数可确定系统的状态只对组成一定的均相组成不变系统才成立。 9.错,理想气体U = f (T ),U 与T 不是独立的。描述一定量理想气体要两个独立变量。 10.第一个结论正确,第二个结论错,因Q+W =ΔU ,与途径无关。 11.错,Q V 、Q p 是过程变化的量、不是由状态决定的量,该式仅是数值相关而已。在一定条件下,可以利用ΔU ,ΔH 来计算Q V 、Q p ,但不能改变其本性。 12.错,(1)未说明该过程的非体积功W '是否为零; (2)若W ' = 0,该过程的热也只等于系统的焓变,而不是体系的焓。 13.对。因为理想气体热力学能、焓是温度的单值函数。 14.错,这是水的相变过程,不是理想气体的单纯状态变化,ΔU > 0。 15.错,该过程的p 环 = 0,不是恒压过程,也不是可逆相变,吸的热,增加体系的热力学能。吸的热少于30.87 kJ 。 16.错,在25℃到120℃中间,水发生相变,不能直接计算。 17.错,H = f (T ,p )只对组成不变的均相封闭系统成立,该题有相变。 18.错,Δ(pV )是状态函数的增量,与途径无关,不一定等于功。 19.错,环境并没有复原,卡诺循环不是原途径逆向返回的。 20.错,无限小过程不是可逆过程的充分条件。如有摩擦的谆静态过程。 21.错,若有摩擦力(广义)存在,有能量消耗则不可逆过程,只是准静态过程。 22.对。只有每一步都是可逆的才组成可逆过程。 23.对。() ()()12m ,121122n n 1T T C C C C T T R V p V p W V V V p -=--=--= γ。该公式对理想气体可逆、 不可逆过程都适用。 24.错,若是非理想气体的温度会变化的,如范德华气体。 25.错,该条件对服从pV m = RT + bp 的气体(钢球模型气体)也成立。 26.错,(?U /?V )p ≠(?U/?V )T ;(?U /?P )V ≠(?U/?V )T ,因此不等于零。 27.错,U = H -pV 。PV 不可能为零的。 28.错。CO 2在1000K 的标准摩尔生成焓可以由298K 标准摩尔生成焓计算出:由基尔霍夫定律得出的计算公式:

第3章 热力学第一定律

第3章 热力学第一定律 3.1 基本要求 深刻理解热量、储存能、功的概念,深刻理解内能、焓的物理意义 理解膨胀(压缩)功、轴功、技术功、流动功的联系与区别 熟练应用热力学第一定律解决具体问题 3.2 本章重点 1.必须学会并掌握应用热力学第一定律进行解题的方法,步骤如下: 1)根据需要求解的问题,选取热力系统。 2)列出相应系统的能量方程 3)利用已知条件简化方程并求解 4)判断结果的正确性 2.深入理解热力学第一定律的实质,并掌握其各种表达式(能量方程)的使用对象和应用条件。 3.切实理解热力学中功的定义,掌握各种功量的含义和计算,以及它们之间的区别和联系,切实理解热力系能量的概念,掌握各种系统中系统能量增量的具体含义。 4.在本章学习中,要更多注意在稳态稳定流动情况下,适用于理想气体和可逆过程的各种公式的理解与应用。 3.3 例 题 例1.门窗紧闭的房间内有一台电冰箱正在运行,若敞开冰箱的大门就有一股凉气扑面,感到凉爽。于是有人就想通过敞开冰箱大门达到降低室内温度的目的,你认为这种想法可行吗? 解:按题意,以门窗禁闭的房间为分析对象,可看成绝热的闭口系统,与外界无热量交换,Q =0,如图3.1所示,当安置在系统内部的电冰箱运转时,将有电功输入系统,根据热力学规定:W <0,由热力学第一定律W U Q +?=可知, 0>?U ,即系统的内能增加,也就是房间内空气的内能增加。由于空气可视为理 想气体,其内能是温度的单值函数。内能增加温度也增加,可见此种想法不但不能达到降温目的,反而使室内温度有所升高。 若以电冰箱为系统进行分析,其工作原理如图3.1所示。耗功W 后连同从冰室内取出的冷量0Q 一同通过散热片排放到室内,使室内温度升高。

02章 热力学第一定律及其应用

第二章热力学第一定律及其应用 1. 如果一个体重为70kg的人能将40g巧克力的燃烧热(628 kJ) 完全转变为垂直位移所要作的功 ,那么这点热量可支持他爬多少高度? 2. 在291K和下,1 mol Zn(s)溶于足量稀盐酸中,置换出1 mol H2并放热152 kJ。若以Zn和盐酸为体系,求该反应所作的功及体系内能的变化。 3.理想气体等温可逆膨胀,体积从V1胀大到10V1,对外作了41.85 kJ的功,体系的起始压力为202.65 kPa。 (1)求V1。 (2)若气体的量为2 mol ,试求体系的温度。 4.在101.325 kPa及423K时,将1 mol NH3等温压缩到体积等于10 dm3, 求最少需作多少功? (1)假定是理想气体。 (2)假定服从于范德华方程式。 已知范氏常数a=0.417 Pa·m6·mol-2, b=3.71× m3/mol. 5.已知在373K和101.325 kPa时,1 kg H2O(l)的体积为1.043 dm3,1 kg水气的体积为1677 dm3,水的 =40.63 kJ/mol 。当1 mol H2O(l),在373 K 和外压为时完全蒸发成水蒸气时,求 (1)蒸发过程中体系对环境所作的功。 (2)假定液态水的体积忽略而不计,试求蒸发过程中的功,并计算所得结果的百分误差。 (3)假定把蒸汽看作理想气体,且略去液态水的体积,求体系所作的功。(4)求(1)中变化的和。 (5)解释何故蒸发热大于体系所作的功? 6.在273.16K 和101.325 kPa时,1 mol的冰熔化为水,计算过程中的功。

已知在该情况下冰和水的密度分别为917 kg·m-3和1000 kg·m-3。 7.10mol的气体(设为理想气体),压力为1013.25 kPa,温度为300 K,分别求出等温时下列过程的功: (1)在空气中(压力为101.325 kPa)体积胀大1 dm3。 (2)在空气中膨胀到气体压力也是101.325 kPa。 (3)等温可逆膨胀至气体的压力为101.325 kPa。 8.273.2K,压力为5×101.325 kPa的N2气2 dm3,在外压为101.325 kPa下等温膨胀,直到N2气的压力也等于101.325 kPa为止。 求过程中的W,ΔU ,ΔH 和Q。假定气体是理想气体。 9.0.02kg乙醇在其沸点时蒸发为气体。已知蒸发热为858kJ/kg.蒸汽的比容为0.607 m3/kg。 试求过程的ΔU ,ΔH,Q,W(计算时略去液体的体积)。 10. 1× kg水在373K,101.325 kPa压力时,经下列不同的过程变为373 K, 压力的汽,请分别求出各个过程的W,ΔU ,ΔH 和Q 值。 (1)在373K,101.325 kPa压力下变成同温,同压的汽。 (2)先在373K,外压为0.5×101.325 kPa下变为汽,然后加压成373K,101.325 kPa压力的汽。 (3)把这个水突然放进恒温373K的真空箱中,控制容积使终态为101.325 kPa 压力的汽。 已知水的汽化热为2259 kJ/kg。 11. 一摩尔单原子理想气体,始态为2×101.325 kPa,11.2 dm3,经pT=常数的可逆过程压缩到终态为4×101.325 kPa,已知C(V,m)=3/2 R。求: (1)终态的体积和温度。 (2)ΔU 和ΔH 。 (3)所作的功。

第四讲热学部分..(可编辑修改word版)

8kT m v 2 l l 一. 基础知识 第四讲 热 学 部 分 1. 分子运动论的基本内容 2. 物态的微观解释 3. 理想气体的压强 设任意分子 a 的速度为 v ,在 x 、y 、z 三个方向的分量为 v x 、v y 、v z ,所以分子 a 在单位时间里与左右壁碰撞的冲量为: v mv 2 I = f ? ?t = 2mv ? x = x 2l 1 l 1 mv 2 mv 2 m N F = I + I + = 1x + 2x + = ∑v 2 1 2 1 1 1 ix i =1 F m N mN v 2 + v 2 + v 2 + v 2 mN P = = ∑v 2 = ? 1x 2 x 3x Nx = ? v 2 = nmv 2 l 2l 3 l 1l 2l 3 ix i =1 l 1l 2l 3 N l 1l 2l 3 v 2 + v 2 + v 2 = v 2 ∴ v 2 = 1 v 2 x y z x 3 ∴ P = 2 n ? 1 mv 2 = 2 ne A 3 2 3 k 4. 分子平均动能: PV = RT ? e = 3P = 3RT = 3RT = 3RT = 3 kT (k =R/N A ,为玻尔兹曼常数) k 2n 2nV 2N 2N A 2 5. 阿伏伽德罗定律: P = nkT (n 为单位体积的分子数) ① 分子的平均速率: v = = ② 分子的方均根速率: = (μ为 mol 质量,可分子平均自由程推导) = 二. 物体的内能 1. 自由度:即确定一个物体的位置所需要的独立坐标参数,如自由运动的质点 需要三个独立坐标来描述其运动,故它有三个自由度。 2. 例:He 三个平动自由度 H 2 三个平动自由度,二个转动自由度 CO 2 三个平动自由度,二个转动自由度,一个振动自由度。 3. 理想气体的内能: E = N i kT = m 2 M ? i RT (i =3 或 i =5) 2 4. 物体的势能 8RT 3kT m 3RT 1 x l A x x

第一章热力学第一定律及其应用

华中科技大学博士研究生入学考试《物理化学(二)》考试大纲 第一章热力学第一定律及其应用 1.1 热力学概论 1.2 热力学第一定律 1.3准静态过程与可逆过程 1.4 焓 1.5 热容 1.6 热力学第一定律对理想气体的应用 1.7 实际气体 1.8 热化学 1.9 赫斯定律 1.10 几种热效应 1.11 反应热与温度的关系 1.12 绝热反应——非等温反应 1.13 热力学第一定律的微观说明 第二章热力学第二定律 2.1 自发变化的共同特征一不可逆性性 2.2 热力学第二定律 2.3 卡诺定律 2.4 熵的概念.

2.5 克劳修斯不等式与熵增加原理 2.6熵的计算 2.7热力学第二定律的本质和熵的统计意义 2.8亥姆霍兹自由能和古布斯自由能 2.9变化的方向和平衡条件 2.10ΔG的计算示例 2.11几个热力学函数间的关系 2.12单组分体系的两相平衡 2.13多组分体系中物质的偏摩尔量和化学势 2.14不可逆过程热力学简介 第三章统计热力学基础 3.1 概论 3.2玻尔兹曼统计 3.3玻色—爱因期坦统计和费米—狄拉克统计 3.4配分函数 3.5各配分函数的求法及其对热力学因数的贡献3.6晶体的热容问题 3.7分子的全配分函数 第四章溶液——多组分体系热力学在溶液中的应用4.1 引言 4.2 溶液组成的表示法 4.3 稀溶液的两个经验定律

4.4混合气体中各组分的化学势 4.5理想溶液的定义、通性及各组分的化学势4.6稀溶液中各组份的化学势 4.7理想溶液和稀溶液的微观说明 4.8稀溶液的依数性 4.9吉朽斯—杜亥姆公式和杜亥姆—马居耳公式4.10非理想溶液 4.11分配定律――溶质在两互不相溶液中的分配第五章相平衡 5.1引言 5.2多相体系的一般平衡条件 5.3相律 5.4单组份体系的相图 5.5二组份体系的相图及应用 5.6三组份体系的相图和应用 5.7二级相变 第六章化学平衡 6.1化学反应的平衡条件和化学反应的亲和势6.2化学反应的平衡常数和等温方程式 6.3平衡常数的表示式 6.4复相化学平衡 6.5平衡常数的测定和平衡转化率的计算

热力学第一定律基本概念和重点总结要点

本章内容: 介绍有关热力学第一定律的一些基本概念,热、功、状态函数,热力学第一定律、热力学能和焓,明确准静态过程与可逆过程的意义,进一步介绍热化学。 第一节热力学概论 ?热力学研究的目的、内容 ?热力学的方法及局限性 ?热力学基本概念 一.热力学研究的目的和内容 目的:热力学是研究热和其它形式能量之间相互转换以及转换过程中所应遵循的规律的科学。内容:热力学第零定律、第一定律、第二定律和本世纪初建立的热力学第三定律。其中第一、第二定律是热力学的主要基础。 把热力学中最基本的原理用来研究化学现象和化学有关的物理现象,称为化学热力学。 化学热力学的主要内容是: 1.利用热力学第一定律解决化学变化的热效应问题; 2.利用热力学第二律解决指定的化学及物理变化实现的可能性、方向和限度问题,建 立相平衡、化学平衡理论; 3.利用热力学第三律可以从热力学的数据解决有关化学平衡的计算问题 二、热力学的方法及局限性 方法: 以热力学第一定律和第二定律为基础,演绎出有特定用途的状态函数,通过计算某变化过程的有关状态函数改变值,来解决这些过程的能量关系和自动进行的方向、限度。 而计算状态函数的改变只需要根据变化的始、终态的一些可通过实验测定的宏观性质,并不涉及物质结构和变化的细节。 优点: ?研究对象是大数量分子的集合体,研究宏观性质,所得结论具有统计意义。 ?只考虑变化前后的净结果,不考虑物质的微观结构和反应机理,简化了处理方法。局限性: 1.只考虑变化前后的净结果,只能对现象之间的联系作宏观的了解,而不能作微观的 说明或给出宏观性质的数据。 例如:热力学能给出蒸汽压和蒸发热之间的关系,但不能给出某液体的实际蒸汽压的数值是多少。 2.只讲可能性,不讲现实性,不知道反应的机理、速率。 三、热力学中的一些基本概念 1.系统与环境 系统:用热力学方法研究问题时,首先要确定研究的对象,将所研究的一部分物质或空间,从其余的物质或空间中划分出来,这种划定的研究对象叫体系或系统 (system)。 环境:系统以外与系统密切相关的其它部分称环境(surrounding 注意: 1.体系内可有一种或多种物质,可为单相或多相,其空间范围可以是固定或 随过程而变。 2.体系和环境之间有分界,这个分界可以是真实的,也可以是虚构的,既可 以是静止的也可以是运动的。 根据体系与环境的关系将体系区分为三种:

第一章热力学第一定律

第一章热力学第一定律 本章主要内容 1.1热力学概论 1.2热力学第一定律 1.3 可逆过程和最大功 1.4 焓 1.5 热容 1.6 热力学第一定律对理想气体的应用1.7实际气体 1.8热化学 1.9化学反应热效应的求算方法 1.10反应热与温度的关系——基尔霍夫定律

§1.1热力学概论 1.1.1热力学的研究对象 (1)研究热、功和其他形式能量之间的相互转换及其转换过程中所遵循的规律; (2)研究各种物理变化和化学变化过程中所发生的能量效应; (3)研究化学变化的方向和限度。 1.1.2 热力学的方法和局限性 热力学方法: 热力学在解决问题是使用严格的数理逻辑推理方法,其研究对象是大量质点的集合体,所观察的是宏观系统的平均行为,并不考虑个别分子或质点,所得结论具有统计意义。 优点:只须知道宏观系统变化的始终态及外部条件,无须知道物质的微观结构和变化的细节即可进行有关的定量计算。 局限性: (1)对所得的结论只知其然而不知所以然; (2)不能给出变化的实际过程,没有时间的概念,也不能推测实际进行的可能性。 (3)只能适应用于人们所了解的物质世界,而不能任意推广到整个宇宙。 1.1.3 几个基本概念: 1、系统与环境 系统(System)——把一部分物质与其余分开作为研究对象,这这种被划定的研究对象称为系统,亦称为物系或系统。 环境(surroundings)——与系统密切相关、有相互作用或影响所能及的部分称为环境。 (1)敞开系统(open system) -系统与环境之间既有物质交换,又有能量交换。 (2)封闭系统(closed system)-系统与环境之间无物质交换,但有能量交换。

热力学第一定律的内容及应用

目录 摘要 (1) 关键字 (1) Abstract: ...................................................................................... 错误!未定义书签。Key words .................................................................................... 错误!未定义书签。引言 (1) 1.热力学第一定律的产生 (1) 1.1历史渊源与科学背景 (1) 1.2热力学第一定律的建立过程 (2) 2.热力学第一定律的表述 (3) 2.1热力学第一定律的文字表述 (3) 2.2数学表达式 (3) 3.热力学第一定律的应用 (4) 3.1焦耳实验 (4) 3.2热机及其效率 (5) 总结 (7) 参考文献 (7)

热力学第一定律的内容及应用 摘要:热力学第一定律亦即能量转换与守恒定律,广泛地应用于各个学科领域。本文回顾了其建立的背景及经过,它的准确的文字表述和数学表达式,及它在理想气体、热机的应用。 关键字:热力学第一定律;内能定理;焦耳定律;热机;热机效率 引言 在19世纪早期,不少人沉迷于一种神秘机械——第一类永动机的制造,因为这种设想中的机械只需要一个初始的力量就可使其运转起来,之后不再需要任何动力和燃料,却能自动不断地做功。在热力学第一定律提出之前,人们一直围绕着制造永动机的可能性问题展开激烈的讨论。直至热力学第一定律发现后,第一类永动机的神话才不攻自破。本文就这一伟大的应用于生产生活多方面的定律的建立过程、具体表述、及生活中的应用——热机,进行简单展开。 1.热力学第一定律的产生 1.1历史渊源与科学背景 人类使用热能为自己服务有着悠久的历史,火的发明和利用是人类支配自然力的伟大开端,是人类文明进步的里程碑。中国古代就对火热的本性进行了探讨,殷商时期形成的“五行说”——金、木、水、火、土,就把火热看成是构成宇宙万物的五种元素之一。 北宋时刘昼更明确指出“金性苞水,木性藏火,故炼金则水出,钻木而生火。”古希腊米利都学派的那拉克西曼德(Anaximander,约公元前611—547) 把火看成是与土、水、气并列的一种原素,它们都是由某种原始物质形成的世界四大主要元素。恩培多克勒(Empedocles,约公元前500—430)更明确提出四元素学说,认为万物都是水、火、土、气四元素在不同数量上不同比例的配合,与我国的五行说十分相似。但是人类对热的本质的认识却是很晚的事情。18世纪中期,苏格兰科学家布莱克等人提出了热质说。这种理论认为,热是由一种特殊的没有重量的流体物质,即热质(热素)所组成,并用以较圆满地解释了诸如由热传导从而导致热平衡、相变潜热和量热学等热现象,因而这种学说为当时一些著名科学家所接受,成为十八世纪热力学占统治地位的

相关文档
最新文档