锁扣钢管桩基坑支护稳定性验算_程兵

锁扣钢管桩基坑支护稳定性验算_程兵
锁扣钢管桩基坑支护稳定性验算_程兵

钢管桩支架计算书

钢管桩支架计算书 一.工程概况 1.1 工程简介 A匝道2号大桥是陕西神木至府谷高速公路永兴镇立交互通的匝道桥,全桥长221.5m,跨径组合为:3×35m+46.5m+2×35m,,主梁横截面设计为单箱四室结构,箱梁高2.4m,顶板宽19.5m,底板宽14.5,箱梁自重每延米45.9吨,全桥采用现浇连续施工,其中主跨下面通过主干桥西尔沟2号大桥构成立交体系。 1.2 建设条件 该地区属于山谷地区且常年少雨,气候干燥。高程变化有时较剧烈,施工条件较困难。 1.2.1地形地貌 典型的黄土高原沟壑地形,气候干燥,地下水位较深,地形沿高程方向变化较剧烈。 1.2.2地质情况 Q,多属于分化砂岩和分化泥岩,岩土层大部或全部受到地质情况主要为 4 分化。承载力从中密碎石土的250KPa到风化砂岩的1200KPa不等,摩阻力相应的大体变化为80KPa到100KPa。 1.2.3气候 气候干燥少雨,年均降雨量很小,早晚温差变化较大。 二.施工方案总体布臵和荷载设计值 2.1 支架搭设情况说明 A匝道2号大桥上部结构采用现浇式预应力钢筋混凝土变截面箱梁。根据工程实际情况采用钢管桩支架方案进行现浇施工,砼浇筑分两次浇筑,即第一次浇

筑箱梁底板和腹板,第二次浇筑箱梁顶板和翼缘板。根据大桥结构设计情况及现场施工条件的特点,综合考虑安全性、经济性和适用性,拟采用钢管桩支架作为该现浇体系的临时支承结构。钢管桩采用Φ800mm×8mm-Q235的无缝焊接钢管。方木布臵情况:横桥向放臵截面尺寸为15cm×15cm的方木,间距0.3m。15cm×15cm方木放臵在工10型钢上,工10型钢放臵在贝雷梁上,贝雷梁放臵在钢管桩顶端的沙桶上。 2.2 设计荷载取值 混凝土自重取: 26.5kN/m3 箱梁重: 24.1kN/m2 模板自重: 2.5kN/m2 施工人员和运输工具重量: 2.5kN/m2 振捣混凝土时产生的荷载: 2.5kN/m2 考虑分项系数后的每平米荷载总重:31.6kN/m2 三.贝雷梁设计验算 大桥第四跨跨径为46.5m,其他跨径为35m,在计算中需要对不同的跨径进行验算。其中第一跨采用满堂支架法施工,验算过程参考满堂支架法计算书。 神杨路方向第二、三、五、六跨 神杨路方向第二跨,第三跨,第五跨,第六跨,跨中布臵两排钢管桩,计算采用间距17m进行计算,现场可以根据实际情况减小间距。 采用双排单层加强型贝雷梁,每组贝雷梁间距1m, 全截面使用21组。 混凝土箱梁每平方米荷载: 31.6kN/m2 贝雷梁每片自重: 2×3kN/m 荷载总重: 6kN+31.6kN/m=37.6kN/m 双排单层加强型贝雷梁力学性能: [M] = 3375kN〃m [Q] = 490kN

钢管桩的计算公式

钢管桩的计算公式 条件: 地基土粘土、可塑,承载力特征值f ak ,重度γ,摩擦角φ,作用在基础顶面处内力标准值为:弯距M k ,剪力V k ,竖向轴力N k 一、根据结构力学知识,进行桩顶作用效应计算 求出每个桩顶的力 弯距ki M ,剪力ki V ,竖向轴力ki N , 如左图所示。 二、桩下压承载力计算 (参见《建筑桩基技术规范》) 单桩竖向承载力标准值为: p pk p j sjk pk sk uk A q l q u Q Q Q λ+=+=∑ sjk q ——桩侧第j 层土的极限侧阻力标准值,查表5.3.5-1。 pk q ——极限端阻力标准值,查表5.3.5-2。 j l ——桩周第j 层土的厚度 u ——桩身周长 p λ——桩端土塞效应系数,对于闭口钢管桩取1,对于敞口 钢管桩按下式计算: 当5/

三、 桩上拔承载力计算,即当0

筑岛施工方案

漯河市解放路沙河大桥工程 4、5、6、7轴下部结构筑岛施工方案 编制:涂彬 审核:陈奎 审批:郭文胜 编制单位:河南五建建设集团有限公司 2013年11月

目录 1.编制依据及范围 (1) 1.1编制依据 (1) 1.2编制范围 (1) 2.工程概况 (2) 2.1主体工程概况 (2) 2.2桥址自然概况 (2) 2.3水中墩围堰施工概况 (3) 3.主要施工方案 (5) 3.1下部结构施工流程图 (5) 3.2筑岛施工方案 (5) 3.2.1总体安排 (5) 3.2.2筑岛施工 (6) 3.2.3降排水设施施工 (6) 3.2.4、施工现场临时便道修筑 (6) 3.2.5应急措施 (6) 3.3筑岛区域临时道路修建 (6) 3.4开挖基坑 (6) 3.5锁口钢管桩围堰施工方案 (7) 3.5.1围堰结构形式和施工方案简介 (7) 3.5.2施工工艺流程 (7) 3.5.3施工准备 (7) 3.5.4围堰构件的工厂加工 (9) 3.5.5导向架加工及安装 (10) 3.5.6钢管桩插打 (10) 3.5.7围堰止水 (12) 3.5.8围堰内支撑安装 (12)

3.5.9围堰内的抽水取土清基 (12) 3.5.10围堰封底 (13) 3.5.11施工安全保证措施 (13) 3.5.12围堰的使用与维护 (14) 4.主要机械设备及参数 (15) 4.1主要施工机械设备表 (15) 4.2主要施工机械参数 (15)

1.编制依据及范围 1.1编制依据 (1)漯河市解放路沙河大桥工程施工组织设计。 (2)漯河市解放路沙河大桥工程相关设计图纸及文件。 (3)适用于本工程的国家及地方强制性规范和标准等。 (4)《公路桥涵施工技术规范》(JTG/T F50-2011) (5)《钢结构设计规范》(GB50017-2003) (4)本项目现场踏勘及自行调查工地周边环境条件获得的资料。 (5)我公司拥有的科技成果,机械设备装备情况,施工技术与管理水平以及多年来工程实践中积累的施工及管理经验。 (6)国家、河南省及漯河市政府、人大发布实施的相关法令、法规及行政命令。 1.2编制范围 漯河市解放路沙河大桥工程4、5、6、7轴下部结构施工技术措施方案。 1

基坑稳定性验算

第4章基坑的稳定性验算 4.1概述 在基坑开挖时,由于坑内土体挖出后,使地基的应力场和变形场发生变化,可能导致地基的失稳,例如地基的滑坡、坑底隆起及涌砂等。所以在进行支护设计时,需要验算基坑稳定性,必要时应采取适当的加强防范措施,使地基的稳定性具有一定的安全度。 4.2 验算内容 对有支护的基坑全面地进行基坑稳定性分析和验算,是基坑工程设计的重要环节之一。目前,对基坑稳定性验算主要有如下内容: ①基坑整体稳定性验算 ②基坑的抗隆起稳定验算 ③基坑底抗渗流稳定性验算 4.3 验算方法及计算过程 4.3.1基坑的整体抗滑稳定性验算 根据《简明深基坑工程设计施工手册》采用圆弧滑动面验算板式支护结构和地基的整体稳定抗滑动稳定性时,应注意支护结构一般有内支撑或外拉锚杆结构、墙面垂直的特点。不同于边坡稳定验算的圆弧滑动,滑动面的圆心一般在挡墙上方,基坑内侧附近。通过试算确定最危险的滑动面和最小安全系数。考虑内支撑或者锚拉力的作用时,通常不会发生整体稳定破坏,因此,对支护结构,当设置外拉锚杆时可不做基坑的整体抗滑移稳定性验算。 4.3.3基坑抗隆起稳定性验算

图4.1 基坑抗隆起稳定性验算计算简图 采用同时考虑c 、φ的计算方法验算抗隆起稳定性。 ()q D H cN DN K c q s +++=12γγ 式中 D —— 墙体插入深度; H —— 基坑开挖深度; q —— 地面超载; 1γ—— 坑外地表至墙底,各土层天然重度的加强平均值; 2γ—— 坑内开挖面以下至墙底,各土层天然重度的加强平均值; q N 、c N —— 地基极限承载力的计算系数; c 、?—— 为墙体底端的土体参数值; 用普郎特尔公式,q N 、c N 分别为: ?π?tan 2245tan e N q ??? ? ?+=? ()? tan 11-=q c N N 其中 D=2.22m q=10kpa H=7m ?= 240 4.1879.29.1821.181.2181=?+?+?= γ 5.181 7.03.183.09.182=?+?=γ 6.9)22445(tan 24tan 14.302=+ =?e Nq 32.1924 tan 1)16.9(tan 1)1(0=-=-=?Nq Nc 则 Ks=(18.5×2.22×9.6+10×19.32)/18.4(7+2.22)+10=3.27>1.2 符合要求 4.3.4抗渗流(或管涌)稳定性验算 (1)概述

m宁夏永宁特大桥钢栈桥钢平台钢管桩围堰施工方案

m宁夏永宁特大桥钢栈桥钢平台钢管桩围堰施工方 案 Prepared on 22 November 2020

宁夏永宁特大桥钢栈桥、桩基施工平台、 锁扣钢管桩围堰 施 工 组 织 设 计 方 案 广西巨基基础工程有限公司 2013年10月

宁夏永宁特大桥钢栈桥、桩基施工平台、 锁扣钢管桩围堰 施工组织设计方案 编制: 复核: 审批: 广西巨基基础工程有限公司 2013年10月

目录

一.工程概况 永宁黄河公路大桥起点桩号为K11+,终点桩号为K15+,全长3755.8m。上部结构跨径布置为:(3x50)m装配式预应力混凝土T梁+ (53+90+53)m预应力混凝土连续箱梁+9x(3x50)m装配式预应力混凝土T梁+(53+6x86+53)m预应力混凝土连续箱梁 +(3x50)m装配式预应力混凝土T梁+2x(4x50)m装配式预应力混凝土T梁。 永宁黄河公路大桥主桥桥跨结构布置为(110+260+110)m 双塔双索面斜拉桥+(53+6x86+53)变截面连续箱梁,主桥长1102m,分离式桥面布置,桥梁宽2×16.5m。下部结构采用塔式墩+薄壁墩,钻孔灌注桩基础。按双向6车道一级公路建设,设计速度80km/h,设计荷载等级为公路-Ⅰ级。主梁采用混凝土构造,梁高2.8m。主塔为倒Y型钢筋混凝土结构,塔高为82.5m。主塔斜拉索采用扇型密索布置,梁上索距9m,塔上索距约2m。斜拉索采用平行钢丝索冷铸锚具,预留减震装置。基础为钻孔灌注桩,桩径2.0m 。承台长46.0m,宽,18.2m,厚5.0m,主塔设高效阻尼装置。 河滩地段引桥上部结构主要采用50m装配式预应力混凝土T梁;跨越黄河两岸滨河大道段上部结构采用三跨预应力混凝土连续梁桥,桥跨布置为(53+90+53)m分幅设置,单幅宽16.5m。按双向6车道一级公路建设,设计速度80km/h,设计荷载等级为公路-Ⅰ级。上部梁考虑龙门吊架设施工及挂篮悬臂浇筑施工,下部结构墩身采用薄壁空心墩,基础采用直径1.8m钻孔灌注桩,承台桩基础。 主桥墩之间拟采用420×9m钢栈桥进行连接做临时交通运输。 二.编制依据 1、宁夏永宁特大桥施工设计图纸。 2、宁夏永宁特大桥现场调查及踏勘情况。

钢管桩设计与验算

钢管桩设计与验算 钢管桩选用Ф800,δ=10mm 的钢管,材质为A 3,E=2.1×108 Kpa,I= 64 π (80.04-78.04)=1.936×10-3M 4。依据386#或389#墩身高度和 周边地形,钢管桩最大桩长按30m 考虑。 1、桩的稳定性验算 桩的失稳临界力Pcr 计算 Pcr= 22 l EI π= 3 2 8 230 10 936.1101.2-????π =4458kN >R=658.3 kN 2、桩的强度计算 桩身面积 A=4 π (D 2-a 2) =4 π (802-782)=248.18cm 2 钢桩自身重量 P=A.L.r=248.18×30×102×7.85 =5844kg=58.44kN 桩身荷载 p=658.3+58.44=716.7 kN б=p /A=716.7×102/248.18=288.7kg /cm 2=35.3Mpa 3、桩的入土深度设计 通过上述计算可知,每根钢管桩的支承力近658.3kN ,按规范取用安全系数k=2.0,设计钢管桩入土深度,则每根钢管桩的承载力为658.3×2=1316.6kN ,管桩周长 U=πD=3.1416×0.8=2.5133m 。依地质勘察报告,河床自上而下各层土的桩侧极限摩擦力标准值为: 第一层 粉质黏土 厚度为3m , τ=120 Kpa

第二层 淤泥粉质黏土 厚度为4m ,τ=60 Kpa 第三层 粉砂 厚度为1.8m ,τ=90Kpa N=∑τi u h i N =120×2.5133×3+60×2.5133×4+90×2.5133×h 3=1316.6 kN =904.7+603.1+226.1 h 2 =1316.6kN 解得 h 3=-0.84m 证明钢管桩不需要进入第三层土,即满足设计承载力。 钢管桩实际入土深度: ∑h=3+4=7 m 4、打桩机选型 拟选用DZ90,查表得知激振动570 kN ,空载振幅≮0.8mm ,桩锤全高4.2 m ,电机功率90kw 。 5、振动沉桩承载力计算 根据所耗机械能量计算桩的容许承载力 []P = m 1{ ()[]v a A f m x 12 23 1111 βμα+-+Q } m —安全系数,临时结构取1.5 m 1—振动体系的质量 m 1=Q/g=57000/981=58.1 Q 1—振动体系重力 N g —重力加速度=981 cm /s 2 A X —振动沉桩机空转时振幅 A X = 10.3 mm M —振动沉桩机偏心锤的静力矩 N. cm μ—振动沉桩机振幅增大系数 μ= A n / A x

一种水上打桩定位装置及施工方法与流程

一种水上打桩定位装置及施工方法与流程 本发明涉及水上桩基施工技术,尤其涉及一种水上打桩定位装置及施工方法。 背景技术: 水上钢管桩与钢板桩组合沉桩,需将钢板桩锁扣插入钢管桩锁扣内,安装施工所耗时间较长,对钢管桩精度要求较高。该种组合沉桩在水工领域较为少见,常规施工单一采用安装在船体的导向架对钢管桩进行固定和定位,需频繁调整抱桩器,无法快速定位,精度方面难以达到要求,难以保证相邻钢管桩锁扣的顺直度,给后续钢板桩沉桩带来困难。 技术实现要素: 本发明为解决上述问题提供了一种能够解决钢管桩平面位置定位困难的定位装置和采用此装置后钢管桩与钢板桩的施工方法。 本发明所采取的技术方案: 一种水上打桩定位装置,包括水上钢管桩定位架,定位架包括浮箱和横梁,浮箱由两个空心长方体平行设置构成,浮箱上在每个空心长方体的上表面分别焊接两个吊点,多根横梁间隔一定距离焊接在两个平行的空心长方体间,每两根横梁组成一个限位孔,每个限位孔内的横梁侧面固定有防止钢管桩旋转的限位用卡槽。 所述的空心长方体由钢板拼接而成,拼接连接面做好防水措施。 所述的定位架上每组横梁间距根据钢管桩间距确定。 所述的定位架上焊接10根横梁,确定5个限位孔。 所述的卡槽由两块钢板焊接而成,两块钢板焊接在横梁侧面中间,两块钢板的间距与钢管桩上的锁扣宽度相当。 一种水上打桩定位施工方法,其步骤为:

a.施打首根钢管桩:通过布置在船体的扫描仪和gps装置进行首根钢管桩的精准定位,定位完成后进行施打,施打过程全程观测桩身的偏位和垂直度,及时进行纠偏; b.安装水上定位架:首根钢管桩施打完成后,由履带将水上定位架吊起,安装在首根钢管桩上,安装时注意将定位架上的卡槽对准钢管桩上的锁扣; c.施打钢管桩:水上定位架安装完成后,采用跳打法进行接下来排架几根钢管桩的施打,根据定位架上的限位孔可快速定位该组钢管桩的平面位置,吊钢管桩入位时,将钢管桩锁扣插入到定位架上的卡槽中,防止施工过程中钢管桩产生转动; d.钢管桩施工:当一个定位架钢管桩施工完毕后,挪动定位架,定位架的起始位置为上一排钢管桩的最后一根钢管桩,重复进行其他钢管桩施打,施工步骤同上; e.施打钢板桩:一段距离的钢管桩施打完成后,拆除水上定位架,将钢板桩锁扣插入钢管桩锁扣内,进行钢板桩的施打。 所述的步骤c中采用跳打法施打钢管桩的沉桩顺序为,先施打在定位架一端的限位孔内,再施打在定位架另一端的限位孔内,再施打在定位架中间的限位孔内,最后在定位架其余位置的限位孔内施打钢管桩。 本发明的有益效果:本发明提高了施工效率与经济效益:增设水上钢管桩定位架后,可快速定位钢管桩的平面位置,减少定位时间,提高施工效率;提高了施工质量:增设的水上导向架可提高钢管桩的沉桩精度,保证相邻钢管桩锁扣的顺直度,对后续钢板桩的插打带来便利,使沉桩质量得到有效保证。 附图说明 图1为本发明中水上打桩定位装置的俯视图。 图2为本发明中水上打桩定位装置的左视图。 图3为本发明中钢管桩利用定位架的沉桩顺序示意图。 其中:1-浮箱;2-横梁;3-卡槽;4-吊点;5-钢管桩;6-空心长方体;7-限位孔。 具体实施方式 一种水上打桩定位装置,包括水上钢管桩定位架,定位架包括浮箱1和横梁2,浮箱1由两个空心长方体6平行设置构成,浮箱1上在每个空心长方体6的上表面分别焊接两个吊点4,多根横梁2间隔一定距离焊接在两个平行的空心长方体6间,每两根横梁2组成一个限位孔7,每个限位孔7内的横梁2侧面固定有防止钢管桩5旋转的限位用卡槽3。 所述的空心长方体6由钢板拼接而成,拼接连接处做好防水措施。 所述的定位架上每组横梁2间距根据钢管桩5间距确定。

深水基础锁口钢管桩围堰施工工法

锁口钢管桩围堰深水基础施工工法 xxxx有限公司

锁口钢管桩围堰深水基础施工工法 1、前言 随着桥梁建设向大跨度方向的发展,大型水中承台围堰的施工方法较为繁多,工艺较为成熟。针对不同工程的结构特点选择适宜的围堰结构进行水中大型承台施工,锁口钢管桩围堰与双壁钢围堰和钢板桩围堰比较,即具有围水、挡护特性,又利用了钢管圆形截面的受力特点,简化了结构,同时造价低、安装速度快。对桥梁施工的安全、工期、经济和社会效益有重要影响。锁口钢管桩围堰施工工法是采用锁口钢管桩作围堰围水闭水进行桥梁水中大型承台施工的成套技术,包括相关的设计计算、加工制作、插拔施工、止水封底等系统施工技术。 xxxx工程局有限公司结合所承建的临海高等级公路灌河斜拉桥工程项目,根据施工现场水文、地质、气候及周边环境,通过技术攻关确定辅助跨5#、6#墩水中承台采用锁口钢管桩围堰施工,解决了水中大型承台施工的技术难题并形成工法。实践证明,工法具有很好的实用性、先进性、科学性。 2、工法特点 2.1加工制作简单、快速。钢管采用厂制成品钢管,能快速购置;钢管和锁扣之间的焊接工艺要求不高,工作量少,工地现场或一般钢结构厂家均可加工。 2.2施工工期短。采用振动锤逐根插入锁口钢管桩,施工工序简洁,精度要求不高,人工作业量小,施工速度大大提高。 2.3整体刚度大。锁口钢管桩本身刚度较大且深嵌入承台底以下地层、变形少,桩间通过锁口连接在一起整体稳定性非常好;围堰内无须复杂的内支撑体系,为承台施工提供了作业空间和可靠的安全保障。 2.4材料回收利用率高。锁口钢管桩可全部拔除,整个围堰结构的钢材回收率达90%以上,可用于其他承台基础围堰施工或上部结构施工的支撑管柱,材料周转利用率高,经济效益明显。 3、使用范围 锁口钢管桩围堰适用于陆地(土质类地质层)大型承台深基坑支护及水深20m以内、河床为砂类土、粘性土和风化岩等种复杂地质、地层条件下的大型承台施工。

抗倾覆稳定性验算

*作品编号:DG13485201600078972981* 创作者: 玫霸* 五、施工计算 1、抗倾覆稳定性验算 本工程基坑最深11.0米左右,此处的土为粘性土,可以采用“等值梁 法”进行强度验算。 首先进行最小入土深度的确定: 首先确定土压力强度等于零的点离挖土面的距离y ,因为在此处的被动 土压力等于墙后的主动土压力即: ()a p b K K P y -=γ 式中:P b 挖土面处挡土结构的主动土压力强度值,按郎肯土压力理论进 行计算即 a a b K cH K H P 22 12-=γ γ 土的重力密度 此处取18KN/m 3 p K 修正过后的被动土压力系数(挡土结构变形后,挡土结构 后的土破坏棱柱体向下移动,使挡土结构对土产生向上的摩擦力,从而使 挡土结构后的被动土压力有所减小,因此在计算中考虑支撑结构与土的摩 擦作用,将支撑结构的被动土压力乘以修正系数,此处φ=28°则K=1.78 93.42452=??? ? ?+?=? tg K K p

a K 主动土压力系数 361.02452=??? ? ?-=? tg K a 经计算y=1.5m 挡土结构的最小入土深度t 0: x y t +=0 x 可以根据P 0和墙前被动土压力对挡土结构底端的力矩相等来进行计算 ()m K K P y t a p 9.2600=-+=γ 挡土结构下端的实际埋深应位于x 之下,所以挡土结构的实际埋深应为 m t K t 5.302=?=(k 2 经验系数此处取1.2) 经计算:根据抗倾覆稳定的验算,36号工字钢需入土深度为3.5米,实际入土深度为3.7米,故:能满足滑动稳定性的要求 2、支撑结构内力验算 主动土压力:a a a K cH K H P 22 12-=γ 被动土压力:p p p cK K H P 22 12+=γ 最后一部支撑支在距管顶0.5m 的地方,36b 工字钢所承受的最大剪应力 d I Q d I Q S S z x x z ???? ??==*max max *max max max τ ,3.30* max cm I S z x = d=12mm,经计算 []ττ<=a MP 6.26max 36b 工字钢所承受的最大正应力 []σσ<==a MP W M 9.78max 经过计算可知此支撑结构是安全的 3、管涌验算: 基坑开挖后,基坑周围打大口井两眼,在进出洞口的位置,可降低

桁架钢管桩承载力计算书

桩基承载力说明与计算 根据箱梁结构形式,支架基础采用Φ820*8钢管桩,每幅单排布置5根,纵向根据现浇梁不同部位的重量不同,根据现浇梁的纵向断面形式不同钢管桩间距距离不同,具体布置形式见现浇支架立面图。现浇梁施工完成后要根据钢管桩的入土深度和桥梁的净高确钢管桩拆除方式。 使用DZ60振动锤打入河床,入土深度要达到DZ60振动锤的最大击振力强度(即每根管桩竖向承载力可达到59t的标准)。 1、钢管计算 (1)、桥梁荷载 ①混凝土荷载 ②施工荷载 ③ (2)、地基承载力计算 根据相关资料查询各种土层的摩阻力分别为:淤泥质粉质粘土桩侧土摩阻力q ik=20kPa(回填土按淤泥质土计算摩阻力);细砂桩侧土摩阻力q ik=25kPa;中砂层桩侧土摩阻力q ik=35kPa;粗砂层桩侧土摩阻力q ik=60kPa。由地质勘查报告查询,桥位附近地质情况如下: 不同孔号对应的岩层厚度

按照钢管入土长度35m分别计算三处地基的承载力。摩擦桩计算公式:[Ra]=1/2(UΣq ik* l i)+A p* q r ①ZK26处: [Ra]=1/2(UΣq ik* l i)+A p* q r =0.82*3.14*(6.22*20+7.3*25+13*35+8.48*60)/2=461.79 KN ②ZK28处: [Ra]=1/2(UΣq ik* l i)+A p* q r =0.82*3.14*(4.41*20+4.2*25+6.39*35)/2=536.65KN ③ZK30处: [Ra]=1/2(UΣq ik* l i)+A p* q r =0.82*3.14*(7.33*20+7.67*25)/2=338.35KN =375.1 KN≥1.5*203=304.5 KN 钢管桩的承载力满足要求。 (2)、钢管桩刚度计算: [σ]=F/A=304.5/((0.82*0.82-0.8*0.8)/(3.14*4)) =229.4 MPa≤235 MPa 钢管强度满足承载力要求。

钢管桩和贝雷片架空支架计算书

支架设计计算 1、支架结构 1.1、满堂式支架形式 满堂式钢管支架钢管外径4.8cm,壁厚0.35cm。支架顺桥向纵向间距0.8m,横桥向横向间距腹板底为0.4m,中部空心位置为0.975m,其余为0.8m,纵横水平杆竖向间距1.2m。无盖梁的桥墩部分需加密钢管支架。在顶托上沿线路方向安放2根D48壁厚3.5mm的钢管,在钢管上横向间距30cm安放10×10cm的方木横梁。 1.2、钢管高支架形式 现浇箱梁高支架由Ф630mm,壁厚10mm钢管桩,I56a工字钢横梁及贝雷片纵梁组成。每一跨单幅布置24根钢管桩,墩身完工后进行Ф630mm钢管桩施打,钢管桩与钢管桩之间用[16a槽钢焊接连接系,用I56a工字钢作横梁、贝雷片作纵梁,在贝雷片纵梁上铺设间距为50cm的I10工字钢横梁,然后再纵向铺设间距为30cm的10×10mm木枋。 2、计算依据 1、《路桥施工计算手册》; 2、《钢结构设计规范》; 3、《公路桥涵施工规范》; 4、《金九大桥施工组织设计》; 5、国家部委制定的其它规定、规程、规范。 3、支架受力计算

工况一、选取2m高箱梁进行验算(满堂支架) 箱梁腹板为箱梁最大集中荷载处,以此作为自重验算。如下图。竖向荷载 永久荷载(分项系数取1.2): ①模板及连接件的自重力 800N/ m2 ②可变荷载(分项系数取1.4): ③施工荷载 1000N/ m2 ④混凝土倾倒荷载 2000N/ m2 ⑤振捣荷载 2000N/ m2 合计 5800N/ m2 箱梁各部位荷载简化表 序号部位部位 起点终点 起点砼厚 度(cm) 荷载大小 (KN/m2) 累加其它 荷载 (KN/m2) 终点砼厚 度(cm) 荷载大 小 (KN/m2) 累加其它 荷载 (KN/m2) 1 B区腹板位置200 53 58.8 200 53 58.8 2 A区翼板位置200 45 50.8 200 45 50.8 3 C区空心位置28 8.3 14.1 28 8.3 14.1 根据上表利用空间有限元软件MIDAS CIVIL2006 根据实际现浇支架搭设建立现浇梁段的模形,模形取梁段端最重位置进行模拟。 建模效果图如下: 按最梁端最大荷载支架的受力加载。 腹板处: 每区格面积为0.4×0.8=0.32m2 每根立杆承受的荷载为0.32m×58.8KPa=18.8KN 梁体空心处: 每区格面积为0.8×0.975=0.78m2 每根立杆承受的荷载为0.78m2×14.1KPa=11KN 立杆承受荷载取最大值即:18.8KN

钢栈桥、钢平台、钢管桩围堰施工方案

特大桥钢栈桥、桩基施工平台、锁扣钢管桩围堰 施 工 组 织 设 计 方 案 2013年10月

特大桥钢栈桥、桩基施工平台、锁扣钢管桩围堰 施工组织设计方案 编制: 复核: 审批: 基基础工程有限公司 2013年10月

目录 一.工程概况 (1) 二.编制依据 (1) 2.1地质资料 (2) 2.2设计荷载 (2) 2.3规程规范 (2) 三.钢栈桥、钢平台、钢管桩围堰设计 (2) 3.1栈桥设计 (2) 3.2钢平台设计 (3) 3.2钢管桩围堰设计 (4) 四.钢栈桥、钢平台、钢管桩围堰施工 (5) 4.1钢栈桥、钢平台施工 (5) 4.2锁扣钢管桩围堰施工 (11) 五.施工管理机构及资源配置 (19) 5.1 施工管理机构 (19) 5.2人员、设备配备 (19) 六.安全保证措施 (20) 6.1安全目标 (20) 6.2安全制度 (20) 七.文明、环保保证体系及措施 (21) 7.1文明施工目标及技术措施 (21) 7.2施工环保目标及措施 (22) 八.工期安排 (23) 九.附件 (23)

一.工程概况 黄河公路大桥起点桩号为K11+379.44,终点桩号为K15+550.24,全长3755.8m。上部结构跨径布置为:(3x50)m装配式预应力混凝土T梁+ (53+90+53)m 预应力混凝土连续箱梁+9x(3x50)m装配式预应力混凝土T梁+(53+6x86+53)m预应力混凝土连续箱梁+(3x50)m装配式预应力混凝土T梁+2x(4x50)m装配式预应力混凝土T梁。 永宁黄河公路大桥主桥桥跨结构布置为(110+260+110)m 双塔双索面斜拉桥+(53+6x86+53)变截面连续箱梁,主桥长1102m,分离式桥面布置,桥梁宽2×16.5m。下部结构采用塔式墩+薄壁墩,钻孔灌注桩基础。按双向6车道一级公路建设,设计速度80km/h,设计荷载等级为公路-Ⅰ级。主梁采用混凝土构造,梁高2.8m。主塔为倒Y型钢筋混凝土结构,塔高为82.5m。主塔斜拉索采用扇型密索布置,梁上索距9m,塔上索距约2m。斜拉索采用平行钢丝索冷铸锚具,预留减震装置。基础为钻孔灌注桩,桩径2.0m 。承台长46.0m,宽,18.2m,厚5.0m,主塔设高效阻尼装置。 河滩地段引桥上部结构主要采用50m装配式预应力混凝土T梁;跨越黄河两岸滨河大道段上部结构采用三跨预应力混凝土连续梁桥,桥跨布置为(53+90+53)m分幅设置,单幅宽16.5m。按双向6车道一级公路建设,设计速度80km/h,设计荷载等级为公路-Ⅰ级。上部梁考虑龙门吊架设施工及挂篮悬臂浇筑施工,下部结构墩身采用薄壁空心墩,基础采用直径1.8m钻孔灌注桩,承台桩基础。 主桥墩之间拟采用420×9m钢栈桥进行连接做临时交通运输,水中承台拟搭建桩基施工平台来完成承台下的桩基础,桩基础施工完成后搭建锁扣钢管桩围堰施工水中承台。 二.编制依据 1、特大桥施工设计图纸。 2、特大桥现场调查及踏勘情况。 3、《建筑地基基础设计规范》(GB5007-2001); 4、《钢结构设计规范》(GB50017-2003); 5、《公路工程施工安全技术规程》(JTJ076-95);

钢管桩设计方案与验算

钢管桩设计与验算 810,E=2.1×,δ=10mm的钢管,材质为A钢管桩选用Ф8003?44-34。依据386#或10389#Kpa,I=M(墩身高度-)=1.936×7880..00 64和周边地形,钢管桩最大桩长按30m考虑。 1、桩的稳定性验算 桩的失稳临界力Pcr计算 ?32?82?EI10?1?10?1.936.?2= Pcr= 22l30 =4458kN>R=658.3 kN 2、桩的强度计算 ?22 aD桩身面积A=()-4?2 22=248.18cm)-=(80784钢桩自身重量27.85 ×10P=A.L.r=248.18×30× =5844kg=58.44kN p=658.3+58.44=716.7 kN 桩身荷载22=35.3Mpa /248.18=288.7kgcm/10=pб/A=716.7×3、桩的入土深度设计,按规范通过上述计算可知,每根钢管桩的支承力近658.3kN,设计钢管桩入土深度,则每根钢管桩的承载力k=2.0取用安全系数。依π,管桩周长U=D=3.1416×0.8=2.5133m2=1316.6kN658.3为×地质勘察报告,河床自上而下各层土的桩侧极限摩擦力标准值为:=120 Kpa τ,3m厚度为粉质黏土第一层.

第二层淤泥粉质黏土厚度为4m,τ=60 Kpa 第三层粉砂厚度为1.8m,τ=90Kpa N=∑τu h ii N =120×2.5133×3+60×2.5133×4+90×2.5133× h=1316.6 kN 3=904.7+603.1+226.1 h =1316.6kN 2解得h=-0.84m 3证明钢管桩不需要进入第三层土,即满足设计承载力。 钢管桩实际入土深度:∑h=3+4=7 m 4、打桩机选型 拟选用DZ90,查表得知激振动570 kN,空载振幅≮0.8mm,桩锤全高4.2 m,电机功率90kw。 5、振动沉桩承载力计算 根据所耗机械能量计算桩的容许承载力{}????223??a?Afm1??x11 +Q=1P ?m v1?1m—安全系数,临时结构取1.5 m—振动体系的质量m=Q/g=57000/981=58.1 11Q—振动体系重力N 12—重力加速度=981 cm /sg A—振动沉桩机空转时振幅 A = 10.3mm XX M—振动沉桩机偏心锤的静力矩N. cm μ—振动沉桩机振幅增大系数μ= A/ A xn A-振动体系开始下沉时振幅取1.2 cm n f—振动频率17.5 转/S a—振动沉桩机最后一击的实际振幅取1.0 cm

钢管桩计算书

边跨现浇直线段支架设计计算 一、计算何载(单幅) 1、直线段梁重:15#、16#、17#混凝土方量分别为22.26、25.18、48m3。端部1.0范围内的重量,直接作用在墩帽上,混凝土方量为: V=1×[6.25×2.5+2×3×0.15+2×2×0.25/2+2× 225 .0 65 .0 ×1-1.2×1.5]=16.125 m3 作用在支架的荷载: G1=(22.26+25.18+48-16.125)×22800×10=1957.78 KN 2、底模及侧模重(含翼缘板脚手架):估算G2=130KN 3、内模重:估算G3=58KN 4、施工活载:估算G4=80KN 5、合计重量:G5=1957.78+130+58+80=2226KN 二、支架形式 支架采用Φ800mm(壁厚为10mm)作为竖向支承杆件。纵桥向布置2排,横桥向每排2根,其中靠近10#(13#)墩侧的钢管桩支承在承台上,与墩身中心相距235cm,第二排钢管桩与第一排中心距为550cm,每排2根排的中心距离为585cm。钢管桩顶设置砂筒,砂筒上设纵横向工字钢作为分配梁,再在纵梁上敷设底模方木及模板。钢管桩之间及钢管桩与墩身之间设置较强的钢桁架梁联系,在平面上形成框架结构,以满足钢管桩受载后的稳定性要求,具体详见“直线段支架结构图”。

根据支架的具体结构,现将其简化成力学计算模型,如下图所示: 327.5 585 327.5 10×120 20 20 780 550 115 115 纵桥向横桥向 三、支架内力及变形验算 1、 横梁应力验算:横梁有长度为12.4m ,采用2I56a 工字钢,其上 承托12根I45a 工字钢。为简化计算横梁荷载采用均布荷载。 (1)纵梁上面荷载所生的均布荷载: Q 1=2226÷2÷12.25=90.86KN/m (2)纵梁的自重所生的均布荷载: Q 2=0.8038×(1.15+5.5/2)×11÷12.25=2.815N/m (3)横梁自身的重量所生的均布荷载: Q 3=2×1.0627=2.125N/m (4)横梁上的总均布荷载: Q=90.86+2.815+2.125=95.8N/m

浅谈锁扣钢管桩围堰施工

浅谈锁口钢管桩围堰施工 (广西桂通工程咨询有限公司张重伟) 摘要:钢管桩围堰在不同的施工时期起着不同的作用,作为承台施工围堰期,其作用是抵抗基坑四周的土压力,支护围堰内开挖后形成的基坑。本文结合南宁外环公路大冲邕江特大桥9#墩承台锁口钢管桩围堰的实施,就锁口钢管桩围堰的设计及施工进行阐述,展望了锁口钢管桩围堰推广应用前景。 关键词:锁口钢管桩;围堰;技术控制;施工 引言:近年来,随着经济和社会的发展,我国桥梁工程深水基础数量越来越多,相应的施工难度越来越大,国内桥梁工程基础工程在复杂地层施工中,能否安全建好深水基础关系到整个桥梁工程施工的成败。本文在以往研究的基础上,通过工程实例对锁口钢管桩围堰施工进行了分析,总结经验。 1、工程概况 大冲邕江特大桥位于南宁市青秀区长塘镇德福村大冲屯附近,跨越邕江及湘桂铁路,是南宁外环公路项目的控制性工程,是目前广西壮族自治区内在建的最大一座双塔双索面预应力混凝土斜拉桥。全桥长888米,主桥为193+332+113米高低塔混凝土斜拉桥,采用半漂浮体系,预应力混凝土主梁标准段采用双分离边箱形断面形式。该桥9#墩位于邕江南岸岸边,桥塔基础采用承台接钻孔灌注桩基础。矮塔下设两个15.6×15.6m矩形钢筋混凝土承台,高为5m。每个承台下各设9根φ250cm的钻孔灌注桩,桩长25m,采用嵌岩桩形式,为群桩基础。承台外边线距岸边约30m,测量水位61.7m,承台顶标高61.5m,承台底标高56.5m。 结合大冲邕江特大桥9 #墩的位置及地质、水文等情况,从施工的工期、方便性及设备情况等各方面分析,为了加快进度完成南宁外环公路整体进度指标、保证工程质量,必须对传统的围堰进行创新。从承台形式、地质、水文及以往水中施工经验来看,我们决定采用钢管桩施工方案,9#墩水中桩基础采用筑岛围堰方法施工,在岛上冲击钻成孔。承台施工采用锁口钢管桩围堰开挖施工。 2、锁口钢管桩围堰设计 2.1钢管桩的截面选择 钢管桩是围堰受力主要部件。根据《钢结构设计规范》规定:钢管直径与壁厚比的要求。 A3钢D/t≤100,并且要穿过密集孤面、片石堆积和木质沉船,结合力学计算情况采用φ529mm,厚度为8mm的钢管,同时为防止在振动锤作用下造成桩端和桩头出现破裂现象,对桩端和桩头进行局部加强。 2.2 锁口的设计 锁口形式分为阴隼和阳隼两种。为保证锁口能止水,我们做了以下工作:一是保证锁口有足够强度,我们对锁口强度进行反复验算及结合现场实际材料情

钢管桩单桩承载力试验施工方案

钢管桩单桩承载力试验施工方案 一、工程概况: 1、工程简介 厦门市海翔大道琼头立交工程位于厦门市翔安区海翔大道与东界路、滨海东大道的交叉口。它是海翔大道与东界路、滨海东大道的一个交叉接点,为一级互通式立体交叉工程,设计为两层迂回定向左转加苜蓿叶变型互通立交,滨海东大道至同安大桥和东界路至海翔大道左转采用迂回定向匝道,其余左转采用环形匝道。第一层为海翔大道,第二层为东界路、滨海东大道,地面交通通过地道方式解决。海翔大道、东界路与滨海东大道直行交通流均采用双向六车道设计。 东界路上跨海翔大道主线桥桥长375米(单跨最大跨度45米)设计时速为60km/h。匝道桥全长1378米,设计时速情况为C、D、E、G匝道为35km/h,A、B、F、H匝道为40km/h,立交辅道为30km/h。 本工程结构物包括主线桥1座,长度375.08m,匝道桥8座,匝道合计长度1275.82m,人行桥1座,长度13.04m,盖板涵5道、圆管涵1道,人行通道1道。 2、施工场地情况: 本施工区域位于现有鱼塘上,为了加快施工进度及减少施工难度,我施工方对鱼塘进行回填,本次箱梁施工采用贝雷片钢管桩支撑施工方案。 二、检测项目及试验目的

1、基桩测试项目 (1)单桩竖向抗压静载试验,以确定单桩竖向抗压极限承载力; 2、工作量安排 (1)单桩竖向抗压静载试验: 根据现浇箱梁支架方案确定单桩竖向抗压极限承载力为426.554KN。 以上各检测方法工作量安排和检测桩位,由设计、监理、建设方共同商定。 2、试验目的 采用接近于通过竖向抗压桩的实际工作的试验方法,比较准确的反映单桩的受力状况和变形特征,确定单桩竖向抗压承载力,作为设计依据,或对工程桩的承载力进行抽样检验和评价。 三、仪器设备 1、加载设备:油压千斤顶(100T)。 2、荷载与沉降量测仪表:荷载量测使用60Mpa压力表,沉降量测使用百分表。荷载与沉降量测仪表均经过国家指定的计量标定单位进行计量标定。 四、试验准备工作 1、收集原始资料,了解试桩场地工程地质情况,试桩的基本情况(如 桩长、桩径、施工日期、施工工艺等),以及桩的预估极限承载力值。 2、制定出比较详细的试验方案(包括桩头处理、加载装置等)。

钢管桩稳定性计算计算书

悬臂式板桩和板桩稳定性计算计算书 万科城六期工程;属于结构;地上0层;地下0层;建筑高度:0m;标准层层高:0m ;总建筑面积:0平方米;总工期:0天;施工单位:。 本工程由投资建设,设计,地质勘察,监理,组织施工;由担任项目经理,担任技术负责人。 一、编制依据 本计算书的编制参照《建筑基坑支护技术规程》(JGJ120-99),《土力学与地基基础》(清华大学出版社出版)等编制。 二、参数信息 重要性系数:1.00;开挖深度度h:6.00m; 基坑外侧水位深度h wa:8m;基坑下水位深度h wp:2.00m; 桩嵌入土深度h d:6m;基坑边缘外荷载形式:荷载满布 土坡面上均布荷载值q0:1.00kN/m; 悬臂板桩材料:63a号工字钢;弹性模量E:206000N/mm2; 强度设计值[fm]:205N/mm2;桩间距bs:0.50m; 截面抵抗矩Wx:2981.47cm3;截面惯性矩Ix:93916.20cm4; 基坑土层参数: 序号土名称土厚度坑壁土的重度内摩擦角内聚力浮容重 (m) (kN/m3) (°) (kPa) (kN/m3) 1 填土 2 19 16 10 20 2 细砂 1 18 25 0 20 3 中砂 3 18.5 28 0 20 4 砾砂 3 19 30 0 20 5 圆砾 3 20.25 35 5.5 20 6 碎石 3 21 37.5 9 20 三、土压力计算

1、水平荷载 (1)、主动土压力系数: K a1=tan2(45°- φ1/2)= tan2(45-16/2)=0.568; K a2=tan2(45°- φ2/2)= tan2(45-25/2)=0.406; K a3=tan2(45°- φ3/2)= tan2(45-28/2)=0.361; K a4=tan2(45°- φ4/2)= tan2(45-30/2)=0.333; K a5=tan2(45°- φ5/2)= tan2(45-30/2)=0.333; K a6=tan2(45°- φ6/2)= tan2(45-35/2)=0.271; (2)、土压力、地下水以及地面附加荷载产生的水平荷载: 第1层土:0 ~ 2米; σa1上= -2C1K a10.5 = -2×10×0.5680.5 = -15.071kN/m2; σa1下= γ1h1K a1-2C1K a10.5 = 19×2×0.568-2×10×0.5680.5 = 7.075kN/m2; 第2层土:2 ~ 3米; H2' = ∑γi h i/γ2 = 38/18 = 2.111; σa2上= [γ2H2'+P1+P2a2/(a2+2l2)]K a2-2C2K a20.5 = [18×2.111+1+0]×0.406-2×0×0.4060.5 = 15.828kN/m2; σa2下= [γ2(H2'+h2)+P1+P2a2/(a2+2l2)]K a2-2C2K a20.5 = [18×(2.111+1)+1+0]×0.406-2×0×0.4060.5 = 23.134kN/m2; 第3层土:3 ~ 6米; H3' = ∑γi h i/γ3 = 56/18.5 = 3.027;

相关文档
最新文档